
ar
X

iv
:1

50
1.

03
73

4v
2 

 [
he

p-
la

t]
  2

 M
ar

 2
01

5

Prepared for submission to JHEP DESY 15-008,CP3-Origins-2015-004 DNRF90,

DIAS-2015-4

First moment of the flavour octet nucleon parton

distribution function using lattice QCD

Constantia Alexandroua,b Martha Constantinoua Simon Dinterc Vincent Drachd

Kyriakos Hadjiyiannakoua Karl Jansena,b,c Giannis Koutsoua Alejandro Vaqueroe

aDepartment of Physics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
bComputation-based Science and Technology Research Center (CaSToRC), The Cyprus Institute,20

Constantinou Kavafi Street Nicosia 2121, Cyprus
cNIC, DESY, Platanenallee 6, D-15738 Zeuthen, Germany
dCP 3-Origins & the Danish Institute for Advanced Study DIAS, University of Southern Denmark,

Campusvej 55, DK-5230 Odense M, Denmark
eINFN, Sezione di Milano-Bicocca Edificio U2, Piazza della Scienza 3 20126 Milano, Italy

E-mail: drach@cp3.dias.sdu.dk, karl.jansen@desy.de

Abstract: We perform a lattice computation of the flavour octet contribution to the

average quark momentum in a nucleon, 〈x〉
(8)

µ2=4 GeV2 . In particular, we fully take the

disconnected contributions into account in our analysis for which we use a generalization

of the technique developed in [1]. We investigate systematic effects with a particular

emphasis on the excited states contamination. We find that in the renormalization free

ratio 〈x〉(3)

〈x〉(8)
(with 〈x〉(3) the non-singlet moment) the excited state contributions cancel to a

large extend making this ratio a promising candidate for a comparison to phenomenological

analyses. Our final result for this ratio is in agreement with the phenomenological value

and we find, including systematic errors, 〈x〉(3)

〈x〉(8)
= 0.39(1)(4).
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1 Introduction

Computing nucleon properties from first principles using lattice QCD is a long stand-

ing challenge. In particular, moments of parton distribution functions (pdfs) are impor-

tant benchmark quantities for lattice calculations and provide insight into the structure of

hadrons. The computation of various moments of pdfs is therefore a very active research

area for lattice calculations, see [2–11] for recent results. In the work we perform here

a first lattice calculation of the octet contribution to the average quark momentum in a

nucleon, 〈x〉
(8)
µ2 is presented, where µ2 denotes the renormalization scale. This quantity is of

interest by itself and can be extracted from phenomenological analyses of data from deep

inelastic scattering experiments, see below. It therefore can serve as an additional quantity

to probe QCD and the structure of hadrons, see [11].

In addition, 〈x〉
(8)
µ2 needs the same renormalization constant as the iso-vector averaged

quark momentum in the nucleon 〈x〉
(3)
µ2 and therefore in the ratio of 〈x〉

(8)
µ2 and 〈x〉

(3)
µ2

the renormalization constant cancels. Although we can evaluate non-perturbatively the

renormalization constant, its cancelation in the ratio eliminates any uncertainty related

to its determination. Comparing the ratio to a phenomenological analysis can thus help

to understand, whether renormalization effects can play a role in the presently observed

discrepancy between lattice calculations of 〈x〉
(3)
µ2 and phenomenological determinations of

this quantity.

Despite the above given motivations to compute 〈x〉
(8)
µ2 there is so far no value of this

quantity available from a lattice determination. The reason for this is that 〈x〉
(8)
µ2 is very
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difficult to calculate since it involves dis-connected, singlet contributions. The definition

of the flavour octet moment 〈x〉
(8)
µ2 reads :

〈x〉
(8)
µ2 =

∫ 1

−1
dx x

[
u(x, µ2) + d(x, µ2)− 2s(x, µ2))

]
(1.1)

where q(x, µ) denotes the sum of the parton distribution function of the quark q and anti-

quark q̄. Using the same convention, we also define the non-singlet contribution 〈x〉
(3)
µ2 ,

〈x〉
(3)
µ2 =

∫ 1

−1
dx x

[
u(x, µ2)− d(x, µ2)

]
. (1.2)

At a value of the renormalization scale of µ2 = 4GeV2 the two moments〈x〉
(3)

µ2=4 GeV2

and 〈x〉
(8)

µ2=4 GeV2 can be extracted phenomenologically using parton distribution functions

determined from deep inelastic scattering data, and read, using the ABM12 pdfs set [12]

and the analysis of ref. [13]

〈x〉
(3)

µ2=4 GeV2 = 0.153(4), 〈x〉
(8)

µ2=4 GeV2 = 0.470(7). (1.3)

The quantities 〈x〉
(3)
µ2 and 〈x〉

(8)
µ2 are related to matrix elements of local operators that

can be computed in Euclidean space-time and are hence accessible to lattice QCD calcu-

lations. Introducing

Oa
{µ1···µn}

= ψγ{µ1
i
←→
D µ2 · · · i

←→
D µn}λ

aψ (1.4)

where λa are the Gell-Mann matrices acting on a three flavour quark field ψ = (u, d, s).

With
←→
D we denote the symmetrized covariant lattice derivative and with the curly brackets

the symmetrization and subtraction of the trace. The required matrix element is then given

by

〈N(p, s)|Oa=3,8
{µν} |N(p, s)〉|µ2= 〈x〉

(3,8)
µ2 ūN (p, s)γ{µPν}uN (p, s) . (1.5)

From the definition in eq. (1.1) it is clear that the octet matrix element 〈N(p, s)|Oa=8
{µν}|N(p, s)〉

involves dis-connected contributions which have in general a bad signal to noise ratio, re-

quire thus a very high statistics and are consequently very difficult to compute on the

lattice. In addition, the dis-connected contribution to 〈x〉
(8)
µ2 is an SU(3)flavour breaking

effect and is thus expected to be small. In [1] and [14] we have demonstrated that for the

here used (maximally) twisted mass lattice discretization of QCD there are special noise

reduction techniques which can help substantially to improve on the signal to noise ratio.

Indeed, these techniques allowed us to compute a number of quantities which were very

difficult to access before [15, 16].

In this work we present a generalization of the particular technique used in the context

of the determination of the σ-terms [1] to calculate non-perturbatively the disconnected

contribution relevant for 〈x〉
(8)
µ2 . As we will see below, this generalization will indeed provide

a statistically significant signal for 〈x〉
(8)
µ2 . Note that contrary to the case of the σ-terms,
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the formalism to compute dis-connected contributions developed here is not limited to

the twisted mass formulation. The technique could also be applied to other flavour octet

operators which would allow to determine non perturbatively moments of polarized pdfs

or the flavour octet axial coupling of the nucleon g
(8)
A for instance, see e.g. [14, 16].

The paper is organized as follow : after describing the basic ingredients of our com-

putation we give the details of the variance reduction technique used in this work. We

then present a study of the systematic effects appearing in our calculation and perform

an extrapolation of the results to the physical pion mass in order to compare with the

phenomenologically obtained values.

2 Simulation Details

The lattice action used in our simulations includes as active degrees of freedom, besides the

gluon field, a mass-degenerate light up and down quark doublet as well as a strange-charm

quark pair in the sea, a situation which we refer to as the Nf = 2 + 1 + 1 setup. We use

the Iwasaki action [17] for the pure gauge action and the twisted mass fermion formulation

for the Dirac action. In particular, we make use of the formulation of refs. [18, 19] for the

light mass degenerate u–d sector, while the action introduced in refs. [20, 21] is employed

for the mass non-degenerate c–s sector. The quark mass parameters of the heavy flavour

pair have been tuned so that in the unitary lattice setup the Kaon and D-meson masses,

take approximately their experimental values. More information about the Nf = 2+1+ 1

setup scheme and further simulation details can be found in ref. [22, 23]. For the results

we will show here, we have employed two values of the lattice spacing determined using

the nucleon mass in [2]. They read a ≈ 0.082 fm (β = 1.95) and a ≈ 0.064 fm (β = 2.1).

In addition, we will use a number of quark masses corresponding to pion masses in the

range of 300 MeV − 500 MeV. The parameters of the ensembles used in this work are

summarized in Table 1.

label β aµl Volume mPS [MeV ]

B35.32 1.95 0.0035 323×64 302

B55.32 1.95 0.0055 323×64 372

B75.32 1.95 0.0075 323×64 432

B85.24 1.95 0.0085 243×48 466

D45.32sc 2.1 0.0045 323×64 372

Table 1. Ensembles used in this work and relevant parameters.

In order to fix the notation, we introduce the twisted mass lattice Dirac operator Df,tm

for a doublet of mass degenerate quarks :

Df,tm[U ] = DW[U ] + iaµfγ5τ
3 . (2.1)

Here DW[U ] is the Wilson Dirac operator, µf denotes the bare twisted mass and τ3 is the

third Pauli matrix. For further needs we also introduce the operators Df,± denoting the

– 3 –



upper and lower flavour components of Df,tm[U ], referred to as the Osterwalder-Seiler (OS)

lattice Dirac operator:

Df,±[U ] = tr

{
1± τ3

2
Df,tm[U]

}
, (2.2)

where tr denotes the trace in flavour space. We will call Df,±[U ] the lattice Dirac operator

of an Osterwalder-Seiler quark with mass ±µf .

When we discuss below the 2-point and 3-point correlation functions necessary for this

work, we will use the so-called physical basis of quark fields denoted as ψf . The physical

field basis is related to the twisted quark field basis, χf , by the following field rotation,

ψf ≡ e
i
ωf

2
γ5τ3χf and ψf ≡ χfe

i
ωf

2
γ5τ3 , (2.3)

where the twist angle ωf = π/2 at maximal twist. In addition, ψf with index f = l, s will

denote quark field doublets of light (l) or strange (s) quarks depending on the mass µf
chosen in the valence sector. Since ψf will always refer to the physical basis we will denote

with u and d the two components of ψl. Following the notation of Eq. (2.2) we will denote

with s± the two components of ψs. Employing the OS Dirac operator in the valence sector

for the strange quark leads to a mixed action where the strange OS quark mass has been

tuned to match within errors the unitary Kaon mass.

2.1 Nucleon matrix elements

The nucleon two-point function is defined in the physical basis by

C±
N,2pts(t) =

∑

~x

tr Γ±〈JN(x)J N(0)〉, (2.4)

where the source position is fixed to 0 in order to lighten notations and t thus denotes the

source-sink separation. We also introduced the parity projectors Γ± = (1 ± γ0)/2. The

subscriptN refers to the proton or to the neutron state for which the standard interpolating

fields are given by the formulae:

Jp = ǫabc
(
ua,T Cγ5d

b
)
uc and Jn = ǫabc

(
da,T Cγ5u

b
)
dc. (2.5)

Note that using discrete symmetries and anti-periodic boundary conditions in the time

direction for the quark fields, one can show that C+
N,2pts(t) = −C

−
N,2pts(T − t). Let us also

recall that an exact symmetry of the action leads to the following relation at a finite value

of lattice spacing, C±
n,2pts(t) = C±

p,2pts(t) [24]. In order to improve the overlap between the

ground state and the interpolating fields of the nucleon we use Gaussian smearing of the

quark fields appearing in the interpolating fields. We also use APE smearing of the gauge

links involved in the Gaussian smearing.

The nucleon three-point functions is given by

C±,a
N,3pts(ts, top) =

∑

~xs,~xop

tr Γ±〈JN(xs)O
a=3,8
{44} (xop)JN(0)〉, (2.6)

where Oa=3,8
{44} is one of the twist-2 operators introduced in Eq. (1.4), top is the time of

insertion of the operator, and ts denotes the so-called source-sink separation. Note that
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the precise definition of the strange quark field entering in the operator Oa=8
{44} is postponed

to the next subsection.

Using the two- and three-point correlators of Eqs. (2.4) and (2.6), we construct the

following ratio:

Ra(ts, top) ≡
C+,a
N,3pts(ts, top)

amNC
+
N,2pts(ts)

= 〈x〉
(a)
bare +O(e

−∆Mtop) +O(e−∆M(ts−top)), (2.7)

where amN is the nucleon mass in lattice units and ∆M is the mass gap between the lowest

nucleon state and the first excited state with the same quantum numbers. One can thus

extract from the asymptotic time behaviour of Ra=8(ts, top) the bare quantity 〈x〉
(8)
bare and

correspondingly 〈x〉
(3)
bare.

2.2 Lattice evaluation

While the light quark fields used in the operator Oa=3,8
{44} are the unitary fields we use, as

mentioned already above, a different action for the valence strange quark. In practice we

introduce a doublet of mass degenerate quarks with a mass aµs tuned to reproduce the

unitary Kaon mass. This procedure introduces an error due to the uncertainty on the

determination of the matching mass that we will discuss later on but will allow us to use

an efficient noise reduction technique that will be explained in the next section.

Consider the following operator in terms of the field in the twisted mass basis :

J8 = χγ{4i
←→
D 4}χ− χ̄sγ{4i

←→
D 4}χs (2.8)

Performing the rotation to the physical basis, we obtain :

J8 = ψγ{4i
←→
D 4}ψ−ψ̄sγ{4i

←→
D 4}ψs = ūγ{4i

←→
D 4}u+d̄γ{4i

←→
D 4}d−s̄+γ{4i

←→
D 4}s+−s̄−γ{4i

←→
D 4}s−
(2.9)

Note that J8 keeps the same form in the two bases and that J8 is only one possible choice for

a discretization of the operator Oa=8
{44}. While the two-point nucleon correlators of Eq. (2.4)

give only rise to quark-connected Wick contractions, in general the three-point functions

of Eq. (2.6) yield both quark-connected (illustrated in Fig. 1a) and quark-disconnected

(illustrated in Fig. 1b) contributions. In the following we will refer to them simply as to

connected and disconnected fermionic Wick contractions (or diagrams) and shall write

C±,a
N,3pts(ts, top) = C̃±,a

N,3pts(ts, top) +D
±,a
N,3pt(ts, top) (2.10)

with C̃±,a
N,3pt (resp. D

±,a
N,3pt) corresponding to the connected (resp. disconnected) quark dia-

grams, defined as

C̃±,a
N,3pt(ts, top) =

∑

~x, ~xop

tr
{
Γ±〈

[
JN(x)Oa

{44}(xop)JN (xsrc)
]
〉
}
, (2.11)

D±,a
N,3pt(ts, top) =

∑

~x, ~xop

tr
{
Γ±〈

[
JN (x)JN (xsrc)

][
Oa

{44}(xop)
]
〉
}
, (2.12)
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tsrctsrc

top

t tsrc

top

t

Figure 1. Connected (left) and the disconnected (right) graphs arising from the Wick contractions

of the here considered 3-point functions.

where the symbol [...] is a shorthand for all the connected fermionic Wick contractions. Note

that for a = 3, the disconnected part is a O(a2) effect which vanishes in the continuum

limit and can thus be neglected. Introducing

δ
(µ,µs)
± (top) =

∑

~xop

tr

{(
1

Dl,±[U ]
−

1

Ds,±[U ]

)

(xop,xop)

}
, (2.13)

the contribution of the disconnected fermion loop to D±,a
N,3pt on a given gauge configuration

U in our setup reads

D±,a
N,3pt(ts, top) = 〈C

±
N,2pts(ts)

(
δ
(µ,µs)
+ (top) + δ

(µ,µs)
− (top)

)
〉, (2.14)

The connected contributions C̃±,a
N,3pt(ts, top) have been evaluated using standard tech-

niques for three-point functions (sequential inversions through the sink), see e.g. ref. [2].

2.3 Estimation of disconnected loops

We describe here the generalization of the variance reduction method for twisted mass

fermions introduced and discussed in [1, 14, 25, 26].

Consider the identity

Dl,± −Ds,± = ±iγ5a (µl − µs) (2.15)

implying that

1

Dl,±
−

1

Ds,±
= −

1

Ds,±
(Dl,± −Ds,±)

1

Dl,±
= ∓ia (µl − µs)

1

Ds,±
γ5

1

Dl,±
, (2.16)

where we have used Eq. (2.15) to obtain the last equality.

For the practical calculation, we introduce a set Ξ of Nξ independent random volume

sources, {ξ[1], . . . , ξ[r], . . . , ξ[Nξ]}, satisfying

lim
Nξ→∞

[
ξi[r](x)

∗ξj[r](y)
]
Ξ
= δxyδ

ij (2.17)
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where i = 1, ..., 12 refers to the spin and color indices of the source and [. . . ]Ξ denotes the

average over the Nξ noise sources in Ξ .

Applying Oa
{44} to Eq. (2.16) and taking the trace over spin and colour indices we

obtain :

∓ ia (µl − µs)
∑

~x

[
φ∗[r],l,∓γ5O

a
{44}φ[r],s,±(x)

]
R
= δ

(µ,µs)
± (top) +O

(
R−1/2

)
, (2.18)

where

φ[r],s,± = (1/Ds,±)ξ[r] and φ∗[r],l,± = ξ∗[r](1/Dl,±)
†. (2.19)

For the generation of the random sources we have used a Z2 noise taking all field

components randomly from the set {1,−1}.

Note that δ
(µ,µs)
± , and by construction its variance, is proportional to the mass difference

µl − µs and vanishes on each configuration in the limit µs → µl. Our approach, thus,

exactly encodes the fact that the disconnected contributions we are interested in vanish in

the SU(3)flavour limit.

2.4 Renormalization

The renormalization of the operator Oa=3 is known to be multiplicative from our previous

work [2] and have been obtained non perturbatively using the methodology developed in

[27]. The renormalization factor Zµµ
DV (β) read :

Zµµ
DV (β = 1.95) = 1.019(4), Zµµ

DV (β = 2.10) = 1.048(5) . (2.20)

Note that an independent calculation performed in [28, 29] gives compatible results. In

the limit µs = µl = 0, SU(3)flavour is an exact symmetry of the action and the operators

Oa=3,8
{µν} belong to the same flavour multiplet. They thus share the same renormalization

pattern in a mass independent scheme. The ratio 〈x〉(3)

〈x〉(8)
is thus renormalization free.

3 Results

As a first step, we have investigated the magnitude of the stochastic noise introduced

by the method described in section 2.3. To this end, we used a fixed number of gauge

configurations for a gauge field ensemble at coupling β = 1.95 and twisted mass parameter

aµl = 0.0055. We show in Fig. 2, the ratio Ra=8
disc. for a fixed source-sink separation of

ts ∼ 1 fm as a function of top for Nξ = 6 and Nξ = 12. As can be seen, the signal is

compatible with zero within the errors when using Nξ = 12. Furthermore we observe that

the error does not decrease much when the number of stochastic sources is doubled. This

means presumably that the error is already dominated by the intrinsic noise of the gauge

field fluctuations. We nevertheless decided to use Nξ = 12 throughout this benchmark

study of the octet moment.

In principle, it would therefore be possible to reduce the error further by using more

stochastic noise vectors. However, the contribution of the disconnected 3-point function

is small compared to the value of the connected part as demonstrated in Fig. 3 where we
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t s

=
12

 a
, t

op
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0 2 4 6 8 10 12
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0.025 Rdisc. Nξ = 12
Rdisc. Nξ = 6

Figure 2. Plot of the contributions Rdisc. versus top at ts = 12a for Nξ = 6 (red down triangle)

and Nξ = 12 (blue up triangle). The bare mass of the strange quark is fixed to aµs = 0.018 and we

use aµl = 0.0055 and β = 1.95

show the connected contribution Ra=8
connected(ts = 12a, top), the disconnected contribution

Ra=8
disconnected(ts = 12a, top) and the full correlator Ra=8

full (ts = 12a, top). In particular, the

statistical errors on the connected part are about 0.016 (∼ 2.5%) which is significantly

larger than the size of the disconnected contributions. Despite this fact, which would

make neglecting the dis-connected contributions tempting, we always include them in the

following analysis. Note that the Ra=8
disconnected is proportional to the difference between

the light and strange quark mass. Since we are using a mixed action setup, our results

depends on an approximate tuning of the strange quark mass. In all the figures we use

aµs(β = 1.95) = 0.018 for β = 1.95 and aµs(β = 2.10) = 0.015 for β = 2.10.f Those

values can be compared to the values obtained for instance in [30] where the strange quark

mass has been determined using the Ω− mass and correspond to aµs(β = 1.95) = 0.0194

and aµs(β = 2.10) = 0.0154. However, by using data on the β = 1.95 ensemble we have

explicitly checked that changing the bare strange quark mass by more than ∼ 10% does

not lead to any significant change in the value of the disconnected contribution.
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Figure 3. Plot of the contributions R
(8)
disconnected (blue triangle), R

(8)
connected (black triangles) and of

their sum, R
(8)
full (red filled circles) as function of top at ts = 12a for aµl = 0.0055 and β = 1.95.

3.1 Excited states contamination

In order to investigate the contamination of excited states due to the second and third

term in Eq. (2.7), we used the same procedure (”open-sink” method) as in [31], namely we

study the source-sink dependence for a fixed source to operator separation top ∼ 0.9 fm

( top = 11a). Details on the technical implementation of the ”open-sink” method can be

found in [31]. To this end, a large statistics for the connected part (∼ 23000 measurements)

has been used. We plot in Fig. 4 the resulting renormalized ratios Ra=3,8(ts, top = 11a).

The results in the isovector case are represented by orange squares and the results in the

flavour octet case (including the disconnected piece) are depicted by red dots. We also

represent using blue triangles the disconnected contribution to Ra=8(ts, top = 11a). As can

be seen, the noise for the dis-connected part dominates for large source-sink separation.

Nevertheless, we can obtain a reasonable signal up to source-sink separation of about

16a (≈ 1.3 fm). The gray bands indicate the values of 〈x(a=3,8)〉 obtained using a fixed

source-sink separation calculation with ts ∼ 1 fm. Note that the fitting ranges have been

determined choosing the fit with the longest plateau with a confidence level of least 90%.

In the flavour octet case we observe that results obtained for ts/a > 15 and a fixed source-

operator separation top = 11a are compatible with the result obtained at a fixed source-
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Rfull
a=3

Rdisc.
a=8

Figure 4. The ratio Eq. (2.7) as a function of the source-sink separation ts for a fixed source

to operator time top = 11a in the isovector (orange squares) and octet case (red dots). The gray

bands indicate the results obtained from a fixed sink calculation for ts = 12a. The blue triangles

show the disconnected contribution to Ra=8(ts, top = 11a).

sink separation of ts/a = 12. We mention that at the here used value of the pion mass of

mPS ≈ 370 MeV, volume (L = 2.6 fm) and lattice spacing (a ≈ 0.082 fm) we found for the

isovector channel a relative shift of about 10% for a corresponding comparison at different

source sink separations[31].

We performed a similar study of the ratio of the octet to the singlet 3-point functions

of Eq. (2.10),

R(ts, top) = Ca=3
N,3pts(ts, top)/C

a=8
N,3pts(ts, top). (3.1)

The ratio R(ts, top = 11a) is shown in Fig. 5 as a function of the source-sink separation

ts.The constant fit for this ratio obtained with a fixed source to operator time top = 11a is

depicted by a gray band. We used the same criterion as in Fig. 4 to determine the fitting

range. In this case we do not observe any significant source-sink dependence of our results

and thus there seem to be only a small excited states contamination, at least within the size

of our errors. Note that the statistical errors stemming from the disconnected contribution

are responsible for most of the total statistical error at large source-sink separation. In the

next section we will use the difference between the central value at ts ∼ 1.3fm with the
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open think method and the central value obtained with the fixed source-sink method at

ts ∼ 1fm as an estimate of the systematical error for 〈x(a=3,8)〉 and 〈x(3)〉

〈x(8)〉
.

ts /a

R
( t

s ,
 t o

p
=

11
 a

)

ts /a

R
( t

s ,
 t o

p
=

11
 a

)

14 16 18 20

0.2

0.3

0.4

0.5

0.6 Rfull
a=3 / Rfull

a=8

Figure 5.
Ra=3(ts,top=11a)
Ra=8(ts,top=11a) as a function of the source-sink separation ts for a fixed source to

operator time top = 11a (red dots). The gray band indicates the result obtained from a fixed sink

calculation of ts = 12a.
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3.2 Chiral behaviour

We plot our results for 〈x(3,8)〉µ2=4 GeV2 as a function of the pseudoscalar meson mass m2
PS

in Fig. 6. The results for 〈x(3)〉µ2=4 GeV2 (respectively 〈x(8)〉µ2=4 GeV2) are shown using

red down triangles (resp. blue up triangle) for a lattice spacing of 0.082 fm and by an

orange square (resp. an orange dot) for a lattice spacing of 0.064 fm. Neglecting, in a first

step, excited state contaminations and in order to investigate the chiral limit behaviour

of our data, all the results have been obtained using a fixed source-sink separation of

approximately 1 fm. Of course, in our final result we will add the shift from the excited

states contamination as a systematic error. As can be seen in Fig. 6 the results obtained

at two different lattice spacings are compatible, and O(a2) effects can be neglected.

The phenomenological estimates [13] of Eq. (1.3) are represented by two black stars.

As can be seen in the graph, for both, 〈x(3)〉 and 〈x(8)〉 and for unphysically large values

of the pion mass the lattice data lay consistently above the phenomenological values, a

phenomenon that is well know from previous investigations of 〈x(3)〉, see e.g. [11], and is

here demonstrated for the first time for 〈x(8)〉.

mPS
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=

3,
8)

mPS
2   [GeV2 ]

<
x>
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2   [GeV2 ]

<
x>
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=

3,
8)
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0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

0.2

0.4

0.6

0.8

<x>(8)   β = 1.95 ts /a =12
<x>(3)   β = 1.95 ts /a =12

<x>(8)   β = 2.10 ts /a =16
<x>(3)   β = 2.10 ts /a =16

Figure 6. 〈x(3,8)〉µ2=4 GeV2 as a function of the pseudoscalar meson mass m2
PS. The phenomeno-

logical estimates are represented by two black stars.

As explained before, systematic errors stemming from discretization effects and from

the matching mass dependence can be neglected. With the present data set we cannot
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estimate safely the volume dependence of 〈x(3,8)〉, however knowing that they are negligible

in the isovector case in our Nf = 2 calculation [3] we assume them to be small and neglect

them, too. Our dominating source of systematic error for the individual matrix elements

is then due to the excited states contamination. In addition, as the chiral extrapolation is

not performed here, it remains as a presently unquantifiable systematic error.

In fig. 7 we show the ratio 〈x(3)〉

〈x(8)〉
as a function of the pion mass together with the

phenomenological value. Here the situation is somewhat different in that the lattice data

agree with the phenomenological analysis even at the here used unphysically large pion

masses. This suggests that some of the systematic uncertainties cancel in the ratio. As dis-

cussed in section 3.1, the systematic error stemming from the excited states contamination

is negligible for the ratio 〈x(3)〉

〈x(8)〉
. Therefore, we conclude for the individual moments that

either the non-perturbative renormalization or the chiral extrapolation is the most prob-

able systematic effect leading to the observed discrepancies in 〈x(3,8)〉. It would therefore

be highly desirable to perform simulations directly at the physical point to eliminate the

uncertainty from the chiral extrapolation. Work in this direction is in progress [32, 33].

Since the lattice data are flat as function of the pion mass, we perform a simple

constant extrapolation to the physical pion mass. As a systematic error, we take the

difference between the data points at the smallest and the largest pion mass. We find then

for 〈x(a=3)〉µ2=4 GeV2/〈x(a=8)〉µ2=4 GeV2

〈x(3)〉

〈x(8)〉
= 0.39(1)(4) (3.2)

where the first error is statistical and the second one is our estimate of the systematic

error. When comparing to phenomenological extractions [13] we find that the ratio 〈x(3)〉

〈x(8)

is, within errors, compatible with phenomenological extractions at least for the here used

simple extrapolation to the physical point.

4 Conclusion

In this work we have performed a benchmark computation of the flavour octet combination

of the first moment of parton distribution functions of the nucleon using Nf = 2 + 1 + 1

twisted mass fermions tuned to maximal twist. This quantity can provide a first hint of

the contribution of the strange quark to the quark momentum in the nucleon. We have

utilized the fact that 〈x〉
(8)
µ2 shares the same renormalization property as the standard iso-

vector moment 〈x〉
(3)
µ2 . Using our result for the non-perturbative renormalization constant

obtained in [2] we can thus provide an O(a2) improved estimate of 〈x〉
(8)
µ2 . The calculation

takes into account the notably noisy dis-connected contribution, which are shown to have

a negligible contribution in our setup.

In our investigation of 〈x〉
(8)
µ2 we found, similar to the case of 〈x〉

(3)
µ2 [31], that the excited

states contamination can be substantial and has to be taken into account as a systematic

error. We also found that, similar to the case of 〈x〉
(3)
µ2 , the lattice data for 〈x〉

(8)
µ2 are

systematically higher than the phenomenological value, see fig. 6 for pion masses larger

than the physical one.
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Figure 7. 〈x(a=3)〉µ2=4 GeV2/〈x(a=8)〉µ2=4 GeV2 as a function of the pseudoscalar meson mass m2
PS

for two values of the lattice spacing. The result of a constant extrapolation is represented by an

empty triangle. The systematic error on the extrapolated value is represented by a red error bar

slightly shifted for readability. The phenomenological estimate from is represented by a black star.

However, when the ratio 〈x(a=3)〉µ2=4 GeV2/〈x(a=8)〉µ2=4 GeV2 is considered, the lattice

data show an overall agreement with the corresponding phenomenological ratio, indicating

that in the ratio systematic errors cancel. Since in the ratio the excited states contamina-

tion is small, the here observed agreement cannot be due to this systematic uncertainty.

One reason why the ratio agrees with the phenomenological value can be that the renor-

malization constants cancel. Another possibility is that both, 〈x〉
(8)
µ2 and 〈x〉

(3)
µ2 have a very

similar chiral limit behaviour such that the effects from the chiral extrapolation cancel. It

would be highly desirable to have therefore lattice results directly at the physical point

for both quantities. Since the lattice data are rather flat, we performed a simple constant

extrapolation to the physical point for the ratio 〈x(a=3)〉µ2=4 GeV2/〈x(a=8)〉µ2=4 GeV2 and

find
〈x(3)〉

〈x(8)〉
= 0.39(1)(4) (4.1)

This value is in agreement with the phenomenological extraction of this quantity from deep

inelastic scattering data [13].
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