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Abstract

We present a review on recent progress in perturbative calculations for the anomalous magnetic moment of the
muon. We present recent calculations for leptonic contributions to g − 2 and discuss the NNLO contributions to
hadronic vacuum polarisation insertions.
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1. Introduction

The anomalous magnetic moment of the muon (g −
2)μ has been both experimentally measured and theoret-
ically calculated with astonishing precision. The differ-
ence between the experimental value [1, 2]

aexp
μ = 0.001 165 920 80(54)(33)[63] (1)

and the theory prediction [3]

atheo
μ = 0.001 165 918 40(59) (2)

has the size of about three standard deviations. On the
theory side the contributions to atheo

μ can be decomposed
into three parts

atheo
μ = aQED

μ + aEW
μ + ahadr

μ , (3)

where aQED
μ , aEW

μ , and ahadr
μ denote the QED, electro-

weak, and hadronic contributions, respectively. The er-
ror on the theory prediction (2) is dominated by the un-
certainty of the hadronic contributions [4, 5].

The QED contributions have been calculated at three
loops analytically in [6] and numerically up to five-
loop order in [3, 7]. We want to stress that looking
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at the absolute size of the QED corrections one finds
that the four-loop contribution is of the same size as
the difference between theory and experiment. There-
fore it is mandatory to verify the only existing calcula-
tion of these contributions by an independent one. First
steps towards this are presented in Section 2. Correc-
tions to aQED

μ from vacuum polarization insertions have
been calculated up to five-loop order and are discussed
in Section 4. Even though the corrections contained
in ahadr

μ are of non-perturbative nature they still receive
quantum corrections which can be addressed in pertur-
bation theory and are discussed in Section 3.

2. Leptonic contributions at four-loop order

The pure QED contributions can be further decom-
posed as

aQED
μ =

∑
n=1

(
α

π

)n
A(n)
μ , (4)

A(n)
μ = A(n)

1 + A(n)
2 (Me/Mμ) + A(n)

2 (Mμ/Mτ)

+A(n)
3 (Me/Mμ,Mμ/Mτ) , (5)

A(4)
2 (Me/Mμ) = n3

e A(43)
2 + n2

e A(42)a
2 + n2

enμA
(42)b
2

+ · · · , (6)
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where A(n)
1 contains the universal mass-independent

contribution. ne and nμ denote contributions from elec-
tron and muon loops, respectively.

In Ref. [8] a first step towards an independent calcu-
lation of the electronic contributions A(4)

2 (Me/Mμ) to the

anomalous moment of the muon has been made. Con-
tributions with at least two closed electron loops have
been calculated. The results are accurate up to terms
Me/Mμ and we show here only the new result for A(42)a

2

A(42)a
2 = L2

μe

[
π2
(

5
36

− a1

6

)
+
ζ3
4
− 13

24
+ Lμe

[
− a4

1

9
+ π2
(
− 2a2

1

9
+

5a1

3
− 79

54

)
− 8a4

3
− 3ζ3 +

11π4

216
+

23
6

−2a5
1

45
+

5a4
1

9
+ π2
(
− 4a3

1

27
+

10a2
1

9
− 235a1

54
− ζ3

8
+

595
162

)
+ π4
(
− 31a1

540
− 403

3240

)
+

40a4

3
+

16a5

3

−37ζ5
6
+

11167ζ3
1152

− 6833
864

≈ −3.624 27 , (7)

group 102 · A(4)
2 (Mμ/Mτ)

Ref. [12] Ref. [3]
I(a) 0.00324281(2) 0.0032(0)

I(b) + I(c) + II(b) + II(c) −0.6292808(6) −0.6293(1)
I(d) 0.0367796(4) 0.0368(0)
III 4.5208986(6) 4.504(14)

II(a) + IV(d) −2.316756(5) −2.3197(37)
IV(a) 3.851967(3) 3.8513(11)
IV(b) 0.612661(5) 0.6106(31)
IV(c) −1.83010(1) −1.823(11)

Table 1: Results from Ref. [12] in comparison with Ref. [3]. The
diagram classes are shown in Fig. 1.

with Lμe = ln(M2
μ/M

2
e ), ζn =

∑
k=1 1/kn, a1 = ln2 and

an = Lin(1/2), n ≥ 4. Excellent agreement with the
results in the literature [3, 9–11] has been found.

The contributions from τ-leptons to the anomalous
magnetic moment of the muon can very efficiently be
calculated by performing an asymptotic expansion in
the mass ratio z = Mμ/Mτ ≈ 6 · 10−2 leading to a
power series in z2.1 After performing the expansion on
the diagram level one is left with at most the calcula-
tion of four-loop vacuum diagrams, which have been
extensively studied in the literature. To obtain a good
numerical accuracy it is sufficient to consider the first
three terms in the expansion

102A(4)
2 (Mμ/Mτ) ≈ 4.21670 + 0.03257 + 0.00015

= 4.24941(2)(53) .
(8)

The indicated errors correspond to the truncation of the
series and to the parametric uncertainty of the mass ra-

1Although the expansion is performed in z2, terms of order z2n+1

are generated by performing the mass renormalization in the on-shell
scheme.

I(a) I(b) I(c) I(d)

II(a) II(b) II(c) III

IV(a) IV(b) IV(c) IV(d)

Figure 1: Classes of diagrams considered in Ref. [12]. Thin and thick
lines denote light and heavy leptons, respectively.

tio. We compare the obtained results for the various di-
agram classes shown in Fig. 1 in Tab. 1. For all classes
excellent agreement has been found.

3. Hadronic vacuum polarization contributions at
NNLO

Contributions from the hadronic vacuum polarization
are calculated by evaluating

ahad
μ =

1
3

(
α

π

)2 ∞

m2
π

dsR(s)K(s) (9)

with the R-ratio R(s) = σ(e+e− → hadrons)/σpt , σpt =

4πα2/(3s) and a kernel function K(s), which at leading
order is given by

K(1)(s) =
1

0
dx

x2(1 − x)
x2 + (1 − x)s/M2

μ

. (10)
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Figure 2: Diagrams contributing to the hadronic vacuum polarization
at next-to-next-to-leading order.

The kernel function receives higher-order corrections
from perturbation theory. The next-to-leading order
corrections to the kernel function have been calculated
in [13]. The next-to-next-to-leading order corrections
have recently been calculated in [14] by performing an
asymptotic expansion in M2

μ/s. The diagram classes
contributing are displayed in Fig. 2. The obtained re-
sult for the NNLO contribution

ahad,NNLO
μ = 1.24 ± 0.01 × 10−10 , (11)

is larger than expected from lower orders. Taking this
contribution into account when comparing theory and
experiment reduces the discrepancy by 0.2 standard de-
viations.

4. Leptonic vacuum polarization contributions at
five-loop order

Similar to the hadronic vacuum polarization inser-
tions leptonic ones can be calculated by integrating over
the vacuum polarization function Π(q2)

alep−vacpol
μ =

α

π

1

0
dx(1−x)

1
1 + Π(sx)

, sx = − x2

1 − x
M2
μ .

(12)
This analysis has been done at four loops in [15]. At
five loops the method has first been implemented us-
ing only the leading term in the high-energy expansion
as approximation for Π(q2)[16]. The analysis showed
unexpected deviations from the results in [3] and was
later improved in [17] where a Padé approximation was
used for the vacuum polarization. For the construction
of the Padé approximation of the vacuum polarization
function at four loops all available information in the
low- and high-energy and in the threshold region has
been used. In this follow-up analysis the discrepancies
were resolved and we compare all three results in Tab. 2.
As can be seen there is good agreement between the
new analysis and the numerical results for all diagram
classes shown in Fig. 3.

I(a) I(b) I(c)

I(d) I(e) I(f)

I(g) I(h) I(i)

I(j)

Figure 3: Diagram classes considered in the analysis of Ref. [17].

Ref. [17] Ref. [16] Refs. [18–21]
I(a) 20.142 813 20.183 2 20.142 93(23)
I(b) 27.690 061 27.718 8 27.690 38(30)
I(c) 4.742 149 4.817 59 4.742 12(14)
I(d+e) 6.241 470 6.117 77 6.243 32(101)(70 )
I(e) -1.211 249 -1.331 41 -1.208 41(70)
I(f+g+h) 4.446 8 +6

−4 4.391 31 4.446 68(9)(23)(59)
I(i) 0.074 6 +8

−19 0.252 37 0.0 87 1(59)
I(j) -1.246 9 +4

−3 -1.214 29 -1.247 26(12)

Table 2: Comparison of the results from Ref. [17], Ref. [16] and
Refs. [18–21]. The diagram classes are shown in Fig. 3.

5. Conclusions

We reviewed recent progress in perturbative calcu-
lations for the anomalous magnetic moment of the
muon. Much progress has been made to further improve
the theory prediction. Higher-order corrections to the
hadronic vacuum polarisation contribution reduced the
difference between experiment and theory by about 0.2
standard deviations.
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