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Abstract

Supersymmetric extensions of the Standard Model open up the possibility for new types of CP-violation.
We consider the case of the Next-to-Minimal Supersymmetric Standard Model where, beyond the phases from
the soft lagrangian, CP-violation could enter the Higgs sector directly at tree-level through complex parameters
in the superpotential. We develop a series of Fortran subroutines, cast within the public tool NMSSMTools and
allowing for a phenomenological analysis of the CP-violating NMSSM. This new tool performs the computation
of the masses and couplings of the various new physics states in this model: leading corrections to the sparticle
masses are included; the precision for the Higgs masses and couplings reaches the full one-loop and leading
two-loop order. The two-body Higgs and top decays are also attended. We use the public tools HiggsBounds

and HiggsSignals to test the Higgs sector. Additional subroutines check the viability of the sparticle spectrum
in view of LEP-limits and constrain the phases of the model via a confrontation to the experimentally measured
Electric Dipole Moments. These tools will be made publicly available in the near future. In this paper, we
detail the workings of our code and illustrate its use via a comparison with existing results. We also consider
some consequences of CP-violation for the NMSSM Higgs sector.

1 Introduction

After the discovery of a signal at a mass of about 125 GeV in the LHC Higgs searches [1, 2], the question of the
identification of the associated state(s) and the underlying physics remains open. While the general properties are
consistent so far with those expected for the Higgs boson of the Standard Model (SM), a wide range of alternatives
could equally well fit the experimental data. In particular, softly-broken supersymmetric (SUSY) extensions of the
SM [3] count among the appealing options to solve the Hierarchy Problem [4] and allow for a smooth transition to
higher energy physics (e.g. Grand Unification, neutrino physics or weakly-coupled dark matter). The scarceness of
evidence for new physics effects in precision physics or direct searches should also be weighed by the considerations
that SUSY-inspired models offer a SM-like decoupling regime, but also that complex mechanisms in the Higgs or
SUSY sectors – see e.g. [5] – may account for this relative invisibility thus far.

The Next-to-Minimal Supersymmetric Standard Model (NMSSM), a singlet-extension of the simplest viable
SUSY-inspired extension of the SM [6], has raised renewed interest ever since the Higgs discovery, notably due to
its properties in the Higgs sector, e.g. allowing for an uplift of the mass of the SM-like Higgs related to F-terms or
to the mixing of this state with a lighter singlet [7]. The original motivation for this singlet extension rests with the
‘µ-problem’ of the MSSM [8], which can be solved elegantly if this µ-term is generated dynamically, via a singlet
vacuum expectation value (v.e.v.) [9]. Correspondingly, the Z3-conserving version of the NMSSM – allowing only
cubic terms in the superpotential – is the most studied form of this model, while more general singlet couplings
can be justified by higher-energy considerations – see e.g. [10, 11]. Another usual feature in SUSY extensions of
the SM is R-parity, which both constrains the possibility of baryon-number violation and provides a stable SUSY
particle, hence a dark-matter candidate.

A troubling fact rests with the observation that several NMSSM parameters – especially in the Higgs sector
– can take complex values, hence lead to CP-violation beyond that in the quark sector. On the one hand,
CP-violation is known as a cosmological necessity for baryogenesis. On the other, it receives severe limits at the
phenomenological level, from the non-observation of Electric Dipole Moments (EDM’s; see e.g. [12]). In this paper,
we aim at presenting a tool which allows to study the NMSSM with complex parameters within the framework of
the public code NMSSMTools [13]. In a first step, we will focus on the Z3-conserving version although we plan on
a generalization to tadpole and quadratic couplings of the singlet in the future.
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The current version of NMSSMTools allows to perform several operations in connection with the spectrum of
the CP-conserving NMSSM: in particular, it computes radiative corrections to the Higgs and SUSY spectrum,
calculates the widths of Higgs decays or confronts the NMSSM parameter space to theoretical – e.g. vacuum
stability – or phenomenological – e.g. Higgs searches, B-physics – limits. Several other tools aiming at the
calculation of radiative corrections to the NMSSM spectrum have been developed in the past few years, e.g.
NMSSMCALC [14] or SoftSUSY [15]. The latter focuses on the CP-conserving NMSSM, while NMSSMCALC allows for
CP-violation but specializes in corrections to the Higgs spectrum. Other tools, less specialized in a given model,
allow for similar manipulations, provided the implementation of a model-file as input: this applies to SPHENO [16]
or FlexibleSUSY [17].

Our goal consists in generalizing NMSSMTools to the CP-violating case. While this task remains far from
complete, the tools which we present here already allow for numerous operations: radiative corrections to the
SUSY and the Higgs masses are implemented – so far, only the leading double-log corrections (beyond the full
one-loop) are taken into account at two-loop order in the Higgs spectrum – ; Higgs and top two-body decays
are computed; phenomenological limits from LEP SUSY searches or Higgs physics are tested – the latter via an
interface with the public tools HiggsBounds [18] and HiggsSignals [19] –; finally we designed a subroutine to
estimate the EDM’s. All these routines should become available on the NMSSMTools website [13] in the near future.
This paper is intended to serve as a presentation of the calculations implemented in our tool, as well as a short
illustration of its uses. In the following section, we will detail the characteristics of the model under study, the
underlying assumptions and the tree-level spectrum. The third section will present the chain of subroutines that
we designed and the operations which they carry out. Finally, we will consider phenomenological consequences
and compare some of our results to the predictions of existing tools, before we conclude.

2 Model, Phase-counting and Tree-level

In this section, we present the details of the model under consideration, our notations as well as the spectrum at
tree-level.

2.1 The CP-violating NMSSM

The NMSSM is a supersymmetry-inspired extension of the SM with soft SUSY-breaking terms. It differs from the
minimal supersymmetric extension of the SM, the MSSM, in that it includes, in addition to the two Higgs SU(2)L-
doublet superfields Ĥu and Ĥd with opposite hypercharge ±1, a supplemental gauge-singlet chiral superfield Ŝ.
While the couplings of this singlet may take a more complex form in the general case, we will be considering
only the R-parity and Z3-conserving NMSSM here, which is characterized by the following superpotential and
SUSY-breaking terms:

W = λeıφλ ŜĤu · Ĥd +
κ

3
eıφκS3 − Ĥu · Q̂L[Yu]Û cR + Ĥd · Q̂L[Yd]D̂

c
R + Ĥd · L̂L[Ye]Ê

c
R (1)

− Lsoft = −M1e
ıφM1 b̃b̃−M2e

ıφM2 w̃αw̃α −M3e
ıφM3 g̃ag̃a + h.c. (2)

+m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2 +QL[m2
Q]Q†L + U c †R [m2

U ]U cR +Dc †
R [m2

D]Dc
R + LL[m2

L]L†L + Ec †R [m2
E ]EcR

+ λAλe
ıφAλSHu ·Hd +

κ

3
Aκe

ıφAκS3 −Hu ·QL[YuAu]U cR +Hd ·QL[YdAd]D
c
R +Hd · LL[YeAe]E

c
R + h.c.

The ‘matter’ (super)fields1 QL, U cR, Dc
R, LL, EcR should be understood as summed over generations and the

parameters within brackets should correspondingly be seen as (complex) matrices. ‘·’ denotes the usual SU(2)L
product. b̃, w̃α and g̃a stand for the U(1)Y , SU(2)L and SU(3)c gauginos, respectively. In the following g′, g
and gS will denote the corresponding gauge couplings and αS ≡ g2

S/4π. While the Z3-conserving NMSSM offers
the simplest solution to the µ-problem of the MSSM, the inclusion of Z3-violating terms can be justified from
higher-energy considerations [10, 11] and turns up as a phenomenological necessity in view of the domain-wall
problem. Our restriction to the Z3-conserving lagrangian follows considerations of simplicity and our work shall
be extended to the Z3-violating case in the near future.

The minimization of the scalar potential will generate Higgs vacuum expectation values (v.e.v.’s) so that we
may write the Higgs (super)fields in terms of their (real and positive) v.e.v.’s s, vu, vd, and their charged and
neutral components:

S = eıφs
(
s+

h0
s + ıa0

s√
2

)
Hu = eıφu

(
H+
u

vu +
h0
u+ıa0u√

2

)
Hd = eıφd

(
vd +

h0
d+ıa0d√

2

H−d

)
(3)

1We will omit theˆdistinguishing the superfields from their scalar component, from now on.
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The three ‘dynamical’ phases φs, φu and φd add to the ‘static’ phases appearing in the lagrangian density (Eqs.1,2).
From now on, we will make the following replacements in our notations:

S ←
(
s+

h0
s + ıa0

s√
2

)
Hu ←

(
H+
u

vu +
h0
u+ıa0u√

2

)
Hd ←

(
vd +

h0
d+ıa0d√

2

H−d

)
φλ ← ϕλ ≡ φλ + φs + φu + φd [Yu]← [Yu]eıφu [YuAu]← [YuAu]eıφu

φκ ← ϕκ ≡ φκ + 3φs [Yd]← [Yd]e
ıφd [YdAd]← [YdAd]e

ıφd

φAλ ← ϕ1 ≡ φAλ + φs + φu + φd [Ye]← [Ye]e
ıφd [YeAe]← [YeAe]e

ıφd

φAκ ← ϕ2 ≡ φAκ + 3φs (4)

The Yukawa matrices may be written in terms of (real and positive) matrices Yu, Yd, Ye, diagonal in flavour
space, using unitary transformations:

[Yu] = Xu
LYuX

u
R ; [Yd] = Xd

LYdX
d
R ; [Ye] = Xe

LYeX
e
R (5)

Redefining the quark and lepton (super)fields accordingly,

QL ←
(
ULX

u †
L

DLX
d †
L

)
; U cR ← Xu †

R U cR ; Dc
R ← Xd †

R Dc
R ; LL ← LLX

e †
L ; EcR ← Xe †

R EcR (6)

and introducing the Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM ≡ Xu †
L Xd

L, the superpotential of Eq.1
now reads:

W = λeıϕλSHu ·Hd +
κ

3
eıϕκS3 −Hu ·

(
UL

DLV
†
CKM

)
YuU

c
R +Hd ·

(
ULVCKM

DL

)
YdD

c
R +Hd · LLYeEcR (7)

Finally, we make the following assumptions to ensure minimal flavour violation in the sfermion sector:

• Xu †
L [m2

Q]Xu
L ' Xd †

L [m2
Q]Xd

L ≡ m2
Q, where m2

Q is a diagonal (and, without loss of generality, real) matrix
in flavour space. The approximation ‘'’ only holds for a matrix proportional to the identity, in the strict
sense, but is viable, considering that the CKM matrix is hierarchical. Note that we will assume degeneracy
for the first two generations of sfermions.

• Xu
R[m2

U ]Xu †
R ≡ m2

U , Xd
R[m2

D]Xd †
R ≡ m2

D, Xe †
L [m2

L]Xe
L ≡ m2

L, Xe
R[m2

E ]Xe †
R ≡ m2

E are assumed diagonal.

• Xu †
L [YuAu]Xu †

R ≡ YuAueıϕAu , Xd †
L [YdAd]X

d †
R ≡ YdAdeıϕAd and Xe †

L [YeAe]X
e †
R ≡ YeAeeıϕAe are also treated

as diagonal in flavour-space.

Consequently, the soft SUSY-breaking lagrangian of Eq.2 reduces to:

− Lsoft = −M1e
ıφM1 b̃b̃−M2e

ıφM2 w̃αw̃α −M3e
ıφM3 g̃ag̃a + h.c. (8)

+m2
Q

(
U†LUL +D†LDL

)
+m2

UU
c †
R U cR +m2

DD
c †
R D

c
R +m2

L

(
N†LNL + E†LEL

)
+m2

EE
c †
R EcR

+m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2 +
[
λAλe

ıϕ1SHu ·Hd +
κ

3
Aκe

ıϕ2S3 + h.c.
]

− YuAueıϕAuHu ·QLU cR + YdAde
ıϕAdHd ·QLDc

R + YeAee
ıϕAeHd · LLEcR + h.c.

Eqs.7 and 8 fully characterize the model that we will be considering from now on – note that the three latter
terms of Eq.7 as well as the second and fourth lines of Eq.8 are still implicitly summed over fermion generations.
All the phases have been explicited and reduce, at this level, to four phases in the Higgs sector – ϕλ, ϕκ, ϕ1, ϕ2 ; we
will see that the minimization conditions further constrain these, as could be expected from the ‘dynamical’ nature
of some phases –, three gaugino phases – φM1 , φM2 , φM3 –, three sfermion phases per generation – ϕAu , ϕAd , ϕAe
– and the CKM phase finally. Given that we will neglect the Yukawa couplings of the first two generations, only
the sfermion phases of the third generation will intervene in practice.
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2.2 The tree-level Higgs sector

The Higgs potential collects terms from the soft lagrangian (Eq.8), F-terms from the superpotential (Eq.7) and
D-terms from the gauge interactions. We obtain:

VH = m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2 + λAλ [eıϕ1SHu ·Hd + h.c.] +
κ

3
Aκ
[
eıϕ2S3 + h.c.

]
+ λ2

[
|S|2

(
|Hu|2 + |Hd|2

)
+ |Hu ·Hd|2

]
+ κλ

[
eı(ϕλ−ϕκ)S∗ 2Hu ·Hd + h.c.

]
+ κ2|S|4

+
g′2 + g2

8

[
|Hu|2 − |Hd|2

]2
+
g2

2
|H†dHu|2 (9)

The neutral part reduces to:

VH0 = m2
Hu |H

0
u|2 +m2

Hd
|H0

d |2 +m2
S |S|2 − λAλ

[
eıϕ1SH0

uH
0
d + h.c.

]
+
κ

3
Aκ
[
eıϕ2S3 + h.c.

]
+ κ2|S|4

+ λ2
[
|S|2

(
|H0

u|2 + |H0
d |2
)

+ |H0
u|2|H0

d |2
]
− κλ

[
eı(ϕλ−ϕκ)S∗ 2H0

uH
0
d + h.c.

]
+
g′2 + g2

8

[
|H0

u|2 − |H0
d |2
]2

(10)

At tree level, the Higgs v.e.v.’s are assumed to minimize this potential. A consequence is the cancellation of
first derivatives with respect to the neutral Higgs fields at the minimum, which provides us with the minimization
conditions:

m2
Hu = λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]

vd
vu
− λ2(s2 + v2

d)− g′2 + g2

4
(v2
u − v2

d)

m2
Hd

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vu
vd
− λ2(s2 + v2

u) +
g′2 + g2

4
(v2
u − v2

d)

m2
S = λ [Aλ cosϕ1 + 2κs cos(ϕλ − ϕκ)]

vuvd
s
− κs[Aκ cosϕ2 + 2κs]− λ2(v2

u + v2
d) (11)

Aλ sinϕ1 = −κs sin(ϕλ − ϕκ)

Aκ sinϕ2 =
λ

κ
[Aλ sinϕ1 − 2κs sin(ϕλ − ϕκ)]

vuvd
s2

= −3λ
vuvd
s

sin(ϕλ − ϕκ)

Here we see that the four phases of the Higgs sector are not independent but that, on the contrary, the minimization
conditions relate ϕ1 and ϕ2 to ϕλ − ϕκ, the latter being the one and only ‘observable’ phase in the Higgs sector.
Note that ϕλ and ϕκ intervene independently in other parts of the spectrum however. We will make an explicit use
of the minimization conditions of Eq.11 in the following lines, replacing m2

Hu
, m2

Hd
, m2

S , Aλ sinϕ1 and Aκ sinϕ2

by their expressions in terms of the v.e.v.’s.
The terms of Eq.9, bilinear in the charged Higgs fields, define the 2×2 (hermitian) mass-matrix of the charged-

Higgs states:

VH 3 (H−u , H
−
d )
〈
M2

H±

〉(H+
u

H+
d

)
−→

〈
M2

H±

〉
=

{
λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]−

(
λ2 − g2

2

)
vuvd

}( vd
vu

1

1 vu
vd

)
(12)

=

(
− sinβ cosβ
cosβ sinβ

)(
0 0
0 m2

H±

)(
− sinβ cosβ
cosβ sinβ

)
m2
H± ≡

{
λs

vuvd
[Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]−

(
λ2 − g2

2

)}
(v2
u + v2

d) ; tanβ ≡ vu
vd

which determines the charged Goldstone boson G± = − sinβ H±u + cosβ H±d and the physical charged Higgs state
H± = cosβ H±u + sinβ H±d .

Similarly, the terms bilinear in the neutral Higgs fields provide the 6×6 (symmetric) mass-matrix of the neutral

Higgs:
〈
M2

H0

〉
ij

= 1
2

〈
∂2VH0

∂S0
i /
√

2∂S0
j /
√

2

〉
, with the notation 〈 〉 meaning that fields are frozen to their v.e.v.’s. In
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the base (h0
u, h

0
d, h

0
s, a

0
u, a

0
d, a

0
s), these entries read:

〈
M2

H0

〉
11

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vd
vu

+
g′2 + g2

2
v2
u〈

M2
H0

〉
12

= −λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)] + 2

(
λ2 − g′2 + g2

4

)
vuvd

〈
M2

H0

〉
22

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vu
vd

+
g′2 + g2

2
v2
d〈

M2
H0

〉
13

= −λvd [Aλ cosϕ1 + 2κs cos(ϕλ − ϕκ)] + 2λ2svu〈
M2

H0

〉
23

= −λvu [Aλ cosϕ1 + 2κs cos(ϕλ − ϕκ)] + 2λ2svd〈
M2

H0

〉
33

= κs [Aκ cosϕ2 + 4κs] + λAλ cosϕ1
vuvd
s

(13)

〈
M2

H0

〉
14

= 0
〈
M2

H0

〉
24

= 0
〈
M2

H0

〉
34

= λκsvd sin(ϕλ − ϕκ)〈
M2

H0

〉
15

= 0
〈
M2

H0

〉
25

= 0
〈
M2

H0

〉
35

= λκsvu sin(ϕλ − ϕκ)〈
M2

H0

〉
16

= −3λκsvd sin(ϕλ − ϕκ)
〈
M2

H0

〉
26

= −3λκsvu sin(ϕλ − ϕκ)
〈
M2

H0

〉
36

= 4λκvuvd sin(ϕλ − ϕκ)

〈
M2

H0

〉
44

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vd
vu〈

M2
H0

〉
45

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]〈
M2

H0

〉
55

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vu
vd〈

M2
H0

〉
46

= λvd [Aλ cosϕ1 − 2κs cos(ϕλ − ϕκ)]〈
M2

H0

〉
56

= λvu [Aλ cosϕ1 − 2κs cos(ϕλ − ϕκ)]〈
M2

H0

〉
66

= −3κsAκ cosϕ2 + λ
vuvd
s

[Aλ cosϕ1 + 4κs cos(ϕλ − ϕκ)]

As in the charged case, the neutral Goldstone boson can be singled out via a β-angle rotation G0 ≡ − sinβ a0
u +

cosβ a0
d. The remaining 5× 5 symmetric block spanning the space (h0

u, h
0
d, h

0
s, a

0 ≡ cosβ a0
u + sinβ a0

d, a
0
s) may be

diagonalized via an orthogonal matrix XH0

:〈
M̃2

H0

〉
= XH0 Tdiag(m2

S0
i
, i = 1, . . . , 5)XH0

(14)

which defines the mass eigenstates:

S0
i = XH0

i1 h0
u +XH0

i2 h0
d +XH0

i3 h0
s +XH0

i4 a0 +XH0

i5 a0
s ≡ XR

iuh
0
u +XR

idh
0
d +XR

ish
0
s +XI

iaa
0 +XI

isa
0
s (15)

We will use the second notation which allows more clarity in the identification of the components. Additionally,
we define XI

iu ≡ cosβ XI
ia and XI

id ≡ sinβ XI
ia.

Note that the positivity of the squared Higgs-masses is a stability condition of the vacuum. Remember also
that, at 0th order in the electroweak v.e.v.’s, one can isolate the CP-even and CP-odd sectors and diagonalize
their doublet subspaces via rotations of angle −β / β (the singlet states are then unmixed), which disentangles
the ‘light’ (then fully massless) ‘SM-like’ doublet states from the ‘heavy’ states with approximate squared-mass

M2
A ≡ λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]

v2u+v2d
vuvd

(degenerate at this order with the charged state).

2.3 The supersymmetric spectrum at tree-level

The whole tree-level spectrum will be treated with further details in appendix B. Here we simply summarize, for
the sake of notations, the basic ingredients concerning the treatment of masses and mixings of SUSY particles.

i) Gluinos
The gluinos are the fermionic partners of the gluons and, as such, form a color octet. Their bilinear terms originate
in the soft lagrangian: −Lsoft 3 −M3e

ıφM3 g̃ag̃a. The mass states G̃a, with mass M3 (which we assume positive),
then relate to the eigenstates of the SUSY vector superfield g̃a as G̃a ≡ −ıe

ı
2φM3 g̃a. The phase shift then affects

the couplings of the gluinos to coloured matter.
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ii) Charginos
The charginos are composed of the charged components of the electroweak gauginos and higgsinos. Their bilinear
terms originate from both supersymmetry-conserving and violating terms and may be cast into the following form:

Vχ± 3
1

2
χTC

(
0

〈
Mχ−+

〉〈
Mχ+−

〉
0

)
χC + h.c. ; χTC ≡ (−ıw̃−, h̃−d ,−ıw̃

+, h̃+
u )

〈
Mχ−+

〉
=

(
M2e

ıφM2 gvu
gvd λeıϕλs

)
=
〈
Mχ+−

〉T
(16)

We may diagonalize
〈
Mχ−+

〉
with the help of two unitary matrices U and V :

〈
Mχ−+

〉
= UTdiag(mχ±1

,mχ±2
)V .

The mass eigenvalues may be assumed real and positive without any loss of generality and the mass eigenstates
(i = 1, 2) relate to the gauge ones as:

χ+
i = Vi1(−ıw̃+) + Vi2h̃

+
u ≡ Viw(−ıw̃+) + Viuh̃

+
u ; χ−i = Ui1(−ıw̃−) + Ui2h̃

−
d ≡ Uiw(−ıw̃−) + Uidh̃

−
d (17)

iii) Neutralinos
The neutralinos are combinations of the neutral components of the electroweak gauginos and higgsinos. Their
bilinear terms, resulting from both supersymmetry-conserving and violating terms, form a Majorana mass matrix:

Vχ0 3 1

2
χTN
〈
Mχ0

〉
χN + h.c. ; χTN ≡ (−ıb̃,−ıw̃3, h̃0

u, h̃
0
d, h̃

0
s)

〈
Mχ0

〉
=


M1e

ıφM1 0 g′√
2
vu − g′√

2
vd 0

0 M2e
ıφM2 − g√

2
vu

g√
2
vd 0

g′√
2
vu − g√

2
vu 0 −λeıϕλs −λeıϕλvd

− g′√
2
vd

g√
2
vd −λeıϕλs 0 −λeıϕλvu

0 0 −λeıϕλvd −λeıϕλvu 2κeıϕκs

 =
〈
Mχ0

〉T
(18)

〈
Mχ0

〉
being symmetric, it can be diagonalized by a single unitary matrix N according to:〈

Mχ0

〉
= NTdiag(mχ0

i
, i = 1, . . . , 5)N . Without loss of generality the eigenvalues mχ0

i
can be chosen real and

positive (remember that N is complex) and the mass eigenstates relate to the gauge ones in the following fashion:

χ0
i = Ni1(−ıb̃) +Ni2(−ıw̃3) +Ni3h̃

0
u +Ni4h̃

0
d +Ni5h̃

0
s ≡ Nib(−ıb̃) +Niw(−ıw̃3) +Niuh̃

0
u +Nidh̃

0
d +Nish̃

0
s (19)

iv) Sfermions
The scalar partners of the SM fermions receive hermitian mass matrices. Due to our assumptions with respect to
flavour violation, the three generations decouple. We keep a generic notation although only the Yukawa couplings
of the third generation (u = t, d = b, e = τ) will be treated as non-vanishing in practice:

VF̃ 3 (U†L, U
c
R)
〈
M2

U

〉( UL
U c †R

)
+ (D†L, D

c
R)
〈
M2

D

〉(DL

Dc †
R

)
+N†L

〈
M2

N

〉
NL + (E†L, E

c
R)
〈
M2

E

〉(EL
Ec †R

)
(20)

〈
M2

U

〉
=

(
m2
Q + Y 2

u v
2
u + 1

4

(
g′2

3 − g
2
)

(v2
u − v2

d) Yu [Aue
−ıϕAu vu − λeıϕλsvd]

Yu [Aue
ıϕAu vu − λe−ıϕλsvd] m2

U + Y 2
u v

2
u −

g′2

3 (v2
u − v2

d)

)
〈
M2

D

〉
=

(
m2
Q + Y 2

d v
2
d + 1

4

(
g′2

3 + g2
)

(v2
u − v2

d) Yd
[
Ade

−ıϕAd vd − λeıϕλsvu
]

Yd [Ade
ıϕAd vd − λe−ıϕλsvu] m2

D + Y 2
d v

2
d + g′2

6 (v2
u − v2

d)

)
〈
M2

N

〉
= m2

L −
g′2 + g2

4
(v2
u − v2

d)

〈
M2

E

〉
=

(
m2
L + Y 2

e v
2
d + −g′2+g2

4 (v2
u − v2

d) Ye [Aee
−ıϕAe vd − λeıϕλsvu]

Ye [Aee
ıϕAe vd − λe−ıϕλsvu] m2

E + Y 2
e v

2
d + g′2

2 (v2
u − v2

d)

)

Each mass matrix
〈
M2

F

〉
– F = U,D,N,E – can be diagonalized via a special-unitary matrix XF , according to:〈

M2
F

〉
= XF †diag(m2

F1
,m2

F2
)XF . The positivity of the squared masses m2

Fi
is a stability condition of the vacuum.

The mass eigenstates are then defined as: Fi = XF
iLFL +XF

iRF
c †
R .

This completes this short presentation of the tree-level spectrum. More details are presented in appendix B,
together with the Higgs couplings.
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3 A short walk-through the code

In this section, we shall describe the operations which are conducted throughout our subroutines from the per-
spective of the phenomenology of the CP-violating NMSSM.

3.1 Interface with NMSSMTools

Before coming to the actual computations of our code, let us remind the reader that we embed it within the
NMSSMTools package. We actually use the NMHDECAY routines to define its input. In particular, we do not alter the
running of parameters – such as the Yukawa, gauge or soft couplings –, e.g. to the average scale of the squarks of
third generation. We simply use the corresponding quantities as calculated by NMHDECAY as our input and introduce
the complex phases at this level. This is sufficient in consideration of the order of precision which we aim at in the
radiative corrections. A short subroutine init_CPV.f defines this interface and stores all the relevant quantities
within commons of the code. The case of the parameters Aλ and Aκ is somewhat more subtle: given that the
phases ϕ1 and ϕ2 are not free but, in our approach, determined by the minimization conditions of the potential (see
Eq.11), we will only be using the quantities Aλ cosϕ1 and Aκ cosϕ2 as degrees of freedom in practice. Therefore,
we identify the NMHDECAY input for Aλ and Aκ as ours for Aλ cosϕ1 and Aκ cosϕ2. The wave-function scaling
factors for the Higgs fields are also defined slightly differently from the original implementation in NMSSMTools, as
we shall describe in section 3.3.1.

Given our discussion in section 2, the following eight phases are added as new degrees of freedom: ϕλ, ϕκ,
φM1 , φM2 , φM3 , ϕAt , ϕAb , ϕAτ .

3.2 Supersymmetric spectrum

The first actual operations which are carried out in connection to the CP-violating NMSSM consist in the cal-
culation of the masses of the supersymmetric matter content. Similarly to the evaluation by NMSSMTools in the
CP-conserving case, we take into account the leading radiative corrections to the masses. In the following, we list
the new subroutines and provide relevant information concerning the calculations which are performed.

i) mcha_CPV.f

The purpose of this subroutine rests in diagonalizing the chargino mass matrix (Eq.16) according to
〈
Mχ−+

〉
=

UTdiag(mχ±1
,mχ±2

)V . Similarly to the corresponding implementation within NMSSMTools for the CP-conserving

case, the entries of the mass matrix receive one-loop radiative corrections which are calculated in the approximation
where mass and gauge eigenstates coincide. The corresponding effects are presented in section 4.2 of [20] – in the
context the MSSM and still in the CP-conserving case. Small modifications appear in the CP-violating NMSSM,
as gaugino and higgsino scalar couplings are rotated by phase factors of e−ıφMi/2 and e−ıϕλ/2. Nevertheless, the
factors of B1 functions as well as the corrections involving gauge bosons are immune to this phase shift, so that
only the scalar interactions resulting in a B0 function – in the approximations of [20], this reduces to the Higgs /
higgsino loops – are affected. Another difference with respect to ref. [20] originates from the presence of singlets
and singlinos in the higgsino self-energies. A summary of these corrections is explicited in appendix C.1.

The following steps are essentially identical to their counterparts in the tree-level case, which is treated into
details in appendix B.1.4: we define two special-unitary matrices U0 and V0 diagonalizing the hermitian matrices〈
Mχ−+

〉 〈
Mχ−+

〉†
and

〈
Mχ−+

〉† 〈Mχ−+

〉
respectively. U∗0

〈
Mχ−+

〉
V †0 is then a diagonal matrix with, in general,

non-real entries. We thus define the unitary matrices U and V via a phase-shift of U0 and V0, where the phase of
the lightest state is absorbed in U while that of the heavier one is absorbed in V : the resulting chargino masses
are real and positive.

ii) mneu_CPV.f

The case of the neutralinos follows the same principles as that of the charginos. The tree-level gaugino and higgsino
masses are corrected in accordance with the one-loop effects presented in appendix C.1. We then diagonalize
the complex symmetric neutralino mass matrix according to

〈
Mχ0

〉
= NTdiag(mχ0

i
, i = 1, . . . , 5)N . For that

purpose, we consider the 10×10 real symmetric matrix

(
Re Im
−Im Re

)(〈
Mχ0

〉† 〈Mχ0

〉)
, which can be diagonalized

numerically by an orthogonal matrix Ñ0. We then extract a special unitary matrix N0 so that N∗0
〈
Mχ0

〉
N†0 is

diagonal. We finally absorb the remaining phases in a phase-shift of N0, which defines the real and positive
neutralino masses as well as the mixing matrix N . Details are provided in appendix B.1.4.

iii) msferm_CPV.f

We now turn to the sfermion masses. The hermitian tree-level mass matrices are diagonalized via special-unitary
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matrices XF , according to
〈
M2

F

〉
= XF †diag(m2

F1
,m2

F2
)XF . We remind the reader that the parameters entering

the matrices, e.g. the top and bottom Yukawa couplings, have been run to the average squark scale. The Yukawa
couplings of the first two generation are neglected, so that the corresponding diagonalizing matrices are trivial.
Details can be found in appendix B.1.3.

We then apply O(αS) corrections to the squark squared masses (consistently with what was implemented in
the original CP-conserving treatment in NMSSMTools). Gluons, gluinos as well as the quartic sfermion D-term
contribute to the sfermion self energy at this order. CP-phases – here, φM3

and ϕAf – intervene in the gluino-
sfermion couplings leading to a B0 function. A summary is proposed in appendix C.2.

Finally, we check the positivity of the sfermion squared masses, a vacuum-stability requirement.

iv) mgluino_CPV.f

mgluino_CPV.f computes the gluino mass, including the O(αS) radiative corrections, which are obtained in a
similar manner to the discussion in section 4.1 of [20]. Relevant corrections include the gluon / gluino and the
quark / squark loops. Complex phases again enter the couplings of gluinos to squarks. Details are provided in
appendix C.3.

3.3 Higgs masses and radiative corrections

The following series of subroutines aim at computing the Higgs masses and mixing, including full one-loop and
leading two-loop corrections. Consistently with the original approach in NMHDECAY, we will consider the effective
Higgs potential at the average scale of the squarks of the third generation – denoted as Q –, where the running
parameters are thus evaluated.

3.3.1 Wave-function renormalization

Momentum-dependent radiative corrections can be included in two fashions within the effective potential evalua-
tion: one may reject them to the end of the calculation, as ‘pole-corrections’, or one may take them into account
– at least partially – into the effective lagrangian as corrections to the kinetic terms. The latter choice leads
to wave-function renormalization factors. While the two methods are formally equivalent, they lead to slightly
divergent results at the numerical level, as we will discuss later. Following the original approach in NMHDECAY –
presented e.g. in appendix C of [21] or appendix C of [6] –, we decide to include the leading p2 terms – where p
stands for the external energy-momentum of the Higgs self-energies –, originating in fermion or gauge effects, into
the kinetic term of the effective lagrangian. Nevertheless, since we aim at a full computation at one-loop, all the
missing momentum-dependent parts will be added as pole-corrections (see below).

In the general case, the modified Higgs kinetic terms involve a hermitian (non-degenerate) matrix ZH(p2) as
follows (here and below Si denotes any Higgs field; we work in momentum space and omit the factor 1/2 which
should appear if the considered field is real):

L̂eff

kin =
∑
i,j

p2 ZH(p2)
∣∣
ij
S∗i Sj (21)

The normal procedure then consists in rotating and scaling ZH via an invertible matrix OH in order to recover the
identity – ZH(p2) = O†H1OH –, then considering the ‘new’ set of fields with standard kinetic term S̃i ≡ OH ijSj .

Yet, Eqs.(C.1) of [21] or (C.9-11) of [6] show that a clever choice of the corrections included into ZH can
make this procedure particularly simple, as ZH would turn out to be diagonal in the base of gauge-eigenstates.
Restricting to neutral Higgs fields, one has (with δSi,Sj denoting the Kronecker symbol):

ZH |ij = ZHu
[
δSi,h0

u
δSj ,h0

u
+ δSi,a0uδSj ,a0u

]
+ZHd

[
δSi,h0

d
δSj ,h0

d
+ δSi,a0dδSj ,a0d

]
+ZS

[
δSi,h0

s
δSj ,h0

s
+ δSi,a0sδSj ,a0s

]
(22)

Indeed, considering the contributions of SM-fermions to ZH (Nc = 3 is the colour factor; while using the generic
notations u, d, e, we will be considering only the third generation fermions since we neglect the Yukawa couplings
of the two first families), the deviations of the diagonal scaling factors from unity read2:

δSM fermZHu =
1

16π2

{
NcY

2
uB0(p,mu,mu)

}
δSM fermZHd =

1

16π2

{
NcY

2
d B0(p,md,md) + Y 2

e B0(p,me,me)
}

(23)

δSM fermZS = 0

2Loop functions are defined in appendix A.
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Similarly, in the approximation where higgsinos and gauginos are simultaneously gauge and mass eigenstates (µ
denotes the doublet higgsino mass; ms̃, the singlino mass):

δh̃,g̃ZHu =
1

16π2

{
g′2

2
B0(p,M1, µ) +

3g2

2
B0(p,M2, µ) + λ2B0(p, µ,ms̃)

}
δh̃,g̃ZHd = δh̃,g̃ZHu (24)

δh̃,g̃ZS =
1

8π2

{
λ2B0(p, µ, µ) + κ2B0(p,ms̃,ms̃)

}
The last source of corrections to ZH is the gauge sector – note that we will be working in the Feynmann gauge.
Yet, the corresponding contributions are not diagonal in the gauge eigenbase, but rotated by an angle β (or −β,
depending on the CP-eigenvalue) in the doublet sector. Noticing however that tanβ > 1 in practice, we may keep
the sin2 β term in the wave-function scaling while rejecting the remaining sinβ cosβ and cos2 β terms for later
treatment as pole-corrections. Then:

δgaugeZHu = − sin2 β

16π2

{
g2B0(p,MW ,MW ) +

g′2 + g2

2
B0(p,MZ ,MZ)

}
δgaugeZHd = 0 (25)

δgaugeZS = 0

Note that this choice in the gauge sector differs from the default treatment by NMSSMTools in the CP-conserving
case (see Eq.(C.9-10) of [6]), where, moreover, pole corrections from the gauge sector are ignored.

Before setting ZHu,Hd,S = 1 +
[
δSM ferm + δh̃,g̃ + δgauge

]
ZHu,Hd,S , one is confronted to the remaining p2-

dependence of these coefficients (via the loop functions B0). In the ideal case, p2 would match the Higgs squared
masses. This, however, is impractical since several mass eigenvalues are present: keeping this p2 dependence,
hence working with p2-dependent fields and mass-matrices, and setting this implicit dependence separately to the
corresponding Higgs squared mass after diagonalization of the mass matrix would be possible, yet problematic
in a numerical evaluation of the mass matrices. The choice of [6] in the CP-conserving case rested in adding an
artificial dependence of ZHu,Hd on ln(M2

A/m
2
t ) – MA standing for the mass of the heavy doublet, mt approximat-

ing the SM-like Higgs mass –, so as to mimic the correct logarithmic dependence after rotation by an angle −β
(approximating the tree-level diagonalizing rotation in the CP-even doublet sector): however an explicit rotation
by the angle −β shows that this purpose is missed as only the light state receives the proper logarithmic factor;
in the case of the heavy doublet, the factor is wrong so that the result does not really improve on neglecting
the logarithms ln(M2

A/m
2
t ) altogether. Therefore, we settle for the choice which consists in freezing the external

momentum to a scale µH = 125 GeV, allowing for a good precision in the characteristics of the SM-like Higgs
state – the most sensitive to radiative corrections. Adequate corrections when the mass is far from this scale are
rejected to the level of pole-corrections. A final difference with [6] comes from the implementation of the loop
functions: we explicitly compute the full relevant B0’s while [6] only included the leading logarithmic terms in
case of large mass hierarchies.

A summary of the wave-function scaling factors is provided in appendix D.1.
Consistently, the neutral higgs fields are rescaled as:

h0
u ←

h0
u√
ZHu

; h0
d ←

h0
d√
ZHd

; h0
s ←

h0
s√
ZS

; a0
u ←

a0
u√
ZHu

; a0
d ←

a0
d√
ZHd

; a0
s ←

a0
s√
ZS
(26)

so that all related quantities (e.g. the mass matrices) must be rescaled accordingly. In particular the Higgs v.e.v.’s:

vu(Q) ≡ vu√
ZHu

; vd(Q) ≡ vd√
ZHd

; s(Q) ≡ s√
ZS

(27)

All these operations are carried out in the initialization subroutine init_CPV.f.
In the charged-sector, the p2-dependent terms are typically different from those appearing in the neutral case.

However, to keep β as the relevant rotation angle in the charged sector together with the v.e.v. rescaling of Eq.27,
we will use the same wave-function scaling factors ZHu,Hd :

H±u ←
H±u√
ZHu

; H±d ←
H±d√
ZHd

(28)

and restore the appropriate dependence at the level of the pole-corrections.
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3.3.2 Effective potential

After this discussion relative to the kinetic terms, let us turn to the Higgs potential. At tree-level, it is given by
Eq.9. Radiative corrections can be added to this picture by considering diagrams with vanishing external momenta
or, equivalently, the Coleman-Weinberg formula for one-loop effects. In the DR scheme and the Landau gauge,
the effective Higgs potential reads:

Veff.(H) = V tree

H (H) + δVeff.(H) ; δVeff.(H) =
1

64π2
Tr

{
CΦM4

Φ

[
ln
M2

Φ

Q2
− 3

2

]}
(29)

where the trace applies to all fields Φ of the model, with CΦ depending on the Lorentz properties of Φ – respectively
1, 2, −2, −4, 3 for a real scalar, a complex scalar, a Majorana fermion, a Dirac fermion and a gauge boson – and
M2

Φ is the bilinear (‘squared mass’) matrix of the fields, where the dependence on Higgs fields has been kept3.
Note that the gauge or Z3 symmetries are still explicitly preserved by this potential (but not, in general, by its
minimization). On the other hand, it involves terms of dimension ≥ 5, so that expansions of the potential in the
vicinity of its minimum will generically break the symmetries in an explicit way.

i) Minimization conditions and corrections to the mass matrices
The Higgs v.e.v.’s vu, vd, s – of Eq.27: remember that we are considering the potential at the scale Q – are
now supposed to minimize the full potential of Eq.29. Consequently, the minimization conditions of Eq.11 (at
tree-level) must be modified to account for the radiative effects. This provides the so-called tadpole equations4:

δm2
Hu = − 1

2vu

〈
∂δVeff.

∂h0
u/
√

2

〉
δm2

Hd
= − 1

2vd

〈
∂δVeff.

∂h0
d/
√

2

〉
(30)

δm2
S = − 1

2s

〈
∂δVeff.

∂h0
s/
√

2

〉
δ(Aλ sinϕ1) = − 1

2λsvd

〈
∂δVeff.

∂a0
u/
√

2

〉
= − 1

2λsvu

〈
∂δVeff.

∂a0
d/
√

2

〉

δ(Aκ sinϕ2) =
1

2κs2

[〈
∂δVeff.

∂a0
s/
√

2

〉
− vu

s

〈
∂δVeff.

∂a0
u/
√

2

〉]
Given that the parameters m2

Hu
, m2

Hd
, m2

S , Aλ sinϕ1 and Aκ sinϕ2 have been replaced by their tree-level values
(Eq.11) in the tree-level Higgs mass matrices (Eq.12 and 13), the shifts of Eq.30 must be included into the corrected
mass matrices, in addition to the bilinear terms. For the charged Higgs mass matrix, this amounts to:

δ
〈
M2

H±

〉
11

=

〈
∂2δVeff.

∂H−u ∂H
+
u
− 1

2vu

∂δVeff.

∂h0
u/
√

2

〉
δ
〈
M2

H±

〉
12

=

〈
∂2δVeff.

∂H−u ∂H
+
d

+
ı

2vd

∂δVeff.

∂a0
u/
√

2

〉
(31)

δ
〈
M2

H±

〉
21

=

〈
∂2δVeff.

∂H−d ∂H
+
u
− ı

2vd

∂δVeff.

∂a0
u/
√

2

〉
δ
〈
M2

H±

〉
22

=

〈
∂2δVeff.

∂H−d ∂H
+
d

− 1

2vd

∂δVeff.

∂h0
d/
√

2

〉

and for the neutral Higgs states:

δ
〈
M2

H0

〉
11

=
1

2

〈
∂2δVeff.

(∂h0
u/
√

2)2
− 1

vu

∂δVeff.

∂h0
u/
√

2

〉
δ
〈
M2

H0

〉
12

=
1

2

〈
∂2δVeff.

∂h0
u/
√

2∂h0
d/
√

2

〉

δ
〈
M2

H0

〉
22

=
1

2

〈
∂2δVeff.

(∂h0
d/
√

2)2
− 1

vd

∂δVeff.

∂h0
d/
√

2

〉
δ
〈
M2

H0

〉
13

=
1

2

〈
∂2δVeff.

∂h0
u/
√

2∂h0
s/
√

2

〉

δ
〈
M2

H0

〉
23

=
1

2

〈
∂2δVeff.

∂h0
d/
√

2∂h0
s/
√

2

〉
δ
〈
M2

H0

〉
33

=
1

2

〈
∂2δVeff.

(∂h0
s/
√

2)2
− 1

s

∂δVeff.

∂h0
s/
√

2

〉
(32)

3In other words, one recovers the tree-level squared mass matrix
〈
M2

Φ

〉
when replacing the Higgs fields by their v.e.v.’s in M2

Φ.
4The notation 〈f〉 means that the function f of the Higgs fields is evaluated at the Higgs v.e.v.’s.
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δ
〈
M2

H0

〉
44

=
1

2

〈
∂2δVeff.

(∂a0
u/
√

2)2
− 1

vu

∂δVeff.

∂h0
u/
√

2

〉
δ
〈
M2

H0

〉
45

=
1

2

〈
∂2δVeff.

∂a0
u/
√

2∂a0
d/
√

2

〉

δ
〈
M2

H0

〉
55

=
1

2

〈
∂2δVeff.

(∂a0
d/
√

2)2
− 1

vd

∂δVeff.

∂h0
d/
√

2

〉
δ
〈
M2

H0

〉
46

=
1

2

〈
∂2δVeff.

∂a0
u/
√

2∂a0
s/
√

2

〉

δ
〈
M2

H0

〉
56

=
1

2

〈
∂2δVeff.

∂a0
d/
√

2∂a0
s/
√

2

〉
δ
〈
M2

H0

〉
66

=
1

2

〈
∂2δVeff.

(∂a0
s/
√

2)2
− 1

s

∂δVeff.

∂h0
s/
√

2

〉

δ
〈
M2

H0

〉
14

=
1

2

〈
∂2δVeff.

∂h0
u/
√

2∂a0
u/
√

2

〉
δ
〈
M2

H0

〉
15

=
1

2

〈
∂2δVeff.

∂h0
u/
√

2∂a0
d/
√

2
− 1

vd

∂δVeff.

∂a0
u/
√

2

〉

δ
〈
M2

H0

〉
16

=
1

2

〈
∂2δVeff.

∂h0
u/
√

2∂a0
s/
√

2
− 1

s

∂δVeff.

∂a0
u/
√

2

〉
δ
〈
M2

H0

〉
24

=
1

2

〈
∂2δVeff.

∂h0
d/
√

2∂a0
u/
√

2
− 1

vd

∂δVeff.

∂a0
u/
√

2

〉

δ
〈
M2

H0

〉
25

=
1

2

〈
∂2δVeff.

∂h0
d/
√

2∂a0
d/
√

2

〉
δ
〈
M2

H0

〉
26

=
1

2

〈
∂2δVeff.

∂h0
d/
√

2∂a0
s/
√

2
− vu
svd

∂δVeff.

∂a0
u/
√

2

〉

δ
〈
M2

H0

〉
34

=
1

2

〈
∂2δVeff.

∂h0
s/
√

2∂a0
u/
√

2
− 1

s

∂δVeff.

∂a0
u/
√

2

〉
δ
〈
M2

H0

〉
35

=
1

2

〈
∂2δVeff.

∂h0
s/
√

2∂a0
d/
√

2
− vu
svd

∂δVeff.

∂a0
u/
√

2

〉

δ
〈
M2

H0

〉
36

=
1

2

〈
∂2δVeff.

∂h0
s/
√

2∂a0
s/
√

2
− 2

s

∂δVeff.

∂a0
s/
√

2
+

2vu
s2

∂δVeff.

∂a0
u/
√

2

〉
This concludes the presentation of the general formalism and we may now describe the various contributions

to the effective potential which are computed within our code.

ii) mhiggstree_CPV.f

This subroutine simply defines the tree-level mass matrices at the scale Q according to Eqs.12 and 13. However,
the corrected Higgs masses are not the only information that we want to extract from the effective potential: the
Higgs-to-Higgs couplings are also encoded within this formalism. Therefore, and for reasons that will become
clear when we implement the various radiative contributions to the potential, we wish to match the full effective
potential onto the following and simpler one:

Ṽeff =M2
S |S|2 +

AS
3

[
eıϕASS3 + h.c.

]
+ V0(|S|2) (33)

+ (M2
u + λuP |S|2)|Hu|2 + (M2

d + λdP |S|2)|Hd|2 +
[(
Aude

ıϕAudS + λMP e
ıϕMS∗2

)
Hu ·Hd + h.c.

]
+
λu
2
|Hu|4 +

λd
2
|Hd|4 + λ3|Hu|2|Hd|2 + λ4|Hu ·Hd|2

+

[
λ5

2
eıϕ5(Hu ·Hd)

2 + (λ6e
ıϕ6 |Hu|2 + λ7e

ıϕ7 |Hd|2)Hu ·Hd + h.c.

]
This is a subset of the most general singlet + two doublet potential which one can write up to dimension 4 terms5.
The gauge symmetry is observed. However the Z3-symmetry only holds up to terms quadratic in the doublet fields
and is explicitly broken by the terms in the last line of Eq.33. This potential is meant as an expansion of Eq.29
in the doublet fields and as we mentioned before, there is no reason why the Z3-symmetry should hold in such an
expansion. The characteristics of this potential are studied in appendix E and matching the tree-level expression
of Eq.9 is straightforward (see appendix E.1).

iii) mhiggsloop_sferm_CPV.f

With this subroutine, we start adding radiative corrections to the effective potential, here those arising from SM-
fermion and sfermion loops. These – particularly the contribution associated to the top – are known to convey
the dominant radiative effect and lead e.g. to a substancial shift of the squared-mass of the SM-like Higgs boson.

The corresponding one-loop effects to the neutral Higgs mass matrix are particularly easy to include in the
Coleman-Weinberg formalism of Eq.29, since the bilinear terms provide relatively simple matrices (refer to the

5Note however that we do not give more precisions about V0(|S|2). If only terms of dimension ≤ 4 are kept, then the only choice
would be V0(|S|2) = K2|S|4.
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appendices B.1.1 and B.1.3). The details of the corrections are developed in the appendices D.2.1 and D.2.3. Note
that we recover Eqs.(C16-18) of [6] in the CP-conserving limit.

The situation is slightly more complex for the charged Higgs as well as for the Higgs-to-Higgs couplings: we then
decide to expand the potential in terms of the doublet fields, up to quartic order H4 and match the corresponding
expansion onto the simplified potential of Eq.33. This amounts to an expansion in v/MSUSY, where MSUSY here
stands for any sfermion mass. The sfermion contributions to the coefficients of Eq.33 are also provided in appendix
D.2.3. Note that this alternative approach allows for a numerical cross-check with the corrections applied to the
mass matrix of the neutral Higgs states with the method described in the previous paragraph.

In addition to these one-loop effects, the subroutine mhiggsloop_sferm_CPV.f also includes two-loop effects
of order6 O(Y 6

t,b, Y
4
t,bαS) leading to a product of large logarithms in the fermion sector: given that we are working

at the average scale of squark masses, the squarks are assumed to give subleading contributions. On the other
hand, effects associated to SM fermions and gauge bosons will not introduce any additional dependence on the
new physics phases. The corresponding effects are implemented in the approximations of [22] – see also Eq.(C.19)
of [6] –, i.e. only the contributions to the quartic doublet parameters λu and λd of Eq.33 are included – note that
contributions to M2

u or M2
d leave the analysis unaffected, while contributions to e.g. Aud can be absorbed in a shift

of the tree-level term Aλ, hence only drive a displacement in the parameter space. While these contributions are of
two-loop order, they may still affect the mass of the SM-like Higgs state by several GeV, which is why we include
them. Comparisons to more-elaborate two-loop calculations show that this approximation works well numerically
(at the GeV level).

iv) mhiggsloop_inos_CPV.f

The next subroutine implements the radiative effects associated to charginos and neutralinos. Sticking to the
Coleman-Weinberg approach, we consider the 9 × 9 bilinear term associated with gauginos and higgsinos (refer
to appendix B.1.4). Due to the large rank of this matrix, we exclusively employ the method which consists in
expanding the potential and matching it to the simplified version of Eq.33. The corresponding results are collected
in appendix D.2.4. Note that they differ from e.g. Eq.(C.22-24) of [6] where additional simplifying assumptions
had been made.

v) mhiggsloop_gaugehiggs_CPV.f

The contributions of the electroweak gauge bosons to the Higgs potential seem easy to include in the Landau gauge:
see appendix D.2.2. Yet the drawbacks of the Landau gauge are felt in the Higgs sector, where one then has to
handle massless Goldstone bosons. The associated infrared divergences are of course purely spurious and disappear
once confronted to momentum-dependent corrections, as already noted in [23]. Still it remains a technical issue to
manipulate with caution. Moreover, the strategy consisting in diagonalizing the field-dependent bilinear matrices,
which we have been employing until here, becomes impractical, even in an expansion in terms of the doublet fields,
due to the large number of parameters and operators involved in the Higgs bilinear terms. Instead, we decide
to employ the concurrent strategy in Higgs-mass calculations, which simply consists in a direct diagrammatic
evaluation of the Higgs self-energies and tadpoles generated by Higgs loops. Nevertheless, disentangling the Higgs
and gauge contributions in this approach proves quite artificial so that we will lead the calculation for both types
of particles appearing in the loop at the same time.

Explicit expressions for the gauge and Higgs one-loop contributions to the Higgs self-energies and tadpoles are
summarized e.g. in [20] or [24] (with different conventions for the loop functions), in the context of the MSSM,
and the NMSSM differs only in the definition of the couplings and the presence of the singlet fields, hence leads to
a formally comparable result. We choose to work in the Feynmann gauge as it is then possible to set the external
momentum to 0 without generating IR-divergent logarithms. Indeed, we still aim at computing, not only the
corrections to the Higgs masses, but also to the Higgs-to-Higgs couplings. For this, we proceed in the following
fashion: after the radiative corrections to the Higgs mass matrices are evaluated at zero momentum, we substract
the pure-gauge contribution in the Landau gauge (for which we already know the potential from appendix D.2.2).
The remaining ‘Higgs’ contributions to the mass matrices can then be identified with those that a Z3-conserving
renormalizable potential would produce, allowing for a reconstruction of the corrections to the Z3-conserving
parameters of the potential: this procedure is described for the CP-conserving case in [25] and is straightforwardly
generalized to the CP-violating case. Of course, we then miss contributions to the Z3-violating parameters (the
last line of Eq.33) but, as discussed in [25], these are subleading in the leading-logarithmic approach7. Further
details can be found in appendix D.2.5.

This completes the list of radiative contributions implemented in the effective potential.

6The conventions O(Y 4
t,b, Y

2
t,bαS) or O(α2

t,b, αt,bαS) are also used in the literature.
7Note that, while the parameters of the effective potential will then receive contributions which are valid only at leading logarithmic

order, this is not the case for the contributions to the Higgs masses since they are obtained directly from the diagrammatic calculation.
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3.3.3 Pole corrections

The operations described in the previous lines have provided us with mass matrices for the Higgs states where
radiative corrections from the potential (i.e. at zero external momentum) have been included. We will now
detail how we account for momentum-dependent corrections. These calculations are conducted in the subroutine
mhiggsloop_pole_CPV.f.

First, let us remind the reader that the radiative effects associated with non vanishing external momentum
have been partially encoded into the wave-function scaling factors of paragraph 3.3.1. It is necessary to rescale
the Higgs mass-matrices in order to account for the re-scaling of the Higgs fields:〈

M2
H±

〉
ij
← 1√

ZHiZHj

〈
M2

H±

〉
ij

;
〈
M2

H0

〉
ij
← 1√

ZHiZHj

〈
M2

H0

〉
ij

(34)

A β-angle rotation in the pseudoscalar and charged sector allows to rotate away the Goldstone bosons, leaving

us with a 5× 5 symmetric mass matrix
〈
M̃2

H0

〉
ij

for the neutral sector and a DR squared-mass for the charged

Higgs m2DR
H± .

〈
M̃2

H0

〉
is now diagonalized according to Eq.14, providing us with corrected DR squared-masses

for the neutral Higgs, m2DR
S0
i

, and their rotation matrix XH0

.

We then apply pole corrections to the DR squared-masses in order to evaluate the pole masses:

m2
S0
i

= m2DR
Si

(
1 +

∑
j

δZHjX
H0 2
ij

)
−
[
ΠS0

i S
0
i
(p2 = m2

S0
i
)−ΠS0

i S
0
i
(p2 = 0)

]
m2
H± = m2DR

H±

(
1 + δZHu cos2 β + δZHd sin2 β

)
−
[
ΠH+H−(p2 = m2

H±)−ΠH+H−(p2 = 0)
]

(35)

While ideally the Higgs self energies ΠS0
i S

0
i
(p2) and ΠH+H−(p2) should be evaluated at the pole masses, we

approximate the latter by the DR masses. The full one-loop pole-corrections are applied. Shifts of the wave-
function scaling factors δZHu,Hd,S are know from Eqs.23-25. The shifts in the Higgs self energies are provided in
appendix D.4.

This concludes our evaluation of the masses in the Higgs sector. We now wish to comment briefly on the
precision achieved in this calculation. For this, it is instructive to consider the impact of the one-loop corrections
with respect to the situation at tree-level. For mostly-doublet states, the leading effect is driven by the top-

quark loop and, respectively to the tree-level mass mH , can be quantified as ∼ NcY
2
t

4π2

m2
t

m2
H

ln
m2
t

Q2 . Assuming that

Q = O(TeV), this amounts to a correction at the percent level for mH = O(TeV), but reaching a magnitude of
∼ 100% for mH = O(100 GeV): this accounts for the well-known sensitivity of the SM-like Higgs mass to radiative
corrections. Contributions at the two-loop order will involve the strong coupling gS , or the top Yukawa coupling
again, multiplying logarithms of a similar magnitude, so that the typical effect would easily amount to ∼ 30% of
the one-loop contribution. Now, considering that we have included the leading double-logarithmic effects in the
calculation, we can estimate a reduced uncertainty from higher orders, say at the level of ∼ 10% of the one-loop
corrections. For a Higgs mass at ∼ 125 GeV, this still amounts to an uncertainty of several GeV. For a state at
mH = O(TeV), this reduces to the permil level. The latter accuracy is treacherous however, as other sources of
uncertainty appear e.g. in the determination of the couplings or neglected electroweak corrections entering the
definition of the Higgs v.e.v.’s. In the outcome, the precision on the Higgs masses should not improve on O(1%)
for heavy doublet states. Corrections to singlet states are typically smaller, since the associated couplings – λ, κ
– are of order <∼ O(0.1) and the hierarchies between Higgs bosons and higgsinos may not be as large as those
between SM fermions and sfermions. However, when the singlets mix significantly with doublet states, they will
correspondingly acquire part of the larger uncertainties on doublet masses.

3.4 Couplings, decays and constraints

After the previous subroutines are run, one has a complete set of corrected masses and rotation matrices at one’s
disposal. The following move consists in confronting this spectrum to physical processes.

3.4.1 Supersymmetric and Higgs couplings

The couplings of supersymmetric particles and Higgs bosons can take somewhat lengthy expressions. We thus
design two subroutines, susycoup_CPV.f and higgscoup_CPV.f, in order to evaluate and store them within the
code:
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• The couplings of charginos / neutralinos to sfermions and SM fermions are implemented according to the
formulae of appendix B.3.1 and B.3.2 for the three generations (still neglecting the Yukawa couplings of the
two first generations).

• The trilinear couplings of the Higgs bosons to sfermions are computed after the results of appendix B.2.3.

• The couplings of the Higgs bosons to charginos and neutralinos are also included as presented in appendix
B.2.4.

• Finally, we calculate correctedDR Higgs-to-Higgs couplings where radiative effects from sfermions, charginos,
neutralinos and Higgs bosons are obtained from the simplified effective potential of Eq.33: relevant formulae
are provided in appendix E.4. Corrections from fermionic and gauge loops are explicitly incorporated as
given in appendix D.2.1 and D.2.2. The Yukawa and gauge couplings employed here have been run to the
scale given by mass of the neutral Higgs state with first index in the coupling.

Note that the rescaling of Higgs fields in Eqs.26 and 28 is also accounted for when computing the couplings of
Higgs bosons.

3.4.2 Higgs and top decays

We then adapt the existing NMSSMTools subroutines decay.f and tdecay.f – respectively computing the Higgs
and top two-body decays in the CP-conserving NMSSM – to the CP-violating case.

The subroutine hidecay_CPV.f calculates the Higgs widths and the dominant branching ratios. The following
decay channels are considered:

• decays into a pair of SM fermions: S0
i → µ+µ−, τ+τ−, ss̄, cc̄, bb̄, tt̄; H+ → µ+νµ, τ+ντ , us̄, ub̄, cs̄, cb̄, tb̄;

• decays into (on-shell) gauge bosons8: S0
i →WW , ZZ, γγ, Zγ, gg;

• decays into one Higgs and one gauge boson: S0
i → ZS0

j , W±H∓; H+ →W+S0
j ;

• Higgs-to-Higgs decays: S0
i → S0

jS
0
k, H+H−;

• supersymmetric decays: S0
i → χ+

j χ
−
k , χ0

jχ
0
k, F̃ ∗j F̃k; H+ → χ+

j χ
0
k, F̃ ∗j F̃

′
k.

In the subroutine tdecay_CPV.f, we compute the following top decays: t → W+b, H+b, T̃ χ0. As in the
original CP-conserving version, leading QCD corrections have been taken into account.

3.4.3 Phenomenological tests

We finally propose several tools to confront the CP-violating NMSSM spectrum to experimental constraints.
checkmin_CPV.f compares the value of the neutral effective potential at the electroweak symmetry-breaking

minimum with that at other points, e.g. for vanishing v.e.v.’s. Loop effects from the SM fermions and gauge
bosons are included explicitely in this evaluation, while other radiative effects are encoded within the approximate
potential of Eq.33. We also vary the dynamical phases and check whether this generates a deeper minimum. Finally,
the minimization conditions of Eq.11 and 30 are calculated explicitly, which allows e.g. to test the naturalness of
the squared masses m2

Hu,d
of the potential: they should remain of the order of the SUSY-breaking scale.

In constsusypart_CPV.f, we generalize to the CP-violating case LEP limits on superparticle searches that
were included in NMSSMTools for the CP-conserving case:

• test on chargino, slepton, gluino and squark masses;

• limits on T̃ → blÑ , T̃ → cχ0, B̃ → bχ0;

• constraint on the invisible Z-width and neutralino-pair production.

HBNMSSM_CPV.f converts our spectrum into input for HiggsBounds [18] and HiggsSignals [19]. This allows
to test the Higgs sector in view of LEP, TeVatron and LHC results via a call to the subroutines included within
these public tools – note that NMSSMTools, HiggsBounds and HiggsSignals must be interfaced to make use of
this subroutine. The chosen input mode is that employing effective couplings (see the documentation in [18]).
Additional widths and branching ratios are taken from the results in hidecay_CPV.f and tdecay_CPV.f. In the

8Note that the decays into off-shell gauge bosons have not been included.
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following section, we will be using the current versions HiggsBounds_4.2.0 and HiggsSignals_1.3.1, which
incorporate all the experimental results released till december 2014. The default uncertainty on the Higgs mass
precision is set to 3 GeV and modeled as a gaussian distribution.

We also include an alternative set of tests for the Higgs sector, based on the original subroutines of NMSSMTools.
These collect:

• LEP_Higgs_CPV.f: LEP limits applying on neutral Higgs bosons produced in association with Z’s – e+e− →
Z∗ → S0

i Z – or in pairs – e+e− → Z∗ → S0
i S

0
j – [26];

• TeVatron_CHiggs_CPV.f: TeVatron limits applying on a charged Higgs boson produced in top decays [27];

• bottomonium_CPV.f: test for a light mostly CP-odd Higgs in bottomonium decay – based on [28];

• LHC_Higgs_CPV.f: the inclusion of LHC limits on neutral or charged Higgs searches as well as the confronta-
tion to the signals at ∼ 125 GeV – after [29] – are in progress.

Note that these routines will not be used in the next section, as we will employ the currently more complete set
of tests performed by HiggsBounds and HiggsSignals.

Finally, we design a subroutine EDM_CPV.f to estimate the electric dipole moments of the electron, the thallium
atom, the neutron and the mercury atom. We essentially follow the summary in [30] – in the context of the MSSM;
see also [31] for a recent work in the NMSSM. The supersymmetric one-loop effects are mediated by charginos,
neutralinos or gluinos and sfermions. Moreover the two-loop diagrams of the Bar-Zee type – involving a fermion
or sfermion loop connected to the quark / electron line by a Higgs and a photon propagator – are known to convey
a sizable effect: these are particularly sensitive to the phases appearing in the Higgs sector. Other contributions,
mediated by dimension 6 operators, are included as well. We estimate the associated uncertainties by adding
linearly a 10% error on effects involving no coloured particles and a 30% error on contributions involving the
coloured sector. Additional uncertainties associated to scale-running or hadronic parameters are also incorporated.

4 A few applications

We shall now make use of the subroutines which we have just presented and study phenomenological effects
associated with the CP-violating NMSSM. This will be the opportunity to test our tool and compare its predictions
with existing results.

4.1 CP-conserving limit

Setting all the phases to zero, it is possible to consider the CP-conserving case: in particular this allows to study
how our results connect to the precision calculations implemented within NMSSMTools. Given that the input is
common, discrepancies directly give an insight on the differences of treatment and the numerical magnitude of the
corresponding effects.

i) Higgs spectrum
We shall first consider the Higgs masses. NMSSMTools provides three levels of precision in the inclusion of the
radiative corrections to the Z3-conserving Higgs sector:

• ‘Precision 0’: the default one – essentially following the procedure described in appendix C of [6] – confines to
leading logarithmic order. Momentum-dependent effects are taken into account only to the extent of wave-
function renormalization (where the implementation is slightly different from ours: remember the discussion
in section 3.3.1) and pole-corrections associated with the SM-fermion sector.

• ‘Precision 1’: a full one-loop + leading two-loop (to order O(Y 4
t,bαS)) implementation without momentum-

dependent effects.

• ‘Precision 2’: a full one-loop + leading two-loop (to order O(Y 4
t,bαS)) implementation including momentum-

dependent effects. It follows the work of [32].

Formally, our implementation – full one-loop including momentum-dependent corrections + leading two-loop
double logarithms of order O(Y 6

t,b, Y
4
t,bαS) – should fall somewhere between these three procedures in terms of

precision.
We first test our results in a region of the parameter space where κ = 0.45, tanβ = 8, µeff = 125 GeV,

MA = 1 TeV, Aκ = −288 GeV, mT̃ ,B̃ = 1 TeV, mŨ,D̃ = 1.5 TeV, mL̃,Ẽ = 200 GeV, 2M1 = M2 = M3/3 = 0.5 TeV,
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Figure 1: General aspect of the Higgs spectrum in the NMSSMTools procedures with precision 0 (upper left),
precision 1 (upper right) and precision 2 (down left-hand) and in ours (dotted lines). λ ∈ [0, 0.65], κ = 0.45,
tanβ = 8, µeff = 125 GeV, MA = 1 TeV, Aκ = −288 GeV, mT̃ ,B̃ = 1 TeV, mŨ,D̃ = 1.5 TeV, mL̃,Ẽ = 200 GeV,
2M1 = M2 = M3/3 = 0.5 TeV, At = −2 TeV, Ab,τ = −1.5 TeV. In the down right-hand plot, the singlet
composition S2

i3 of the two lightest CP-even states is displayed for precision 0 (green solid lines), precision 2 (blue
solid lines) and for our calculation (dotted lines).

At = −2 TeV, Ab,τ = −1.5 TeV and we scan over λ ∈ [0, 0.65]. The Higgs masses are displayed in Fig.1 and 2:
the results of NMSSMTools for precision ‘0’ (greenish colors), ‘1’ (pink colors) and ‘2’ (bluish colors) are shown as
solid lines while our calculation corresponds to the dots (yellow to red tones). We observe a significant variation of
the masses corresponding to the mostly-singlet states while the doublet masses are grossly constant with varying
λ. A typical NMSSM effect develops when singlet masses are close to doublet masses, as significant mixing may
appear. In particular, when the singlet state is slightly lighter than the doublet one, the mixing tends to uplift
the mass of the mostly-doublet Higgs. This is what occurs in this example for the CP-even sector in the upper
range of λ. In Fig.1, we see that our results fit quite closely the predictions of the procedure with precision 2,
while larger discrepancies appear with respect to precision 0, especially at large λ.

Fig.2 allows for a closer comparison among Higgs masses. For the Higgs states with mass close to ∼ 125 GeV
(upper left-hand quadrant), we note a remarkable agreement between our calculation and the masses obtained
with the precision setting 2, while the results obtained with precision 0 are about 2 GeV off: this fact should not
make us forget that the uncertainties affecting the Higgs mass computations (also in the setting of precision 2) are
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Figure 2: Details on the Higgs masses of Fig.1. On the upper left-hand quadrant, we show the Higgs masses close
to ∼ 125 GeV for precision 0 (green lines), precision 2 (blue lines) and for our implementations (red dots). The
plot on the upper right-hand side compares our results (dots) for the ‘heavy’ masses with those of precision 0
(green lines). The same exercise is carried out in the lower left-hand corner for precision 2 (blue lines). In the
lower right-hand quadrant, we alter our implementation of the Higgs mass corrections so that all p2-dependent
terms are taken into account as pole-corrections only (so that the wave-scaling factors are set to 1): the results
are displayed as khaki dots and compared to the masses obtained in the procedure of precision 2.

of the order of several GeV. However, it justifies the observation that the leading two-loop effects are captured by
the simpler inclusion of double logarithmic terms.

Concerning the heavy mass states, we observe in Fig.2 – in the upper-right and lower-left hand quadrants – that
our results are intermediary between the calculations with precision 0 and precision 2. However, we note that the
leading difference with precision 2 originates in the implementation of the wave-function scaling factors. Indeed, if
we set the ‘Z-factors’ to 1 and modify the pole-corrections accordingly, we observe that our result – corresponding
to the khaki dots in the lower-right-hand corner of Fig.2 – then matches that with precision 2 somewhat more
closely (at the permil level). It is quite easy to see how the discrepancy develops between these two procedures.
For this, let us focus on the CP-odd doublet state, where we will neglect the mixing with the singlet. In the case
where the wave-function scaling factors are set to 1, the squared mass of this state is – schematically: the effect
of potential and pole corrections are encoded as δpot,pole – obtained as (all the p2-dependent terms are treated as
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Figure 3: Higgs spectrum for λ = 0.7, κ = 0.1, tanβ = 2, MA ' 2.33µeff + 20.45 GeV, MA ∈ [0.3, 3] TeV,
Aκ = −50 GeV, mT̃ ,B̃ = 0.5 TeV, mŨ,D̃ = 1.5 TeV, mL̃,Ẽ = 110 GeV, 2M1 = M2 = 150 GeV, M3 = 1.5 TeV
At,b,τ = −0.1 TeV. Comparison of our results (dots) with precision 0 (upper left-hand plot), precision 2 (upper
right-hand plot). Focus on the masses close to 125 GeV (bottom left-hand plot). Finally, results obtained with
HiggsBounds and HiggsSignals.

pole corrections):

m2
A

∣∣
no Z

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ) + δpot]
v2
u + v2

d

vuvd

(
1 + δpole

)
(36)

In the approach where the wave-function scaling factors are taken into account at the level of the kinetic terms,
the Z-factors intervene in the calculation at several steps: first, for the scaling of the v.e.v.’s, which transforms
the tree-level mass-matrix in the CP-odd doublet sector to:

λs√
ZS

[
Aλ cosϕ1 +

κs√
ZS

cos(ϕλ − ϕκ)

]√ZHu
ZHd

vd
vu

1

1
√

ZHd
ZHu

vu
vd

 (37)

The scaling effect on the potential corrections can be neglected as being of higher order. Then comes the scaling
of the mass-matrix:

λs√
ZSZHuZHd

[
Aλ cosϕ1 +

κs√
ZS

cos(ϕλ − ϕκ) + δpot

]( vd
vu

1

1 vu
vd

)
(38)
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so that we can extract the DR squared mass for the physical state via a β-angle rotation. Finally, the Z-factors
have to be substracted from the pole corrections, since they have been accounted for elsewhere. This provides:

m2
A

∣∣
Z

=
λs√

ZSZHuZHd

[
Aλ cosϕ1 +

κs√
ZS

cos(ϕλ − ϕκ) + δpot

]
v2u+v2d
vuvd

[
1+δpole+cos2 β(ZHu−1)+sin2 β(ZHd−1)

]
(39)

Expanding the Z-factors as Z· = 1+δZ·, we see that Eqs.36 and 39 differ by a factor 1− δZS
2 + cos 2β

2 (δZHu−δZHd).
This explains the mismatch, reaching the order of one-loop effects, that is O(1%) here. In particular, the steeper
apparent slope with varying λ, in Fig.2 is largely driven by the ZS factor. In principle, the approach including
the wave-function scaling factors is the most refined among the two methods, hence should be prefered. On the
other hand, our choice of setting the Z-factors at a low-value of the external momentum, µH = 125 GeV, is not
optimized for heavy states. In any case, a 1% effect should not be taken too seriously in view of the various
additional sources of uncertainty (parametric errors, running, etc.).

We then consider a second example with λ = 0.7, κ = 0.1, tanβ = 2, µeff ' 2.33MA + 20.45 GeV, MA ∈
[0.3, 3] TeV, Aκ = −50 GeV, mT̃ ,B̃ = 0.5 TeV, mŨ,D̃ = 1.5 TeV, mL̃,Ẽ = 110 GeV, 2M1 = M2 = 150 GeV,
M3 = 1.5 TeV At,b,τ = −0.1 TeV. The results are displayed in Fig.3. This region of the parameter space highlights
another effect in the NMSSM Higgs sector, namely the large contribution of F-terms to the mass of the SM-like
state for large λ and low tanβ. Indeed, the low value of tanβ, the low mass of the squarks of third generation
and the moderate trilinear soft terms would result in a Higgs mass below MZ in the MSSM, making this regime
incompatible with LEP limits and the LHC measurement. In the NMSSM however, we observe that the mass
of the SM-like state remains above 120 GeV: this is a consequence of the specific tree-level contributions to the
Higgs mass matrices, associated with λ. Comparison of our results with the masses obtained with NMSSMTools for
precision settings 0 and 2 again show that our calculation is typically closer to precision 2, although the differences
are larger than in the previous scan (about 1 GeV for the two light CP-even states, as can be observed on the plot
on the lower left-hand corner). We also display the output of HiggsBounds and HiggsSignals for our results (plot
on the lower right-hand side): HiggsBounds exclusions apply e.g. in the presence of very light Higgs-states with
non-vanishing doublet composition. The χ2 test of HiggsSignals provides values down to ∼ 75 – for comparison,
we obtain ∼ 78 in the SM limit – when a light doublet is present close to ∼ 125 GeV.

ii) Higgsino and gaugino masses
Our implementation of the chargino, neutralino and gluino masses should prove very similar to the original

subroutines within NMSSMTools in the CP-conserving limit. Nevertheless, small technical differences should be
noted:

• we take into account the Higgs-higgsino-singlino couplings which had been neglected in NMSSMTools: this
results in additional corrections to the higgsino and singlino masses;

• similarly, bino and winos are not assumed degenerate in the calculation of loop corrections to the higgsino
masses;

• all masses are chosen real and positive: this is possible since the diagonalizing matrices are complex. The
convention in NMSSMTools consisted in keeping these matrices real, so that some masses could take negative
values.

We consider the following region in the NMSSM parameter space: λ = 0.55, κ = 0.45, tanβ = 12, µeff ∈
[100, 1500] GeV, MA = 1 TeV, Aκ = −300 GeV, mT̃ ,B̃ = 1 TeV, mŨ,D̃ = 1.5 TeV, mL̃,Ẽ = 200 GeV, 2M1 =
M2 = M3/3 = 0.5 TeV, At,b,τ = −1.5 TeV. The masses of the higgsinos and gauginos are shown in Fig.4. The
scan over µeff drives a significant variation of the higgsino masses, while the gaugino masses remain essentially
constant. Once again, the masses obtained with the original routine of NMSSMTools are depicted with a solid line,
whereas our results appear as dots: the general features are identical. More quantitatively, the main deviation
reaches ∼ 3% at the level of the neutralino masses: it originates from the corrections to the singlino mass, which
were neglected in NMSSMTools.

For the rest of the spectrum, e.g. the sfermion masses, our calculation reduces, in the CP-conserving limit,
to the original implementation within NMSSMTools. Therefore, we will not push the comparison in this limit any
further.

4.2 CP-violating case

CP-violation could induce several phenomenological effects at colliders. The most immediate one would be the
measurement of EDM’s. The absence of any hint in corresponding searches thus places stringent limits on new-
physics phases. Note however that, at one loop order, these effects are essentially driven by the gaugino phases. In
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Figure 4: Higgsino / gaugino spectrum for λ = 0.55, κ = 0.45, tanβ = 12, µeff ∈ [100, 1500] GeV, MA = 1 TeV,
Aκ = −300 GeV, mT̃ ,B̃ = 1 TeV, mŨ,D̃ = 1.5 TeV, mL̃,Ẽ = 200 GeV, 2M1 = M2 = M3/3 = 0.5 TeV,
At,b,τ = −1.5 TeV. Comparison of our results (dots) with the implementation within NMSSMTools (solid lines;
note that the masses have been taken in absolute value). The plot below shows the ratio between our results for
neutralino masses and those delivered by NMSSMTools.

other words, new-physics phases associated to the Higgs sector or the third generation sfermions enter the EDM’s
at the two-loop level only and are thus more loosely constrained. CP-violation could also intervene in rare flavour
decays and oscillations, which are consistent so far with the SM-interpretation (where only the CKM phase is
present): such effects have not been included in our study yet and we will not discuss them here.

i) CP-violating effects in the NMSSM Higgs spectrum
CP-violation could enter the Higgs sector at tree-level, via a non-vanishing phase ϕλ − ϕκ, or at the loop-level,
e.g. via the phases associated to the sfermions of third generation. As a first consequence, the neutral Higgs states
would become scalar / pseudoscalar admixtures, which affects their couplings to SM particles: for doublet states,
the pseudoscalar component does not couple to a ZZ or W+W− pair, so that the corresponding decay channels, as
compared to the fermionic decays, are suppressed / enhanced with respect to the case of pure CP-even / CP-odd
eigenstates. Other effects can be measured in the fermionic channels, provided, however, that the fermion masses
are sufficiently large. Therefore the presence of CP-violation in the Higgs sector could be tested in precision
analyses of the Higgs properties – for the observed or hypothetical new states. Note however that doublet Higgs
states are typically shielded from CP-violating mixing – consider e.g. the zero-entries in the tree-level mass-matrix
of Eq.13 –, so that only a very high degree of precision in the measurement of the branching ratios would be likely
to detect the tiny – radiatively-generated – pseudoscalar component of a mostly CP-even state. Moreover, the
current limits on Higgs searches tend to favour a sizable mass-hierarchy between the SM-like Higgs state and the
approximately degenerate ‘heavy-doublet’ states. This makes the presence of a pseudoscalar doublet component
within the observed Higgs state unlikely, as the mixing of this state with the ‘heavy-doublet’ pseudoscalar would
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be suppressed in proportion to the large mass gap. Another test would involve the two ‘heavy-doublet’ neutral
states, which are generically close in mass, so that their mixing could be significant. Yet, the detection of CP-
violation there will still require high-precision experiments (and the discovery of these states), due to a typically
reduced production cross-section – with respect to a SM Higgs boson at the same mass; this is related to the
mostly Hd-nature of these states – as well as the opening of many less-controlled decays (e.g. towards new-physics
states).

Figure 5: Characteristics of the light Higgs states for λ = 0.68, κ = 0.1, tanβ = 2, µeff = 635 GeV, MA = 1.5 TeV,
Aκ = −100 , 0 , 10 GeV, mT̃ ,B̃,τ̃ = 0.5 TeV, mŨ,D̃,Ẽ = 1.5 TeV, 2M1 = M2 = M3/3 = 0.5 TeV, At,b,τ = −0.1 TeV.
The plots on the first line show how the masses of the Higgs states close to ∼ 125 GeV vary with ϕκ; the second
line displays the magnitude of the scalar components of these states. Characteristics of the lightest state are
shown in blue and those for the second lightest are shown in green. Finally, the lower series of plots shows how the
points compare to phenomenological limits: the violet mark indicates that the points are excluded by the test in
HiggsBounds while the brown mark stands for tensions with the EDM’s. The χ2-test of the Higgs data is obtained
with HiggsSignals and corresponds to the red curve.

In the NMSSM, another type of CP-violating mixing is allowed: a mostly CP-odd singlet may mix with the
doublet CP-even states – provided λ and κ are large and ϕλ−ϕκ is non-vanishing – and this effect could be fairly
important if these states are close in mass. In the following, we focus on the SM-like Higgs state at ∼ 125 GeV. Such
a scenario is studied in Fig.5 for λ = 0.68, κ = 0.1, tanβ = 2, µeff = 635 GeV, MA = 1.5 TeV, mT̃ ,B̃,τ̃ = 0.5 TeV,
mŨ,D̃,Ẽ = 1.5 TeV, 2M1 = M2 = M3/3 = 0.5 TeV, At,b,τ = −0.1 TeV. CP-violation is induced through variations
of ϕκ: note that this strategy is the safest in view of the EDM’s, as non-vanishing ϕλ produces direct CP-violation
in the doublet higgsino sector (as well as in the sfermion sector). In the first column of Fig.5, Aκ = −100 GeV, and
the mostly CP-odd state is relatively far in mass (∼ 250 GeV): correspondingly, the mixing with the SM-like state
does not reach 1%. The latter state has a somewhat low mass of ∼ 121 GeV which translates into a mediocre fit to
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the LHC-observed signals, hence a high χ2-value with HiggsSignals. In the second column, we take Aκ = 0 GeV,
so that the CP-odd singlet is close in mass to the SM-like state: at ϕκ = 0, the singlet has a mass of about
∼ 115 GeV. Consequently, a significant mixing develops between the two light states as soon as ϕκ 6= 0, the effect
reaching the level of 30 to 40%. A consequence is the uplift in mass of the heavier SM-like state so that the
associated signal gives an improved fit with the LHC data. The column on the right is obtained for Aκ = 10 GeV:
the CP-odd singlet is then somewhat lighter (∼ 100 GeV), so that the mixing effect at non-vanishing ϕκ remains
milder than in the previous case, yet generates an uplift of the mass of the SM-like state as well. It is to be noted
that the mostly CP-odd singlet acquires a CP-even doublet component which reaches O(10%): the latter would
generate a signal at the O(10%)-level as compared to a SM-like state at the same mass – indeed, the production
cross-section at colliders is essentially mediated by the doublet components. For a state with mass ∼ 100 GeV, the
corresponding signal could be consistent with the LEP ∼ 2.3σ excess in Higgs searches with a bb̄ final state [26],
even though the state is dominantly CP-odd.

Figure 6: Branching ratios of the light Higgs states for Aκ = 10 GeV in the scan of Fig.5.

Note that the two effects that we highlighted – uplift of the mass of the SM-like state via its mixing with
the singlet and presence of a ‘miniature’ Higgs boson under 125 GeV – are well-known in the CP-conserving
NMSSM [7], provided the auxiliary singlet is CP-even. CP-violation extends this possibility to CP-odd singlets.
Further consequences appear on Fig.6 at the level of the branching fractions of the Higgs states – we display their
values for the bb̄, cc̄ and γγ final states –: similarly to the case where the SM-like Higgs boson mixes with a
CP-even singlet, the proportions among doublet components h0

u and h0
d may fluctuate, displacing the branching

ratios. However, the main effect in Fig.6 concerns the rates of the lighter singlet state which become dominated by
CP-even-like channels – for fermionic final states, rates differ at the radiative level depending on the CP property9

–, while the fluctuations of the branching fractions of the mostly CP-even doublet are dominated by the variations
of the associated Higgs mass.

Disentangling this scenario – where a light mostly CP-odd singlet mixes with the SM-like Higgs boson – from
the CP-conserving one – where the light singlet-like state is genuinely CP-even – is likely to prove very difficult.
The reason rests with the observation that the singlets do not lend specific properties to the SM-like Higgs state –
they simply reduce its total width and might alter its branching ratios at the percent level. Moreover their decays
are essentially mediated by the doublet component which they acquire in the mixing, i.e. a CP-even one in both
cases. Typical singlet decays – towards hypothetically lighter singlet states or singlinos – would not necessarily
help to discriminate among CP-even and CP-odd mixing and would be problematic in terms of compatibility with
the measured Higgs signals. Indeed, the standard rates would then be suppressed in proportion of the magnitude
of the unconventional decays. While deviations of the rates of the observed Higgs state from the standard ones
might be interpreted via such a mixing effect – should such deviations be detected at the LHC or a future linear
collider –, it is questionable anyway whether the light singlet could be detected – possibly in Higgs-pair production:
see e.g. [33] in the CP-even case.

At the outcome of this discussion, we see that, while the CP-violating effects involving singlets in the Higgs
sector may be larger than in the pure doublet case, they are also more difficult to trace and could be mistaken
for CP-conserving phenomena. For this reason, it is essential that CP-violation be tested in processes where the
CP-properties are well-controlled, which brings us back to EDM’s or rare flavour transitions. Spectral effects in
the Higgs sector are unlikely to allow for discrimination with the CP-conserving case.

ii) Comparison of the Higgs mass predictions with the existing literature
We will now compare some of our results with existing analyses in the literature, where CP-violation has been
considered. Note that, contrarily to the comparison with the calculations in the CP-conserving NMSSMTools, one

9There is also some difference at tree-level, but the corresponding effect is very small for light fermions.
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should not expect much more than a qualitative agreement. Indeed, diverging treatments in different tools, e.g.
concerning the definition of the input – such as the choice of running Yukawa couplings or that of Aκ versus
Aκ cosϕ2 –, are known to lead to sizable deviations, already in the CP-conserving case. The level of precision in
radiative corrections is also to be considered.

NMSSMCALC [14] is a public tool computing the Higgs spectrum and decays in the Z3-conserving but possibly
CP-violating NMSSM. The chosen approach is that of a diagrammatic calculation. The level of precision has
recently been extended to include the dominant two-loop corrections [34].

Figure 7: Top: phase-dependence of the mostly h0
u Higgs state as obtained from section 4.1 of [34]. Below:

estimates of the EDM’s (normalized by their experimental upper bounds: see text). The color coding follows that
of Fig.6 of [34]: green for a scan over ϕµ, red for a scan over ϕAt and blue for a scan over φM3 . When the blue
curve does not appear, the reason is that associated values are negligibly small. Note that several estimates are
employed for the neutron EDM.

First, we focus on the results of [34] dealing with CP-violating effects, i.e. essentially Fig.6 and the surrounding
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text in that paper. If we blindly input the parameters given in section 4.1 of this reference into our framework10,
the spectrum – not unexpectedly and already with the CP-conserving NMSSSMTools – turns out to be slightly
different from the quoted one: in particular, the mostly CP-even and mostly CP-odd singlet states appear with
masses ∼ 108 GeV and ∼ 113 GeV respectively. Yet, this discrepancy can be absorbed within a small shift of
Aκ cosϕ2: using the value 203 GeV, we then recover states at ∼ 103 and ∼ 128 GeV so that the Higgs spectrum
then largely coincides with the one provided in [34].

In any case, this manipulation has little effect on the properties of the mostly h0
u-state, close to 125 GeV.

Scanning over the phases ϕAt , ϕµ – in the notations of [34], this means a scan over ϕλ, keeping ϕκ = ϕλ so that
CP-violation does not enter the Higgs sector at tree-level – and φM3 , we obtain the plots of Fig.7. On the upper
part, we observe that the general dependence of the ‘SM-like’ Higgs mass on ϕAt and ϕµ is largely reminiscent in
shape and magnitude of that observed in Fig.6 of [34]. In these two cases, CP-violation enters the Higgs sector
via radiative corrections, where the leading effect is generated by the sfermion corrections. On the other hand,
the mass obtained with our code is independent from φM3

, while such a dependence already appears at one-loop
in [34]. Note that one does not expect gluino corrections to the Higgs mass at one-loop order and it is thus
not surprising that our implementation does not show any variation with φM3 . The corresponding effect in [34]
is explained there as an artifact of the top-Yukawa DR counterterm-fixing of higher order. Note also that the
corresponding fluctuations, at the GeV level, are small compared to the uncertainty that one naively expects for
the Higgs mass (a few GeV).

In addition, we show the values of the EDM’s that we obtain in these scans. These have been normalized by the
experimental upper bounds: ∼ 1 · 10−28 e cm for the electron [35] – estimate from thorium monoxide experiment
–, ∼ 1.3 ·10−24 e cm for the Thallium atom [36], ∼ 3.1 ·10−29 e cm for the Mercury EDM [37] and ∼ 3 ·10−26 e cm
for the neutron [38]. Note that only the central values are displayed, without error bands. The color code is the
same as in Fig.6 of [34], i.e. green for the scan on ϕµ, red for that on ϕAt and blue for the one over φM3

(when
the curve does not appear in the plot, this is because the corresponding values are negligibly small). We see that
the scan over ϕµ may generate tensions with the EDM’s – mostly the electron EDM – when ϕµ is not trivial.

Figure 8: Masses and CP-even composition (XH0 2
i1 + XH0 2

i2 + XH0 2
i3 ) for the three lightest Higgs states in the

scenario of section 4.1.1 of [39].

We now turn to the one-loop analysis proposed in [39]. We first consider the scenario presented in section
4.1.1 of this reference, where CP-violation intervenes in the Higgs sector at tree-level via the phase ϕκ. Again, a
qualitatively close spectrum can be recovered with little alteration of the input proposed in the reference and our
results are displayed in Fig.8: while small differences appear, both the Higgs masses and the composition of the
states agree reasonably well with those of [39]. The major source of deviation is associated to the use of different
input – Aκ in NMSSMCALC instead of Aκ cosϕ2 in our case –, so that the comparison makes limited sense when ϕ2

becomes large (i.e. for ϕκ ∼ π/8). In the regime considered here, the CP-even and CP-odd singlet states are close

10Note that this addresses the DR-parameters in the reference, since the parameters within NMSSMTools are regarded as DR.
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Figure 9: Masses in the scenarios of section 4.1.2 (scan over ϕµ ≡ ϕλ = ϕκ) and section 4.1.3 (scan over ϕAt)
of [39].

in mass to the SM-like Higgs boson, so that the non-vanishing ϕκ generates a substantial mixing of these three
states.

[39] then considers the case where CP-violation is absent in the tree-level Higgs sector, but radiatively generated
via phases in the supersymmetric spectrum. In the first case (section 4.1.2), the ‘active’ phase is ϕλ but the
condition ϕκ = ϕλ ensures that no CP-violation enters the Higgs potential at tree-level – we will recycle the
previous notation ϕµ for this scenario. In the second case, only the phase ϕAt is non-trivial. We display our
results in Fig.9 and observe that they capture the effects depicted in Fig.5 and Fig.7 of [39].

Our code is thus able to reproduce the main qualitative features that were observed in the CP-violating case
by NMSSMCALC analyses. We stress that a more quantitative study would have limited interest, as the divergent
treatment of the input already generates discrepancies between the CP-conserving NMSSMTools and NMSSMCALC.

5 Conclusions

We have presented a series of Fortran tools extending NMSSMTools to the CP-violating case. Radiative corrections
to the supersymmetric and Higgs masses are computed at one-loop order. Dominant two-loop effects to the Higgs
masses are also included in the double-log approximation. Additionally, Higgs couplings and decays, as well as
top two-body decays and EDM’s are implemented and allow for phenomenological tests of the spectra. We have
shown that our code compares competitively with existing results, both in the CP-conserving and CP-violating
cases. The new tools will be made publicly available on the NMSSMTools website [13] in the near future.

We also highlighted a scenario made possible by CP-violation, where the SM-like Higgs would mix with a
mostly CP-odd singlet state. The consequences on the Higgs phenomenology are similar to the CP-conserving
mixing with a light CP-even singlet so that both scenarii should prove difficult to discriminate, unless genuine
CP-violating effects – e.g. in EDM’s or flavour physics – are discovered simultaneously.

Finally, we would like to close this discussion with some details concerning the future developments which
we plan to consider. First, an extension of our tools including Z3-violating terms should raise little difficulty.
Then, flavour constraints are relevant in the CP-violating NMSSM and we intend to design phenomenological
tests accordingly. Finally, the dominant two-loop corrections to the Higgs masses will be calculated in a more
quantitative way.
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A Reference functions
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We only consider the finite part of the loop integrals:

A0(m) = −F0(m2)

B0(p,m,M) = −
∫ 1

0

ln
xm2 + (1− x)(M2 − p2) + (1− x)2p2

Q2
dx

B1(p,m,M) =

∫ 1

0

(1− x) ln
xm2 + (1− x)(M2 − p2) + (1− x)2p2

Q2
dx

Finally, we borrow some of the notations of [24]:

BFF (p,m,M) = (p2 −m2 −M2)B0(p,m,M)−A0(m)−A0(M)

BSV (p,m,M) = −(2p2 + 2m2 −M2)B0(p,m,M) +A0(m)− 2A0(M) (Feynmann gauge)

B The tree-level masses and couplings

This appendix provides the reader with a detailed presentation of the tree-level spectrum and couplings of the
CP-violating, minimal-flavour-violating, R-parity and Z3 conserving NMSSM.

B.1 Tree-level masses

Here we derive the tree-level bilinear terms of the lagrangian. For a later application to the Higgs couplings as
well as to the loop-corrections in the Coleman-Weinberg effective potential, we will try to keep a full dependence
in the Higgs scalar fields S, Hu = (H+

u , H
0
u)T and Hd = (H0

d , H
−
d )T . To evaluate the masses, one of course simply

needs to replace these fields by their v.e.v.’s.

B.1.1 SM fermions

The Higgs-fermion potential reads:

Vf = −(H+
u dLV

+
CKM −H

0
uuL)Yuu

c
R + (H0

ddL −H−d uLVCKM )Ydd
c
R + (H0

deL −H−d νL)Yee
c
R + h.c. (40)
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Focussing on the third generation (and neglecting off-diagonal CKM elements), we may cast under matrix form:

Vf3 = (ūL, u
c
R, d̄L, d

c
R)Mq3


uL
ūcR
dL
d̄cR

+ (ν̄L, ēL, e
c
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νLeL
ēcR


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 (41)

from which we derive the squared-mass matrices:
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Replacing the Higgs fields by their v.e.v.’s, one obtains diagonal matrices
〈
M2

q3

〉
and

〈
M2

l3

〉
, with the usual

relations: m2
t = Y 2

t v
2
u, m2

b = Y 2
b v

2
d, m2

ν = 0, m2
τ = Y 2

τ v
2
d.

B.1.2 Electroweak gauge bosons

From the Higgs kinetic terms, one obtains the Higgs-gauge potential (where we omit the derivative Higgs couplings):
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1

4
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After the fields are rotated to the mass-states,
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we derive:
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This leads to the usual gauge-boson masses: M2
γ = 0, M2

W = g2

2 (v2
u + v2

d), M2
Z = g′2+g2

2 (v2
u + v2

d).
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B.1.3 Sfermions

The Higgs-sfermion potential originates from soft, F and D terms:
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∣∣YuVCKMH+

u U
c
R − YdH0

dD
c
R

∣∣2 +
∣∣∣YuH0

uU
c
R − YdH−d V

†
CKMD

c
R

∣∣∣2
+
∣∣(H0

dDL −H−d ULVCKM )Yd
∣∣2 +

∣∣(H0
dEL −H−d NL)Ye

∣∣2 +
∣∣YeH−d EcR∣∣2 +

∣∣YeH0
dE

c
R

∣∣2
+
∣∣λeıϕλSH+

u − ULVCKMYdDc
R −NLYeEcR

∣∣2 +
∣∣λeıϕλSH0

u −DLYdD
c
R − ELYeEcR

∣∣2
+
∣∣λeıϕλSH0

d − ULYuU cR
∣∣2 +

∣∣∣λeıϕλSH−d −DLV
†
CKMYuU

c
R

∣∣∣2
+
g′2

8

∣∣∣∣H†uHu −H†dHd +
1

3
Q†LQL −

4

3
U c †R U cR +

2

3
Dc †
R D

c
R − L

†
LLL + 2Ec †R EcR

∣∣∣∣2
+
g2

8

∣∣∣H†u−→σ Hu +H†d
−→σ Hd +Q†L

−→σ QL + L†L
−→σ LL

∣∣∣2
The bilinear sfermion terms can be cast under matrix form:

VF̃ 3 (U†L, U
c
R, D

†
L, D

c
R)

(
M2

U M2 †
D†U

M2
D†U M2

D

)
UL
U c †R
DL

Dc †
R

+ (N†L, E
†
L, E

c
R)

(
M2

N M2 †
E†N

M2
E†N M2

E

)NL
EL
Ec †R

 (48)

with the matrix blocks:

M2
U =

(
m2
Q + Y 2

u |H0
u|2 + 1

4

(
g′2

3 − g
2
)

(|H0
u|2 − |H0

d |2) Yu
[
Aue

−ıϕAuH0 ∗
u − λeıϕλSH0

d

]
Yu
[
Aue

ıϕAuH0
u − λe−ıϕλS∗H0 ∗

d

]
m2
U + Y 2

u |H0
u|2 −

g′2

3 (|H0
u|2 − |H0

d |2)

)
(49)

+

(
VCKMY

2
d V
†
CKMH

+
d H

−
d + 1

4

(
g′2

3 + g2
)

(H+
u H

−
u −H+

d H
−
d ) 0

0 Y 2
uH

+
u H

−
u −

g′2

3 (H+
u H

−
u −H+

d H
−
d )

)

M2
D =

(
m2
Q + Y 2

d |H0
d |2 + 1

4

(
g′2

3 + g2
)

(|H0
u|2 − |H0

d |2) Yd
[
Ade

−ıϕAdH0 ∗
d − λeıϕλSH0

u

]
Yd
[
Ade

ıϕAdH0
d − λe−ıϕλS∗H0 ∗

u

]
m2
D + Y 2

d |H0
d |2 + g′2

6 (|H0
u|2 − |H0

d |2)

)
(50)

+

(
V †CKMY

2
u VCKMH

+
u H

−
u + 1

4

(
g′2

3 − g
2
)

(H+
u H

−
u −H+

d H
−
d ) 0

0 Y 2
d H

+
d H

−
d + g′2

6 (H+
u H

−
u −H+

d H
−
d )

)

M2
D†U =

(
−V †CKMY 2

uH
0
uH
−
u − Y 2

d V
†
CKMH

0 ∗
d H−d + g2

2 V
†
CKM (H0

uH
−
u +H0 ∗

d H−d ) −V †CKMYu
[
Aue

−ıϕAuH−u + λeıϕλSH−d
]

−Yd
[
Ade

ıϕAdH−d + λe−ıϕλS∗H−u
]
V †CKM −YdV †CKMYu(H0

dH
−
u +H0 ∗

u H−d )

)
(51)

M2
N = m2

L −
g′2 + g2

4
(|H0

u|2 − |H0
d |2) + Y 2

e H
+
d H

−
d +

−g′2 + g2

4
(H+

u H
−
u −H+

d H
−
d ) (52)

M2
E =

(
m2
L + Y 2

e |H0
d |2 + −g′2+g2

4 (|H0
u|2 − |H0

d |2) Ye
[
Aee

−ıϕAeH0 ∗
d − λeıϕλSH0

u

]
Ye
[
Aee

ıϕAeH0
d − λe−ıϕλS∗H0 ∗

u

]
m2
E + Y 2

e |H0
d |2 + g′2

2 (|H0
u|2 − |H0

d |2)

)
(53)

+

(
− g
′2+g2

4 (H+
u H

−
u −H+

d H
−
d ) 0

0 Y 2
e H

+
d H

−
d + g′2

2 (H+
u H

−
u −H+

d H
−
d )

)

M2
E†N =

(
−
(
Y 2
e −

g2

2

)
H0 ∗
d H−d + g2

2 H
0
uH
−
u −Ye

[
Aee

ıϕAeH−d + λe−ıϕλS∗H−u
])

(54)

Moving to the v.e.v.’s, the matrices become block diagonal – each block being associated to a given electric charge
of the sfermion fields. Under our Minimal Flavour Violation hypothesis the various generations also decouple so
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that we are left with 2× 2 (hermitian) mass-matrices
〈
M2

F

〉
. Those can be diagonalized via unitary matrices XF ,

according to:

〈
M2

F

〉
= XF †diag(m2

F1
,m2

F2
)XF ; XF ≡

(
cos θF − sin θF e

ıϕF

sin θF e
−ıϕF cos θF

)

m2
F1

= 1
2

[〈
M2

F

〉
11

+
〈
M2

F

〉
22
−
√(
〈M2

F 〉11 − 〈M
2
F 〉22

)2
+ 4 〈M2

F 〉
2

12

]
m2
F2

= 1
2

[〈
M2

F

〉
11

+
〈
M2

F

〉
22

+

√(
〈M2

F 〉11 − 〈M
2
F 〉22

)2
+ 4 〈M2

F 〉
2

12

]
θF = arctan

[
〈M2

F 〉11−〈M2
F 〉22+

√
(〈M2

F 〉11−〈M2
F 〉22)

2
+4〈M2

F 〉212
2|〈M2

F 〉12|

]
ϕF = arg[

〈
M2

F

〉
12

]

(55)

The mass-states are given by Fi = XF
iLFL +XF

iRF
c ∗
R (where, in our notation 1↔ L and 2↔ R).

B.1.4 Charginos and neutralinos

The gaugino-higgsino-Higgs potential may also be cast under matrix form:

Vχ =
1

2
χT

 0 Mχ−+ Mχ−0

Mχ+− 0 Mχ+0

Mχ0− Mχ0+ Mχ0

χ+ h.c. ; χT ≡ (−ıw̃−, h̃−d ,−ıw̃
+, h̃+

u ,−ıb̃,−ıw̃3, h̃0
u, h̃

0
d, h̃

0
s)

Mχ−+ =

(
M2e

ıφM2 gH0 ∗
u

gH0 ∗
d λeıϕλS

)
=MT

χ+− (56)

Mχ−0 =

(
0 0 0 gH+

d 0

− g′√
2
H+
d − g√

2
H+
d 0 0 λeıϕλH+

u

)
=MT

χ0−

Mχ+0 =

(
0 0 gH−u 0 0

g′√
2
H−u

g√
2
H−u 0 0 λeıϕλH−d

)
=MT

χ0+

Mχ0 =


M1e

ıφM1 0 g′√
2
H0 ∗
u − g′√

2
H0 ∗
d 0

0 M2e
ıφM2 − g√

2
H0 ∗
u

g√
2
H0 ∗
d 0

g′√
2
H0 ∗
u − g√

2
H0 ∗
u 0 −λeıϕλS −λeıϕλH0

d

− g′√
2
H0 ∗
d

g√
2
H0 ∗
d −λeıϕλS 0 −λeıϕλH0

u

0 0 −λeıϕλH0
d −λeıϕλH0

u 2κeıϕκS

 =MT
χ0

i) Charginos
The 2× 2 chargino mass-matrix may be diagonalized via two unitary matrices U and V :〈

Mχ−+

〉
= UTdiag(mχ±1

,mχ±2
)V . To determine mχ±1

, mχ±2
, U and V , we consider the hermitian matrices:〈

M2
χ+

〉
≡
〈
Mχ−+

〉† 〈Mχ−+

〉
= V †diag(m2

χ±1
,m2

χ±2
)V〈

M2
χ−

〉
≡
〈
Mχ−+

〉 〈
Mχ−+

〉†
= UTdiag(m2

χ±1
,m2

χ±2
)U∗
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which provide:
m2
χ±1

= 1
2

[〈
M2

χ+

〉
11

+
〈
M2

χ+

〉
22
−
√(〈

M2
χ+

〉
11
−
〈
M2

χ+

〉
22

)2

+ 4
〈
M2

χ+

〉2

12

]

m2
χ±2

= 1
2

[〈
M2

χ+

〉
11

+
〈
M2

χ+

〉
22

+

√(〈
M2

χ+

〉
11
−
〈
M2

χ+

〉
22

)2

+ 4
〈
M2

χ+

〉2

12

]

θV = arctan

〈M2
χ+

〉
11
−
〈
M2

χ+

〉
22

+

√(〈
M2

χ+

〉
11
−
〈
M2

χ+

〉
22

)2
+4
〈
M2

χ+

〉2

12

2|
〈
M2

χ+

〉
12
|


ϕV = arg[

〈
M2

χ+

〉
12

]
θU = arctan

〈M2
χ−

〉
11
−
〈
M2

χ−

〉
22

+

√(〈
M2

χ−

〉
11
−
〈
M2

χ−

〉
22

)2
+4
〈
M2

χ−

〉2

12

2|
〈
M2

χ−

〉
12
|


ϕU = −arg[

〈
M2

χ−

〉
12

]

U ≡
(
eıϕ̂U 0

0 1

)(
cos θU − sin θUe

ıϕU

sin θUe
−ıϕU cos θU

)
; V ≡

(
1 0
0 eıϕ̂V

)(
cos θV − sin θV e

ıϕV

sin θV e
−ıϕV cos θV

)
The choice of phases ϕ̂U , ϕ̂V is a priori arbitrary. We decide to determine them by the requirement that mχ±1

and

mχ±2
, obtained in the matrix product U∗

〈
Mχ−+

〉
V †, are real and positive. The associated mass-states are then:

χ+ = Vi1(−ıw̃+) + Vi2h̃
+
u ≡ Viw(−ıw̃+) + Viuh̃

+
u ; χ− = Ui1(−ıw̃−) + Ui2h̃

−
d ≡ Uiw(−ıw̃−) + Uidh̃

−
d

ii) Neutralinos
The 5× 5 neutralino mass-matrix is symmetric, hence is diagonalizable via a single unitary matrix N :〈

Mχ0

〉
= NTdiag(mχ0

i
, i = 1, . . . , 5)N . As before, we first consider the hermitian matrix〈

M2
χ0

〉
≡
〈
Mχ0

〉† 〈Mχ0

〉
= N†diag(m2

χ0
i
, i = 1, . . . , 5)N

This hermitian matrix – or equivalently the 10×10 symmetric matrix

(
Re Im
−Im Re

)〈
M2

χ0

〉
– may be diagonalized

numerically, providing us with m2
χ0
i
, i = 1, . . . , 5 and a diagonalization matrix N0. We define N = diag(e

ıϕ
χ0
i , i =

1, . . . , 5)N0, where the phases ϕχ0
i
, i = 1, . . . , 5 are determined by the requirement that the masses mχ0

i
, i = 1, . . . , 5

obtained from the matrix product N∗
〈
Mχ0

〉
N† are real and positive. The neutralino mass-states are then defined

as:

χ0 = Ni1(−ıb̃) +Ni2(−ıw̃3) +Ni3h̃
0
u +Ni4h̃

0
d +Ni5h̃

0
s ≡ Nib(−ıb̃) +Niw(−ıw̃3) +Niuh̃

0
u +Nidh̃

0
d +Nish̃

0
s

B.1.5 Gluinos

The gluons of course remain massless. Concerning their supersymmetric partners, the gluino bilinear terms read:

Vg̃ = −M3e
ıφM3 g̃ag̃a + h.c. (57)

so that we define the mass states G̃a ≡ −ıe
ı
2φM3 g̃a, with mass M3.

B.1.6 Higgs sector

The tree-level Higgs potential is given in Eq.9.

i) Minimization Conditions
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First derivatives of the potential must vanish at the minimum, which provides:

1

2

〈
∂VH0

∂h0
u/
√

2

〉
= 0 =

[
m2
Hu + λ2(s2 + v2

d) +
g′2 + g2

4
(v2
u − v2

d)

]
vu − λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)] vd

1

2

〈
∂VH0

∂h0
d/
√

2

〉
= 0 =

[
m2
Hd

+ λ2(s2 + v2
u)− g′2 + g2

4
(v2
u − v2

d)

]
vd − λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)] vu

1

2

〈
∂VH0

∂h0
s/
√

2

〉
= 0 =

[
m2
S + κs(Aκ cosϕ2) + 2κs+ λ2(v2

u + v2
d)
]
s− λ [Aλ cosϕ1 + 2κs cos(ϕλ − ϕκ)] vuvd

1

2

〈
∂VH0

∂a0
u/
√

2

〉
= 0 = λs [Aλ sinϕ1 + κs sin(ϕλ − ϕκ)] vd

1

2

〈
∂VH0

∂a0
d/
√

2

〉
= 0 = λs [Aλ sinϕ1 + κs sin(ϕλ − ϕκ)] vu

1

2

〈
∂VH0

∂a0
s/
√

2

〉
= 0 = λ [Aλ sinϕ1 − 2κs sin(ϕλ − ϕκ)] vuvd − κs2Aκ sinϕ2

So that one can express certain parameters in terms of the v.e.v.’s:

m2
Hu = λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]

vd
vu
− λ2(s2 + v2

d)− g′2 + g2

4
(v2
u − v2

d)

m2
Hd

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vu
vd
− λ2(s2 + v2

u) +
g′2 + g2

4
(v2
u − v2

d)

m2
S = λ [Aλ cosϕ1 + 2κs cos(ϕλ − ϕκ)]

vuvd
s
− κs(Aκ cosϕ2) + 2κs− λ2(v2

u + v2
d)

Aλ sinϕ1 = −κs sin(ϕλ − ϕκ)

Aκ sinϕ2 =
λ

κ
[Aλ sinϕ1 − 2κs sin(ϕλ − ϕκ)]

vuvd
s2

= −3λ
vuvd
s

sin(ϕλ − ϕκ)

ii) Charged Higgs
The 2× 2 charged-Higgs bilinear terms read:

VH± = (H−u , H
−
d )M2

H±

(
H+
u

H+
d

)
(58)

M2
H±

∣∣
11

= m2
Hu + λ2|S|2 +

g′2 + g2

4

(
|H0

u|2 − |H0
d |2
)

+
g2

2
|H0

d |2 + λ2H+
d H

−
d +

g′2 + g2

4
H+
u H

−
u

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vd
vu
−
(
λ2 − g2

2

)
v2
d

+ λ2(|S|2 − s2) +
g′2 + g2

4

(
|H0

u|2 − |H0
d |2 − v2

u + v2
d

)
+
g2

2
(|H0

d |2 − v2
d) + λ2H+

d H
−
d +

g′2 + g2

4
H+
u H

−
u

M2
H±

∣∣
22

= m2
Hd

+ λ2|S|2 − g′2 + g2

4

(
|H0

u|2 − |H0
d |2
)

+
g2

2
|H0

u|2 + λ2H+
u H

−
u +

g′2 + g2

4
H+
d H

−
d

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vu
vd
−
(
λ2 − g2

2

)
v2
u

+ λ2(|S|2 − s2)− g′2 + g2

4

(
|H0

u|2 − |H0
d |2 − v2

u + v2
d

)
+
g2

2
(|H0

u|2 − v2
u) + λ2H+

u H
−
u +

g′2 + g2

4
H+
d H

−
d

M2
H±

∣∣
12

= λ
[
Aλe

−ıϕ1S∗ + κe−ı(ϕλ−ϕκ)S2
]
− (λ2 − g2

2
)H0

uH
0
d + (λ2 − g′2 + g2

4
)H+

u H
−
d = M2

H±

∣∣∗
21

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]−
(
λ2 − g2

2

)
vuvd + (λ2 − g′2 + g2

4
)H+

u H
−
d

+ λ
[
Aλ cosϕ1(S∗ − s) + κ cos(ϕλ − ϕκ)(S2 − s2)− ıκ sin(ϕλ − ϕκ)(S2 − sS∗)

]
− (λ2 − g2

2
)(H0

uH
0
d − vuvd)
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Obviously,

〈
M2

H±

〉
=

{
λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]−

(
λ2 − g2

2

)
vuvd

}( vd
vu

1

1 vu
vd

)
=

(
− sinβ cosβ
cosβ sinβ

)(
0 0
0 m2

H±

)(
− sinβ cosβ
cosβ sinβ

)
m2
H± ≡

{
λs

vuvd
[Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]−

(
λ2 − g2

2

)}
(v2
u + v2

d) ; tanβ ≡ vu
vd

(59)

with the Goldstone boson G± = − sinβH±u + cosβH±d and the charged Higgs state H± = cosβH±u + sinβH±d .
We will denote the corresponding rotation matrix as follows:

XC ≡
(
− sinβ cosβ
cosβ sinβ

)
; H±1 ≡ G± ; H±2 ≡ H±

iii) Neutral Higgs

The symmetric 6 × 6 bilinear Higgs matrix M2
H0 ≡

[
1
2

∂2VH0

∂Si/
√

2∂Sj/
√

2
, Si,j = h0

u, h
0
d, h

0
s, a

0
u, a

0
d, a

0
s

]
includes the

following elements:

M2
H0

∣∣
11

= m2
Hu + λ2(|S|2 + |H0

d |2) +
g′2 + g2

4

(
2Re(H0

u)2 + |H0
u|2 − |H0

d |2
)

+
g′2 + g2

4
H+
u H

−
u −

g′2 − g2

4
H+
d H

−
d

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vd
vu

+
g′2 + g2

2
v2
u +

g′2 + g2

4
H+
u H

−
u −

g′2 − g2

4
H+
d H

−
d

+ λ2(|S|2 − s2 + |H0
d |2 − v2

d) +
g′2 + g2

4

(
2Re(H0

u)2 + |H0
u|2 − |H0

d |2 − 3v2
u + v2

d

)

M2
H0

∣∣
12

= −λRe
[
Aλe

ıϕ1S + κeı(ϕλ−ϕκ)S∗ 2
]

+ 2

(
λ2 − g′2 + g2

4

)
Re(H0

u)Re(H0
d)

= −λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)] + 2

(
λ2 − g′2 + g2

4

)
vuvd − (λ2 − g2

2
)Re(H+

u H
−
d )

− λ
[
Aλ cosϕ1Re(S − s) + κ cos(ϕλ − ϕκ)Re(S2 − s2) + κ sin(ϕλ − ϕκ)Im(S)Re(2S + s)

]
+ 2

(
λ2 − g′2 + g2

4

)
(Re(H0

u)Re(H0
d)− vuvd)− (λ2 − g2

2
)Re(H+

u H
−
d )

M2
H0

∣∣
22

= m2
Hd

+ λ2(|S|2 + |H0
u|2) +

g′2 + g2

4

(
2Re(H0

d)2 − |H0
u|2 + |H0

d |2
)

+
g′2 + g2

4
H+
d H

−
d −

g′2 − g2

4
H+
u H

−
u

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vu
vd

+
g′2 + g2

2
v2
d +

g′2 + g2

4
H+
d H

−
d −

g′2 − g2

4
H+
u H

−
u

+ λ2(|S|2 − s2 + |H0
u|2 − v2

u) +
g′2 + g2

4

(
2Re(H0

d)2 + |H0
d |2 − |H0

u|2 − 3v2
d + v2

u

)
M2

H0

∣∣
13

= −λRe
[
(Aλe

ıϕ1 + 2κeı(ϕλ−ϕκ)S∗)H0
d

]
+ 2λ2Re(S)Re(H0

u)

= −λvd [Aλ cosϕ1 + 2κs cos(ϕλ − ϕκ)] + 2λ2svu

− λ
[
Aλ cosϕ1Re(H0

d − vd) + 2κ cos(ϕλ − ϕκ)Re(S∗H0
d − svd)

+ κ sin(ϕλ − ϕκ)
(
Im(H0

d)Re(s− 2S) + 2Im(S)Re(H0
d)
)]

+ 2λ2
(
Re(S)Re(H0

u)− svu
)

M2
H0

∣∣
23

= −λRe
[
(Aλe

ıϕ1 + 2κeı(ϕλ−ϕκ)S∗)H0
u

]
+ 2λ2Re(S)Re(H0

d)

= −λvu [Aλ cosϕ1 + 2κs cos(ϕλ − ϕκ)] + 2λ2svd

− λ
[
Aλ cosϕ1Re(H0

u − vu) + 2κ cos(ϕλ − ϕκ)Re(S∗H0
u − svu)

+ κ sin(ϕλ − ϕκ)
(
Im(H0

u)Re(s− 2S) + 2Im(S)Re(H0
u)
)]

+ 2λ2
(
Re(S)Re(H0

d)− svd
)
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M2
H0

∣∣
33

= m2
S + 2κAκRe(eıϕ2S) + 2κ2

[
2Re(S)2 + |S|2

]
+ λ2(|H0

u|2 + |H0
d |2)− 2λκRe

[
eı(ϕλ−ϕκ)H0

uH
0
d

]
+ λ2

[
H+
u H

−
u +H+

d H
−
d

]
+ 2λκRe

[
eı(ϕλ−ϕκ)H+

u H
−
d

]
= κs [Aκ cosϕ2 + 4κs] + λAλ cosϕ1

vuvd
s

+ λ2
[
H+
u H

−
u +H+

d H
−
d

]
+ 2λκRe

[
eı(ϕλ−ϕκ)H+

u H
−
d

]
+ 2κ

[
Aκ cosϕ2Re(S − s) + κ

(
2Re(S)2 + |S|2 − 3s2

)]
+ λ2

[
|H0

u|2 + |H0
d |2 − v2

u − v2
d

]
− 2λκ

[
cos (ϕλ − ϕκ)Re(H0

uH
0
d − vuvd)− sin (ϕλ − ϕκ)

(
Re(H0

u)Im(H0
d) + Im(H0

u)Re(H0
d) + 3

vuvd
s

Im(S)
)]

M2
H0

∣∣
14

=
g′2 + g2

2
Re(H0

u)Im(H0
u)

M2
H0

∣∣
24

= −λRe
[
ı
(
Aλe

ıϕ1S + κeı(ϕλ−ϕκ)S∗ 2
)]

+ 2

(
λ2 − g′2 + g2

4

)
Im(H0

u)Re(H0
d)− (λ2 − g2

2
)Im(H+

u H
−
d )

= λ
[
(Aλ cosϕ1 − 2κ cos(ϕλ − ϕκ)Re(S)) Im(S) + κ sin(ϕλ − ϕκ)Re(S2 − sS)

]
+ 2

(
λ2 − g′2 + g2

4

)
Im(H0

u)Re(H0
d)− (λ2 − g2

2
)Im(H+

u H
−
d )

M2
H0

∣∣
34

= −λRe
[
ı
(
Aλe

ıϕ1 + 2κeı(ϕλ−ϕκ)S∗
)
H0
d

]
+ 2λ2Re(S)Im(H0

u)

= λκsvd sin(ϕλ − ϕκ) + λ
[
Aλ cosϕ1Im(H0

d) + 2κ cos(ϕλ − ϕκ)
(
Re(S)Im(H0

d)− Im(S)Re(H0
d)
)

+κ sin(ϕλ − ϕκ)Re((2S∗ − s)H0
d − svd)

]
+ 2λ2Im(H0

u)Re(S)

M2
H0

∣∣
44

= m2
Hu + λ2(|S|2 + |H0

d |2) +
g′2 + g2

4

(
2Im(H0

u)2 + |H0
u|2 − |H0

d |2
)

+
g′2 + g2

4
H+
u H

−
u −

g′2 − g2

4
H+
d H

−
d

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vd
vu

+
g′2 + g2

4
H+
u H

−
u −

g′2 − g2

4
H+
d H

−
d

+ λ2(|S|2 − s2 + |H0
d |2 − v2

d) +
g′2 + g2

4

(
2Im(H0

u)2 + |H0
u|2 − |H0

d |2 − v2
u + v2

d

)

M2
H0

∣∣
15

= −λRe
[
ı
(
Aλe

ıϕ1S + κeı(ϕλ−ϕκ)S∗ 2
)]

+ 2

(
λ2 − g′2 + g2

4

)
Re(H0

u)Im(H0
d)− (λ2 − g2

2
)Im(H+

u H
−
d )

= λ
[
(Aλ cosϕ1 − 2κ cos(ϕλ − ϕκ)Re(S)) Im(S) + κ sin(ϕλ − ϕκ)Re(S2 − sS)

]
+ 2

(
λ2 − g′2 + g2

4

)
Re(H0

u)Im(H0
d)− (λ2 − g2

2
)Im(H+

u H
−
d )

M2
H0

∣∣
25

=
g′2 + g2

2
Re(H0

d)Im(H0
d)

M2
H0

∣∣
35

= −λRe
[
ı
(
Aλe

ıϕ1 + 2κeı(ϕλ−ϕκ)S∗
)
H0
u

]
+ 2λ2Re(S)Im(H0

d)

= λκsvu sin(ϕλ − ϕκ) + λ
[
Aλ cosϕ1Im(H0

u) + 2κ cos(ϕλ − ϕκ)
(
Re(S)Im(H0

u)− Im(S)Re(H0
u)
)

+κ sin(ϕλ − ϕκ)Re((2S∗ − s)H0
u − svu)

]
+ 2λ2Im(H0

d)Re(S)

M2
H0

∣∣
45

= λRe
[
Aλe

ıϕ1S + κeı(ϕλ−ϕκ)S∗ 2
]

+ 2

(
λ2 − g′2 + g2

4

)
Im(H0

u)Im(H0
d) + (λ2 − g2

2
)Re(H+

u H
−
d )

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]

+ λ
[
Aλ cosϕ1Re(S − s) + κ cos(ϕλ − ϕκ)Re(S2 − s2) + κ sin(ϕλ − ϕκ)Im(S)Re(2S + s)

]
+ 2

(
λ2 +

g′2 + g2

4

)
Im(H0

u)Im(H0
d)− (λ2 − g2

2
)Re(H+

u H
−
d )
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M2
H0

∣∣
55

= m2
Hd

+ λ2(|S|2 + |H0
u|2) +

g′2 + g2

4

(
2Im(H0

d)2 − |H0
u|2 + |H0

d |2
)

+
g′2 + g2

4
H+
d H

−
d −

g′2 − g2

4
H+
u H

−
u

= λs [Aλ cosϕ1 + κs cos(ϕλ − ϕκ)]
vu
vd

+
g′2 + g2

4
H+
d H

−
d −

g′2 − g2

4
H+
u H

−
u

+ λ2(|S|2 − s2 + |H0
u|2 − v2

u) +
g′2 + g2

4

(
2Im(H0

d)2 + |H0
d |2 − |H0

u|2 − 3v2
d + v2

u

)
M2

H0

∣∣
16

= −λRe
[
ı
(
Aλe

ıϕ1 − 2κeı(ϕλ−ϕκ)S∗
)
H0
d

]
+ 2λ2Im(S)Re(H0

u)

= −3λκsvd sin(ϕλ − ϕκ) + λ
[
Aλ cosϕ1Im(H0

d) + 2κ cos(ϕλ − ϕκ)
(
Im(S)Re(H0

d)− Re(S)Im(H0
d)
)

−κ sin(ϕλ − ϕκ)Re((2S∗ + s)H0
d − 3svd)

]
+ 2λ2Im(S)Re(H0

u)

M2
H0

∣∣
26

= −λRe
[
ı
(
Aλe

ıϕ1 − 2κeı(ϕλ−ϕκ)S∗
)
H0
u

]
+ 2λ2Im(S)Re(H0

d)− 2λκRe
[
ıeı(ϕλ−ϕκ)H+

u H
−
d

]
= −3λκsvu sin(ϕλ − ϕκ) + λ

[
Aλ cosϕ1Im(H0

u) + 2κ cos(ϕλ − ϕκ)
(
Im(S)Re(H0

u)− Re(S)Im(H0
u)
)

−κ sin(ϕλ − ϕκ)Re((2S∗ + s)H0
u − 3svu)

]
+ 2λ2Im(S)Re(H0

d)

M2
H0

∣∣
36

= 2κAκRe [ıeıϕ2S] + 4κ2Re(S)Im(S) + 2λκRe
[
ıeı(ϕλ−ϕκ)H0

uH
0
d

]
= 4λκvuvd sin(ϕλ − ϕκ) + 2λκ sin(ϕλ − ϕκ)

[
3

Re(S)

s
vuvd − Re(H0

uH
0
d)− 2vuvd

]
− 2κ [Aκ cosϕ2 − 2κRe(S)] Im(S)− 2λκ cos(ϕλ − ϕκ)

[
Im(H0

u)Re(H0
d) + Re(H0

u)Im(H0
d)
]

− 2λκRe
[
ıeı(ϕλ−ϕκ)H+

u H
−
d

]

M2
H0

∣∣
46

= λRe
[
(Aλe

ıϕ1 − 2κeı(ϕλ−ϕκ)S∗)H0
d

]
+ 2λ2Im(S)Im(H0

u)

= λvd [Aλ cosϕ1 − 2κs cos(ϕλ − ϕκ)]

+ λ
[
Aλ cosϕ1Re(H0

d − vd)− 2κ cos(ϕλ − ϕκ)Re(S∗H0
d − svd)

+ κ sin(ϕλ − ϕκ)
(
Im(H0

d)Re(2S + s)− 2Im(S)Re(H0
d)
)]

+ 2λ2Im(S)Im(H0
u)

M2
H0

∣∣
56

= −λRe
[
(Aλe

ıϕ1 − 2κeı(ϕλ−ϕκ)S∗)H0
u

]
+ 2λ2Im(S)Im(H0

d)

= λvu [Aλ cosϕ1 − 2κs cos(ϕλ − ϕκ)]

+ λ
[
Aλ cosϕ1Re(H0

u − vu)− 2κ cos(ϕλ − ϕκ)Re(S∗H0
u − svu)

+ κ sin(ϕλ − ϕκ)
(
Im(H0

u)Re(2S + s)− 2Im(S)Re(H0
u)
)]

+ 2λ2Im(S)Im(H0
d)

M2
H0

∣∣
66

= m2
S − 2κAκRe(eıϕ2S)− 2κ2

[
2Im(S)2 + |S|2

]
+ λ2(|H0

u|2 + |H0
d |2) + 2λκRe

[
eı(ϕλ−ϕκ)H0

uH
0
d

]
+ λ2

[
H+
u H

−
u +H+

d H
−
d

]
− 2λκRe

[
eı(ϕλ−ϕκ)H+

u H
−
d

]
= −3κsAκ cosϕ2 + λ

vuvd
s

[Aλ cosϕ1 + 4κs cos(ϕλ − ϕκ)] + λ2
[
H+
u H

−
u +H+

d H
−
d

]
− 2λκRe

[
eı(ϕλ−ϕκ)H+

u H
−
d

]
− 2κAκ cosϕ2Re(S − s) + 2κ2

(
2Im(S)2 + |S|2 − s2

)
+ λ2

[
|H0

u|2 + |H0
d |2 − v2

u − v2
d

]
+ 2λκ

[
cos (ϕλ − ϕκ)Re(H0

uH
0
d − vuvd)− sin (ϕλ − ϕκ)

(
Re(H0

u)Im(H0
d) + Im(H0

u)Re(H0
d) + 3

vuvd
s

Im(S)
)]

As for the case of the charged Higgs, the Goldstone boson G0 ≡ − sinβa0
u + cosβa0

d can be separated from the
doublet CP-odd state a0 ≡ cosβa0

u+sinβa0
d by a rotation of angle β. The remaining (symmetric) 5×5 sub-matrix

of massive states
〈
M̃2

H0

〉
may be diagonalized (numerically) through an orthogonal matrix XH0

:〈
M̃2

H0

〉
= XH0 Tdiag(m2

S0
i
, i = 1, . . . , 5)XH0

(60)
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The corresponding mass-states are then:

S0
i = XH0

i1 h0
u +XH0

i2 h0
d +XH0

i3 h0
s +XH0

i4 a0 +XH0

i5 a0
s ≡ XR

iuh
0
u +XR

idh
0
d +XR

ish
0
s +XI

iaa
0 +XI

isa
0
s

iv) Charged-Neutral Higgs terms
For completeness we indicate the bilinear terms mixing charged and neutral Higgs states (note that M2

∣∣
S−S0 =

M2
∣∣∗
S+S0):

M2
∣∣
H+
u h0

u
=

1√
2

[
−(λ2 − g2

2
)H−d H

0 ∗
d +

g′2 + g2

2
H−u Re(H0

u)

]
M2

∣∣
H+
u h

0
d

=
1√
2

[
−(λ2 − g2

2
)H−d H

0 ∗
u −

g′2 − g2

2
H−u Re(H0

d)

]
M2

∣∣
H+
u h0

s
=

1√
2

[
λ
(
Aλe

ıϕ1 + 2κeı(ϕλ−ϕκ)S∗
)
H−d + 2λ2Re(S)H−u

]
M2

∣∣
H+
d h

0
u

=
1√
2

[
−(λ2 − g2

2
)H−u H

0
d −

g′2 − g2

2
H−d Re(H0

u)

]
M2

∣∣
H+
d h

0
d

=
1√
2

[
−(λ2 − g2

2
)H−u H

0
u +

g′2 + g2

2
H−d Re(H0

d)

]
M2

∣∣
H+
d h

0
s

=
1√
2

[
λ
(
Aλe

−ıϕ1 + 2κe−ı(ϕλ−ϕκ)S
)
H−u + 2λ2Re(S)H−d

]

M2
∣∣
H+
u a0u

=
1√
2

[
ı(λ2 − g2

2
)H−d H

0 ∗
d +

g′2 + g2

2
H−u Im(H0

u)

]
M2

∣∣
H+
u a

0
d

=
1√
2

[
ı(λ2 − g2

2
)H−d H

0 ∗
u −

g′2 − g2

2
H−u Im(H0

d)

]
M2

∣∣
H+
u a0s

=
1√
2

[
ıλ
(
Aλe

ıϕ1 − 2κeı(ϕλ−ϕκ)S∗
)
H−d + 2λ2Im(S)H−u

]
M2

∣∣
H+
d a

0
u

=
1√
2

[
−ı(λ2 − g2

2
)H−u H

0
d −

g′2 − g2

2
H−d Im(H0

u)

]
M2

∣∣
H+
d a

0
d

=
1√
2

[
−ı(λ2 − g2

2
)H−u H

0
u +

g′2 + g2

2
H−d Im(H0

d)

]
M2

∣∣
H+
d a

0
s

=
1√
2

[
−ıλ

(
Aλe

−ıϕ1 + 2κe−ı(ϕλ−ϕκ)S
)
H−u + 2λ2Im(S)H−d

]
B.2 Tree-level Higgs couplings

Having presented the spectrum and our conventions, we may now turn to the Higgs couplings.

B.2.1 Higgs-SM fermions

Employing the Dirac-fermion notation, the Higgs couplings to SM fermions may be cast in the following form
(with the usual left- and right-handed projectors PL,R):

Vf 3 f̄
[
gSf̄f

′

L PL + gSf̄f
′

R PR

]
f ′S ; gSf̄f

′

R =
(
gS
∗f̄ ′f

L

)∗
(61)

with the (non-vanishing) values of gSf̄f
′

L :

g
S0
i ūu
L =

Yu√
2

[
XR
iu + ıXI

iu

]
gH

+ūd
L = −Yu cosβ

g
S0
i d̄d
L =

Yd√
2

[
XR
id + ıXI

id

]
gH
−d̄u

L = −Yb sinβ

g
S0
i ēe
L =

Ye√
2

[
XR
id + ıXI

id

]
gH
−ēν

L = −Ye sinβ
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B.2.2 Higgs-gauge

The situation is unchanged with respect to the CP-conserving case:

VG 3 gSV V
′

µν SV µV ′ν + gSS
′V V ′

µν SS′V µV ′ν + gSS
′V ı (S∂µS

′ − S′∂µS)V µ (62)

2g
S0
iZZ
µν = gµν

g′2 + g2

√
2

(vdX
R
id + vuX

R
iu) 2gS

0
i S

0
jZ = ı

√
g′2 + g2

2

[
XR
idX

I
jd −XR

iuX
I
ju −XI

idX
R
jd +XI

iuX
R
ju

]
g
S0
iW

+W−

µν = gµν
g2

√
2

(vdX
R
id + vuX

R
iu) gS

0
iH

+
j W

−
=

g√
2

[
(XR

id − ıXI
id)X

C
jd − (XR

iu + ıXI
iu)XC

ju

]
2gH

+
i H
−
j γ =

gg′√
g′2 + g2

δij 2gH
+
i γW

−
=

g2g′√
2(g2 + g′2)

[
vuX

C
iu − vdXC

id

]
2gH

+
i H
−
j Z = − g′2 − g2

2
√
g′2 + g2

δij 2gH
+
i ZW

−
= − gg′2√

2(g2 + g′2)

[
vuX

C
iu − vdXC

id

]
2g
H+
i H
−
j γγ

µν = gµν
2g2g′2

g′2 + g2
δij 2g

H+
i H
−
j Zγ

µν = gµν
gg′(g′2 − g2)

g′2 + g2
δij

2g
H+
i H
−
j ZZ

µν = gµν
(g′2 − g2)2

2(g′2 + g2)
δij 4g

S0
i S

0
jZZ

µν = gµν
g′2 + g2

2
(XR

idX
R
jd +XR

iuX
R
ju +XI

idX
I
jd +XI

iuX
I
ju)

g
H+
i H
−
j W

+W−

µν = gµν
g2

2
δij 2g

S0
i S

0
jW

+W−

µν = gµν
g2

2
(XR

idX
R
jd +XR

iuX
R
ju +XI

idX
I
jd +XI

iuX
I
ju)

2g
S0
iH

+
j W

−γ
µν =

gµνg
2g′√

2(g′2 + g2)

[
(XR

iu + ıXI
iu)XC

ju − (XR
id − ıXI

id)X
C
jd

]
2g
S0
iH

+
j W

−Z
µν = − gµνg

′2g√
2(g′2 + g2)

[
(XR

iu + ıXI
iu)XC

ju − (XR
id − ıXI

id)X
C
jd

]
B.2.3 Higgs-sfermions

The Higgs-sfermion vertices read:

VF 3 gSF
∗F ′SF ∗F ′ + gSS

′F∗F ′SS′F ∗F ′ (63)

with:

gS
0
iU
∗
kUl =

√
2

[
Y 2
u vuX

R
iu +

1

4

(
g′2

3
− g2

)
(vuX

R
iu − vdXR

id)

]
XU
kL

(
XU
lL

)∗
+
√

2

[
Y 2
u vuX

R
iu −

g′2

3
(vuX

R
iu − vdXR

id)

]
XU
kR

(
XU
lR

)∗
+
Yu√

2

[
Aue

ıϕAu (XR
iu + ıXI

iu)− λe−ıϕλ
(
s(XR

id − ıXI
id) + vd(X

R
is − ıXI

is)
)]
XU
kR

(
XU
lL

)∗
+
Yu√

2

[
Aue

−ıϕAu (XR
iu − ıXI

iu)− λeıϕλ
(
s(XR

id + ıXI
id) + vd(X

R
is + ıXI

is)
)]
XU
kL

(
XU
lR

)∗

gS
0
iD
∗
kDl =

√
2

[
Y 2
d vdX

R
id +

1

4

(
g′2

3
+ g2

)
(vuX

R
iu − vdXR

id)

]
XD
kL

(
XD
lL

)∗
+
√

2

[
Y 2
d vdX

R
id +

g′2

6
(vuX

R
iu − vdXR

id)

]
XD
kR

(
XD
lR

)∗
+
Yd√

2

[
Ade

ıϕAd (XR
id + ıXI

id)− λe−ıϕλ
(
s(XR

iu − ıXI
iu) + vu(XR

is − ıXI
is)
)]
XD
kR

(
XD
lL

)∗
+
Yd√

2

[
Ade

−ıϕAd (XR
id − ıXI

id)− λeıϕλ
(
s(XR

iu + ıXI
iu) + vu(XR

is + ıXI
is)
)]
XD
kL

(
XD
lR

)∗
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gS
0
iE
∗
kEl =

√
2

[
Y 2
e vdX

R
id +

−g′2 + g2

4
(vuX

R
iu − vdXR

id)

]
XE
kL

(
XE
lL

)∗
+
√

2

[
Y 2
e vdX

R
id +

g′2

2
(vuX
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B.2.4 Higgs-charginos/neutralinos

As for the Higgs-fermion couplings:

g
S0
i χ

+
kχ

+
l

L =
1√
2

[
g(XR

iu − ıXI
iu)U∗k1V

∗
l2 + g(XR

id − ıXI
id)U

∗
k2V

∗
l1 + λeıϕλ(XR

is + ıXI
is)U

∗
k2V

∗
l2

]
g
S0
i χ

0
kχ

0
l

L =
1√
2

{
g′√

2

[
(XR

iu − ıXI
iu) (N∗kbN

∗
lu +N∗lbN

∗
ku)− (XR

id − ıXI
id) (N∗kbN

∗
ld +N∗lbN

∗
kd)
]

− g√
2

[
(XR

iu − ıXI
iu) (N∗kwN

∗
lu +N∗lwN

∗
ku)− (XR

id − ıXI
id) (N∗kwN

∗
ld +N∗lwN

∗
kd)
]

+ λeıϕλ
[
(XR

iu + ıXI
iu) (N∗ksN

∗
ld +N∗lsN

∗
kd) + (XR

id + ıXI
id) (N∗ksN

∗
lu +N∗lsN

∗
ku)

+(XR
is + ıXI

is) (N∗kuN
∗
ld +N∗luN

∗
kd)
]

+ κeıϕκ(XR
is + ıXI

is) [N∗ksN
∗
ls +N∗lsN

∗
ks]

}
g
H+
i χ

0
kχ
−
l

L =− g′√
2
XC
idN

∗
kbU

∗
l2 + gXC

id

(
N∗kdU

∗
l1 −

1√
2
N∗kwU

∗
l2

)
+ λeıϕλXC

iuN
∗
ksU

∗
l2

g
H−i χ

0
kχ

+
l

L =
g′√

2
XC
iuN

∗
kbV

∗
l2 + gXC

iu

(
N∗kuV

∗
l1 +

1√
2
N∗kwV

∗
l2

)
+ λeıϕλXC

idN
∗
ksV

∗
l2

38



B.2.5 Higgs-to-Higgs couplings

From the tree-level potential of Eq.10, one may derive the trilinear and quartic Higgs couplings:
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B.3 Other couplings

B.3.1 Chargino - Sfermion - SM fermion

For each fermion / sfermion generation (with the convention of Eq.61):
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B.3.2 Neutralino - Sfermion - SM fermion

For each fermion / sfermion generation:
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jRN

∗
iu −

1√
2

(
g′

3
N∗ib + gN∗iw

)
XŨ
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Ũ
jRNib

g
D̃∗jχ

0
id

L = −YdXD̃
jRN

∗
id −

1√
2

(
g′

3
N∗ib − gN∗iw

)
XD̃
jL g

D̃∗jχ
0
id

R = −YdXD̃
jLNid −

√
2

3
g′XD̃

jRNib

g
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B.3.3 Chargino and Neutralino gauge couplings

Using the notation:
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the chargino and neutralino gauge couplings may be written:
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jw +

1

2
UidU

∗
jd − s2

W δij

)
g
Zχ̄0

iχ
0
j

L =

√
g2 + g′2

2
(NidN

∗
id −NiuN∗iu) g

Zχ̄0
iχ

0
j

R =

√
g2 + g′2

2
(NiuN

∗
iu −NidN∗id)

g
W−χ̄0

iχ
+
j

L = g

(
1√
2
NiuV

∗
iu −NiwV ∗iw

)
g
W−χ̄0

iχ
+
j

R = −g
(

1√
2
UidN

∗
id + UiwN

∗
iw

)

C Radiative corrections to the supersymmetric spectrum

C.1 Electroweak gauginos and higgsinos

We follow the approach of [20] and consider the loops involving sfermions / fermions, higgsinos or gauginos /
Higgs and gauge bosons in the self energies of the gauginos and higgsinos, under the assumption that the gauge
eigenstates are approximately mass states. Taking the complex phases φMi and ϕλ,κ into account, we find the
following corrections to the gaugino and higgsino masses:(

∆M1

M1

)
=− g′2

16π2

{
11B1(M1, 0,MQ1

) + 9B1(M1, 0,ML1
) +B1(M1, µ,MA) +B1(M1, µ,MZ)

+
µ

M1
sin 2β cos(φM1

+ ϕλ) [B0(M1, µ,MA)−B0(M1, µ,MZ)]
}

(
∆M2

M2

)
=− g2

16π2

{
9B1(M2, 0,MQ1

) + 3B1(M2, 0,ML1
) +B1(M2, µ,MA) +B1(M2, µ,MZ)

+
µ

M2
sin 2β cos(φM2

+ ϕλ) [B0(M2, µ,MA)−B0(M2, µ,MZ)]

+ 4B1(M2,M2,MW )− 8B0(M2,M2,MW )
}

(
∆µ

µ

)
=− 3

32π2

{
(Y 2
t + Y 2

b )B1(µ, 0,MQ3
) + Y 2

t B1(µ, 0,MU3
) + Y 2

b B1(µ, µ,MD3
)
}

− g′2

64π2

{
2B1(µ, µ,MZ)− 4B0(µ, µ,MZ) +B1(µ,M1,MA) +B1(µ,M1,MZ)

+
M1

µ
sin 2β cos(φM1 + ϕλ) [B0(µ,M1,MA)−B0(µ,M1,MZ)]

}
− 3g2

64π2

{
2B1(µ, µ,MZ)− 4B0(µ, µ,MZ) +B1(µ,M2,MA) +B1(µ,M2,MZ)

+
M2

µ
sin 2β cos(φM2

+ ϕλ) [B0(µ,M2,MA)−B0(µ,M2,MZ)]
}

− λ2

32π2

{
B1(µ,ms̃,MA) +B1(µ,ms̃,MZ)

− ms̃

µ
sin 2β cos(ϕλ − ϕκ) [B0(µ,ms̃,MA)−B0(µ,ms̃,MZ)]

}
(

∆ms̃

ms̃

)
=− λ2

8π2

{
B1(ms̃, µ,MA) +B1(ms̃, µ,MZ)

}
− κ2

8π2

{
B1(ms̃,ms̃,mh0

S
) +B1(ms̃,ms̃,ma0S

)−B0(ms̃,ms̃,mh0
S
) +B0(M1,ms̃,ma0S

)
}

We took over the notations of [20] to designate the approximate masses of the particles in the loops; note that
µ ≡ λs stands for the doublet higgsino mass, ms̃ ≡ 2κs for the singlino one andmh0

S ,a
0
S

for the singlet (pseudo)scalar
masses.
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C.2 Sfermions

O(αS) corrections to the squark masses are generated by gluon / squark and gluino / quark loops. Another source
are squark self-couplings, as these receive a contribution from the SU(3)c D-term. We use the following expressions
to correct the squark squared masses m2

Q̃
:

∆m2
Q̃

=− αS
3π

{
2m2

Q̃

[
B1(mQ̃, 0,mQ̃)− 2B0(mQ̃, 0,mQ̃)

]
−

2∑
j=1

|XQ̃

Q̃L
XQ̃ ∗
jL −X

Q̃

Q̃R
XQ̃ ∗
jR |

2A0(mQ̃j
)

+ 4

[
m2
Q̃
B1(mQ̃,mg̃,mq)−A0(mq)−m2

g̃

(
1 + 2

mq

mg̃
Re(e−ıφM3XQ̃

Q̃L
XQ̃ ∗
Q̃R

)

)
B0(mQ̃,mg̃,mq)

]}

We recover the results of [40] in the CP-conserving limit.

C.3 Gluino

We follow [20] to include the O(αS) corrections to the gluino mass: these involve the gluon /gluino and the quark
/ squark loops. The latter depend on squark and gluino phases via the quark / squark / gluino couplings. We
obtain: (

∆mg̃

mg̃

)
=− αS

4π

{
6 [B1(mg̃,mg̃, 0)− 2B0(mg̃,mg̃, 0)]

+
∑

q;i=1,2

[
B1(mg̃,mq,mQ̃i

) +
mq

mg̃
Re(e−ıφM3XQ̃

iLX
Q̃ ∗
iR )B0(mg̃,mq,mQ̃i

)

]}

D Radiative corrections to the Higgs spectrum

D.1 Wave-function renormalization

We summarize the discussion of section 3.3.1. Remember that µH = 125 GeV replaces the external momentum.

ZHu = 1 +
1

16π2

{
NcY

2
uB0(µH ,mu,mu) +

g′2

2
B0(µH ,M1, µ) +

3g2

2
B0(µH ,M2, µ) + λ2B0(µH , µ,ms̃)

− sin2 β

[
g2B0(µH ,MW ,MW ) +

g′2 + g2

2
B0(µH ,MZ ,MZ)

]}
ZHd = 1 +

1

16π2

{
NcY

2
d B0(µH ,md,md) + Y 2

e B0(µH ,me,me)

+
g′2

2
B0(µH ,M1, µ) +

3g2

2
B0(µH ,M2, µ) + λ2B0(µH , µ,ms̃)

}
(65)

ZS = 1 +
1

8π2

{
λ2B0(µH , µ, µ) + κ2B0(µH ,ms̃,ms̃)

}
D.2 One-loop contributions to the effective potential

D.2.1 SM-fermions

The squared-bilinear matrices of the fermions of third generation have been provided in Eq.42, 43. One observes
that they split into (at-most) 2 × 2 blocks corresponding to the left-handed quark fields, the right-handed ones,
the left-handed leptons and the right-handed one. The following eigenvalues can be derived:

m2
tL(H) =

1

2

[
Y 2
t |Hu|2 + Y 2

b |Hd|2 +
√
Y 4
t |Hu|4 + Y 4

b |Hd|4 + 2Y 2
t Y

2
b (|Hu|2|Hd|2 − 2|Hu ·Hd|2)

]
= m2

tR(H)

m2
bL(H) =

1

2

[
Y 2
t |Hu|2 + Y 2

b |Hd|2 −
√
Y 4
t |Hu|4 + Y 4

b |Hd|4 + 2Y 2
t Y

2
b (|Hu|2|Hd|2 − 2|Hu ·Hd|2)

]
= m2

bR(H)

m2
νL(H) = 0

m2
τL(H) = Y 2

τ |Hd|2 = m2
τR(H)
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One can then deduce the following (non-vanishing) contributions to the Higgs mass matrices (with Nc = 3 the
number of colors):

δ
〈
M2

H±

〉
11

= Ωf
vd
vu

δ
〈
M2

H0

〉
11

= − Nc
4π2

Y 4
t v

2
u ln

m2
t

Q2

δ
〈
M2

H±

〉
22

= Ωf
vu
vd

δ
〈
M2

H0

〉
22

= − Nc
4π2

Y 4
b v

2
d ln

m2
b

Q2
− 1

4π2
Y 4
τ v

2
d ln

m2
τ

Q2

δ
〈
M2

H±

〉
12

= Ωf = δ
〈
M2

H±

〉
21

Ωf ≡ −
Nc

16π2
Y 2
t Y

2
b vuvdF1(m2

t ,m
2
b)

We also note the following contributions to the trilinear Higgs couplings:

δgS
0
i S

0
jS

0
k =− Nc

8
√

2π2

{
Y 4
t vu

[
ln
Y 2
t v

2
u

Q2
+

2

3

] (
ΠS
)u,u,u
i,j,k

+ Y 4
b vd

[
ln
Y 2
b v

2
d

Q2
+

2

3

] (
ΠS
)d,d,d
i,j,k

+Y 4
t vu ln

Y 2
t v

2
u

Q2

(
ΠA
)u,u,u
i,j,k

+ Y 4
b vd ln

Y 2
b v

2
d

Q2

(
ΠA
)d,d,d
i,j,k

}
− Y 4

τ vd

8
√

2π2

{[
ln
Y 2
τ v

2
d

Q2
+

2

3

] (
ΠS
)d,d,d
i,j,k

+ ln
Y 2
τ v

2
d

Q2

(
ΠA
)d,d,d
i,j,k

}
δgS

0
iH

+H− =
−Nc

8
√

2π2 (Y 2
t v

2
u − Y 2

b v
2
d)

2

{
Y 2
b X

R
id

[
Y 4
b v

4
d

(
(Y 2
b vd sin2 β + Y 2

t vd) ln
Y 2
b v

2
d

Q2
+ Y 2

t vu sinβ cosβ

)
+ Y 4

t v
4
u

(
Y 2
b vd sin2 β + Y 2

t vd
)(

ln
Y 2
t v

2
u

Q2
− 1

)
− 2Y 2

t Y
2
b v

2
uv

2
d

(
Y 2
t vu sinβ cosβ

(
3 ln

Y 2
b v

2
d

Q2
− ln

Y 2
t v

2
u

Q2

)
+ (Y 2

b vd sin2 β + Y 2
t vd cos2 β)

(
ln
Y 2
b v

2
d

Q2
− 1

2

))]
+ Y 2

t X
R
iu

[
Y 4
b v

4
d

(
Y 2
b vu + Y 2

t vu cos2 β
)(

ln
Y 2
b v

2
d

Q2
− 1

)
+ Y 4

t v
4
u

(
(Y 2
t vu cos2 β + Y 2

b vu) ln
Y 2
t v

2
u

Q2
+ Y 2

b vd sinβ cosβ

)
− 2Y 2

t Y
2
b v

2
uv

2
d

(
Y 2
b vd sinβ cosβ

(
3 ln

Y 2
t v

2
u

Q2
− ln

Y 2
b v

2
d

Q2

)
+ (Y 2

t vu cos2 β + Y 2
b vu sin2 β)

(
ln
Y 2
t v

2
u

Q2
− 1

2

))]}
− Y 4

τ vdX
R
id sin2 β

8
√

2π2
ln
Y 2
τ v

2
d

Q2

D.2.2 Electroweak gauge bosons

Using Eq.46, we obtain the following contribution to the effective potential (where we have performed an expansion
in terms of the charged-Higgs fields):

δVGH =
3

64π2

{
(g′2 + g2)2

4

(
|H0

u|2 + |H0
d |2
)2 [

ln
(g′2 + g2)(|H0

u|2 + |H0
d |2)

2Q2
− 3

2

]
+
g4

2

(
|H0

u|2 + |H0
d |2
)2 [

ln
g2(|H0

u|2 + |H0
d |2)

2Q2
− 3

2

]
+

[
(g′2 + g2)2

2

(
|H0

u|2 + |H0
d |2
) (
H+
u H

−
u +H+

d H
−
d

)
− 2g2g′2

(
|H0

d |2H+
u H

−
u + |H0

u|2H+
d H

−
d + 2Re(H0 ∗

u H0 ∗
d H+

u H
−
d )
) ]

×
[
ln

(g′2 + g2)(|H0
u|2 + |H0

d |2)

2Q2
− 1

]
+ g4

(
|H0

u|2 + |H0
d |2
) (
H+
u H

−
u +H+

d H
−
d

) [
ln
g2(|H0

u|2 + |H0
d |2)

2Q2
− 1

]
+O

(
(H+H−)2

)}
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One derives the following (non-vanishing) contributions to the mass-matrices:

δ
〈
M2

H±

〉
11

= ΩG
vd
vu

δ
〈
M2

H0

〉
11

= Ω̃Gv
2
u

δ
〈
M2

H±

〉
22

= ΩG
vu
vd

δ
〈
M2

H0

〉
22

= Ω̃Gv
2
d

δ
〈
M2

H±

〉
12

= ΩG = δ
〈
M2

H±

〉
21

δ
〈
M2

H0

〉
12

= Ω̃Gvuvd = δ
〈
M2

H0

〉
21

ΩG ≡ −
3g2g′2

32π2
vuvd

[
ln
M2
Z

Q2
− 1

]
Ω̃G ≡

3

64π2

[
2g4 ln

M2
W

Q2
+ (g′2 + g2)2 ln

M2
Z

Q2

]
Similarly, one can derive the corrections to the trilinear Higgs couplings:

δgS
0
i S

0
jS

0
k =

3

64
√

2π2

{[
(g′2 + g2)2

2
ln
M2
Z

Q2
+ g4 ln

M2
W

Q2

]
×
(
vu

[(
ΠS
)u,u,u
i,j,k

+
(
ΠS
)u,d,d
i,j,k

+
(
ΠA
)u,u,u
i,j,k

+
(
ΠA
)u,d,d
i,j,k

]
+vd

[(
ΠS
)d,d,d
i,j,k

+
(
ΠS
)d,u,u
i,j,k

+
(
ΠA
)d,d,d
i,j,k

+
(
ΠA
)d,u,u
i,j,k

])
+

(g′2 + g2)2 + 2g4

3(v2
u + v2

d)

[
v3
u

(
ΠS
)u,u,u
i,j,k

+ 3v2
uvd

(
ΠS
)d,u,u
i,j,k

+ 3vuv
2
d

(
ΠS
)u,d,d
i,j,k

+ v3
d

(
ΠS
)d,d,d
i,j,k

]}
δgS

0
iH

+H− =
3

64
√

2π2

[
(g′2 − g2)2

2
ln
M2
Z

Q2
+ g4 ln

M2
W

Q2

] [
vuX

R
iu + vdX

R
id

]
D.2.3 Sfermions

Considering the sfermion mass-matrices of Eq.49, 50, 51, 52, 53, 54 and focussing on the neutral-Higgs dependence
first, one obtains decoupling 2 × 2 blocks – 1 × 1 in the case of the sneutrinos – so that eigenvalues may be

expressed as m2
F̃m

= 1
2

[
TF̃ (H0) + (−1)m

√
R2
F̃

(H0)
]
, m = 1, 2. Corresponding contributions to the neutral Higgs

mass-matrix thus read (we denote as Eijk the coefficients coming from the tadpole equations – see Eq.32):

δ
〈
M2

H0

〉
ij

=
Nc

64π2

{〈
∂2TF̃

∂S0
i /
√

2∂S0
j /
√

2
− Eijk

∂TF̃
∂S0

k/
√

2

〉[
m2
F̃1

(
ln
m2
F̃1

Q2
− 1

)
+m2

F̃2

(
ln
m2
F̃2

Q2
− 1

)]

+
1

2

〈
∂TF̃

∂S0
i /
√

2

∂TF̃
∂S0

j /
√

2

〉
ln
m2
F̃1
m2
F̃2

Q4

+
1

4

〈
∂TF̃

∂S0
i /
√

2

∂R2
F̃

∂S0
j /
√

2
+

∂R2
F̃

∂S0
i /
√

2

∂TF̃
∂S0

j /
√

2

〉
1

m2
F̃2
−m2

F̃1

ln
m2
F̃2

m2
F̃1

+
1

8

〈
∂R2

F̃

∂S0
i /
√

2

∂R2
F̃

∂S0
j /
√

2

〉
1

(m2
F̃2
−m2

F̃1
)2

[
m2
F̃2

+m2
F̃1

m2
F̃2
−m2

F̃1

ln
m2
F̃1

m2
F̃2

+ 2

]

+
1

2

〈
∂2R2

F̃

∂S0
i /
√

2∂S0
j /
√

2
− Eijk

∂R2
F̃

∂S0
k/
√

2

〉
F1(m2

F̃1
,m2

F̃2
)

}
with:

TŨ =m2
Q +m2

U + 2Y 2
u |H0

u|2 −
g′2 + g2

4
(|H0

u|2 − |H0
d |2)

R2
Ũ

=

[
m2
Q −m2

U +
1

4

(
5

3
g′2 − g2

)
(|H0

u|2 − |H0
d |2)

]2

+ 4Y 2
u

[
A2
u|H0

u|2 + λ2|S|2|H0
d |2 − 2λAuRe(eı(ϕAu+ϕλ)SH0

uH
0
d)
]

TD̃ =m2
Q +m2

D + 2Y 2
d |H0

d |2 +
g′2 + g2

4
(|H0

u|2 − |H0
d |2)

R2
D̃

=

[
m2
Q −m2

D +
1

4

(
−g
′

3
− g2

)
(|H0

u|2 − |H0
d |2)

]2

+ 4Y 2
d

[
A2
d|H0

d |2 + λ2|S|2|H0
u|2 − 2λAdRe(eı(ϕAd+ϕλ)SH0

uH
0
d)
]

TẼ =m2
L +m2

E + 2Y 2
e |H0

d |2 +
g′2 + g2

4
(|H0

u|2 − |H0
d |2)

R2
Ẽ

=

[
m2
L −m2

E +
1

4

(
−2g′2 + g2

)
(|H0

u|2 − |H0
d |2)

]2

+ 4Y 2
e

[
A2
e|H0

d |2 + λ2|S|2|H0
u|2 − 2λAeRe(eı(ϕAe+ϕλ)SH0

uH
0
d)
]
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Additionally, the sneutrino mass reads: m2
Ñ

= m2
L −

g′2+g2

4 (|H0
u|2 − |H0

d |2).
To derive the corrections to the charged-Higgs masses and Higgs-to-Higgs couplings, one is confronted to the

task of diagonalizing the matrix-system of Eq.49, 50, 51, 52, 53, 54. This can be performed perturbatively, as an
expansion in the Higgs-doublet fields, which amounts to a series in v

MSUSY
. We confine to a precision of order O

(
v2
)

at the level of the masses, which means that we compute the potential up to terms of H4-order (H standing for
any Higgs-doublet field) and freeze singlet fields to their v.e.v. s for terms of H4-order (they are kept explicitly for
terms of lower order in the expansion). The ensuing corrections to the Higgs potential can be matched onto Eq.33
and we may then use the results of section E.3, e.g. for the charged-Higgs mass (Eq.67) or the Higgs couplings.
For squarks of each generation (note that we neglect the Yukawa couplings of the two first families):

δV0 =
Nc

32π2

{
2m4

Q

[
ln
m2

Q

Q2
− 3

2

]
+m4

U

[
ln
m2

U

Q2
− 3

2

]
+m4

D

[
ln
m2

D

Q2
− 3

2

]}
δM2

u =
2Nc

32π2

{(
Y 2
u +

g′2

6

)
F0(m2

Q) +

(
Y 2
u −

g′2

3

)
F0(m2

U ) +
g′2

6
F0(m2

D) + Y 2
uA

2
uF1(m2

Q,m
2
U ) + Y 2

d λ
2|S|2F1(m2

Q,m
2
D)

}
δM2

d =
2Nc

32π2

{(
Y 2
d −

g′2

6

)
F0(m2

Q) +
g′2

3
F0(m2

U ) +

(
Y 2
d −

g′2

6

)
F0(m2

D) + Y 2
u λ

2|S|2F1(m2
Q,m

2
U ) + Y 2

d A
2
dF1(m2

Q,m
2
D)

}
δAude

ıϕAud =
2Nc

32π2
λ
{
Y 2
uAue

ı(ϕAu+ϕλ)F1(m2
Q,m

2
U ) + Y 2

d Ade
ı(ϕAd

+ϕλ)F1(m2
Q,m

2
D)
}

δλu =
2Nc

32π2

{[
Y 4
u + 2Y 2

u

(
g′2

12
− g2

4

)
+ 2

(
g′2

12

)2

+ 2

(
g2

4

)2
]

ln
m2

Q

Q2
+

(
Y 2
u −

g′2

3

)2

ln
m2

U

Q2
+

(
g′2

6

)2

ln
m2

D

Q2

+ 2Y 2
uA

2
u

[
Y 2
u +

1

4

(
g′2

3
− g2

)]
F3(m2

U ,m
2
Q) + 2Y 2

uA
2
u

(
Y 2
u −

g′2

3

)
F3(m2

Q,m
2
U ) + Y 4

uA
4
uF7(m2

Q,m
2
U )

+ 2Y 2
d λ

2|S|2 1

4

(
g′2

3
+ g2

)
F3(m2

D,m
2
Q) + 2Y 2

d λ
2|S|2 g

′2

6
F3(m2

Q,m
2
D) + Y 4

d λ
4|S|4F7(m2

Q,m
2
D)

}
δλd =

2Nc

32π2

{[
Y 4
d − 2Y 2

d
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D.2.4 Charginos and neutralinos

To include the chargino and neutralino contributions to the effective Higgs potential, we turn exclusively to the
method that we have just presented in the case of the sfermions. In other words, we diagonalize the matrix system
of Eq.56 perturbatively, in an expansion of doublet Higgs-fields and we match the ensuing potential to the form
of Eq.33. One can then work out the contributions to the Higgs mass-matrix and couplings. Note, however, that
instead of diagonalizing directly the 9×9 (squared) bilinear matrix of Eq.56, it is easier to consider the dependence
on neutral Higgs fields only (that is replacing charged fields by 0), as the corresponding matrix then splits into
various blocks. All the couplings of Eq.33 can be identified from the neutral potential, with the exception of
λ3,4, which only appear in terms of the sum λ3 + λ4. It is a straightforward task, however, to compute λ4 in a
second step, from the charged couplings of the full potential. Another remark accompanies the observation that, as
higgsino and singlino masses depend on the singlet Higgs field, the coefficients in our matching procedure depend
on the singlet fields as well (those would correspond to operators of dimension > 4), which leads to additional (but
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straightforward) terms, with respect to the results of section E.3. This S-dependence can be neglected for terms

of order H4, as keeping it would produce terms of higher order in v2
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+ 8κλ5 (λ2 + 4κ2) |S|2S∗ 2eı(ϕλ−ϕκ)F7(4κ2|S|2, λ2|S|2)

− g′2g2λS
[(
M2

1 + λ2|S|2
)
M2e

ı(ϕM2
+ϕλ) +

(
M2

2 + λ2|S|2
)
M1e

ı(ϕM1
+ϕλ)

]
F6(λ2|S|2,M2

1 ,M
2
2 )
}

D.2.5 Higgs-to-Higgs contributions

Instead of diagonalizing the Higgs bilinear terms, we compute the Higgs self-energy (Π) and tadpole (T ) diagrams
mediated by gauge and Higgs particles in the Feynmann gauge. We then set the external momentum to zero
to determine the potential contributions to the Higgs mass matrices and substract the pure gauge effects in the
Landau gauge – from the results in appendix D.2.2. Finally we identify the corrections to the Z3-conserving
parameters of Eq.33.

i) Pure-gauge contributions to the Higgs self-energies and tadpoles
For external neutral Higgs:

ΠV
S0
i S

0
j
(p2) = 1

16π2

{
7
2

[
g2M2

WB0(p,MW ,MW ) + g′2+g2

2 M2
ZB0(p,MZ ,MZ)

]
×
[
sin2 βXR

iuX
R
ju + cos2 βXR

idX
R
jd + sinβ cosβ(XR

iuX
R
jd +XR

idX
R
ju)
]

+2
[
g2A0(MW ) + g′2+g2

2 A0(MZ)
] [
XR
iuX

R
ju +XR

idX
R
jd +XI

iuX
I
ju +XI

idX
I
jd

]}
TV
S0
i

= 1
16π2

3
2

[
g2A0(MW ) + g′2+g2

2 A0(MZ)
] [
vuX

R
iu + vdX

R
id

]
For an external charged Higgs (we consider only the physical state):

ΠV
H+H−(p2) =

2

16π2

[
g2A0(MW ) +

(g′2 − g2)2

2(g′2 + g2)
A0(MZ)

]
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ii) Higgs / gauge diagrams
The neutral self energy receives contributions from hybrid Higgs (Goldstone) / vector diagrams:

ΠSV
S0
i S

0
j
(p2) =

1

32π2

{[
g2BSV (p,MW ,MW ) +

g′2 + g2

2
BSV (p,MZ ,MZ)

]
×
[
sin2 βXR

iuX
R
ju + cos2 βXR

idX
R
jd + sinβ cosβ(XR

iuX
R
jd +XR

idX
R
ju)
]

+ g2BSV (p,MW ,MW )
[
sin2 βXI

iuX
I
ju + cos2 βXI

idX
I
jd − sinβ cosβ(XI

iuX
I
jd +XI

idX
I
ju)
]

+ g2BSV (p,mH± ,MW )
[
cos2 β(XR

iuX
R
ju +XI

iuX
I
ju) + sin2 β(XR

idX
R
jd +XI

idX
I
jd)

+ sinβ cosβ(XR
iuX

R
jd +XR

idX
R
ju −XI

iuX
I
jd −XI

idX
I
ju)
]

+
g′2 + g2

2

5∑
k=1

BSV (p,mS0
k
,MZ)×

(
XI

iuX
R
ku −XR

iuX
I
ku +XR

idX
I
kd −XI

idX
R
kd

)(
XI

juX
R
ku −XR

juX
I
ku +XR

jdX
I
kd −XI

jdX
R
kd

)}
For the charged Higgs self-energy:

ΠSV
H+H−(p2) =

1

32π2

{
2g′2g2

g′2 + g2
BSV (p,mH± , 0) +

(g′2 − g2)2

2(g′2 + g2)
BSV (p,mH± ,MZ) +

g2

2

5∑
k=1

BSV (p,mS0
k
,MW )

}
×
[
cos2 β(XR 2

ku +XI 2
ku ) + sin2 β(XR 2

kd +XI 2
kd )− sinβ cosβ(XR

kuX
R
kd −XI

kuX
I
kd)
]

iii) Pure Higgs loops
The loops including only Higgs bosons (including the Goldstone bosons, with mass MW and MZ) read:

ΠS
S0
i S

0
j
(p2) =

1

16π2

{
2∑

m,n=1

gS
0
iH

+
mH

−
n gS

0
jH

+
nH
−
mB0(p,mH±m

,mH±n
) +

2∑
m=1

gS
0
i S

0
jH

+
mH

−
mA0(mH±m

)

+
1

2

6∑
m,n=1

gS
0
i S

0
mS

0
ngS

0
jS

0
nS

0
mB0(p,mS0

m
,mS0

n
) +

1

2

6∑
m=1

gS
0
i S

0
jS

0
mS

0
mA0(mS0

m
)

}

ΠS
H+H−(p2) =

1

16π2

{
2∑

m=1

gH
+H−H+

mH
−
mA0(mH±m

) +
1

2

6∑
m=1

gS
0
mS

0
mH

+H−A0(mS0
m

)

+

n=1,2∑
m=1,6

gS
0
mH

+H−n gS
0
mH

+
nH
−
B0(p,mS0

m
,mH±n

)

}

TSS0
i

=
1

16
√

2π2

{
2∑

m=1

gS
0
iH

+
mH

−
mA0(mH±m

) +
1

2

6∑
m=1

gS
0
i S

0
mS

0
mA0(mS0

m
)

}

where the Higgs-to-Higgs couplings can be found in appendix B.2.5.

iv) Contributions to the Higgs mass-matrices
Since we are interested in the contributions from the effective potential, we take the limit p2 = 0, which simply
induces the replacement B0(p,m,M)→ −F1(m2,M2). The contribution to the mass matrices of the Higgs states
reads:

δ
〈
M2

H0

〉
ij

= −
[
ΠV+SV+S
S0
i S

0
j

(0)− Eijk TV+S
S0
k

]
; δm2

H± = −
[
ΠV+SV+S
H+H− (0)− cos2 β TV+S

h0
u
− sin2 β TV+S

h0
d

]
where the coefficients Eijk are the same as in appendix D.2.3, that is, they correspond to the tadpole coefficients
of Eq.32.

v) Reconstruction of the Higgs contributions to the potential
After substracting the pure gauge contributions from appendix D.2.2, one can reconstruct the Z3-conserving
parameters of the potential of Eq.33 induced by Higgs corrections. We start by rotating away the neutral Goldstone
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boson, obtaining thus a 5× 5 matrix for the Higgs corrections to the neutral Higgs mass-matrix: δ
〈
M̃2

H0

〉
ij

. We

then employ the method that was outlined in [25]:

δAS cosϕ2 = − 1

3s

{
δ
〈
M̃2

H0

〉
55

+
v

2s
sin 2β

[
δ
〈
M̃2

H0

〉
45
− v

s
sin 2β δ

〈
M̃2

H0

〉
44

]}
δV0(|S|2) =

1

4s2

{
δ
〈
M̃2

H0

〉
33

+
1

3
δ
〈
M̃2

H0

〉
55
− v2

3s2
sin2 2β δ

〈
M̃2

H0

〉
44

}
|S|4

δAud cosϕAud =
1

3v

{
δ
〈
M̃2

H0

〉
45

+
v

s
sin 2β δ

〈
M̃2

H0

〉
44

}
δλMP cosϕM = − 1

3sv

{
δ
〈
M̃2

H0

〉
45
− v

2s
sin 2β δ

〈
M̃2

H0

〉
44

}
δλMP sinϕM =

2

3v2 sin 2β

{
δ
〈
M̃2

H0

〉
35
− v

s
sin 2β δ

〈
M̃2

H0

〉
34

}
δλuP =

1

2svu

{
δ
〈
M̃2

H0

〉
13
− cosβ

3

[
δ
〈
M̃2

H0

〉
45
− 2v

s
sin 2β δ

〈
M̃2

H0

〉
44

]}
δλdP =

1

2svd

{
δ
〈
M̃2

H0

〉
23
− sinβ

3

[
δ
〈
M̃2

H0

〉
45
− 2v

s
sin 2β δ

〈
M̃2

H0

〉
44

]}
δλu =

1

2v2
u

{
δ
〈
M̃2

H0

〉
11
− cos2 β δ

〈
M̃2

H0

〉
44

}
δλd =

1

2v2
d

{
δ
〈
M̃2

H0

〉
22
− sin2 β δ

〈
M̃2

H0

〉
44

}
δλ3 =

1

2vuvd

{
δ
〈
M̃2

H0

〉
12

+ sin 2β

[
δm2

H± −
1

2
δ
〈
M̃2

H0

〉
44

]}
δλ4 =

1

v2

{
δ
〈
M̃2

H0

〉
44
− δm2

H±

}
D.3 Leading two-loop effects O(Y 6

t,b, Y
4
t,bα(S))

We follow [6,22]:

δλu =
3Y 4

t

256π4

{[
16g2

3 +
4

3
g′2 − 3 sin2 βY 2

t + 3 cos2 βY 2
b

]
ln2 Q

2

m2
t

+
[
3 cos2 βY 2

t + (3 cos2 β + 1)Y 2
b

](
ln2 M

2
A

m2
t

− ln2 Q
2

m2
t

)}
δλd =

3Y 4
b

256π4

{[
16g2

3 −
2

3
g′2 + 3 sin2 βY 2

t − 3 cos2 βY 2
b

]
ln2 Q

2

m2
t

+
[
3 sin2 βY 2

b + (3 sin2 β + 1)Y 2
t

](
ln2 M

2
A

m2
t

− ln2 Q
2

m2
t

)}
Note that these leading effects are conveyed by the SM-fermion and gauge sector, as well as the doublet Higgs
sector, so that the new-physics phases do not intervene. The contribution of sfermions or gauginos is merely
reduced to the cutoff Q in the logarithms.

D.4 Pole corrections

Here we compute the shifts in the Higgs self-energies, which then allow to evaluate the pole corrections to the DR
Higgs masses. We use the notation ∆f(p2) ≡ f(p2)− f(0) for any function f of the external momentum. We are
still working in the Feynmann gauge.
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i) Contributions from SM fermions

∆ΠS0
i S

0
j
(p2) =

1

16π2

{
NcY

2
u

[
(XR

iuX
R
ju +XI

iuX
I
ju)∆BFF (p,mu,mu)− 2m2

u(XR
iuX

R
ju −XI

iuX
I
ju)∆B0(p,mu,mu)

]
+NcY

2
d

[
(XR

idX
R
jd +XI

idX
I
jd)∆BFF (p,md,md)− 2m2

d(X
R
idX

R
jd −XI

idX
I
jd)∆B0(p,md,md)

]
+Y 2

e

[
(XR

idX
R
jd +XI

idX
I
jd)∆BFF (p,me,me)− 2m2

e(X
R
idX

R
jd −XI

idX
I
jd)∆B0(p,me,me)

]}
∆ΠH+H−(p2) =

1

16π2

{
NC

[
(Y 2
u cos2 β + Y 2

d sin2 β)∆BFF (p,mu,md)− 2YuYdmumd sin 2β∆B0(p,mu,md)
]

+Y 2
e sin2 β∆BFF (p, 0,me)

}
ii) Contributions from gauginos and higgsinos

∆ΠS0
i S

0
j
(p2) =

1

16π2

{[
g′2

2
∆BFF (p,M1, µ) +

3g2

2
∆BFF (p,M2, µ) + λ2∆BFF (p,ms̃, µ)

]
× (XR

iuX
R
ju +XR

idX
R
jd +XI

iuX
I
ju +XI

idX
I
jd)

+ 2
[
λ2∆BFF (p, µ, µ) + κ2∆BFF (p,ms̃,ms̃)

]
(XR

isX
R
js +XI

isX
I
js)

}
∆ΠH+H−(p2) =

1

16π2

{
g′2

2
∆BFF (p,M1, µ) +

3g2

2
∆BFF (p,M2, µ) + λ2∆BFF (p,ms̃, µ)

}
iii) Contributions exclusively from the electroweak gauge sector

∆ΠS0
i S

0
j
(p2) =

1

16π2

7

2

{
g2M2

W∆B0(p,MW ,MW ) +
g′2 + g2

2
M2
Z∆B0(p,MZ ,MZ)

}
×
[
sin2 βXR

iuX
R
ju + cos2 βXR

idX
R
jd + sinβ cosβ(XR

iuX
R
jd +XR

idX
R
ju)
]

∆ΠH+H−(p2) =0

iv) Contributions from the gauge / Higgs diagrams

∆ΠS0
i S

0
j
(p2) =

1

32π2

{[
g2∆BSV (p,MW ,MW ) +

g′2 + g2

2
∆BSV (p,MZ ,MZ)

]
×
[
sin2 βXR

iuX
R
ju + cos2 βXR

idX
R
jd + sinβ cosβ(XR

iuX
R
jd +XR

idX
R
ju)
]

+ g2∆BSV (p,MW ,MW )
[
sin2 βXI

iuX
I
ju + cos2 βXI

idX
I
jd − sinβ cosβ(XI

iuX
I
jd +XI

idX
I
ju)
]

+ g2∆BSV (p,mH± ,MW )
[
cos2 β(XR

iuX
R
ju +XI

iuX
I
ju) + sin2 β(XR

idX
R
jd +XI

idX
I
jd)

+ sinβ cosβ(XR
iuX

R
jd +XR

idX
R
ju −XI

iuX
I
jd −XI

idX
I
ju)
]

+
g′2 + g2

2

5∑
k=1

∆BSV (p,mS0
k
,MZ)×

(
XI

iuX
R
ku −XR

iuX
I
ku +XR

idX
I
kd −XI

idX
R
kd

)(
XI

juX
R
ku −XR

juX
I
ku +XR

jdX
I
kd −XI

jdX
R
kd

)}
∆ΠH+H−(p2) =

1

32π2

{
2g′2g2

g′2 + g2
∆BSV (p,mH± , 0) +

(g′2 − g2)2

2(g′2 + g2)
∆BSV (p,mH± ,MZ) +

g2

2

5∑
k=1

∆BSV (p,mS0
k
,MW )

}
×
[
cos2 β(XR 2

ku +XI 2
ku ) + sin2 β(XR 2

kd +XI 2
kd )− sinβ cosβ(XR

kuX
R
kd −XI

kuX
I
kd)
]

v) Contributions exclusively from the Higgs / Goldstone sector

∆ΠS0
i S

0
j
(p2) =

1

16π2

{
2∑

m,n=1

gS
0
iH

+
mH−n gS

0
jH

+
nH−m∆B0(p,m

H±m
,m

H±n
) +

1

2

6∑
m,n=1

gS
0
i S

0
mS0

ngS
0
jS

0
nS

0
m∆B0(p,mS0

m
,mS0

n
)

}

∆ΠH+H−(p2) =
1

16π2

n=1,2∑
m=1,6

gS
0
mH+H−n gS

0
mH+

nH−∆B0(p,mS0
m
,m

H±n
)
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The tree-level Higgs-to-Higgs couplings are given in appendix B.2.5.

vi) Contributions from the sfermions

∆ΠS0
i S

0
j
(p2) =

1

16π2

{
2∑

m,n=1

[
Ncg

S0
i Ũ
∗
mŨngS

0
j Ũ
∗
nŨm∆B0(p,mŨm

,mŨn
) +Ncg

S0
i D̃
∗
mD̃ngS

0
j D̃
∗
nD̃m∆B0(p,mD̃m

,mD̃n
)

+gS
0
i Ẽ
∗
mẼngS

0
j Ẽ
∗
nẼm∆B0(p,mẼm

,mẼn
)
]

+ gS
0
i Ñ
∗ÑgS

0
j Ñ
∗Ñ∆B0(p,mÑ ,mÑ )

}
∆ΠH+H−(p2) =

1

16π2

{
2∑

m,n=1

Ncg
H+Ũ∗mD̃ngH

−D̃∗nŨm∆B0(p,mŨm
,mD̃n

) +

2∑
m=1

gH
+Ñ∗ẼmgH

−Ẽ∗mÑ∆B0(p,mÑ ,mẼm
)

}

The Higgs sfermion couplings are given in appendix B.2.3.

E Simplified effective potential

In this appendix, we study the simplified effective Higgs potential of Eq.33, or more precisely the following and
slightly modified version:

Ṽeff =M2
S |S|2 +

AS
3

[
eıϕASS3 + h.c.

]
+ V0(|S|2) (66)

+ (M2
u + λuP |S|2)|Hu|2 + (M2

d + λdP |S|2)|Hd|2 +
[(
Aude

ıϕAudS + λMP e
ıϕMS∗2

)
Hu ·Hd + h.c.

]
+
λu
2
|Hu|4 +

λd
2
|Hd|4 + λ3|Hu|2|Hd|2 + λ4|Hu ·Hd|2

+

[
λ5

2
eıϕ5

S2

s2
(Hu ·Hd)

2 + (λ6e
ıϕ6 |Hu|2 + λ7e

ıϕ7 |Hd|2)
S

s
Hu ·Hd + h.c.

]
This simplified potential is meant as an expansion of the effective potential – see Eq.29 – up to quartic order
in the doublet fields. It slightly differs from Eq.33 in that the Z3-symmetry has been explicitly restored in the
terms of the last line. Note that this way of restoring the Z3-symmetry is just the simplest educated guess, while
any additional factor f(|S|2, S3, S∗3) could intervene. Therefore, the factors of S/s appearing in the last line are
just chosen as such because they will provide improved results numerically. Formally however, the associated
corrections will remain of subleading order in the expansion in the doublet v.e.v.’s.

E.1 Matching the tree-level Higgs potential

The tree-level Higgs potential (Eq.9) matches straightforwardly on Eq.66:

M2
S = m2

S M2
u = m2

Hu λu =
g′2 + g2

4
= λd

ASe
ıϕAS = κAκe

ıϕ2 M2
d = m2

Hd
λ3 =

−g′2 + g2

4

V0(|S|2) = κ2|S|4 λuP = λ2 = λdP λ4 = λ2 − g2

2
Aude

ıϕAud = λAλe
ıϕ1 λ5e

ıϕ5 = 0 = λ6e
ıϕ6 = λ7e

ıϕ7

λMP = κλeı(ϕλ−ϕκ)

E.2 Minimization conditions

M2
u =

[(
Aud cosϕAud + λMP s cosϕM

)
s+ 3λ6 cosϕ6v

2
u + λ7 cosϕ7v

2
d

] vd
vu
−
[
λuP s

2 + λuv
2
u + (λ3 + λ4 + λ5 cosϕ5)v2

d

]
M2
d =

[(
Aud cosϕAud + λMP s cosϕM

)
s+ λ6 cosϕ6v

2
u + 3λ7 cosϕ7v

2
d

] vu
vd
−
[
λdP s

2 + λdv
2
d + (λ3 + λ4 + λ5 cosϕ5)v2

u

]
M2
s = −〈V ′0〉 −ASs cosϕAS − λuP v2

u − λdP v2
d +

(
Aud cosϕAud + 2λMP s cosϕM

) vuvd
s

Aud sinϕAud = −λMP s sinϕM +
1

s

[
λ5 sinϕ5vuvd − λ6 sinϕ6v

2
u − λ7 sinϕ7v

2
d

]
AS sinϕAS =

(
Aud sinϕAud − 2λMP s sinϕM

) vuvd
s2
' −3λMP sinϕM

vuvd
s
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O(v4) terms have been neglected. 〈V ′0〉 ≡ dV0
d|S|2

∣∣∣
|S|2=s2

.

E.3 Higgs mass matrices

Charged Higgs in the base (H±u , H
±
d ):

〈
M2

H±

〉
11

= Ω±
vd
vu

〈
M2

H±

〉
22

= Ω±
vu
vd

〈
M2

H±

〉
12

= Ω± =
〈
M2

H±

〉
21

Ω± ≡ Re
(
Aud cosϕAud + λMP s cosϕM

)
s− (λ4 + λ5 cosϕ5) vuvd + λ6 cosϕ6v

2
u + λ7 cosϕ7v

2
d (67)

Neutral Higgs in the base (h0
u, h

0
d, h

0
s, a

0
u, a

0
d, a

0
s); O(v4) terms are neglected.:〈

M2
H0

〉
11

=
[(
Aud cosϕAud + λMP s cosϕM

)
s− 3λ6 cosϕ6v

2
u + λ7 cosϕ7v

2
d

] vd
vu

+ 2λuv
2
u〈

M2
H0

〉
12

=−
[(
Aud cosϕAud + λMP s cosϕM

)
s+ 3λ6 cosϕ6v

2
u + 3λ7 cosϕ7v

2
d

]
+ 2 [λ3 + λ4 + λ5 cosϕ5] vuvd〈

M2
H0

〉
22

=
[(
Aud cosϕAud + λMP s cosϕM

)
s+ λ6 cosϕ6v

2
u − 3λ7 cosϕ7v

2
d

] vu
vd

+ 2λdv
2
d〈

M2
H0

〉
13

=−
[
Aud cosϕAud + 2λMP s cosϕM +

1

s

(
3λ6 cosϕ6v

2
u + λ7 cosϕ7v

2
d − 2λ5 cosϕ5vuvd

)]
vd + 2λuP svu〈

M2
H0

〉
23

=−
[
Aud cosϕAud + 2λMP s cosϕM +

1

s

(
λ6 cosϕ6v

2
u + 3λ7 cosϕ7v

2
d − 2λ5 cosϕ5vuvd

)]
vu + 2λdP svd〈

M2
H0

〉
33

=sAS cosϕAS + 2s2 〈V ′′0 〉+Aud cosϕAud
vuvd
s

〈
M2

H0

〉
44

=Ω0
vd
vu

;
〈
M2

H0

〉
45

= Ω0 ;
〈
M2

H0

〉
55

= Ω0
vu
vd

Ω0 ≡
(
Aud cosϕAud + λMP s cosϕM

)
s− 2λ5 cosϕ5vuvd + λ6 cosϕ6v

2
u + λ7 cosϕ7v

2
d〈

M2
H0

〉
46

=

[
Aud cosϕAud − 2λMP s cosϕM +

1

s

(
λ6 cosϕ6v

2
u + λ7 cosϕ7v

2
d − 2λ5 cosϕ5vuvd

)]
vd〈

M2
H0

〉
56

=

[
Aud cosϕAud − 2λMP s cosϕM +

1

s

(
λ6 cosϕ6v

2
u + λ7 cosϕ7v

2
d − 2λ5 cosϕ5vuvd

)]
vu〈

M2
H0

〉
66

=− 3sAS cosϕAS +
(
Aud cosϕAud + 4λMP s cosϕM

) vuvd
s

〈
M2

H0

〉
14

= (2λ6 sinϕ6vu − λ5 sinϕ5vd) vd〈
M2

H0

〉
15

= (2λ6 sinϕ6vu − λ5 sinϕ5vd) vu〈
M2

H0

〉
16

=

[
−3λMP s sinϕM +

1

s

(
2λ6 sinϕ6v

2
u − λ5 sinϕ5vuvd

)]
vd〈

M2
H0

〉
24

= (2λ7 sinϕ7vd − λ5 sinϕ5vu) vd〈
M2

H0

〉
25

= (2λ7 sinϕ7vd − λ5 sinϕ5vu) vu〈
M2

H0

〉
26

=

[
−3λMP s sinϕM +

1

s

(
2λ6 sinϕ7v

2
d − λ5 sinϕ5vuvd

)]
vu〈

M2
H0

〉
34

=vd

[
λMP s sinϕM −

vuvd
s

λ5 sinϕ5

]
〈
M2

H0

〉
35

=vu

[
λMP s sinϕM −

vuvd
s

λ5 sinϕ5

]
〈
M2

H0

〉
36

=4λMP sinϕMvuvd
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E.4 Trilinear Higgs couplings

gS
0
i S

0
jS

0
k =

1√
2

{
λuvu

[(
ΠS
)u,u,u
i,j,k

+
(
ΠA
)u,u,u
i,j,k

]
+ λdvd

[(
ΠS
)d,d,d
i,j,k

+
(
ΠA
)d,d,d
i,j,k

]
+ (λ3 + λ4)

[
vu

((
ΠS
)u,d,d
i,j,k

+
(
ΠA
)u,d,d
i,j,k

)
+ vd

((
ΠS
)d,u,u
i,j,k

+
(
ΠA
)d,u,u
i,j,k

)]
+ λ5 cosϕ5

[
vu

((
ΠS
)u,d,d
i,j,k

−
(
ΠA
)u,d,d
i,j,k

− 2
(
ΠA
)d,u,d
i,j,k

)
+ vd

((
ΠS
)d,u,u
i,j,k

−
(
ΠA
)d,u,u
i,j,k

− 2
(
ΠA
)u,d,u
i,j,k

)]
+ λ5 sinϕ5

[
vu

((
ΠI
)u,d,d
i,j,k

−
(
ΠP
)u,d,d
i,j,k

− 2
(
ΠP
)d,u,d
i,j,k

)
+ vd

((
ΠI
)d,u,u
i,j,k

−
(
ΠP
)d,u,u
i,j,k

− 2
(
ΠP
)u,d,u
i,j,k

)]
− λ6 cosϕ6

[
vu

(
3
(
ΠS
)d,u,u
i,j,k

+
(
ΠA
)d,u,u
i,j,k

− 2
(
ΠA
)u,u,d
i,j,k

)
+ vd

((
ΠS
)u,u,u
i,j,k

+
(
ΠA
)u,u,u
i,j,k

)]
+ λ6 sinϕ6

[
vu

(
3
(
ΠP
)d,u,u
i,j,k

+ 2
(
ΠP
)u,u,d
i,j,k

+
(
ΠI
)u,u,d
i,j,k

)
+ vd

((
ΠP
)u,u,u
i,j,k

+
(
ΠI
)u,u,u
i,j,k

)]
− λ7 cosϕ7

[
vu

((
ΠS
)d,d,d
i,j,k

+
(
ΠA
)d,d,d
i,j,k

)
+ vd

(
3
(
ΠS
)u,d,d
i,j,k

+
(
ΠA
)u,d,d
i,j,k

− 2
(
ΠA
)d,d,u
i,j,k

)]
+ λ7 sinϕ7

[
vu

((
ΠP
)d,d,d
i,j,k

+
(
ΠI
)d,d,d
i,j,k

)
+ vd

(
3
(
ΠP
)u,d,d
i,j,k

+ 2
(
ΠP
)d,d,u
i,j,k

+
(
ΠI
)u,d,d
i,j,k

)]
−Aud cosϕ1

[(
ΠS
)s,u,d
i,j,k

−
(
ΠA
)s,u,d
i,j,k

−
(
ΠA
)u,s,d
i,j,k

−
(
ΠA
)d,u,s
i,j,k

]
− λMP cosϕM

[
2s
((

ΠS
)s,u,d
i,j,k

−
(
ΠA
)s,u,d
i,j,k

+
(
ΠA
)u,s,d
i,j,k

+
(
ΠA
)d,u,s
i,j,k

)
+ vu

((
ΠS
)s,s,d
i,j,k

+ 2
(
ΠA
)s,s,d
i,j,k
−
(
ΠA
)d,s,s
i,j,k

)
+ vd

((
ΠS
)s,s,u
i,j,k

+ 2
(
ΠA
)s,s,u
i,j,k
−
(
ΠA
)u,s,s
i,j,k

)]
+ λMP sinϕM

[
s
(

3
(
ΠI
)s,u,d
i,j,k

− 3
(
ΠP
)s,u,d
i,j,k

+
(
ΠP
)u,s,d
i,j,k

+
(
ΠP
)d,u,s
i,j,k

)
− vuvd

s

((
ΠI
)s,s,s
i,j,k
− 3

(
ΠP
)s,s,s
i,j,k

)
− vu

((
ΠI
)s,s,d
i,j,k

+ 2
(
ΠP
)s,s,d
i,j,k
−
(
ΠP
)d,s,s
i,j,k

)
− vd

((
ΠI
)s,s,u
i,j,k

+ 2
(
ΠP
)s,s,u
i,j,k
−
(
ΠP
)u,s,s
i,j,k

)]
+ λuP

[
s
((

ΠS
)s,u,u
i,j,k

+
(
ΠA
)s,u,u
i,j,k

)
+ vu

((
ΠS
)u,s,s
i,j,k

+
(
ΠA
)u,s,s
i,j,k

)]
+ λdP

[
s
((

ΠS
)s,d,d
i,j,k

+
(
ΠA
)s,d,d
i,j,k

)
+ vd

((
ΠS
)d,s,s
i,j,k

+
(
ΠA
)d,s,s
i,j,k

)]
+
AS cosϕ2

3
√

2

[(
ΠS
)s,s,s
i,j,k
− 3

(
ΠA
)s,s,s
i,j,k

]
+

2

3
s3
〈
V0
′′′〉 (ΠS

)s,s,s
i,j,k

+ s
〈
V0
′′〉 [(ΠS

)s,s,s
i,j,k

+
(
ΠA
)s,s,s
i,j,k

]}

gS
0
iH

+
j H
−
k =

1√
2

{
λuvuX

R
iuX

C
juX

C
ku + λdvdX

R
idX

C
jdX

C
kd + λ3

[
vuX

R
iuX

C
jdX

C
kd + vd cos2 βXR

idX
C
juX

C
ku

]
+

1

2

[
−(λ4 + λ5 cosϕ5)

(
vuX

R
id + vdX

R
iu

)
+ λ5 sinϕ5

(
vuX

I
id + vdX

I
iu

)] (
XC
juX

C
kd +XC

jdX
C
ku

)
+
[
λ6 cosϕ6vuX

R
iu + λ7 cosϕ7vdX

R
id

] (
XC
juX

C
kd +XC

jdX
C
ku

)
+
[
−λ6 cosϕ6

(
vuX

R
id + vdX

R
iu

)
+ λ6 sinϕ6

(
vuX

I
id + vdX

I
iu

)]
XC
juX

C
ku

+
[
−λ7 cosϕ7

(
vuX

R
id + vdX

R
iu

)
+ λ7 sinϕ7

(
vuX

I
id + vdX

I
iu

)]
XC
jdX

C
kd

+
[
λuPX

C
juX

C
ku + λdPX

C
jdX

C
kd

]
sXR

is

+
1

2

[(
Aud cosϕAud + 2λMP s cosϕM

)
XR
is + 3λMP s sinϕMX

I
is

] (
XC
juX

C
kd +XC

jdX
C
ku

)
+
ı

2

[
(λ4 − λ5 cosϕ5)

(
vuX

I
id + vdX

I
iu

)
− λ5 sinϕ5

(
vuX

R
id + vdX

R
iu

)
+ 2

(
λ6 sinϕ6vuX

R
iu + λ7 sinϕ7vdX

R
id

)
+
(
Aud cosϕAud − 2λMP s cosϕM

)
XI
is + λMP s sinϕMX

R
is

] (
XC
juX

C
kd −XC

jdX
C
ku

)}
We omit the quartic couplings.
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[17] P. Athron, J. h. Park, D. Stöckinger and A. Voigt, Comput. Phys. Commun. 190 (2015) 139 [arXiv:1406.2319
[hep-ph]].
https://flexiblesusy.hepforge.org/

55

http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1406.7221
http://arxiv.org/abs/0910.1785
http://arxiv.org/abs/1112.2703
http://arxiv.org/abs/1112.4835
http://arxiv.org/abs/1201.2671
http://arxiv.org/abs/1201.5305
http://arxiv.org/abs/1207.3698
http://arxiv.org/abs/1209.2115
http://arxiv.org/abs/1304.3670
http://arxiv.org/abs/0803.2962
http://arxiv.org/abs/1102.3595
http://arxiv.org/abs/1410.4824
http://arxiv.org/abs/hep-ph/0406215
http://arxiv.org/abs/hep-ph/0508022
http://arxiv.org/abs/hep-ph/0406215
http://arxiv.org/abs/hep-ph/0508022
http://arxiv.org/abs/1312.4788
http://arxiv.org/abs/1311.7659
http://arxiv.org/abs/1411.0675
http://arxiv.org/abs/1406.2319


[18] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K. E. Williams, Comput. Phys. Commun. 181 (2010)
138 [arXiv:0811.4169 [hep-ph]].
P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K. E. Williams, Comput. Phys. Commun. 182 (2011)
2605 [arXiv:1102.1898 [hep-ph]].
P. Bechtle, O. Brein, S. Heinemeyer, O. Stal, T. Stefaniak, G. Weiglein and K. Williams, PoS CHARGED
2012 (2012) 024 [arXiv:1301.2345 [hep-ph]].
P. Bechtle, O. Brein, S. Heinemeyer, O. St̊al, T. Stefaniak, G. Weiglein and K. E. Williams, Eur. Phys. J. C
74 (2014) 2693 [arXiv:1311.0055 [hep-ph]].
http://higgsbounds.hepforge.org/

[19] P. Bechtle, S. Heinemeyer, O. St̊al, T. Stefaniak and G. Weiglein, Eur. Phys. J. C 74 (2014) 2711
[arXiv:1305.1933 [hep-ph]].

[20] D. M. Pierce, J. A. Bagger, K. T. Matchev and R. j. Zhang, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211].

[21] U. Ellwanger, J. F. Gunion and C. Hugonie, JHEP 0502 (2005) 066 [hep-ph/0406215].

[22] U. Ellwanger and C. Hugonie, Eur. Phys. J. C 25 (2002) 297 [hep-ph/9909260].

[23] J. A. Casas, J. R. Espinosa, M. Quiros and A. Riotto, Nucl. Phys. B 436 (1995) 3 [Erratum-ibid. B 439
(1995) 466] [hep-ph/9407389].

[24] S. P. Martin, Phys. Rev. D 70 (2004) 016005 [hep-ph/0312092].
S. P. Martin, Phys. Rev. D 71 (2005) 016012 [hep-ph/0405022].

[25] G. Chalons and F. Domingo, Phys. Rev. D 86 (2012) 115024 [arXiv:1209.6235 [hep-ph]].

[26] R. Barate et al. [LEP Working Group for Higgs boson searches and ALEPH and DELPHI and L3 and OPAL
Collaborations], Phys. Lett. B 565 (2003) 61 [hep-ex/0306033].

[27] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 103 (2009) 101803 [arXiv:0907.1269 [hep-ex]].
V. M. Abazov et al. [D0 Collaboration], Phys. Lett. B 682 (2009) 278 [arXiv:0908.1811 [hep-ex]].
The CDF Collaboration, “Search for Light Higgs Boson from Top Quark Decay”, CDF note 10104.

[28] F. Domingo, U. Ellwanger, E. Fullana, C. Hugonie and M. A. Sanchis-Lozano, JHEP 0901 (2009) 061
[arXiv:0810.4736 [hep-ph]].

[29] G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion and S. Kraml, Phys. Rev. D 88 (2013) 075008
[arXiv:1306.2941 [hep-ph]].

[30] J. R. Ellis, J. S. Lee and A. Pilaftsis, JHEP 0810 (2008) 049 [arXiv:0808.1819 [hep-ph]].

[31] K. Cheung, T. J. Hou, J. S. Lee and E. Senaha, Phys. Rev. D 84 (2011) 015002 [arXiv:1102.5679 [hep-ph]].

[32] G. Degrassi and P. Slavich, Nucl. Phys. B 825 (2010) 119 [arXiv:0907.4682 [hep-ph]].

[33] U. Ellwanger, JHEP 1308 (2013) 077 [arXiv:1306.5541 [hep-ph]].

[34] M. Muhlleitner, D. T. Nhung, H. Rzehak and K. Walz, arXiv:1412.0918 [hep-ph].

[35] J. Baron et al. [ACME Collaboration], Science 343 (2014) 269 [arXiv:1310.7534 [physics.atom-ph]].

[36] B. C. Regan, E. D. Commins, C. J. Schmidt and D. DeMille, Phys. Rev. Lett. 88 (2002) 071805.

[37] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel and E. N. Fortson, Phys. Rev.
Lett. 102 (2009) 101601.

[38] C. A. Baker, D. D. Doyle, P. Geltenbort, K. Green, M. G. D. van der Grinten, P. G. Harris, P. Iaydjiev and
S. N. Ivanov et al., Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020].

[39] T. Graf, R. Grober, M. Muhlleitner, H. Rzehak and K. Walz, JHEP 1210 (2012) 122 [arXiv:1206.6806
[hep-ph]].

[40] S. Kraml, hep-ph/9903257.

56

http://arxiv.org/abs/0811.4169
http://arxiv.org/abs/1102.1898
http://arxiv.org/abs/1301.2345
http://arxiv.org/abs/1311.0055
http://arxiv.org/abs/1305.1933
http://arxiv.org/abs/hep-ph/9606211
http://arxiv.org/abs/hep-ph/0406215
http://arxiv.org/abs/hep-ph/9909260
http://arxiv.org/abs/hep-ph/9407389
http://arxiv.org/abs/hep-ph/0312092
http://arxiv.org/abs/hep-ph/0405022
http://arxiv.org/abs/1209.6235
http://arxiv.org/abs/hep-ex/0306033
http://arxiv.org/abs/0907.1269
http://arxiv.org/abs/0908.1811
http://arxiv.org/abs/0810.4736
http://arxiv.org/abs/1306.2941
http://arxiv.org/abs/0808.1819
http://arxiv.org/abs/1102.5679
http://arxiv.org/abs/0907.4682
http://arxiv.org/abs/1306.5541
http://arxiv.org/abs/1412.0918
http://arxiv.org/abs/1310.7534
http://arxiv.org/abs/hep-ex/0602020
http://arxiv.org/abs/1206.6806
http://arxiv.org/abs/hep-ph/9903257

	1 Introduction
	2 Model, Phase-counting and Tree-level
	2.1 The CP-violating NMSSM
	2.2 The tree-level Higgs sector
	2.3 The supersymmetric spectrum at tree-level

	3 A short walk-through the code
	3.1 Interface with NMSSMTools
	3.2 Supersymmetric spectrum
	3.3 Higgs masses and radiative corrections
	3.3.1 Wave-function renormalization
	3.3.2 Effective potential
	3.3.3 Pole corrections

	3.4 Couplings, decays and constraints
	3.4.1 Supersymmetric and Higgs couplings
	3.4.2 Higgs and top decays
	3.4.3 Phenomenological tests


	4 A few applications
	4.1 CP-conserving limit
	4.2 CP-violating case

	5 Conclusions
	A Reference functions
	B The tree-level masses and couplings
	B.1 Tree-level masses
	B.1.1 SM fermions
	B.1.2 Electroweak gauge bosons
	B.1.3 Sfermions
	B.1.4 Charginos and neutralinos
	B.1.5 Gluinos
	B.1.6 Higgs sector

	B.2 Tree-level Higgs couplings
	B.2.1 Higgs-SM fermions
	B.2.2 Higgs-gauge
	B.2.3 Higgs-sfermions
	B.2.4 Higgs-charginos/neutralinos
	B.2.5 Higgs-to-Higgs couplings

	B.3 Other couplings
	B.3.1 Chargino - Sfermion - SM fermion
	B.3.2 Neutralino - Sfermion - SM fermion
	B.3.3 Chargino and Neutralino gauge couplings


	C Radiative corrections to the supersymmetric spectrum
	C.1 Electroweak gauginos and higgsinos
	C.2 Sfermions
	C.3 Gluino

	D Radiative corrections to the Higgs spectrum
	D.1 Wave-function renormalization
	D.2 One-loop contributions to the effective potential
	D.2.1 SM-fermions
	D.2.2 Electroweak gauge bosons
	D.2.3 Sfermions
	D.2.4 Charginos and neutralinos
	D.2.5 Higgs-to-Higgs contributions

	D.3 Leading two-loop effects O(Yt,b6,Yt,b4(S))
	D.4 Pole corrections

	E Simplified effective potential
	E.1 Matching the tree-level Higgs potential
	E.2 Minimization conditions
	E.3 Higgs mass matrices
	E.4 Trilinear Higgs couplings


