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Abstract

We discuss the non-thermal phase structure of a chirally invariant Higgs-Yukawa
model on the lattice in the presence of a higher dimensional Φ6-term. For the
exploration of the phase diagram we use analytical, lattice perturbative calculations
of the constraint effectice potential as well as numerical simulations. We also present
first results of the effects of the Φ6-term on the lower Higgs boson mass bounds.
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1. Introduction

In this letter we investigate the influence of the addition of a dimension-6 operator
to a chirally invariant Higgs-Yukawa model. This model can be understood as a
limit of the standard model (SM) without gauge fields. In particular, we consider
a complex scalar doublet and one doublet of mass-degenerate quarks. Our aim is
to explore, whether a dimension-6 operator, for which we will employ a (ϕ†ϕ)3-
term with a coupling constant λ6, can modify the phase structure of the Higgs-
Yukawa sector of the SM and may alter the lower Higgs boson mass bound as
already observed in [1, 2]. For a phenomenological analysis of a (ϕ†ϕ)3-term see
e.g. [3, 4].

The motivation for adding a (ϕ†ϕ)3-term is twofold. First, since the Higgs-
Yukawa sector of the SM is trivial, the cut-off cannot be removed and hence such
a term is in principle allowed. In addition, if small values of the cut-off of O(1)−
−O(10)TeV are considered as done in this work, such a term can have a significant
effect. Second, the apperance of a (ϕ†ϕ)3-term can be understood to arise from an
extension of the SM. Studying the system with such a term could hence provide
bounds on the couplings of such extensions in case the lower Higgs boson mass
bound is incompatible with the Higgs boson mass of about 126GeV. The effects of
higher dimensional operators on the vacuum stability is discussed in [5, 6, 7] .

We use a lattice regularization of the Higgs-Yukawa model which eventually also
allows non-perturbative numerical simulations for large values of λ6. The notion of
an exact lattice chiral symmetry [8] which derives from the Ginsparg-Wilson relation
[9] allows us to emulate the continuum Higgs-Yukawa sector of the standard model
on a discrete Euclidean space-time lattice. To this end, the overlap operator [10, 11]
as a local [12] lattice Dirac operator has been employed to study the phase structure
of the lattice theory [13, 14], to derive lower and upper Higgs boson mass bounds
[15, 16, 17, 18] and to analyze the Higgs boson resonance non-perturbatively [19].
For a review, see [20].

For our investigations we perform analytical calculations of the phase structure
of the model by computing the constraint effective potential (CEP) [21] to the first
non-trivial order in lattice perturbation theory. In this calculation, we employ the
same chirally invariant lattice formulation of the Higgs-Yukawa model as it is used for
the numerical computations. We compare results for the phase structure obtained
from numerical simulations to our perturbative predictions. In addition, we will
provide first results for the lower Higgs boson mass bounds in the presence of the
dimension-6 operator as obtained from the analytical, perturbative calculations of
the CEP.

2. Basic definitions

In this work, we restrict ourselves to the case of one fermion doublet ψ = (t, b)T

with mass degenerate quarks. The scalar fields are a complex doublet ϕ. Here, we
will only provide the basic definitions of the model and refer to ref. [20] for a more
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detailed explanantion. In Euclidean space time the continuum action is given by:

Scont[ψ̄, ψ, ϕ] =

∫

d4x

{

1

2
(∂µϕ)

† (∂µϕ) +
1

2
m2

0ϕ
†ϕ+ λ

(

ϕ†ϕ
)2

+ λ6
(

ϕ†ϕ
)3
}

+

∫

d4x
{

t̄/∂t+ b̄ /∂b+ y
(

ψ̄
L
ϕ b

R
+ ψ̄

L
ϕ̃ t

R

)

+ h.c.
}

, (1)

with ϕ̃ = iτ2ϕ
∗ and τ2 being the second Pauli matrix. Besides the standard bare

parameters m2
0 and λ for the Higgs potential and y for the Yukawa coupling, we add

the dimension-6 operator λ6
(

ϕ†ϕ
)3

to the action.
For the numerical implementation of this model we use a polynomial hybrid

Monte Carlo algorithm[22] with dynamical overlap fermions, see ref. [23] for details.
On the lattice, it is convenient to rewrite the bosonic part of the action in the
following way1:

SB[Φ] = −κ
∑

x,µ

Φ†
x [Φx+µ + Φx−µ] +

∑

x

(

Φ†
xΦx + λ̂

[

Φ†
xΦx − 1

]2
+ λ̂6

[

Φ†
xΦx

]3
)

.

(2)
Here the scalar field, Φ, is represented as a real four-vector and the relation to the
continuum notation is given by:

ϕ =
√
2κ

(

Φ2 + iΦ1

Φ0 − iΦ3

)

, m2
0 =

1− 2λ̂− 8κ

κ
, λ =

λ̂

4κ2
, λ6 =

λ̂6
8κ3

. (3)

As said above, our main goal is the exploration of the phase structure of the model

in the presence of the
[

Φ†
xΦx

]3
term with coupling strength λ6. We will use the mag-

netization m as the order parameter2. The magnetization is given by the modulus
of the average scalar field and is related to the vacuum expectation value (vev) via:

m =

〈∣

∣

∣

∣

∣

1

V

∑

x

Φx

∣

∣

∣

∣

∣

〉

, vev =
√
2κ ·m. (4)

For a determination and detailed discussion of the phase structure of the model
for λ6 = 0, we refer to refs. [13, 14].

3. The constraint effective potential

Before resorting to numerical simulations, we study the phase structure analyt-
ically in lattice perturbation theory for which we employ the CEP [24, 21]. We
assume the scalar field to be in the broken phase, so the scalar field decomposes
into the Higgs mode, h, and the three Goldstone modes, gα, with α = 1, 2, 3. The

1The lattice spacing is set to one throughout this paper.
2Here we are only interested in transitions between the symmetric and the spontaneously broken

phases and thus will not consider the staggered magnetization [13, 14].
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CEP U(v̂) is described by the zero mode of the Higgs field, h̃0 = V −1/2v̂. The per-
turbative calculations are done by keeping the lattice regularization explicitly, i.e.
the overlap operator is used for the fermionic contribution and all sums over lattice
momenta are performed numerically.

To obtain the potential the bosonic non-zero modes are integrated out. To do so,
the bosonic action is separated into a Gaussian contribution which can be integrated
out leading to the bosonic propagators. The remaining terms are treated as an
interaction part and can be expanded in powers of the couplings. This separation
into a Gaussian and an interaction part however is not unique and we employ two
versions of the CEP.

A derivation of such a lattice constrained effective potential can be found in
[14, 23]. Following the procedure in these references, the Gaussian contribution to
the action reads:

Sgauss
1 [h, gα] =

1

2

∑

p 6=0

(

h̃−p

(

p̂2 +m2
0

)

hp +
∑

α

g̃α−p

(

p̂2 +m2
0

)

g̃αp

)

, (5)

which leads to the propagator sums:

PH = PG =
1

V

∑

p 6=0

1

p̂2 +m2
0

. (6)

As in [15], m2
0 is replaced by the renormalized masses in the propagator sums. The

the mass of the Goldstone boson is set explicitly to zero. This leads to:

PH =
1

V

∑

p 6=0

1

p̂2 +m2
H

, PG =
1

V

∑

p 6=0

1

p̂2
. (7)

The determinant from integrating out eq. (5) is independent of v̂ and can therefore
be neglected for the CEP.

The CEP up to the first order in λ and λ6 is then given by:

U1(v̂) = Uf (v̂) +
m2

0

2
v̂2 + λv̂4 + λ6v̂

6

+ λ · v̂2 · 6(PH + PG) + λ6 ·
(

v̂2 · (45P 2
H + 54PGPH + 45P 2

G) + v̂4 · (15PH + 9PG)
)

.
(8)

The fermionic contribution, Uf , originates from integrating out the fermions in the
background of a constant field. It takes the form,

Uf (v̂) = −
4

V

∑

p

log

∣

∣

∣

∣

ν+(p) + y · v̂ ·
(

1−
ν+(p)

2ρ

)∣

∣

∣

∣

2

, (9)

where ν±(p) denotes the eigenvalues of the overlap operator,

ν±(p) = ρ



1 +
±i
√

p̃2 + rp̂2 − ρ
√

p̃2 + (rp̂2 − ρ)2



 , p̂2 = 4
∑

µ

sin2
(pµ
2

)

, p̃2 =
∑

µ

sin2 (pµ) .

(10)
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In this equation r denotes the Wilson parameter and ρ (0 ≤ ρ ≤ 2r) is a free param-
eter of the overlap operator which can be tuned to optimize its locality properties
[12]. Throughout this work, we set r = 1 and ρ = 1.

In addition to the procedure leading to U1(v̂), eq. (8), another ansatz in per-
forming the Gaussian integral is to collect all the terms that are quadratic in the
bosonic non-zero modes from the self interaction:

Sgauss
2 [h, gα] =

1

2

∑

p 6=0

(

h̃−p

(

p̂2 +m2
0 + 12λv̂2 + 30λ6v̂

4
)

h̃p

+
∑

α

g̃α−p

(

p̂2 +m2
0 + 4λv̂2 + 6λ6v̂

4
)

g̃αp

)

. (11)

In this approach the bosonic determinant can no longer be neglected for in potential
calculation, since it depends explicitly on the zero mode. Further, at first order
in λ and λ6 of perturbation theory, the propagator sums and combinatorial factors
change,

U2(v̂) = Uf (v̂) +
m2

0

2
v̂2 + λv̂4 + λ6v̂

6

+
1

2V

∑

p 6=0

log
[

(

p̂2 +m2
0 + 12λv̂2 + 30λ6v̂

4
)

·
(

p̂2 +m2
0 + 4λv̂2 + 6λ6v̂

4
)3
]

+ λ
(

3 P̃ 2
H + 6 P̃HP̃G + 15 P̃ 2

G

)

+ λ6v̂
2
(

45 P̃ 2
H + 54 P̃HP̃G + 45 P̃ 2

G

)

+ λ6

(

15 P̃ 3
H + 27 P̃ 2

HP̃G + 45 P̃HP̃
2
G + 105 P̃ 3

G

)

, (12)

with the propagator sums given by:

P̃H =
1

V

∑

p 6=0

1

p̂2 +m2
0 + 12v̂2λ+ 30v̂4λ6

, P̃G =
1

V

∑

p 6=0

1

p̂2 +m2
0 + 4v̂2λ+ 6v̂4λ6

.

(13)
In this approach logarithmic terms appear. Depending on the choice of the

bare parameters (m2
0, λ, λ6), the arguments of the logarithms may become negative,

leading to the well known problem that the effective potential becomes complex [25].
We remind, that the lattice spacing is set to one implicitly such that, even though
we use the continuum notation, all quantities are dimensionless.

Using the analytical form of the CEP, the vev can be obtained by the (absolute)
minimum of the potential. In order to introduce a physical scale, we set the lattice
vev to the phenomenologically known value of 246 GeV and define the cutoff, Λ as
the inverse lattice spacing:

dU(v̂)

dv̂

∣

∣

∣

∣

v̂=vev

!
= 0, Λ =

246 GeV

vev
. (14)
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Further, the squared Higgs boson mass m2
H is determined by the second derivative

of the potential at its minimum,

d2U(v̂)

dv̂2

∣

∣

∣

∣

v̂=vev

= m2
H . (15)

Due to the explicit appearance of the Higgs boson mass in the propagator sum
eq. (7) for the potential U1, eq. (8), we have to use an iterative approach in the
determination of a solution for the minimum of the CEP and the Higgs boson mass.
To this end, we fix the parameters m2

0, y, λ and λ6, guess an initial Higgs boson
mass and simply iterate eqs. (14,15) until we find convergence.

We will compare results obtained from both forms of the potential to results from
our non-perturbative simulations. As we will see below, we indeed find parameter
sets, where the perturbative CEP describes the non-perturbative data well, even
on a quantitative level. This will allow us to obtain results for the phase structure
of the Higgs-Yukawa model considered here from the analytical perturbative CEP,
where a non-perturbative simulation is not feasible anymore, i.e. for large lattices
or large cut-offs.

4. Results

For our study of the phase structure we performed simulations for two values of
λ6 (0.001 and 0.1). Note, that having set the lattice spacing to one, λ6 is treated as
a dimensionless coupling constant. For each value of λ6 we choose a set of values for
the quartic coupling, λ. The Yukawa coupling, y, is chosen such that the quarks in
our model have a mass of that of the physical top quark, mt = y ·vev ·Λ ≈ 175 GeV.
The phase transition between the symmetric and spontaneously broken phases is
probed by scanning in the hopping parameter, κ.

In figure 1 we show results for the bare vev computed on lattices with volume
163 × 32 for λ6 = 0.001 (left) and λ6 = 0.1 (right). Our data show the same
qualitative behaviour for both values of λ6. The phase transition is of second order
when λ is chosen negative and its absolute value is small. Increasing the absolute
value of λ will finally result in a change to a first order phase transition. The
appearance of these first order phase transitions is a natural consequence of adding

the dimenson-6 opeartor,
(

ϕ†ϕ
)3
, which can lead to multiple minima of the potential

with non-vanishing vev.
For λ6 = 0.001 which is shown in fig. 1a, the simulation data and the analytical

results from both versions of the effective potential agree quite well. The results
from U2, eq. (12), actually coincide with the simulation data on a quantitative level
as long as the transition is of second order. The effective potential U1 reproduces the
behaviour of the simulation data qualitatively. However, the exact numerical results
for the vev differ and the phase transitions are shifted to larger absolute values of
λ.

For λ6 = 0.1 which is shown in fig. 1b, the effective potential U1 shows qualitative
agreement with the simulations. The effective potential U2 fails to describe the
numerical data and the 1-loop evaluation of the CEP seems not to be sufficient.
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Figure 1: Data which were obtained from numerical simulations and the perturbative approaches
described in section 3 are compared. The plots show the vev as a function of κ while λ6 is kept
fixed to λ6 = 0.001 (left) and λ6 = 0.1 (right) for various λ. The simulation data are depicted by
the open squares, the crosses indicate the vev obtained from U1, eq. (8), while the dots show the
corresponding results from U2, eq. (12). All data have been obtained on 163 × 32 lattices.

The results discussed above are obtained on a relatively small lattice of size
163 × 32. To verify the order of the phase transitions, simulations and analytical
calculations on significantly larger lattices are necessary. In figure 2, we show results
for the vev as a function of κ on various volumes. The parameters are chosen in a
region where the small volume data indicate a second order transition, fig. 2a, and
a first order transition, fig. 2b. In addition, we compare the simulation data to the
analytical results from eq. (8) and eq. (12).

As it is shown in fig. 2a, the larger volume data confirm the second order nature
of the phase transition. Furthermore, the finite volume dependence of the second
order transition is very well described by both versions of the effective potential.

In fig. 2b, we show the vev obtained from the effective potential U2 and from
our non-perturbative lattice simulations on various volumes. Both methods give
compatible results on a qualitative level and just the exact position of the phase
transition is slightly altered. The jump in the vev indicates strongly the existence
of a first order phase transition at a κtrans ≈ 0.12277. For these parameter choices,
finite size effects are very small. In particular, for κ . κtrans the vev stays non-
zero. This means that the first order transition occurs between two minima of the
potential with non-zero vev. Hence, this transition must occur between two broken
phases.

Close to the point where κ ≈ κtrans, tunneling events occur between the two
minima in the simulations and hence the lattice simulation data may not agree with
the results from the effective potential. This stems from the fact that the CEP gives
only solutions at one of the minima and thus cannot take into account tunneling
effects. In fig. 3a we show the Monte Carlo time history of v̂ at different values of
κ which clearly shows tunneling events. While for κ = 0.11757 and κ = 0.11763 v̂
fluctuates around the mean value of vev ≈ 0.15 and vev ≈ 0.40, respectively, for
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Figure 2: We show the finite volume effects of the phase structure scan for λ6 = 0.001. The plot
on the left hand side shows data for λ = −0.0085 where the simulations (open boxes) indicate a
second order phase transition. The plot on the right hand side shows results for λ = −0.0088,
where the transition is first order. In addition to the simulation data we show the data obtained
from U2 eq. (12) (dots) for both and from U1 eq. (8) (crosses) for the left plot.

κ = 0.11760 tunneling events between these two values appear, typical for a first
order phase transition.

From the histogram of v̂ with an appropriate binning size, we can construct
an effective potential from the simulation data. This is shown in fig. 3b. It is
demonstrated nicely how the absolute minimum at around v̂ ≈ 0.15 abruptly jumps
to v̂ ≈ 0.35. Such a behaviour is typical for a first order transition.

0
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0.2

0.3
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0 2000 4000 6000 8000
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(a) trajectories
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(b) CEP from simulations

Figure 3: The left plot shows the trajectories for ensembles generated around the first order phase
transition generated on 16×32 lattices. The data correspond to λ6 = 0.1 and λ = −0.38. The right
plot shows the corresponding CEP as it was obtained by taking the logarithm of the histograms
of the magnetization. The lines in (b) just serve to guide the eye.

Given the fact that for small values of λ6 the effective potentials describe the
simulation data on a quantitative level, it can be utilized to investigate the behaviour
of the vev further. Due to the wider range of applicability we restrict ourselves in
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Figure 4: Here we show the CEP U1, eq. (8), for fixed λ6 = 0.001 and various κ values around
the phase transition. The left plot (λ = −0.0088) shows a second order phase transition for
κ ≈ 0.122715. Note that the effective potential at κ ≈ 0.122764 actually corresponds to a crossover
transition, see the discussion in the text and fig. 5. The right hand plot (λ = −0.0089) also shows
a second order transition at κ ≈ 0.12271 and a first order transition κ ≈ 0.1227565

the following discussion to the potential U1, eq. (8).
We plot the behaviour of the effective potential as a function of κ in figure 4 for a

fixed value of λ6 = 0.001. In fig. 4a, the behaviour of the effective potential shows a
second order phase transition: the minimum moves from a zero to a non-zero value
in a smooth way, indicating the second order nature of the transition.

However, when λ is slightly changed to λ = −0.0089 we observe, in addition to a
second order transition at κ ≈ 0.12271, a phase transition from one non-zero value
of the vev to another non-zero value of the vev at large κ-values, as shown in fig. 4b.
This transition happens through a double well potential which is almost realized at
κ = 0.1227565.

To determine the location of a second order transition in the CEP, we investigate
the curvature of the potential at its minimum, U

′′

(vev). The curvature of the
potential in its minimum is related to the susceptibility χ of the magnetization, χ ∝
1/U

′′

(vev), and is therefore minimal at the location of the second order transition.
The susceptibility at the phase transition diverges when the volume goes to infinity
corresponding to U

′′

(vev) going to zero. To study this finite size effect, we investigate
the behaviour of the vev and the inverse curvature of the potential for volumes up
to 1283×256. Some example plots are shown in fig. 5 where we plot 1/U

′′

(vev) as a
measure of the magnetic susceptibility. In fig. 5a the typical behaviour for a second
order transition is apparent for λ = −0.007. For λ = −0.0085 (fig. 5b) a second
maximum in the inverse curvature of the potential is visible. This second maximum
is volume independent and indicates a crossover transition in the broken phase. In
fig. 5c the second transition at κ = 0.12275 has turned into a first order one, while
the second order transition between the symmetric and broken phase is still present
at smaller values of κ.

Our results for the phase structure computed within the framework of the CEP
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Figure 5: Here the volume dependence of the location of the minimum of the CEP U1, i.e. the
vev (upper plots) and its inverse curvature in the minimum as a measurement for the magnetic
susceptibility (lower plots) are shown as a function of κ for λ6 = 0.001 and a set of λ-values.

are summarized in fig. 6 for both λ6 values. For λ6 = 0.001 we clearly observe a
second order phase transition at small absolute values of λ. At intermediate absolute
values of λ an additional crossover transition sets in within the broken phase. This
crossover turns into a first order phase transition around λ ≈ −0.0089. The second
order transition still exists at this point separating the broken and symmetric phases.
Around λ ≈ −0.0098 and κ ≈ 0.12267 the line of second order transition runs into
the line of first order transition. From that point on only the first order transition
remains separating the symmetric and broken phases.
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Figure 6: Phase structure obtained from the CEP U1 (8). There are two phases - a broken and a
symmetric one - separated by lines of first and second order phase transitions. Furthermore there
is a small region in parameter space, where a first order transition between two broken phases
exists for λ6 = 0.001 and λ6 = 0.1. The lines between the data points are just to guide the eye.

For λ6 = 0.1 the general behaviour is very similar. However, the region in
parameter space where the additional transitions between two broken phases occur
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is extremely narrow, see the inlet in fig. 6b. In fact, the region is so narrow that it is
well possible that in infinite volume only a single transition line exists with second
order transitions for larger and first order transitions for smaller quartic couplings.

With the CEP the Higgs boson mass can also be obtained from eq. (15). In
figure 7 we show some first results for the cut-off dependence of the Higgs boson
mass obtained by the CEP U1 for a series of λ values around the region where
the first order transitions appear. For λ6 = 0.001 we observe, see fig. 7a, that for
the range of cut-off values considered here, the Higgs boson mass can be lowered
compared to the lower Higgs boson mass for vanishing self couplings λ and λ6 as
was also found in ref. [1].

Inspecting, however, fig. 7b we find that for λ6 = 0.1 and for small cut-off values,
the Higgs boson mass is significantly larger than the lower bound at vanishing λ and
λ6. Note thatmH/Λ ≈ 0.1, i.e. we are still staying in the scaling region of the model.
The increase of the Higgs boson mass at small cut-off can be understood from the fact
that the λ6(Φ

†Φ)3 term in the action provides a positive contribution to the Higgs
boson mass shift, dominating the negative contribution from the Yukawa coupling.
For larger values of the cut-off, the λ6 coupling becomes less and less relevant and
the Yukawa term provides the major contribution to the mass-shift such that we
eventually find the standard behaviour of the Higgs boson mass as a function of the
cut-off in fig. 7b.

We plan to investigate the cut-off dependence of the Higgs boson mass through
non-perturbative numerical simulations in the future. However, if the picture of
fig. 7b is confirmed, this would lead to a bound on the values of λ6 since the 126GeV
Higgs boson mass would be in conflict with the cut-off dependent mass at low values
of the cut-off. As a consequence, only rather small values of λ6 ∝ O(0.001) would
be compatible with the 126GeV Higgs boson mass.
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Figure 7: Shown is the cut-off dependence of the Higgs boson mass obtained from the CEP
according to eq. (14) for λ = 0.001 on a 643× 128-lattice (left) and λ = 0.1 on a 1923× 384 (right).
In both plots we also show the standard model lower mass bound (λ6 = λ = 0).
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5. Conclusions

In this letter we focused on the investigation of the phase structure of a chirally
invariant lattice Higgs-Yukawa model including an additional higher dimensional
operator, (ϕ†ϕ)3, with coupling strength λ6 in the action. For the analysis of such
a system we restricted ourselves to small values of λ6 for now. This allowed us
to compare our numerically obtained results with analytical predictions from the
constraint effective potential evaluated in the same lattice setup as the numerical
simulations were carried through.

In general, we obtained a very good qualitative and even quantitative agreement
between both approaches leading to the phase structure shwon in fig. 6 for fixed
values of λ6 = 0.001 and λ6 = 0.1.

Fixing λ6 > 0 stabilizes the potential, allowing thus to drive the values of λ more
and more negative. For sufficiently small values of λ we observe smooth transitions in
the magnetization, fully compatible with the second order phase transitions observed
for λ6 = 0. However, from a certain negative value of λ on, we find an additional
phase transition which can be a crossover or first order transition. Indications for
these transitions can be detected from the behaviour of the magnetization computed
both in the effective potential and the numerical simulations, see e.g. fig. 4b. Thus,
the resulting phase diagram in fig. 6 turned out to be rather rich with second and
first order phase transition lines when changing κ. We note in passing that by fixing
the hopping parameter κ and hence the bare Higgs boson mass, it is possible, to
move to a broken phase by only changing the quartic coupling of the theory.

A natural extension of the investigation here would be the exploration of the
phase structure of the model at non-zero temperature. Our results show that a
simple extension of the Higgs-Yukawa sector of the standard model by a (φ†φ)3

term leads to first order phase transitions. This might open the possibility to gen-
erate a strong enough first order phase transition at a non-zero temperature which
is compatible with baryogenesis [26] even at a value of the Higgs boson mass of
126GeV.

The constraint effective potential also allows to compute the Higgs boson mass
from the second derivative at its minimum. By fixing the value of λ6 = 0.001 and
driving λ more and more negative, we obtain lower and lower values of the Higgs
boson mass and, in particular, substantially smaller values than obtained for λ6 = 0
at a comparable value of the cut-off. This finding is fully compatible with the results
of [1]. As a criterion to obtain an absolute lower bound for the Higgs boson mass
one may choose the value of the quartic coupling, where the second order standard
model like phase transition turns into a first order one since in the Higgs-Yukawa
sector of the SM itself only second order phase transitions occur.

We have also found that for larger values of λ6 = 0.1 and at small values of the
cut-off the positive contribution of the λ6 term to the Higgs boson mass-shift leads to
significantly enhanced Higgs boson masses. In fact, we can already exclude certain
values of the quartic and λ6 couplings since there the 126GeV Higgs boson mass is
in conflict with the lower bounds obtained here. It will be interesting to perform a
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more systematic study of the lower Higgs boson mass bounds at additional values of
λ6. By employing also numerical simulations this can provide exclusion bounds for
the coupling values and hence for models which lead to an extension of the standard
model with a (φ†φ)3 term. We plan to carry out such investigations in the future.
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