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Abstract

In this work, we propose a novel search strategy for new physics at the LHC that utilizes
calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many
different vertices within the jet cone. Such emerging jet signatures are smoking guns for
models with a composite dark sector where a parton shower in the dark sector is followed
by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive
to this type of phenomenology. We perform a detailed simulation for a benchmark signal
with two regular and two emerging jets, and present and implement strategies to suppress
QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can
be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and
the reach is increased further at the high-luminosity LHC. The emerging jet search is also
sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric
model with R-parity violation. Possibilities for discovery at LHCb are also discussed.
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1 Introduction

The LHC has begun its exploration of the TeV scale, but as yet it has not uncovered any evidence

for physics beyond the Standard Model (SM). Because of the complicated nature of the data

taken at the LHC, it is of crucial importance to understand all the possible new physics scenarios

that could be discovered. Digging out physics beyond the SM is difficult, and if the experimenters

do not know what they are looking for, it is possible that there is evidence for new physics in the

current data which can be discovered if a targeted search is performed. In this paper, we will

give an example of a new type of reconstruction object which current searches are insensitive to

and motivate why the experimental collaborations should begin a search for these objects.

These new objects arise naturally in many models of dark matter. Dark matter is known to

require physics beyond the SM, but searches for weakly interacting massive particles (WIMPs) [1]

have so far come up empty. Furthermore, there are several astrophysical anomalies which may

point away from the standard cold dark matter picture and instead towards dark matter with

large self interactions [2–5], possibly hinting at more complicated dark matter sectors. For

example, if the dark matter arises from a confining hidden sector [6–16], then it will naturally be

self interacting. Another puzzle of dark matter is the coincidence between the energy density

of dark matter and baryons. This comes out accidentally in the WIMP paradigm but can be

explained if the dark matter abundance arises as an asymmetry much like the baryon abundance

in QCD. In particular, if the same physics generates both asymmetries [17–33] (for a review

see [34, 35]), then there will be a portal from the SM to the dark sector, and the GeV scale will

play an important role on both sides.
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Many of the models with a shared asymmetry between dark matter and baryons explain

the similarity between the number densities of the two species, but the GeV scale is put into

the dark sector by hand giving rise to a new coincidence. Combining the ideas of a confining

hidden sector and cogeneration of dark matter with baryons can lead to a scenario that explains

the coincidence of both the mass and number density of dark matter and baryons [12].1 In the

models presented in [12], there is a dark gauge group, and new matter is introduced to relate the

running of the QCD and dark gauge couplings such that their confinement scales are near one

another at the GeV scale. The new matter is also needed to generate the asymmetry. Therefore,

this new matter must be charged under QCD, and it ends up acting as a portal between the

visible and dark sectors that is accessible to colliders if it is sufficiently light. The analysis of [12]

points to new matter at the TeV scale, making the LHC the ideal machine to explore this class

of hidden sector models.

The lightest baryon in the hidden sector is stable in analogy with the proton, so it is a good

dark matter candidate. The phenomenology of this sector, however, is much more interesting

than the usual WIMP scenarios because of the zoo of particles that are unstable. In particular,

the TeV scale fields cause the mesons of the dark sector to decay back to the SM. Because of the

GeV to TeV hierarchy, the decay back into the SM can be quite slow, with dark mesons traveling

macroscopic distances before decaying. This is the basis of the novel collider phenomenology we

will explore.

Events from this type of scenario are shown schematically in Fig. 1 and can be described

as follows. Consider the production of a TeV scale field which decays to two dark quarks and

possibly other SM fields. The energy of these dark quarks will each be much larger than the

confinement scale of the dark gauge group, so the dark quarks will shower and then hadronize

producing a large number of dark mesons. If the dark sector is QCD like, then the dark hadrons

will form into two jet-like structures, with all the hadrons going roughly in the same direction as

one of the initial quarks. Motivated by the models in [12], we take the dark mesons to decay into

SM quarks with a lifetime of order centimeters. Therefore, the dark jets will gradually turn into

visible over a length scale of a few centimeters. Because of the exponential decay law, however,

each hadron will decay in a different place in the detector and the jets will emerge into the visible

sector.

There are many other proposals to search for hidden sectors [37–42], but as yet none which

have explored this distinct signature. The main requirements for a model to produce emerging

jet phenomenology are:

• A large hierarchy between the mediator mass and the hidden sector mass.

• Strong coupling in the hidden sector so that there can be large particle multiplicity.

• Macroscopic decay lengths of hidden sector fields back to the visible sector.

1For a model that uses a confining hidden sector to explain the galactic center gamma ray excess see [36].
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Figure 1: A schematic depiction of pair production of dark quarks forming two emerging jets.
Shown is an x − y cross section of a detector with the beam pipe going into the page. The
approximate radii of the tracker and calorimeter are also shown. The dark mesons are represented
by dashed lines because they do not interact with the detector. After traveling some distance,
each individual dark pion decays into Standard Model particles, creating a small jet represented
by solid colored lines. Because of the exponential decay, each set of SM particles originates a
different distance from the interaction point, so the jet slowly emerges into the detector.
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The main purpose of this work is to characterize the emerging jets signature at hadron

colliders and to develop an analysis strategy for the LHC experiments. In Sec. 2, we introduce the

models which give rise to emerging jets and motivate the parameter space we consider, followed

in Sec. 3 by a detailed description and modeling of emerging jet phenomenology and a discussion

of existing searches. The emerging jet analysis strategy is detailed in Sec. 4, including simulations

of signals and backgrounds. The projected reach at the 14 TeV LHC is shown in Fig. 10. While

the main analysis is based on reconstructing calorimeter jets with no prompt tracks, we also

propose an alternative strategy using pT weighted tracks. We also outline a strategy for searching

for emerging jet like signatures with the LHCb detector in Sec. 5.

While the analysis method presented here was designed with specific models in mind, these

techniques are sensitive to a broad class of models with displaced phenomena. As an example, we

show the reach for certain R-parity violating (RPV) supersymmetric scenarios in Sec. 6, finding

excellent reach for this class of models shown in Fig. 16. Finally, in two appendices we present

more details on the simulation of the signals and backgrounds, on the tracking algorithms, and a

discussion of variations of model parameters and their impact on the analysis.

2 Models

We now describe our general setup which is shown schematically in Fig. 2. We consider a class

of models with a dark sector with a non-abelian gauge symmetry, dark QCD, that confines in

the infrared, in a way similar to QCD. More concretely, we consider an extension of the standard

model gauge group to

GSM × SU(Nd) , (1)

where GSM = SU(3)c × SU(2) × U(1) is the standard model gauge symmetry, and Nd ≥ 2 is

the number of dark colors. Furthermore we assume that there are nf Dirac fermions that are

fundamentals of SU(Nd) and singlets under GSM, which we refer to as dark quarks Qd. The dark

sector confines at a scale Λd, which is the approximate mass of the majority of the dark mesons

and baryons. The theory also contains pseudo-Goldstone bosons, analogous to QCD pions, which

we take to have a common mass mπd with mπd < Λd. Motivated by asymmetric dark matter, we

take the dimensionful parameters of the dark sector Λd and mπd to be O(1 − 10) GeV.

The dark baryons carry a conserved charge, dark baryon number, such that the lightest one

is stable and constitutes the dark matter candidate of our model. On the other hand, the dark

mesons do not carry such a conserved charge and can therefore decay to SM particles.

The dark sector is connected to the visible sector by a heavy mediator, making this similar

in spirit to hidden valley models [37]. Inspired by [12], we focus on a scalar mediator which is a

bifundamental under both QCD and dark color. The bifundamental, Xd, can be pair produced

and each one will decay to an SM quark and a dark quark. Another possibility for a mediator is

a neutral vector Zd which couples to both quark pairs and dark quark pairs. The Zd is a nice toy
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Figure 2: Graphical representation of
the dark QCD model. Baryon and
dark matter asymmetries are shared
via a mediator Xd resulting in an
asymmetry in the stable dark baryons
pd, nd. The symmetric relic density
is annihilated efficiently into dark pi-
ons, which eventually decay into SM
particles. The DM number density is
naturally of the same order as that of
baryons, so the correct DM relic den-
sity is obtained when the dark baryon
masses are in the 10 GeV range.

Field SU(3)× SU(2)× U(1) SU(3)dark Mass Spin

Qd (1, 1, 0) (3) md O(GeV) Dirac Fermion
Xd (3, 1, 13) (3) MXd O(TeV) Complex Scalar

Zd (1, 1, 0) (1) MZd O(TeV) Vector Boson

Table 1: Particle content relevant for phenomenology. We use the Zd as a toy model and leave
detailed study to future work.

model for studying dark sector properties, but we leave detailed studies of its phenomenology at

the LHC to future work. The full particle content is summarized in Tab. 1.

For the scalar mediator with the hypercharge assignment in Tab. 1, the only allowed Yukawa

type coupling is of the form [12]

Lκ = κijQ̄diqjXd + h.c. (2)

where qj are the right-handed down-type SM quarks and κ is a nf ×3 matrix of Yukawa couplings.

Such couplings could in general lead to large flavor violating processes, but can be brought into

agreement with experimental bounds if dark flavor originates from the same dynamics as the SM

flavor structure or certainly if flavor symmetries are imposed on the dark sector [43–45]. For

definiteness, the fundamental Lagrangian which defines the model at high scales is given by

L ⊃ Q̄di(D/−mdi)Qdi + (DµXd)(D
µXd)

† −M2
Xd
XdX

†
d −

1

4
Gµνd Gµν,d + Lκ + LSM , (3)

where Gµνd is the dark gluon field strength tensor, and the covariant derivatives contain the

couplings to the gauge fields.

For the vector mediator, we assume that it couples vectorially to SM and dark quarks with

couplings gq and gd. While here we assume that Zd originates from a U(1) symmetry broken at

the TeV scale, it could in principle also originate from a non-abelian horizontal symmetry as in

Ref. [31], where the Sphaleron associated with this gauge interaction is used to connect the dark

matter with the baryon asymmetry.
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2.1 Mass Scales

The present work is mostly concerned with the phenomenological signatures of this class of

models, yet it is useful to review how the different mass scales are motivated, see Fig. 2. In the

context of asymmetric dark matter, it is usually assumed that some mechanism relates the dark

matter asymmetry to the baryon asymmetry. Since the observed dark matter energy density

is about five times larger than the baryonic energy density, the dark matter mass should be of

order 5×mproton, up to order one factors that depend on the exact mechanism of asymmetry

sharing.2 In our case, the dark baryon is the dark matter candidate and has a mass of order

Λd giving the main motivation for considering Λd in the (1 − 10) GeV range. A dynamical

mechanism to relate the dark confinement scale Λd to the QCD scale was presented in [12], and

other possibilities to motivate the GeV scale for dark matter can be found e.g. in [17–33].

A mediator that communicates between the dark and visible sectors is, in general, required

for implementing a mechanism that shares the asymmetry and to allow an efficient annihilation

of the symmetric relic density back to SM particles. In models with QCD like composite DM,

the annihilation of dark baryons with dark anti-baryons into dark pions is typically very efficient

so the dark baryon relic density is determined by the dark matter asymmetry. Entropy transfer

back to the visible sector then happens via decays of dark pions. In order to not interfere with

Big Bang Nucleosynthesis (BBN), the dark pion lifetime should be shorter than about one second,

which implies a rather loose upper bound on the mediator mass of the order of 100 TeV. In [12],

bifundamental mediators ensure a specific ratio of the QCD and dark QCD gauge couplings at

the mass scale MXd . It was shown there that lower mediator masses are more likely to lead to

a dark QCD confinement scale close to the QCD scale, such that within this model TeV scale

mediators are preferred.

2.2 Dark Pions

As mentioned above, the lightest composite states are the dark pions πd which are the Goldstone

bosons of the nf × nf dark flavor symmetry. The couplings Eq. (2) break the global flavor

symmetry such that small masses for the pions will be generated. Integrating out the heavy Xd

fields leads to an effective Lagrangian for the dark quarks of the form

mijQ̄LiQRj + κiακ
∗
jβ

1

M2
X

Q̄LiγµQLj d̄Rαγ
µdRβ + h.c. . (4)

Here one has to keep in mind that the explicit Dirac mass terms mij are not necessarily aligned

in flavor space with the Yukawa couplings κ. The same effective Lagrangian would also arise

from integrating out a Zd mediator.

We now estimate the dark pion lifetime following the results of [12, 37]. The lifetime can

be quite suppressed relative to the naive order of magnitude estimate of Γ ∼ κ4m5
πd
/(32πM4

Xd
),

depending on the structure of κ and the masses of the dark pions. The dark quark current

2In the literature one can also find models where the ratio of number densities can vary over a larger
range (e.g. [30, 46]), in which case the motivation for GeV-scale dark matter is lost.
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jDµ = d̄Riγ
µdRj matches onto a dark pion current of the form fπd∂µπdij , where fπd is the dark

pion decay constant. Assuming universal masses and couplings for all dark pions, and assuming

that mπd > ΛQCD, we obtain the decay width of dark pions into pairs of down-type quarks as [12]

Γ(πd → d̄d) =
κ4Ncf

2
πd
m2

down

32πM4
Xd

mπd . (5)

Here Nc is a Standard Model color factor and mdown denotes a SM down type quark mass which

arises from the chirality flip required for a pseudoscalar to decay to two fermions. We can now

compute the proper lifetime:

cτ0 =
c~
Γ
≈ 80 mm× 1

κ4
×
(

2 GeV

fπd

)2(100 MeV

mdown

)2(2 GeV

mπd

)(
MXd

1 TeV

)4

. (6)

It is therefore well motivated to consider centimeter to meter decay lengths for GeV scale dark

pions with TeV scale mediators. There is some implicit sensitivity to the kaon threshold: when

decays to kaon pairs are kinematically forbidden, the lifetime will increase by a factor of 400

and the dark pions tend be long lived enough to escape the detector unless the mediator mass is

lowered.

The above formula is also the origin for the 100 TeV bound on the mediator mass - for higher

mediator masses the dark pion lifetime will get dangerously close to the BBN time. Apart from

this bound, the dark pion properties are of minor importance for the cosmology of this model.

On the other hand, the collider phenomenology will be dominated by meson production, with

the dark baryon multiplicity being much smaller for QCD like theories [47], and even further

suppressed in the large Nd limit [48]. Since one can expect that all heavier dark mesons decay to

dark pions on a time scale given by Λ−1d � Γ(πd → d̄d)−1, the dark pion lifetime will be crucial

to determine where the dark jets will emerge in the detector.

3 Emerging Jet Phenomenology

3.1 Collider Signal

At a hadron collider, the mediator particles can be produced on-shell provided that their mass is

sufficiently below the center-of-mass energy of the experiment. Here and in the following we will

mostly focus on the production of XdX
†
d pairs through a virtual gluon, which can be initiated

both from quark and gluon initial states.

The most important diagrams that contribute to the production are shown in Fig. 3. Apart

from the dark color degrees of freedom, the production process is very similar to that of single

scalar quarks in supersymmetry and is set by QCD gauge invariance. Therefore the cross section

is similar for example to that of the production of a single stop quark multiplied by Nd. In the

plot on the right of Fig. 3 we show the tree level cross section for XdX
†
d production for different

center of mass energies at the LHC, obtained from Pythia3 [49] using CTEQ 6.1 parton

3Throughout this work, we use a modified version of Pythia 8.183, see https://github.com/pedroschwaller/

EmergingJets
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Figure 3: Left: Feynman diagrams for the pair production of Xd at hadron colliders. Right: Tree
level cross section for Xd pair production at the LHC.

distribution functions (PDF) [50]. Since the parton luminosity for quark-gluon initial states is

large at the LHC, next-to-leading order corrections that include the process pp→ XdX
†
d j can be

sizable. Based on the similarity with squark production with decoupled gluinos, we can expect a

K-factor of around 1.3 [51].

If the mediator Xd has order one couplings κij to the quarks and dark quarks, it will decay

before the onset of hadronization both in QCD and dark QCD. Therefore we can treat the pair

production of Xd with subsequent decay Xd → Qdq̄ as hard process. The SM quarks from Xd

decays will produce ordinary QCD jets. On the other hand, each dark quark Qd will first undergo

parton showering and fragmentation in the dark sector, which happens on a time scale Λ−1d ,

much shorter than the time scale for dark mesons to decay back to SM particles.

In order to explore the resulting phenomenology, we should therefore first understand the

structure and basic features of the dark parton shower and fragmentation. The dark parton

shower, i.e. the radiation of dark gluons off dark partons, and the splitting of dark gluons into

dark quark pairs, in non-abelian gauge theories is theoretically well understood and described

by so called DGLAP [52–54] evolution equations. It essentially depends on the running of the

coupling, i.e. on the number of colors and quark flavors. Unless the theory is in the conformal

window, the jet objects should be similar to QCD jets.

Fragmentation, the conversion of dark partons into dark hadrons, is a non-perturbative

process that can only be modeled even for QCD, so we have to infer from QCD for the dark

sector. As discussed above, the production of baryons is suppressed relative to meson production

in the large Nc limit [48], and happens at the 10% level in QCD [47]. Among the dark mesons the

most important distinction is between Goldstone bosons πd, with masses below Λd, and heavier

resonances with masses of order Λd. The latter ones will decay to the lightest available states (i.e.

the Goldstones) on very short time scales of 1/Λd. Therefore, when a dark quark is produced at

a collider, it undergoes showering and then hadronization into a jet composed mostly of dark

pions, πd, originating from the interaction point (but invisible to the detector before they decay).
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Figure 4: Distribution of transverse decay distances of individual dark pions for model A (left)
and model B (right) at LHC14 (the benchmarks are defined in Sec. 4.1). The green curve shows
the average transverse laboratory frame decay length βTγT cτπd = (pT /mπd)cτπd . Dashed lines
indicate the approximate regions covered by the tracker (50 mm - 1000 mm) and calorimeters
(1000 mm - 3000 mm).

A subdominant component of the dark jet will be dark baryons that escape the detector and

give rise to some missing energy, but the amount of missing energy is comparable to the typical

jet energy uncertainty.

The “dark jet” production is shown schematically in Fig. 1, with the dark pions represented

by grey dashed lines. Depending on their lifetime, the dark pions may travel a measurable

distance away from the interaction point before decaying to SM particles. In the laboratory

frame, the characteristic decay length is given by β γ c τπd , where βγ is the boost factor that

depends on the momentum of each individual pion. Furthermore since the actual decay time is

distributed exponentially, each pion will decay at a different distance from the interaction point,

with harder particles traveling further on average.

In order to simulate production and dynamics of the dark sector at the LHC, we use a

modified version of the Hidden Valley implementation [55,56] of Pythia [49], and we describe the

details of the simulation in App. A. Armed with this simulation and our benchmarks described in

Sec. 4.1, we can begin a quantitative study of the dark sector. In Fig. 4 we show the distribution

of transverse decay distances from the interaction point for two benchmark models, see Sec. 4.1 for

their definition. The majority of decays occurs well away from the beam pipe, but still within the

tracker, and are clustered around the average transverse decay length βTγT cτπd = pT /mπdcτπd .

From here we can easily understand what a change of parameters will imply: the average

decay distance will change proportional to the proper lifetime and inversely proportional to the

mass of the dark pions for fixed mediator mass. Given the physical size of the trackers and

hadronic calorimeters, we can easily vary the parameters by one to two orders of magnitude

without changing the signal in a significant way. We further explore what happens when different

parameters are varied in App. B.

Before the dark pions decay, the jet is completely invisible, so we now describe this decay back
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into the visible sector. When the dark pion decays to SM quarks, it will produce a sub-jet with a

small number of SM hadrons all originating from a common displaced vertex. This is depicted by

the solid colored lines in Fig. 1. The average multiplicity of the sub-jets will depend on the dark

pion mass. As we will see below, LHC searches exist which are optimized to search for a single

displaced vertex, but there is no search which looks for many nearby vertices. If we examine

the jet at a distance which is large compared to the typical γ β c τπd , we see many SM hadrons

going in the same direction: an object that very much resembles a standard jet. Therefore, if

using only calorimeter information, the usual techniques that measure jets will work well. On

the other hand, if we look at the radial profile of the jets, we see that at the interaction point

there is very little visible energy, and there is more and more as one is further from the initial

interaction point. The jet emerges within the detector, producing a very distinct signature.4

3.2 Existing Searches and Constraints

In the following section, we will present a detailed search strategy for such emerging jets at

the LHC, but we will first discuss existing searches for displaced objects and why they are not

sensitive to emerging jets.

First, pair production of Xd produces a 4-jet signature at the calorimeter level, with pairs of

jets reconstructing the Xd mass. Searches in this channel have been performed by the ATLAS [58]

and CMS [59,60] experiments and have been interpreted in terms of RPV stop decays. Taking

into account the Nd enhancement of Xd pair production compared to MSSM stops, the most

recent CMS results [60] would imply a limit of MXd & 600 GeV. This interpretation is not

straightforward however. The CMS search utilizes jets reconstructed using a particle flow

algorithm, which includes tracking information, and the sensitivity was estimated assuming

prompt jets. Furthermore there is a possibility that jet quality cuts will remove some or all of the

emerging jets. Therefore values of MXd lower than 600 GeV can not be conclusively excluded

from that search alone.

Effects of new colored states can also be probed indirectly, for example through their effect

on the running of the strong coupling constant. The most recent measurement of αs(Q) [61]

shows no deviation in the strong coupling up to Q ≈ 1.4 TeV, but is not yet sensitive enough to

exclude additional colored states above the weak scale. Furthermore the mediators Xd could

contribute to the dijet cross section, if the emerging jets would be reconstructed as ordinary jets.

In that case one would obtain a bound on the couplings of Xd to first generation quarks, which

depends on the flavor structure of the model, but not directly on the mass.

Apart from generic multi-jet searches, several analyses dedicated to displaced or otherwise

exotic jet signatures exist.

CMS displaced dijet search: CMS has a search for pair production of a long lived particle

which decays to two jets [62]. Two distinct jets with pT > 60 GeV and a separation of ∆R > 0.5

4It should also be noted that this signature is distinct from the ”trackless jets” considered in [57], which have
absolutely no tracks and also potentially non-standard interactions with the calorimeter.
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Displaced Di-Jet Emerging Jet

Figure 5: Difference between a displaced dijet signature from the decay of a heavy long-lived
particle and the emerging jet signature.

are required and are fitted to the same displaced vertex. This differs qualitatively from the

emerging jets scenario as shown in Fig. 5, and this can be seen from the specific analysis strategy

employed in [62]. In order to reduce background from pile up, this search requires one good vertex

with at least 4 GeV invariant mass and 8 GeV pT . Once that vertex is constructed, it eliminates

tracks which do not pass through that vertex. Most emerging jet events will already fail the

requirement of having two displaced jets that originate from the same vertex, as illustrated in

Fig 5. Furthermore, in the emerging jet scenario with many different displaced vertices, this

algorithm will have difficulty choosing a vertex and then will throw out the majority of the

tracks, drastically reducing the signal efficiency. While this search is difficult to accurately recast,

it is clearly not optimal, and it is unlikely to be sensitive to the emerging jet signal.

ATLAS displaced event triggers: ATLAS has published a description of triggers [63]

that can be used for displaced events. As we will see below, triggering is not a problem for our

signal because of the energy deposited in the calorimeters. The main ATLAS trigger for objects

that decay before reaching the calorimeter requires zero tracks reconstructed using the standard

algorithm within the jet cone. It also requires a muon inside that cone with pT > 10 GeV, and

neither of these requirements are generic in emerging jet scenarios. There are also triggers for

long-lived particles decaying in the calorimeters or muon system, but we do not focus on that

region of parameter space here.

ATLAS long lived neutral particle search: ATLAS has also published a search of long

lived neutral particles [64] and one for lepton jets [65]. In our case, we generically have pair

production of a long lived object which then decays to two or four states, so as with the CMS

search, the models considered only has one displaced vertex for each exotic object. Both searches

require the EM fraction, the fraction of energy in the electromagnetic calorimeter relative to

the hadronic calorimeter, to be smaller than 0.1.5 This requirement is designed to select objects

decaying in the hadronic calorimeter and thus leaving very little energy in the electromagnetic

one. Because of the emerging nature of the signal considered here, there will be energy in all

segments of the calorimeter and this cut would generally cut out the majority of our signal. It

could be sensitive to regions of parameter space with longer lifetimes, but then there will be

5The lepton jet search only requires this for their hadronic category, but the categories that require muons will
also not be sensitive.
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quite a few dark decays in the muon system and it is not clear how they will be reconstructed.

In the region of parameter space we are most interested in, the EM fraction cut will make the

signal efficiency extremely low for emerging jets.

LHCb displaced dijet search: LHCb has a search [66] which is based on a similar model

as the aforementioned CMS search. They also require reconstruction of a single vertex and

force the majority of particles to pass through (or near to catch b and c hadrons) this vertex.

Therefore, if there are many hard vertices displaced from one another by a few millimeters then

this search will have low efficiency for the emerging phenomenology considered. Because of the

relatively small geometric acceptance, there will be events where only one dark pion falls into

LHCb, and the analysis could be sensitive in this regime. All the limits described in the analysis,

however, are for dark pion mass above 25 GeV, so it is a somewhat different regime of the model

than we consider. More details will be given about the LHCb potential in Sec. 5. It should also

be noted that the searches discussed above constrain models with mediators in the 100 GeV

range and with pico barn cross sections, while we are aiming at TeV scale mediators.

Other long-lived particle searches: The remaining published searches for long lived

particles and/or displaced decay topologies often require additional isolated leptons (e.g. [67–69])

or use timing information (e.g. [70, 71]) to distinguish from SM backgrounds. The emerging jet

signature discussed here possesses neither of these features. Therefore, in the next section we

present a potential search strategy for discovery at the LHC.

4 Analysis Strategy

Here we present our analysis strategy to search for dark sectors with bi-fundamental mediators.

The tracking system in both the ATLAS and CMS detectors extends from about 50 mm to 1 m

from the interaction point in radial direction. Tracks can be reconstructed with a resolution

of about 100 µm in the impact parameter for charged pions with pT > 1 GeV, and the track

reconstruction efficiency is above 95% for central pions and above 90% in the forward region [72].

While the tracker starts a few centimeters from the beamline, there are several possibilities

to determine whether a track originates from the primary vertex with a precision as small as a

few hundred micrometers. First, the impact parameter itself can be used to determine whether a

track originates from the primary vertex. A more powerful technique that is usually employed by

the experiments is to reconstruct secondary vertices and to measure their transverse distance Lxy

from the primary vertex (see e.g. [62]). In the following we will assume that this technique can

be employed to determine the trackless distance of a jet object down to at at least a millimeter.

After presenting the general analysis strategy, we will discuss this in more detail in Sec 4.5, and

the details of how we simulate detector response are given in App. A.3.
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Model A Model B

Λd 10 GeV 4 GeV
mV 20 GeV 8 GeV
mπd 5 GeV 2 GeV
c τπd 150 mm 5 mm

Table 2: Dark sector parameters in our two benchmark models. Λd is the dark confinement scale,
mV is the mass of the dark vector mesons, and mπd is the pseudo-scalar mass. c τπd is the rest
frame decay length of the pseudo-scalars. We take Nc = 3 and nf = 7 in both benchmarks.

4.1 Benchmarks

In this section we will describe some of the parameters of the dark sector and the mediator, and

we will define the benchmark models that we will analyze in the rest of the paper. We take our

benchmark value for the mediator mass MX to be 1 TeV, though we will vary this parameter in

order to estimate the LHC reach for these scenarios. For the dark sector parameters, we consider

two benchmark parameter points that capture the relevant phenomenology and allow us to study

which observables are model dependent and which are relatively robust within this framework.

The benchmark points are shown in Tab. 2. Inspired by QCD, we take the dark vector masses to

be somewhat heavier than the confinement scale Λd, and we take the dark pion masses to be

lighter for both benchmarks. This means that dark vectors will undergo rapid decay into dark

pions before they can decay into SM hadrons.

Model A describes a somewhat heavier dark sector such that an average of O(10) visible

hadrons will be formed in each dark pion decay, while model B is lighter and there will only be a

few visible hadrons per dark pion decay (particle multiplicity will be discussed in greater detail

in Sec. 5). Model A also has a relatively longer lifetime so that a substantial fraction of the dark

meson decays will occur in the calorimeters or beyond, while model B has a short lifetime and

most decays occur within the tracker. In App. B we further explore the parameter space of the

dark sector and describe how our analysis is relatively robust throughout. We also give examples

of collider level observables that are sensitive to the dark sector parameters. The search strategy

that we will present in the following is largely independent of the details of the dark sector.

4.2 Triggering

Pair production of the mediators Xd leads to four calorimeter jets, so we propose to trigger on

four or more hard, central jets. Such triggers were employed for example in the paired dijet

resonance search by CMS [59,73] and in a search for pair production of massive colored scalars by

ATLAS [58]. The CMS search requires at least four jets with pT,j > 80 GeV and |η| < 3.0, based

on calorimeter information, and the trigger is 99.5% efficient for events with pT,j > 110 GeV and

|η| < 2.5 for each jet. It should be noted that while CMS ultimately relies on particle flow jets

for the analysis, the triggers only utilize calorimeter information. Similarly in the ATLAS search

a four (or more) jet trigger is used with is 99% efficient for pT,j > 80 GeV.

For the 13/14 TeV run of the LHC, the trigger thresholds will most likely increase. We
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will use jets with pT > 200 GeV and |η| < 2.5 for the analysis, which should be well above the

minimum trigger requirements of the upcoming LHC run.

Since the triggers are based on calorimeter information, the emerging jet properties do not

pose a problem at this stage. On the other hand certain jet quality requirements could lead to the

events being discarded. The two jets originating from SM quarks guarantee a well reconstructed

primary vertex for the hard process, and will allow efficient rejection of pile-up. The emerging

jets will have tracks pointing towards the calorimeter energy deposits that do not originate from

the primary vertex. It will be important to make sure that jet reconstruction algorithms that

utilize tracking information do not reject those jets as calorimeter noise or other non-collision

background. The simplest possibility here would be to use pure calorimeter jets for this analysis.

On the other hand, since there will be emerging tracks, it should be possible to utilize more

advanced jet reconstruction techniques, provided that they are flexible enough to not reject

emerging jets.

4.3 Event Selection

We now analyze the Xd model at LHC14. The typical signal event has two emerging jets

and two standard QCD jets, so this search is similar to current LHC searches for paired dijet

resonances [58, 59], and our cuts our loosely inspired by these searches. We cluster the jets using

the FastJet [74] implementation of the anti-kt algorithm [75] with R = 0.5. We demand at least

four jets with pT > 200 GeV and |η| < 2.5, and we also require that the scalar sum of the pT ’s of

those jets is greater than 1000 GeV. The efficiency of the kinematic cuts is 34% (58%) for model

A (B) with an Xd mass of 1 TeV that we take for the rest of this section. The cut flow for this

analysis is shown in Table 3. The experimental searches for paired resonances [58,59] also cut on

the difference between the dijet invariant masses, which gives a moderate improvement in signal

to background, but we do not use it here because the emerging jet cut described below will be so

effective.

It is important to know the kinematic features of our signal events. In Fig. 6 we plot the

pT distribution for the leading emerging and non-emerging jet in each event that passes the

kinematic cuts and has at least two emerging jets with r = 3 mm and n = 0 (see Sec. 4.5 for

details). We see that these events tend to have quite hard jets with typical pT for the hardest jet

O(500) GeV, which enables the trigger using multiple hard jets.

From Fig. 6, we also see that in model A the emerging jets tend to be softer than those

from QCD. This is because we are taking jet energy as the energy deposited in the calorimeters

(for details see App. A.3), and in model A there will be many pions that decay beyond the

calorimeters. These decays can in principle be measured by the muon systems of the experiments,

but we leave the exploration of this feature to future work. The vast majority of model A events

will have at least one meson decaying outside the calorimeter, with an average of three per event.

Furthermore, these mesons tend to carry a substantial amount of energy because they often have

a large relativistic γ factor. On the other hand, model B has a lifetime of 5 mm, so only 2% of
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Figure 6: pT distributions of the hardest emerging (solid, blue) and hardest QCD (dashed, red)
jet in each signal event, as well as for the hardest jet in the background QCD sample (dotted,
green). Emerging jets have r = 3 mm, n = 0, and pmin

T = 1 GeV. These events pass all the
kinematic cuts described in the text, and the signal events have at least two emerging jets. The
left plot is for model A, while the right for model B.

events have mesons that decay outside of the mock calorimeter. This explains why in Fig. 6 the

pT distributions of emerging and non-emerging jets in model B are very similar.

4.4 Backgrounds

The dominant background for these sorts of four jet events will be from high pT QCD. We

simulate four jet (including b) production in QCD using MadGraph 5 [76] with CTEQ 6.1

PDFs [50] and hadronize using Pythia [49]. We apply parton level cuts that require each of the

four jets to have pT > 150 GeV and that the scalar sum of the pT ’s of the jets HT > 800 GeV.

This is the tree level cross section shown in Tab. 3 for the background.

With just the kinematic cuts, the signal to background ratio is dauntingly small, O(10−4).

Requiring emerging jets can dramatically reduce the background because the majority of QCD

jets will have a large number of prompt tracks. QCD can fake the signal because the standard

model has neutral hadrons with detector scale lifetimes such as the bottom and strange mesons

and baryons. In addition, if we only insist on the absence of prompt tracks and not on the

presence of displaced tracks, then QCD can produce jets dominated by long lived neutral hadrons

(like the neutron) and photons. As discussed in App. A.3, we use a conservative photon rejection

criteria, but the experiments can potentially do much better than we estimate at rejection photon

dominated backgrounds.

In Fig. 7 we attempt to characterize the emerging jets produced within QCD. The plots of

the left give the breakdown of jets which have at least one displaced track, and show where that

track emerged and what type of neutral particle gave rise to it. The plots of on the right describe

jets with no displaced charged tracks at all. The top row requires that there are n = 0 prompt

tracks, while the bottom uses the looser requirement of n ≤ 2 prompt tracks. We first note that

requiring n = 0, no prompt tracks, the background is dominated jets with some displaced tracks,
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Figure 7: Breakdown of the composition of the different ways that QCD can produce emerging
jets. The left plots show the distribution of transverse decay radius of the earliest decaying
neutral hadron within the jet. The histograms are stacked based on the quark content of the
decaying neutral hadron, with strange, charm, and bottom going from bottom to top. The top
(bottom) plot require ≤ 0 (2) prompt charged tracks in the jet, and throughout we require all
tracks to have pT > 1 GeV. The right plots are jets with no displaced charged tracks at all and
again ≤ 0 (2) prompt charged tracks on the top (bottom). These jets are composed of photons,
neutrons, neutral strange hadrons, and in the bottom plot, one or two prompt tracks. The right
plots categorize these jets by which of the three types of displaced neutral categories carry the
most pT . The “none” category in the bottom plot is for jets where all the energy is in the one or
two prompt tracks. All of the jets displayed must pass the kinematic cuts described in the text
and in Tab. 3.

while for n = 2 the jets with no displaced tracks become a larger fraction.

For jets with charged tracks, those with the earliest prompt track of transverse radius less

than about 5 cm tend to be dominated by b-hadrons such as B0 and Λb, while at larger radii,

the sample is dominated by strange mesons and baryons such as K0
S and Λ. This figure was

generated with 2 · 107 QCD events, and, as described in App A.3, this is for jets which deposit at

least 200 GeV in the calorimeters. For jets with no charged tracks, we see that the energy of the

jets is carried by either photons, neutrons, or strange hadrons, and all other species decay before

reaching the calorimeters. A substantial fraction of trackless jets are dominated by photons

which tend to come from π0 decays.

In addition to QCD backgrounds, there are also detector backgrounds which we do not

attempt to simulate. These include interactions with the beam pipe or with other parts of the
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detector that can lead to displaced tracks. The nature and size of these backgrounds will vary

greatly depending on the specific detector, therefore a full detector simulation is be necessary to

characterize them properly. On the other hand, non-collisional backgrounds are very unlikely to

pass the stringent kinematic cuts we are imposing on the signal jets, therefore we do not expect

them to qualitatively change our conclusions.

4.5 Emerging Jets

We now come to the key cut in the analysis, the requirement that events contain emerging jets.

We define an emerging jet as new reconstruction object E(pmin
T , n, r), to be a jet with ≤ n tracks

with pT > pmin
T originating a transverse distance smaller than r from the interaction point. We

can see this pictorially from Fig. 1 by drawing a circle around the interaction point and requiring

that there are fewer than n tracks above the pT threshold within that circle. The optimum size

of the circle, r, will depend on the typical decay length of the dark pions.

The innermost layers of the trackers at CMS and ATLAS are between about 50 and 100 mm

from the z axis, so for values of r larger than roughly 100 mm, this strategy can be translated to

looking for tracks that do not have any hits in the innermost layers of the tracker. For smaller

values of r, there are two possibilities as to how veto on tracks originating at a distance smaller

than r. The first is the strategy employed in b-tagging, which is to look at the impact parameter

of the tracks and require that they be larger than zero. While this strategy uses well understood

collider techniques, it adds one more layer of complexity to relate the impact parameter to the

displacement distance.

An alternative possibility is to use the variable called Lxy defined in [62]. If there is only

one long-lived particle decaying in a region of the detector, then all the tracks that come from

that decay will intersect at one point, and this point is the reconstructed displaced vertex.

The distance away from the origin of this point in the x − y plane is then Lxy. In [62] it was

demonstrated that this method of reconstruction works well for two well separated long-lived

particles at CMS. Extending this method to the case of many vertices in a relatively small space

within the detector may be more challenging, but the high density of different detector channels

could make it possible. From now on, we will assume that it is possible to reconstruct the vertex

of the tracks using either the impact parameter or the Lxy method. This allows us to discriminate

emerging jets from the more common ones.

We can now analyze the signal using our new emerging jet reconstruction object. In Fig. 8

we plot the fraction of signal events that contain at least one or two emerging jets for the two

different benchmarks. Inspired by [62], we have taken pmin
T = 1 GeV to avoid soft tracks. We see

that for r much less than the lifetime, nearly all events have at least one emerging jet and about

half have two or more. We also see that the efficiency only moderately decreases with decreasing

number of tracks n. We have not simulated pile-up here which could affect the results, and we

will discuss possible mitigation strategies below.

Next we make a plot analogous to Fig. 8 for the QCD background. This is shown in Fig. 9
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Figure 8: Fraction of signal events in model A (top) and model B (bottom) which have at least
one (left) or two (right) emerging jets with pmin

T = 1 GeV as a function of r, the transverse
distance. Within each plot, the curves are a maximum of 0, 1, and 2 tracks with transverse
origin less than r going from bottom to top. A vertical line is put at the proper lifetime of the
particular model. All events must pass the kinematic preselection cuts.
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Figure 9: Fraction of 4-jet QCD events that have at least one emerging jet as a function of the
radius, r. These events have the kinematic cuts already applied, see text. From bottom to top,
the lines are emerging jets with at most 0, 1, and 2 tracks inside of the radius r. The solid lines
use the standard Pythia tune, while the dashed lines are the modified tune designed to increase
the number of emerging jets in the sample [77].

for events which have at least four jets and pass the kinematic cuts. We see that even allowing

two prompt tracks in the jet eliminates more than 95% of events, and requiring fewer tracks can

do even better. We also see that it is relatively insensitive to the radius chosen, but that there is

a drop-off around 50 mm where the majority of b hadrons have decayed.

Our background analysis depends on the number and type of hadrons produced in the QCD

events. This is not calculated from first principles in QCD, and is instead modeled in Monte

Carlo programs such as Pythia. To get a sense of the size of this uncertainty arising from this,

we compare the output of Pythia with the standard tune to a modified tune [77]. This tune is

designed to enhance the number of jets with a small number of hadrons which makes it easier to

have jets with very few charged tracks. The tune also enhances strangeness of the jets in order to

have more hadrons with long lifetimes. The fraction of events which pass the kinematic cuts for

the two different tunes are nearly identical, giving us confidence that changing the tune does not

modify the gross kinematic structure of the events. We have also checked that the distributions

in Fig. 7 are quite similar for the modified tune. The fraction of events with emerging jets in

the modified tune are shown with dashed lines in Fig. 9, and we see that while the fraction of

trackless jets is increased, the effect is small.

Putting all the elements together we show an example cut flow in Tab. 3. We see that having

just one emerging jet dramatically improves the signal to background ratio, but having two

can bring this to a nearly background free search. In the twenty million background events we

generated, there were only four events with two emerging jets for r = 3 mm, and zero events

with more than one emerging jet for r = 100 mm. We can therefore estimate an upper bound on

the background cross section and find it to be very small.
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Model A Model B QCD 4-jet Modified Pythia

Tree level 14.6 14.6 410,000 410,000

≥ 4 jets, |η| < 2.5
pT (jet) > 200 GeV 4.9 8.5 48,000 48,000
HT > 1000 GeV

E(1 GeV, 0, 3 mm) ≥ 1 3.6 3.5 45 57

E(1 GeV, 0, 3 mm) ≥ 2 1.2 0.5 ∼ 0.08 ∼ 0.04

E(1 GeV, 0, 100 mm) ≥ 1 1.4 . 0.01 8.5 12

E(1 GeV, 0, 100 mm) ≥ 2 0.1 . 0.01 . 0.02 . 0.02

Table 3: Cut flow of the four jet analysis. Numbers in columns are cross sections in fb at LHC14.
For the signal we take the mass of the bifundamental MX = 1 TeV. The two right most columns
are different background estimates, the first using the standard Pythia tune, while the second
uses the modified tune [77]. The tree level cross section for the background is with the generator
level cuts discussed in the text.

We can now obtain the reach of the 14 TeV LHC. The significance is estimated using

σ =
S

δB
≈ S√

B + β2B2
, (7)

where β is the systematic error on the background estimate, and we use β = 100% in the following.

In addition we require S > 10, otherwise we set σ = 0. The largest sensitivity always comes from

the signal regions with two emerging jets, so we only present the reach in those channels. In

Fig. 10 we show the region of parameter space that can be probed with 100 fb−1 and 3000 fb−1

at 14 TeV. For both models we vary the mediator mass MX and the proper lifetime of the dark

pions, cτ0. The r = 3 mm cut performs better in most regions of parameter space, and more than

two orders of magnitude in lifetime can be probed, with exclusion being possible for mediator

masses up to 1.5 TeV. Sensitivity is lost when either the lifetime becomes too short, so that no

signal events pass the emerging jet cuts, or when the lifetime becomes too large, in which case

most dark pions decay outside of the calorimeter, and the events fail the kinematic cuts. Both

cases could be improved by putting the emerging jet cuts even closer to the interaction point

and by including dark pions which decay in the muon system in the jet reconstruction.

Models A and B differ mainly in the mass spectrum. The lighter states of model B are more

boosted on average and therefore are more likely to decay outside of the calorimeter given the

same cτ0, which explains the lower sensitivity in the large cτ0 region compared to model A.

Furthermore the larger multiplicity of dark pions in model B makes it more likely for some of

them to decay early, therefore causing events to fail the emerging jet cuts. The pT weighted

strategy which we outline in the next section could lead to improvements here and for models

with even lower dark pion masses. Instead larger dark pion masses should not have an adverse

effect on the sensitivity, at least until we reach a point where most of the jet energy is contained

in a single massive dark pion, in which case displaced dijet searches could be more sensitive.

The 100 mm search is essentially background free, and thus the reach is limited by production

rate times acceptance. It follows that going from 100 fb−1 to 3000 fb−1 can significantly improve

20



5Σ

2Σ

5Σ

2Σ100 mm

3.0 mm

400 600 800 1000 1200 1400 1600
1.0

3.0

10

30

100

300

1000

MX @GeVD

cΤ
0

@m
m

D

Model A, 14 TeV, 100 fb-1

5Σ

2Σ

5Σ

2Σ100 mm

3.0 mm

400 600 800 1000 1200 1400 1600
1.0

3.0

10

30

100

300

1000

MX @GeVD

cΤ
0

@m
m

D

Model B, 14 TeV, 100 fb-1

5Σ

2Σ

5Σ

2Σ

100 mm

3.0 mm

400 600 800 1000 1200 1400 1600
1.0

3.0

10

30

100

300

1000

MX @GeVD

cΤ
0

@m
m

D

Model A, 14 TeV, 3000 fb-1

5Σ

2Σ

5Σ

2Σ

100 mm

3.0 mm

400 600 800 1000 1200 1400 1600
1.0

3.0

10

30

100

300

1000

MX @GeVD

cΤ
0

@m
m

D

Model B, 14 TeV, 3000 fb-1

Figure 10: Region of lifetime and mediator mass parameter space probed with 100 fb−1 (top
row) and 3000 fb−1 (bottom row) at the 14 TeV LHC. For each model we show 2σ (dashed)
and 5σ contours (solid) in the MX − cτ0 plane, assuming a systematic uncertainty of 100% on
the background. The different colors correspond to requiring E(1 GeV, 0, 3 mm) ≥ 2 (blue) and
E(1 GeV, 0, 100 mm) ≥ 2 (red).
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the reach in this case.6 Instead the 3 mm analysis is already limited by S/B and does not benefit

so much from the increased luminosity. On the other hand it is certainly possible to optimize this

search for the high-luminosity run by rejecting backgrounds more aggressively, and by reducing

the uncertainty on the background. One could also imagine asking for a third emerging jet which

can originate from a hard splitting in the dark sector.

Pileup could potentially reduce the signal efficiency of our analysis. The well reconstructed

primary vertex of the two QCD jets should allow efficient discrimination of pileup events, such

that their tracks will not be counted. We therefore did not include pileup in our simulation.

Multi-parton interactions instead will produce tracks originating from the same vertex, and

have been included in the simulations for signal and backgrounds. A strategy to further reduce

possible effects of pileup is discussed in the next section.

4.6 Alternative Strategy: pT Weighting

In this section we present an alternative based on using the pT fraction of the jet which is emerging,

rather than counting tracks. As before, this requires reconstruction of displaced charged tracks in

order to determine Lxy, how far from the origin in the x− y plane they originate. This strategy,

however, is more robust to pileup because while a pile up event can produce tracks above the 1

GeV threshold from the previous section, they are much more unlikely to make a substantial

contribution to the pT of a jet.

For this section we define the pT fraction F (r) for a jet as a function of radius r as:

F (r) =
1

pcalo−jetT

∑
Lxy>r

piT (8)

where piT is the pT of charged tracks associated with the jet with Lxy > r which we normalize to

the calorimeter pT of the jet. This variable goes from 0 to 1 for a given jet. For QCD jets it

tends to take values near zero since most of the energy is in prompt tracks. A jet can only have

F = 1 if it is composed entirely of charged tracks which originate further away than r. This is

because neutral particles contribute to the denominator in the prefactor but do not contribute to

the sum. By isospin conservation, we expect approximately half of the decay products of the

dark mesons to be neutral, so we expect the F distribution for signal jets to be peaked around

0.5 for r less than the lifetime of the dark pions.

We now analyze this variable more quantitatively, with the main results of this section given

in Fig. 11. The top two rows show distributions for signal, and we see that for emerging jets

the distributions do peak around 0.5 with very few jets having F near one. For model A a

non-negligible fraction of events have only one emerging jet. This comes from one of the signal

jets being too soft or too forward, and the extra jet to pass the kinematic cuts coming from

6The background estimate for the E(1 GeV, 0, 100 mm) ≥ 2 cut is limited by Monte Carlo statistics. To obtain
a better estimate for the background in this channel, we use the square of the background suppression of the
E(1 GeV, 0, 100 mm) ≥ 1 cut, which gives an estimated background of 0.0015 fb (0.003 fb) using the default
(modified) background simulation. While for a luminosity of 100 fb−1 this doesn’t affect the reach, it is relevant
for the 3000 fb−1 projection, where we use 0.003 fb for the background estimate.
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Model A Model B QCD 4-jet Modified Pythia

≥ 4 jets, |η| < 2.5
pT (jet) > 200 GeV 4.9 8.5 48,000 48,000
HT > 1000 GeV

1 jet F (100 mm) > 0.5 3.7 1.9 130 150

2 jets F (100 mm) > 0.5 1.2 0.1 0.2 0.2

σ(100 fb−1) 5.9 0.5 - -

Table 4: Same as Tab. 3 but with pT weighted variables. The last row shows the discovery
significance σ defined in Eq. (7) again taking β = 100%.

splitting and/or ISR. From the plots in the right column we see that the fraction of events that

will pass any cut is insensitive to r for r smaller or comparable to the lifetime. For larger r, the

efficiency decreases slowly because the highest energy pions tend to be the ones that travel the

further because of relativistic boost. Therefore, even for distances much larger than the proper

lifetime, there is still a reasonable fraction of events that pass this cut. This contrasts with the

emerging jet definition depicted in Fig. 8, where there is a much steeper drop as a function of r

because we only require one dark pion to decay at a radius less than r.

We now turn to the QCD background quantified in the bottom row of Fig. 11. We see that

the F distribution is peaked at zero and steeply falling. We also see that it is much more steeply

falling for r = 100 mm than for 3 mm. This is a consequence of b hadrons; in Fig. 7 we see that

b hadrons tend to decay between 1 and 100 mm, so for r = 3 mm, there will be many undecayed

neutral b mesons that will contribute to F , but for r = 100 mm, only strange mesons contribute.

Looking at the bottom right plot we see that there is a strong break, and going to r = 100 can

give QCD rejection O(103) by requiring one jet with large F , and much better if we require two

such jets.

When we analyze the signal and background together, we find that using r = 3 mm there is

a very large background from b hadrons so it is impossible to sufficiently reduce the background

without killing the signal. The experiments, however, are very good at finding b jets, so using

those techniques it is likely possible to distinguish the b background from the signal using

not only lifetime information but also invariant masses and decay products. Because of the

complexity of experimental b-tagging algorithms, we cannot simulate them here, but we stress

large improvements may be possible.

Instead we will focus on r = 100 mm where the b’s have mostly decayed and the strange

background is much smaller. This method works for model A with the long lifetime, but there is

even marginal sensitivity to model B with a much shorter lifetime. We show an abbreviated cut

flow in Tab. 4 for mediator mass of 1 TeV, and we see that requiring two jets with F > 0.5 leads

to a signal to background ratio much larger than one, allowing a possible discover at the LHC.

We present this alternative method, because unlike the one in Sec. 4.5, it is an affirmative

search for the emerging property. The previous method uses the fact that prompt tracks are

a feature of the background and requires the absence of them. This allows backgrounds such
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Figure 11: F distributions for model A (top), model B (middle), and QCD background (bottom).
The left plots are the distribution of the highest and second highest F values for jets in an event,
where for model A (B) we have taken r = 100 (3) mm, and for the background we show both.
The right plot shows the fraction of events that have at least one jet with F > 0.3, 0.5, or 0.7.
All events must pass the kinematic cuts in Tab. 3. Note that the signal plots use a linear scale
while the background plots use a log scale, and the dashed lines in the bottom right plot are
those using the modified Pythia tune.
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Figure 12: Dark quark invariant mass distribution for different values of the cut-off Λ at the
14 TeV LHC. The total integrated cross section for the process pp→ Q̄dQd is 42 fb for Λ = 5 TeV
and 2.5 fb for Λ = 10 TeV per dark quark flavor, for Nd = 3.

as jets of neutrons and/or photons, which are not signal-like at all. The current method is an

affirmative search for the emerging property, namely a search for energy which emerges at large

transverse distances. Therefore the background must look much more like the signal to pass the

cuts. The other advantage of this method is that it is much more insensitive to detector effects

such as cosmic rays and pileup. Pileup in particular, can add one track to a jet which would be

enough to make it not emerging. On the other hand, pileup cannot make an O(1) change in the

energy dynamics of a jet, thus making this method very robust to the high pile up environment

of the high luminosity LHC.

5 Prospects at LHCb

Our proposed analyses for the ATLAS and CMS detectors rely on on-shell production of heavy

mediators, whose decay give rise to emerging jets. The reach of those searches is limited by the

kinematic reach of the LHC experiment. However even if the mediators are too heavy to be

produced directly at the LHC, dark quark pairs can still be produced through effective operators

of the form

L ⊃ 1

Λ2
(q̄Γqq)(Q̄dΓdQd) , (9)

with appropriate Dirac structures Γ. We already made use of such an operator in Sec. 2.2 to

understand the decays of dark pions. As we can see from Fig. 12, the differential cross section

peaks at very low invariant mass, so events induced by these operators tend to have small HT

and would be difficult to trigger on at ATLAS and CMS. Nevertheless they can lead to sizable

production rates for dark pions. The idea would then be to search directly for these dark pions

in the LHCb detector from their decay to SM mesons.

Reconstructed dark pions can be differentiated from SM mesons by their invariant mass, by

their lifetime and by their decay products and branching ratios. While a full simulation is beyond

the scope of this paper, in the following we will estimate the event rate that can be expected
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Figure 13: Left: Fraction of QdQ̄d events with at least Nπd dark pions inside the LHCb detector.
About 45% of all events have at least one dark pion in LHCb, and almost 30% have three or
more. Right: Momentum distribution of dark pions in the LHCb detector.

at LHCb and show some kinematic properties of the produced dark pions. For definiteness, we

will consider the operator Ou = 1/Λ2(ūγµu)(Q̄dγ
µQd), which can originate from integrating out

either a Z ′ boson or a bi-fundamental scalar, as discussed in Sec. 2. Coupling to ūu yields the

largest cross sections, which should give the strongest constraints. At the 14 TeV LHC, we find

σ(pp→ Q̄dQd) ≈ (8.2 pb)×Nd × nf ×
(

TeV

Λ

)4

(10)

for the tree level cross section (with a cut of
√
ŝ > 50 GeV), which scales as 1/Λ4, as long as the

EFT description is valid. If instead we consider the operator from Eq. (4) with Λ = κ/MXd , the

cross section is about a factor 8 smaller due to the smaller down quark PDFs and due to the

chiral structure of the couplings.

When comparing with the direct on-shell production of mediators, a few comments are in

order. First, if we consider a t-channel mediator like Xd, the on and off-shell contributions are

independent of each other, and controlled by different parameters. The direct production of the

mediator is fully determined by the QCD coupling. The off-shell production of Qd pairs can be

larger, but it is important to realize that it now has to compete with QCD dijet production, and

it is unclear how an emerging dijet signal could be triggered on efficiently at ATLAS and CMS.

If instead the operators would originate from integrating out a Z ′ boson, the on-shell

production and effective operator would contribute to the same final state, and direct Z ′

production could easily dominate. Still as far as LHCb is concerned, the effective operator

description is sufficient, since only part of the event is reconstructed, and we are mostly interested

in the fraction of events where one or more dark pions enter the LHCb detector.7

In Fig. 13 we show the fraction of events where one or more dark pions end up in the LHCb

detector. For both benchmark models, about half of all QdQ̄d events have one or more dark

pions in the pseudo-rapidity range of LHCb. Also shown is the momentum distribution of dark

7Additional care would be necessary in order to convert a limit on Λ into a bound on the Z′ mass, since that
limit will depend on the couplings and branching ratios of the Z′ as well as on the relative contributions of on and
off-shell production of Qd, due to the scaling of the produced dark meson number with

√
ŝ.
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Figure 14: Multiplicity of charged tracks in πd decays, assuming 100% decay to down quarks,
and with the fragmentation process simulated using Pythia.

pions in the LHCb detector, where we see that model A produces a harder spectrum, due to the

overall larger mass scale in that model.

Obtaining precise predictions for the decay modes and branching ratios of πd to SM hadrons

is difficult, since it depends on non-perturbative QCD fragmentation, as well as on the flavor

structure of the couplings. In the Pythia implementation, those decays are simulated using the

LUND string fragmentation model [78], which is successful at modeling QCD fragmentation.

For dark pion masses in the few GeV range, exclusive hadronic processes already become rare.

Instead in order to get an idea about the characteristics of the signal, in Fig. 14 we show the

multiplicity of prompt (with respect to the decay vertex) charged tracks from decays of dark

pions. We see that up to 10 charged tracks appear regularly for the case of a 5 GeV dark pion,

while fewer tracks are expected for lighter πd. For the figure we assume 100% decays of dark

pions into down quarks. If decays into heavier quarks would dominate, we would instead find

fewer charged tracks, since for example charged kaons can carry away a larger fraction of the

particle’s rest mass.

The trigger thresholds at LHCb [79] are very loose when compared with ATLAS or CMS.

At the level of the hardware trigger L0, a deposition of transverse energy ET of 3.7 GeV in the

hadronic calorimeter or 3 GeV in the electromagnetic calorimeter are required. Next the high

level triggers start with the reconstruction of tracks in the vertex locator (VELO). In total a few

tracks in the VELO and a moderate energy deposit in the calorimeters are enough for events to

be recorded and analyzed.8 We can therefore expect that most events with one or more dark

pions can be captured. Events with three or more reconstructed displaced dark pions might

look sufficiently different from QCD backgrounds for the search to be background free. Then if

we assume a reconstruction efficiency of 10%, with 15 fb−1 one could probe cross sections for

σ(pp → Q̄dQd) as low as 10 fb, corresponding to scales Λ ∼ 5 TeV. While this is just a very

crude estimate, the reach seems promising enough to warrant a more careful analysis.

8We would like to thank Victor Coco for discussion on these points.
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a macroscopic lifetime. Not shown is the corresponding diagram with initial state gluons.

6 Sensitivity to Other New Physics Scenarios

Long lived particles decaying with displaced vertices are well motivated in many extensions of

the SM. A well known example is the case of R-parity violating (RPV) supersymmetry [80].

Because the RPV couplings are in the superpotential, it is natural for them to be quite small,

possibly small enough to make the LSP decay length macroscopic. Other more recent examples

where displaced decays are motivated include displaced Higgs signatures [38, 81, 82] or late

Higgs production [83], Lepton Jets [84, 85] Baryogenesis [80, 86], keV dark matter [87], heavy

neutrinos [88], right-handed sneutrinos [89], and twin Higgs models [90].

When considering a specific model, a dedicated search will most likely deliver optimal results.

For instance, if muons are likely to appear in the final state, those can be used for triggering

purposes and to suppress backgrounds. On the other hand, given the variety of models on the

market, it is also desirable to have searches which are more model independent, and thus will

allow to place bounds on multiple new physics scenarios.

In the following we will demonstrate that the emerging jet analysis can easily be used to

obtain bounds on other new physics scenarios with displaced decays, even if their signature will

appear different at first sight. As an example, we will use a supersymmetric scenario where the

neutralino LSP decays through a UDD type RPV operator.

The process we have in mind is depicted in Fig. 15: squarks q̃ are pair produced and decay

to a quark q and the lightest neutralino χ1. In the presence of UDD type RPV operators, the

lightest neutralino can undergo a three-body decay into three quarks, mediated by an off-shell

squark. In the super potential, these operators can be written as [80]

WRPV ⊃
1

2
λ
′′
ijkUiDjDk , (11)

where gauge invariance forces λ
′′
ijk to be anti-symmetric in jk. If the neutralino χ1 is the lightest

supersymmetric particle (LSP), it can for example undergo the decay χ1 → uds, mediated by

an up or down-type squark. This decay is suppressed both by the squark masses and by the

potentially small9 RPV couplings λ
′′
ijk, and therefore χ1 may have a macroscopic decay length.

9See e.g. [91, 92] for currently allowed values of these couplings.
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Figure 16: Sensitivity of the emerging jets search for the RPV MSSM toy model, at the 14 TeV
LHC. Contours are as in Fig. 10. A common mass Mq̃ is assumed for first and second generation
right-handed up-squarks, while all other MSSM particles are assumed to be heavy.

The squarks, of course, decay promptly via gauge or Yukawa interactions: q̃ → qχ1.

In the following we generate events for a RPV toy model where only the right-handed up and

charm squarks and the lightest neutralino are kinematically accessible. Signal events are generated

using the MSSM implementation [93] in Pythia. The squark masses MũR = Mc̃R ≡ Mq̃ and

the neutralino lifetime cτχ are varied, and the neutralino mass is taken to be mχ = 100 GeV.

Since the squark masses are of order TeV, the neutralino will have a significant boost, such that

its decay products will be collimated. This is a challenging regime for searches which rely on

reconstructing a common displaced vertex for a dijet pair. The emerging jets search has no

problem picking up this signature, and we show our reach estimate in Fig. 16. There is sensitivity

across four orders of magnitude in neutralino lifetime cτ0 for squark masses as high as 1500 GeV.

Compared with the dark QCD signature, the reach in cτ0 is larger. The reason for this is that

there is only one displaced decay per jet, while in the dark QCD model multiple displaced decays

happen, which reduce the cut efficiency on the signal. Similar to the dark QCD case, going to

3000 fb−1 can significantly improve the reach in the 100 mm channel, while the benefits in the

3 mm search are more moderate.

Before concluding, we would like to stress that the supersymmetric model used here was

chosen purely for phenomenological reasons. From a naturalness perspective it would be more

motivated to only have third generation squarks in the kinematic range. The resulting signature

with prompt top-jets and displaced neutralino jets would be interesting to study in the future.

7 Conclusions

The LHC and its detectors are excellent machines for exploring the physics of the TeV scale. Yet,

there are only a finite number of analyses that can be done on the data, so it is important to
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explore possible new physics signatures that could have been missed by current analyses. Here

we have presented a new collider object, the emerging jet, which arises in many well motivated

models of physics beyond the SM, including models of dark matter which explain the coincidence

between the energy density of baryons and dark matter.

In theories with confinement in the hidden sector and a mediator much heavier than the

confinement scale, there will be jet like structures produced at the LHC. If there are some long

lived particles in the dark sector, a natural consequence of the separation of scales between the

mediator and the hidden sector, then the dark sector jets will have large numbers of displaced

vertices within them. This is a very unique experimental signature, which means most current

searches will be at best very weakly sensitive to the phenomenology.

In this work we have proposed strategies which are based on looking for signals with features

that are very unlikely to be produced by QCD backgrounds. Our main method is looking for

jets with very few prompt tracks. The vast majority of hard QCD jets have a large number

of prompt tracks, and only very rarely do they have few or none. We have also presented an

alternative strategy using pT weighting of displaced tracks. This alternative strategy is more

robust to beam remnants and pile up, although it is slightly less sensitive. With the handles

presented here, the LHC can be sensitive to purely hadronic signatures without missing energy

that have naive signal to background ratios worse than O(10−3), and have reaches for mediator

masses well above 1 TeV over several orders of magnitude in dark pion lifetimes.

While the bulk of our analysis focuses on the general purpose detectors of the LHC, this

signature also provides unique opportunities for LHCb. While LHCb does not have full coverage

of the event geometry, it can be sensitive if only a few of the dark pions are within the detector

geometry. Furthermore, the superior tracking of the detector needed to precisely measure b

hadrons can be used to precisely identify and measure dark pions and discriminate them from the

zoo of QCD hadrons. Therefore, LHCb could be sensitive to a different range of dark pion masses

and lifetimes than the other detectors, making it potentially the exclusive discovery machine for

certain types of models.

Finally, we note that while the searches proposed here were designed with certain types of

models in mind, they are potentially sensitive to a much broader classes of models with displaced

phenomena including RPV SUSY and the models searched for in several current displaced

analyses [62, 64, 66]. With the higher energy Run II of the LHC run about to begin, this is a

great time for novel searches for new physics, and emerging jets provide an opportunity for a

possible groundbreaking discovery.
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A Collider Simulation

A.1 Signal Events

In the context of Hidden Valley model phenomenology [37], a dark QCD sector with SU(Nd)

gauge symmetry was implemented [55,56] in the event generator Pythia [49]. The model contains

nf dark quarks in the fundamental representation of SU(Nd) and scalar mediators of the type

Xd as well as the possibility to couple the dark quarks to a Zd boson. Furthermore the model

implements a parton shower and fragmentation in the dark sector, with some simplifications.

The string fragmentation produces only dark mesons which are either scalar (dark pion) or vector

resonances (dark rho), but no dark baryons. This is a good approximation for large Nd theories,

but probably represents an O(10%) error for Nd = 3 with a QCD-like spectrum as considered in

this work. Gluon splittings into dark quark pairs are also absent.

More importantly, the dark sector gauge coupling is not running but instead implemented

as a fixed parameter, and the equivalent of the confinement scale is mimicked by introducing

explicit dark quark masses. The result of this is that for large couplings, events will look more

spherical than in QCD-like theories, while for smaller couplings fewer particles will be produced.

We can quantify this by looking at two different observables. The first is an event variable we

call orphan pT , which is obtained by clustering the event into jets and then summing the pT of

particles which are not clustered into hard jets with pT > 200 GeV. The second variable is for

individual jets and is called girth [94], defined as

girth =
1

pjetT

∑
i

piT ∆Ri , (12)

where the sum is over all constituents of the jet and ∆R is the distance in η − φ space of a

constituent away from the jet axis. In Fig. 17 we compare Pythia with and without gauge

coupling running implemented. We look at events produced through a Zd so that all jets are

emerging, and we see that without running, there is a lot more orphan energy and that the jets

themselves tend to be broader, consistent with having events with energy spread all over the

detector.

We therefore extend the Pythia implementation to allow running of αd from Λd to higher

scales, according to the one loop beta function with Nd dark colors and nf dark flavors. As far

as the phenomenology is concerned, this mainly affects the dark parton shower. It is easiest to

imagine the final state parton shower10 as a series of parton branchings a→ bc at scales Q2. The

probability for no splitting to happen between the scales t0 = log(Q2
0/Λ

2) and t = log(Q2/Λ2),

10We closely follow Sec. 10 of the Pythia 6.4 manual [95].
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Figure 17: Comparison of Pythia with (solid, blue) and without (dashed, red) running of
the gauge coupling in the dark sector implemented. The left plot is the girth distribution (see
Eq. (12)), while the right plot is the orphan pT : the scalar sum of the pT of visible particles which
are not clustered into a jet of pT > 200 GeV. This is for model B events with Zd production so
all jets originate from the dark sector.

where Λ = Λd is the dark QCD scale here, is known as the Sudakov form factor:

Pa,no(t0, t) = exp

−∫ t

t0
dt′
∑
b,c

Ia→bc(t′)

 , (13)

where the sum runs over all possible splittings, and the integrated branching probabilities are

Ia→bc(t) =

∫ z+(t)

z−(t)
dz
αd(t)

2π
Pa→bc(z), (14)

where z is the energy fraction carried by parton b, Eb = zEa, and Pa→bc(z) are the splitting

kernels that appear in the famous DGLAP evolution equations. In a Monte Carlo implementation

of the parton shower, for a given parton with associated scale t0, the task is to randomly choose

the scale t of the next splitting, such that it is distributed according to the splitting probability

Psplit(t) = − d

dt
Pno(t0, t) . (15)

For a fixed t0 this can be obtained using a uniformly distributed random number x ∈ (0, 1) and

solving x = Pno(t0, t) for t. For negligible quark masses the boundaries of the integral in Eq. (14)

become independent of t and we can write I(t) = Cemitαd(t)/(2π). For fixed αd inverting the

splitting probability is simple and one finds, using t = log(Q2/Λ2
d),

Q2 = Q2
0 x

2π
αdCemit , (16)

which is independent of Λd, as expected. At one loop, the running of αd is given by α(t) = (b1t)
−1,

where b1 = b1,d = (11CA − 2nf )/(12π) is the one-loop coefficient of the dark SU(nf ) β-function.

It is again possible to solve for Q2 explicitly, and one obtains:

Q2 = Λ2
d t

x
2πb1
Cemit

0 . (17)
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Figure 18: Average dark meson multiplicity in e+e− → Z∗d → Q̄dQd as a function of the center-
of-mass energy

√
s. We compare the output of the modified Pythia implementation for nf = 7

(blue circles) and nf = 2 (red squares) to the theory prediction Eq. (18), where we only float the
normalization. The dark QCD scale and dark meson spectrum corresponds to benchmark model
B.

We have modified the Hidden Valley shower implementation in Pythia such that the the running

of αd can be incorporated, according to Eq. (17). As discussed above, with a fixed coupling the

parton shower does not faithfully reproduce QCD. If the coupling is small, too few dark mesons

will be produced, and if the coupling is large, the events will be spherical and the partons will

not be emitted in jet-like structures.

The fragmentation process that follows the parton shower is a non-perturbative process and

thus can only be modeled. Nevertheless there is some correspondence between the number of

patrons that are radiated and the number of mesons that are produced, such that the average

particle multiplicity as a function of the energy of the process is calculable up to an unknown

normalization factor. In the next to leading high energy approximation (MLLA), it was found

that

〈N(ŝ)〉 ∝ exp

(
1

b1

√
6

παs(ŝ)
+

(
1

4
+

5nf
54πb1

)
logαs(ŝ)

)
, (18)

see e.g. [96] for a partial derivation. This behavior of the average multiplicity as a function of

the energy has been verified experimentally for QCD in e+e− → q̄q processes.

To test the modified dark QCD parton shower implementation in Pythia, we simulate

production of dark quark pairs through a Zd boson in e+e− collisions at center-of-mass energies

between 500 GeV and 4 TeV, followed by a dark parton shower. We set the dark pions to be

stable here. The energy dependence of the average particle multiplicity is shown in Fig. 18 and

agrees well with the theoretical prediction Eq. (18). For smaller nf , the running of the coupling

to smaller values is faster, so fewer partons are radiated at higher scales, resulting in a lower

number of dark mesons. This is the reason for the difference in the curves for nf = 2 and nf = 7,

and further highlights the importance of including the running coupling in the analysis.
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A.2 Modified Background Events

QCD backgrounds are simulated using four jet events generated in MadGraph [76] followed

by showering and hadronization in Pythia. The fraction of jets that are either trackless or

emerging is very small, such that one might worry that the simulation is not fully accurate in

this regime and might underestimate this fraction. Besides the default Pythia settings, we have

therefore performed additional simulations with a modified tune [77] that is designed to increase

the number of jets with few mesons, to increase the probability of jets with few charged tracks,

and to increase the strange components of jets, while still being marginally consistent with the

low energy data that is used to tune Pythia. These modification increase the probability that a

jet will have few prompt tracks and also increase the number of long lived states in the jet. In

the following we briefly explain how this is achieved in Pythia.

Fragmentation is a nonperturbative process and in Pythia it is modeled using the so called

Lund string fragmentation model [78] with a small number of parameters that are fit to the data.

The Lund symmetric fragmentation function [97]

f(z) ∝ (1− z)a
z

exp

(−bm2
⊥

z

)
, (19)

governs the fraction of (longitudinal) energy z that is carried by a hadron which is split off from

the string. Here m2
⊥ = m2

had + p2⊥,had is the transverse mass of the produced hadron, and a and

b are the free parameters which are fit to the data, with default values a = 0.3 and b = 0.8.

Larger values of a reduce the probability that a large fraction of the energy is carried away by a

single hadron, i.e. the large z region. Instead a larger b parameter suppresses the small z region.

Therefore in order to increase the number of jets with only a few hard mesons, we can reduce a

and increase b. The modified tune used in the text corresponds to a = 0.26 and b = 0.9, and as

can be seen from Fig. 9, it leads to a slight increase in the number of background events that

pass the emerging jet cuts.

From Fig. 7 we see that strange mesons are the dominant background for jets emerging at

distances larger than 100 mm and contribute significantly to purely trackless jets. Therefore in

order to obtain a conservative estimate for the background in that region, in our modified tune

we also increase the amount of strange mesons produced in the fragmentation process by about

30%, by changing the value of StringFlav:ProbStoUD from 0.19 to 0.25 in Pythia. These

parameter values are chosen to be as extreme as possible while still being marginally compatible

with the soft QCD data that is used to tune Pythia [77], thereby giving a conservative upper

bound on the background.

A.3 (Crude) Detector Simulation

While we cannot do a full detector simulation, in this appendix we describe the way we mock up a

detector to capture the key aspects necessary to capture our signal and background. Throughout

this paper, we use truth level displacements and energies after hadronization.
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Figure 19: Crude detector geometry we use: we model the calorimeter as a cylinder of radius 3
meters and height 6 meters. Particles that would decay inside the cylinder are decayed, while
particles that would decay outside are left undecayed.

The first modification to truth level is to simulate the bulk geometry of the calorimeter as

shown in Fig. 19. We assume that dark particles which decay outside the calorimeter are not

counted towards the jet energies, so we force Pythia not to decay particles that would have

decayed outside the calorimeter. We make the simplification of a cylindrical calorimeter of radius

3 meters and height 6 meters, which is the approximate geometry of the hadronic calorimeters at

both CMS and ATLAS. This cylinder effect is very important for model A with a proper lifetime

of 150 mm, since in that case the majority of events have at least one undecayed dark pion.

Furthermore, the pions that travel the furthest are the ones that tend to have the most energy

because of relativistic boost, and this effect explains why in Fig. 6, in model A the emerging jets

tend to be softer than the standard jets in the signal events.

The other important detector simulation comes in determining precisely how to deal with

displaced particles. In QCD it is common for a charged particle to propagate through the detector

and then decay to 1 (or more) charge particles. This is uncharacteristic of the signal where the

long lived particles are all neutral. Therefore, we want to reject displaced particles with charged

parents when possible. On the other hand, the innermost layers of tracker material are between

about 50 and 100 mm at ATLAS and CMS, so if a charged particle decays without interacting

with a few tracker layers, it is difficult to infer the existence of this charged particle.11

Therefore, we implement a tracking algorithm shown schematically in Fig. 20. We take the

simplification that if a charged particle travels more than 100 mm it will be detected by the

tracker. For computational simplicity, we also assume that each particle only has one long lived

parent, and in the case of ambiguity we take that parent to be the one that travels the furthest in

the transverse plane. Therefore, if a particle decays beyond 100 mm but it has a charged parent,

it is considered prompt in the determination of the emerging property of a given jet. On the

other hand, if a charged particle does not travel that far, we take it to be displaced using its truth

11Electric charge must be conserved, but a charged particle can decay to a very soft charged particle and a
neutral particle, and at the LHC environment, the very soft particle is essentially invisible.
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Figure 20: Decision tree for determining how to assess if a particle counts as displaced or not.

level displacement, r0 in the notation of Fig. 20. Neutrals are ignored (assigned a distance of

infinity) for the purpose of this algorithm, unless they travel beyond 100 mm and have a charged

parent. Relative to just using truth level displacement information and ignoring parentage, this

reduces the signal efficiency by about 10% and increases the background rejection by about 50%.

The final piece of detector realism we add concerns the background. The dominant background

consists of a jet whose energy is dominated by a single photon. Because the LHC’s detectors are

designed to detect photons, we assume that these kinds of jets can be distinguished from the

signal, and we do not count jets where at least 90% of the energy comes from a single photon

as displaced. If anything this is conservative because there are also jets with multiple photons,

which can potentially be discarded by using cuts on the ratio of electromagnetic to hadronic

energy, or by using information from γ → e+e− conversions.

Finally, we note one aspect of the detector simulation that we do not attempt to undertake

which is in principle important, but ends up being quantitatively minor. Because we do not fully

simulate the geometry of the detector, the opening angle between two final states is determined

solely by their momentum vectors. On the other hand, if they originate from much closer to the

calorimeter than the primary interaction vertex, we will overestimate the opening angle as shown

in Fig. 21. This is a particularly important effect for model A with the pion lifetime being large.

We can quantify this by redoing the analysis with a larger jet clustering radius, which would

partially simulate capturing more of the decay products into the same jet. We find that raising

the jet radius R from 0.5 to 1.0 increases the energy of a typical emerging jet by 5%, showing

that this is a quantitatively unimportant effect.
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Figure 21: Error in opening angle introduced by displaced vertices. Our jet algorithm uses the
momentum to determine the opening angle θ, which overestimates the opening angle θ′ seen by
the actual calorimeter.

B Exploring Dark Sector Parameters

In the following we explore how variations of the model parameters affect the phenomenology in

order to assess the model dependence of the signatures considered in this paper. The underlying

theory is specified by the number of dark colors Nd and the number of dark quark flavors nf . We

have already seen in Appendix A that the number of dark mesons that are produced increases

with increasing nf , which happens because with larger nf the coupling runs more slowly, such

that there is more radiation. However nf can not be increased arbitrarily. For nf & 4Nd one

reaches the conformal window [98], where the theory runs into a fixed point in the infrared and

therefore will not behave QCD like anymore. On the other end nf = 2 is the minimal number of

flavors that allows for proton- and neutron-like baryonic bound states. Within the range

2 ≤ nf < 4Nd (20)

it is reasonable to assume that the theory will behave similar to QCD. A change in the number

of dark colors Nd will have a similar effect to changing nf , since both enter the β-function

coefficient.12 Therefore we do not expect significant changes in the signal from variations of Nd

and nf , as long as the parameters are chosen such that the theory is asymptotically free. The

change in meson multiplicities is notable, but not large enough to invalidate our proposed search.

Another crucial parameter is the dark confinement scale Λd and the particle masses that are

associated with it. We have already seen in the main part of this work that within the mass

range motivated by dark matter, i.e. Λd of order 1− 10 GeV, there is no strong dependence on

12Changing Nd can also affect other properties of the theory. For example for even Nd the baryonic states in
the theory will be bosonic. Yet the collider signature of these models is dominated by the mesons which should
behave similarly.
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Figure 22: Girth distribution for signal vs. background. The background (green, dashed) in both
plots is four jet QCD events passing the kinematic cuts of Tab. 3, while the signal are model A
(left, blue, solid) and model B (right, red, solid) in the Zd model only requiring that jets have
pT > 200 GeV.

this parameter.

Some jet observables can, however, be sensitive to the mass scale. One such example is the

girth of an individual jet defined in Eq. (12). The distribution depends on the jet-clustering

algorithm. Using the same jet parameters as in the rest of this work, we plot the girth distributions

for emerging and QCD jets in Fig. 22. For the background, we use QCD 4-jet events passing the

kinematic cuts in Tab. 3, while for the signal, we get a pure sample of emerging jets by using the

Zd model and only requiring that each jet has pT > 200 GeV.

For model B, the girth distribution looks roughly like that of QCD, but for model A the

difference substantial. The main reason for this is because of our detector mockup described

in App. A.3. Dark mesons which decay beyond the calorimeters are not counted towards the

energy of jets. These calorimeter jets exclude the longest lived mesons, particularly in model A

where the proper lifetime is 150 mm (this is a small effect in model B where cτ = 5 mm). The

dark pions that live the longest are the ones that carry the most energy, so energetic core in

of the jet will be modified in a significant way, changing the jet shapes. Without our detector

simulation, the girth in model A looks much more like model B and QCD. Therefore, in order

to keep the range of validity of our search as broad as possible, we suggest not to introduce

additional discriminants based on jet observables. While they could increase the sensitivity to a

particular scenario, they might induce additional model dependence at the same time.

Motivated by QCD we have considered a particle spectrum where the dark pions πd are

parametrically lighter than other dark mesons. Instead if their masses where similar to the other

dark mesons, the overall multiplicity of dark mesons would be reduced by at most a factor of

about two, since the decay of heavier dark mesons to dark pions would no longer be kinematically

allowed. In this scenario, however, the baryon fraction may be increased because there is no

kinematic suppression for hadronizing baryons as there is in QCD. We leave a study of this

scenario for future work.

Finally one can ask how the quark flavor composition of the dark pion decays influences the
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signal properties. For the mass range considered here, only decays to down and strange quarks

are possible. We have simulated scenarios with 100% branching ratios into either down quarks

or strange quarks, and found no significant change in the signal properties. For larger masses

one should also consider decays to bottom quarks, and similarly one could also consider decays

to up-type quarks instead of down-type quarks. Heavy flavors like charm and bottom quarks

have a larger probability to produce muons in their decay chains, which could be useful both for

triggering and signal reconstruction. However in order to keep the analysis as generic as possible,

we have not considered these possibilities here.
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