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Abstract

We report on our exploratory study for the direct evaluation of the parton dis-
tribution functions from lattice QCD, based on a recently proposed new approach.
We present encouraging results using Ny = 2 4+ 1 + 1 twisted mass fermions with
a pion mass of about 370 MeV. The focus of this work is a detailed description
of the computation, including the lattice calculation, the matching to an infinite
momentum and the nucleon mass correction. In addition, we test the effect of
gauge link smearing in the operator to estimate the influence of the Wilson line
renormalization, which is yet to be done.

1 Introduction

Parton distribution functions (PDFs) describe the structure of hadrons by providing
information on the momentum, angular momentum and spin of quarks and gluons in a
hadron. Ideally, PDFs would be directly predicted by quantum chromodynamics (QCD).
Confronted with results from deep inelastic scattering experiments, this would lead to
a most stringent test of QCD and a deep theoretical understanding of the interaction
between quarks and gluons. Naturally, lattice QCD methods, which can cover a broad
energy range from the perturbative to the non-perturbative regimes, would be most
suitable to compute the PDFs. However, such a calculation requires light-cone dynamics
and going to short, or even zero distance on the Euclidean space-time lattice is not
possible.

Nevertheless, through the operator product expansion, moments of the PDFs can be
expressed in terms of matrix elements of local operators, which are accessible to lattice
QCD calculations. In fact, lattice QCD calculations of the PDF’s moments have been
very successfully carried out with results emerging now directly at the physical value of
the pion mass, see the recent reviews of Refs. [1], 2] 3] 4].
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Despite the enormous activity of computing such moments in lattice QCD, it would
still be highly desirable to have information on the PDFs themselves. A reconstruction
of the PDFs from their moments seems unfeasible on the lattice, since higher moments
show a very bad signal-to-noise ratio and are very hard to compute. A solution to this
problem might be the proposal in Ref. [5], which suggests that by computing a parton
quasi-distribution function, a quantity accessible to lattice computations, contact to
the required physical PDFs can be established through a matching procedure. Such a
matching has already been worked out in 1-loop perturbation theory [6] and a first test
of the approach has been carried out in Ref. [7] using staggered fermions.

Here, we will use a different quark discretization on the lattice, namely twisted mass
fermions at maximal twist [§], to conduct an exploratory study of the proposal in Ref. [5].
This lattice formulation of QCD has the advantage that all physical quantities scale
with a rate of O(a?) towards the continuum limit and avoids the operator improvement
necessary in other lattice QCD formulations, easing thus considerably the computa-
tions. Twisted mass lattice QCD calculations for baryons have already been carried
out successfully for the baryon spectrum [9], 10, IT], for form factors and moments of
PDFs [12, 13| [14] 15 16] and also for disconnected contributions to nucleon observables
[17, [18, [19].

As stated above, our work here focuses on exploring the potential of the approach in
Ref. [5]. To this end, we concentrate on one ensemble of maximally twisted mass fermions
at a lattice spacing of about 0.08 fm and a pion mass of about 370 MeV.

In our calculations, we obtain results for a boosting nucleon frame, using the three
lowest lattice momenta, 27/L, 47 /L and 67/L. Larger momenta show a too bad signal-
to-noise ratio in order to extract any meaningful result. We compute the real and the
imaginary parts of the relevant matrix elements and find that the imaginary part is
very important to give an asymmetry between the quark and anti-quark distributions,
a highly non-trivial result of our calculation. In addition, we apply different levels of
gauge link smearing in the operator. This smearing procedure has two effects. First,
higher smearing levels reveal the asymmetry between quark and anti-quark distribution
much clearer. Second, different smearing levels correspond to different renormalization
properties of the matrix elements considered. Thus, comparing results from different
smearing levels can give a hint about the importance of renormalization, depending on
the size of effects from smearing. We will finally use the matching condition to relate
the quasi-distribution to the real PDF and also apply nucleon target mass correction.

It needs to be stressed that the work presented here is only a very first step to
understand the potential of the approach of Ref. [5]. It would be very important to look
at larger momenta than used here to test that the perturbative matching works. Using a
hypothetical mixed momentum setup (described below), we illustrate that a satisfactory
agreement with phenomenological investigations could be obtained if larger momenta
were available. We are planning to employ larger momenta in our next calculations by
increasing our statistics by about an order of magnitude.



2 Theoretical setup

A method to calculate quark distributions directly on a Euclidean lattice has recently
been proposed [5]. If successful, this method can greatly improve our comprehension
of the structure of hadrons, as well as being the first ab initio QCD calculation of the
Bjorken-z dependence of the quark distributions. The key observation in this proposal
is that from the general form of the matrix element of a twist-2 operator between a
nucleon state with momentum P = (F,, 0,0, Ps3),

(PlOH#-#|P) = 2a0Tpar- 0, 1)
a suitable choice of the indices pq, pio, ..., 1, makes sure that the corresponding dis-

tribution is a purely spatial correlation. In Eq. (), an) are the moments of the quark
distributions and IT#1#2-#» ig a symmetric rank - n tensor which can be formed with the
target momentum P, as first calculated by Georgi and Politzer [20]. Let n = 2k, then
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with g = M?/4(Ps)? and M the nucleon mass. Here, we have introduced dsy, as the matrix

elements of the operator without subtracting the corrections in the nucleon mass. In the

end, we want the matrix elements dg,?, which can be related to the usual moments of

the quark distributions in the Infinite Momentum Frame (IMF). For now, we define
+o0
(A, Py) = / " 13(z, A, Py)dz, (5)
and apply the inverse Mellin transformation to Eq. () to obtain:

o AP = [P0, W (0,01P) )

where A is the UV regulator, k3 = xP; is the quark momentum in the z-direction, and

W(z) = e 9o d 45(z) is the Wilson line introduced to make the quark distribution
gauge invariant. Eq. (@) is called a quasi-distribution because it does not have the usual



properties of a quark distribution. Most notably, the momentum fraction x can be bigger
than 1 or smaller than 0. Also, as discussed in Ref. [6], the calculation of the leading UV
divergences to the quasi-distributions in perturbation theory are done keeping Pj fixed
while taking A — oo. This is in contrast to the case of the usual parton distributions,
where one takes the limit P; — oo first, that is, one first goes to the IMF. The dependence
on the UV regulator, A, will be translated, in the end, into a renormalization scale u when
relating the quasi-distribution at finite P; to its counterpart at infinite P3. For now, as we
still do not have a renormalization procedure for the operator and the coupling, we freely
identify the UV regulator in the perturbative corrections in the case of the IMF with u,
the renormalization scale, while keeping it as A for the case of the quasi-distributions.

To relate the quasi-distributions to the usual quark distributions, one uses the fact
that the infrared region of the distributions is untouched when going from a finite to an
infinite momentum. In other words, if ¢(x, 1) is the usual distribution defined though
light-cone correlations, then one should have:
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where @pqre is the bare distribution, Zr and Zp are the wave function corrections and g
and ¢V are the vertex corrections. Notice that the lower limit of integration in Eq. ()
is x/x., where x. ~ A/Pj is the largest possible value of = which renders the vertex and
wave function corrections to the quasi-distributions meaningful. Opposite to the infinite
momentum calculation, at finite P; the terms Zp and ¢ do not vanish for z > 1, and
thus this region has to be included, with the cut being made at x > 1, but below z.. On
the other hand, because ¢ (x, 1) = 0 for x > 1, the integration range in Eq. (7)) can be
extended down to z/z, as well.

Lattice simulations can be used to calculate the left hand side of Eq. (8) through
Eq. (@]). Ideally, one would use perturbation theory to an arbitrary order to calculate the
right hand side of Egs. (l) and () to extract the quark distribution. Currently, however,
the self-energy and vertex corrections are known to O(ay) only and for the non-singlet
case [6]. With this in mind, Egs. (@) and (§) can be combined to give

Qe A Py) = o) + 50w, ) { Ze(h, Py) = Ze() |
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and this is equivalent to Eq. (13) of Ref. [6] if we consider quarks only. Notice that the
quark number is conserved in the above expression, as long as the integrals Z (A, P3),
listed in the Appendix, have also a cut in x.. We define 5219)(”/133, A/ Ps) = Z}(A, Py)—
Zp(p) and ZW (€ /Py, A Ps) = GV (&, A, Ps) — ¢V(&, 1). One can include antiquarks



using the crossing relation ¢(z) = —q¢(—z), and then rewrite Eq. (@) as
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where we have solved the system for ¢(z, ). The form of Eq. (I0) that we implement in
the actual calculations is detailed in the Appendix.

Eq. (I0) can be improved by calculating the corrections in M/P; to an arbitrary
order. As before, we write @\ = [1222m=14©) (2, P,)dx and use this definition, together
with Eq. (B]), to Mellin invert Eq. ([Z]) After some manipulation (c¢f. [21]), the result is:

1

q(z, P,) = = %2(1(0)(5,132), (11)
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where £ = e is the Nachtmann variable. The matching and the nucleon mass

corrections are interchangeable.

3 Lattice calculation

In this section, we will describe our lattice setup and our lattice computations.

3.1 Matrix elements on the lattice

On the lattice, the bare matrix elements h(Ps, z), which appear in Eq. (@), can be com-
puted as

h(Ps, z) = (Plip(2)713Wa(z, 0)4(0)|P) (12)

with the Euclidean momentum P = (0,0, Ps, P;) and z = (0,0, z,0). Due to the (spatial)
rotational symmetry on the lattice the computation can be straightforwardly applied to
the other spatial directions. Our final result will then be an average over these three
directions.

The required matrix elements can be obtained from the ratio of suitable two- and
three-point functions. The three-point function is constructed with the use of nucleon
interpolating fields and a local operator:

O30t (¢, 7,0) = <Na(13, HO(r)No(P, 0)>, (13)

where (...) denotes the average over a sufficient number of gauge field configurations. A
nucleon field boosted with a three-momentum can be defined via a Fourier transforma-
tion of quark fields in position space:

t) =Tas Z eiﬁfe“bcu%(x) (de(:c)C%uc(:c)) : (14)



Figure 1: Schematic picture of a possible Wick contraction of the quark fields in the three-
point function.

where C = ipy2 and I', is a suitable parity projector. Here, we will use the parity plus
projector I' = H% The matrix element at vanishing momentum transfer (Q* = 0) can
be obtained by choosing the following operator:

O(z,7,Q* = 0) =Y _0(y + 2)Ws(y + 2,99 (y), (15)

Y

with y = (¢, 7). After Wick contracting the quark fields, the three-point function can
be expressed in terms of quark propagators, see Fig.[Il for a schematic picture of such a
contraction.

We can extract the matrix element from a ratio of the above given three- and two-
point functions:

C3pt <t7 T, 07 ﬁ) <Lkt _ZP?)
C20t(t,0; P) E

h(Ps, Az), (16)

where £ = \/(Ps)? + M? is the total energy of the nucleon and C*"* is the nucleon two-
point function, which is constructed from the nucleon interpolating fields, C?Pt(t, 0; 13) =
(N,(P,t)N,(P,0)). For the operator, we will consider the non-singlet, iso-vector quark
combination, symbolically represented by u—d, which avoids disconnected contributions.

When computing the three-point function, there is a freedom on how to treat the
propagator connecting the sink position with the operator insertion point (highlighted in
Fig.[). Due to momentum projection, there is a spatial sum on both ends of the propaga-
tor, which would naively require an all-to-all propagator. However, such a computation
would need V = L? x T sets of inversions.

Here, we have tested two different methods to calculate the propagator. The first
is the sequential method, which is exact. However, it requires the sink position and
momentum to be fixed. As a second choice, we have used a stochastic method, where we
use sources that contain Z* noise on one single time-slice (cf. Ref. [22]). The advantage
of the stochastic method is its flexibility, allowing to freely choose the momentum at the
sink position as well as vary the time-slide of the current insertion.
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Figure 2: We show the results for the unrenormalized matrix elements for different source-sink
separations ts, left: Py = 27 /L, right: Py = 4x/L.

Results from an initial test on a smaller gauge ensemble [23] indicate that both
methods show a compatible performance and give an approximately equal error for the
same computational effort. Thus, for the following computations the stochastic method
will be used, since it is more flexible for studying larger momenta.

3.2 Lattice setup

All results shown in this work are computed on a 323 x 64 lattice from an ETMC
(European Twisted Mass Collaboration) production ensemble [24], with Ny =2+ 141
flavors of maximally twisted mass fermions, ¢.e. two degenerate light quarks and non-
degenerate strange and charm quarks. This ensemble has a bare coupling corresponding
to 8 = 1.95, which yields a lattice spacing of a =~ 0.082fm [II] and the twisted mass
parameter au = 0.0055, which corresponds to a pion mass of mpg ~ 370 MeV. Our
present statistics to compute the matrix elements is 181 gauge configurations with 15
sets of forward and two sets of stochastic propagators, each set including both light (up
and down) flavors, i.e. for 5430 measurements.

To examine the influence of excited states, the computation was done for two different
source-sink separations: 8a and 10a. From the comparison in Fig.[2] it can be seen that
the results from both source-sink separations are visibly compatible within errors. It
would require a significantly larger statistics to discriminate excited state effects, a task
we want to address, however, in the future. Since here we perform an exploratory study,
we will stick to the small separation of 8a due to the significantly smaller noise associated
with it. This is especially advantageous for studying larger momenta, e.g. Py = 67/L,
which has generically a bad signal-to-noise ratio.



3.3 Lattice results

For our current statistics, we were able to extract matrix elements for Py = 27w /L, 47w /L
and 67/L. In Ref. [7], the authors applied HYP smearing [25] to the gauge links in
the inserted operator, since this is expected to bring the necessary renormalization fac-
tors closer to the corresponding tree-level value. More generally speaking, such kind of
smearing will certainly influence the renormalization properties of the considered matrix
elements. In order to obtain an estimate how renormalization could influence the results
which will be presented here, we applied two and five steps of HYP smearing to the
operator and compare with the unsmeared results in Fig.[3l

Evidently, the effect of gauge link smearing changes the value of the matrix elements,
for both the real and the imaginary parts. Note that the effect for the imaginary part is
stronger than for the real part. Also, the change from zero to two steps of smearing is
more significant than from two to five steps, which indicates a saturation of the smearing
effect. We will therefore employ a maximum of five smearing steps in this work. We note
in passing that a decrease of the noise like in other gluonic quantities, e.g. as in [26],
cannot be observed when applying smearing. A striking observation in Fig.[3is that while
the real part is symmetric in z, the imaginary part is highly asymmetric. This effect will
play an important role when we discuss the quark and anti-quark distributions later on.

Note that for a value of z = 0, the operator O in Eq. (1)) can be identified with the
local vector current at Q> = 0. This operator is renormalized with the vector current
renormalization constant Zy, which, for this ensemble, is 7, = 0.627(4) [27]. After
renormalization, the condition Fi*"4(Q* = 0) =1 (cf. [28]) should hold. Indeed, we find
Zyh*=4(0) = 1.18(22) for Py = 67/L and Zyh*~%(0) = 0.99(3) for Py = 47/ L while the
value for P3 = 2w /L, Zyh*=4(0) = 0.95(1), is a bit smaller, which is probably due to
excited state effectd). For our final results, we will only use data obtained for Py = 47 /L
and Py = 67/L.

As can be seen in Fig.[3] when going to larger values of Pj, the signal-to-noise ratio
rapidly worsens. Thus, the calculation of a further, larger momentum is not possible
with our present statistics.

4 Matching to quark distribution and nucleon mass
corrections

From the matrix elements h*~%(z, P;), we calculate the quasi-distributions and, after
matching and nucleon mass corrections, the quark distributions themselves. To this
end, we first apply the Fourier transformation to the nucleon matrix elements after
multiplying by the vector current renormalization constant 7y, using Eq. (€). From this
equation, it is clear that if the imaginary part of the matrix elements were zero, or very
close to zero, there would be no difference between the positive and negative x regions. In

! Using a larger source-sink separation of 10a, we find Zyh*~4(0) = 0.98(4), cf. Fig.2l which is in
agreement with one. We attribute the larger error to the larger source-sink separation and the fact that
less measurements were used.
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Figure 3: Results for the unrenormalized matrix elements with
smearing, left: real part, right: imaginary part, from top to bottom: Pj
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Figure 4: Comparison of results for ¢ obtained with five, two and no steps of HYP smearing,
Pg = 47T/L

other words, there would be no difference between the quark and antiquark distributions,
as antiquarks can be interpreted as quarks in the negative x region, according to the
crossing relation g(z) = —q(—x).

Fig.dlshows the complete quasi-distribution for P3 = 47/ L, after applying the Fourier
transformation and taking the real and the imaginary parts of h*~¢(z, P3) into account.
An asymmetry between negative and positive z values is clearly building up, which
is more pronounced for higher levels of gauge link smearing, emphasizing the effect
of HYP smearing on the renormalization of these quantities Because after a proper
renormalization the results with non-smeared and smeared gauge links have to agree
within errors, the effect seen in Fig.[] clearly points to the fact that renormalization will
play an important role when looking at the quark distributions obtained from lattice
calculations in the future.

Having the quasi-distribution g(x), we can proceed to extract the physical quark dis-
tribution ¢(x) from ¢(z), using Eq. (24]) and then applying the nucleon mass corrections.
To be consistent, the value of the momentum cutoff is chosen to be the same as the value
of the lattice cutoff itself, that is, A = 1/a = 2.5 GeV. For the renormalization scale u we
make the same choice. This is a somewhat ad hoc, but plausible choice. Once a proper
renormalization has been carried out, the full equations for the running with p will be
obtained.

As discussed in the Appendix, the integrals also have a cut-off at z. ~ A/Pj, such
that g(z > z., A, P3) = 0. The last input we need for our calculation is the bare coupling
constant, for which we use the value corresponding to 8 = 1.95 of our lattice calculation.
This leads to oy = 6/(47w3) ~ 0.245.

We show our results in Fig.[l for the case of 0, 2, and 5 steps of HYP smearing,
for a nucleon with momentum P; = 47 /L and P3 = 67/L, corresponding to 0.98 GeV
and 1.47 GeV, respectively. As anticipated, HYP smearing is essential in providing the

10
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required asymmetry between the quark and antiquark distributions. We note that two
steps of smearing are already practically sufficient to show the effect of the asymmetry.

As the nucleon momentum increases, the peak of the u(x) — d(x) distribution moves
to smaller values of x, as it should, while for d(z) — @(z) it gets closer to 0 for most
of the x region, but shows an increase in the small x region. This behavior is in qual-
itative agreement with the behavior of the antiquark distributions as extracted from
phenomenological analyses [29] 30 3T]. The nucleon mass corrections lead to a decrease
of the distributions in the large x region. This is again in full accordance with our expec-
tation from phenomenology and asserts that the nucleon mass corrections are essential
to restore the energy-momentum relations, thus ensuring the partonic interpretation of
the distributions. In addition, with increasing nucleon momentum the mass corrections
become less and less important, as expected from Eq. (II]). Finally, the slight oscillatory
behavior in the large x region is a result of performing the Fourier transformation over
a finite extension only, in our case the integration is from —L/2 to +L/2. Because the
nucleon mass corrections also make a shift of the distributions from larger to smaller
values of z, the oscillatory behavior is more pronounced after Eq. (IIJ) is applied, as the
oscillations are more noticeable in the quasi-distributions in the region x > 1. Increasing
the value of Pj is similar to extending the bounds of integration and thus reduces the
oscillations. On this same line, if we had used £1 as the limits of of integration in the
matching, as in Eq. (I0) and thus not taking into account the x > £ region in the last
two terms of Eq. (24]), the oscillations would be slightly more pronounced for the case
of Py =4n/L. For Py = 67 /L there would be no real difference to the results presented
in Fig.[0l

Although we find that the shape of the quark distributions resembles those of the
phenomenological parametrizations of u(z) — d(z), with 2 or 5 steps of HYP smearing,
we do not find an agreement on the quantitative level. Note, however, that there is a
clear tendency to approach the phenomenological parametrizations when Pj is increased.
Motivated by this observation, we made an exploratory study where we use the matrix
elements calculated with P; = 47/L and P; = 67/L, but perform the Fourier trans-
formation in Eq. (@), as well as the matching and the nucleon mass corrections, with
Py = 8n/L. We will refer to this particular setup as the mixed momentum setup. The
resulting distributions are shown in Fig.[6l

It needs to be stressed that this exercise is, of course, only hypothetical. Nevertheless,
the agreement with the phenomenological parametrizations of the distributions at the
intermediate and large = regions is really encouraging. This indicates that by employing
an only moderately larger value of P; than the ones used here, we could obtain even a
quantitative agreement to the parametrizations in certain regions of x. This concerns in
particular the large = region, where increasing values of P3 tend to bring the resulting
distribution down. In the small (and positive) x region, on the other hand, it seems that
increasing the nucleon momentum is not sufficient to produce a rise of the distribution.
This may be related to the fact that there is a limitation in the present calculation
in the small x region due to the presence of the infrared, 1/L, and ultra-violet, 1/a
cut-off regulators on a finite lattice. Thus, this limitation will be overcome when larger
lattices and smaller values of the lattice spacing become available. In any case, a more
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definite statement can only be made after we have access to the matrix elements for
Py = 8m/L. This is not possible with our present statistics. However, we are in the
process of generating a substantially higher statistics. This will allow us to extrapolate
the data for P = 2w /L, P; = 4w/L and P3; = 67/L to obtain the quasi-distribution
at Py = 8m/L. Although we do not expect a big difference to the situation of the
hypothetical mixed setup shown in Fig.[ll a full analysis with real data is, of course,
mandatory and will be presented in a forthcoming work.

5 Conclusions and outlook

In this work, we have presented our first exploratory study of the approach developed
in Ref. [5] for the calculation of the = dependence of quark distributions directly on the
lattice, employing the twisted mass formulation of lattice QCD. The study presented
here, together with the work of Ref. [7], constitute the first two attempts to implement
the approach of Ref. [5] in realistic lattice QCD calculations. Our results, represented in
Fig.[l are comparable to those of Fig. 2 of [7] and we see that the two calculations give
similar results for the case of 2 steps of HYP smearing. Yet it seems that in our case, for
P; = 67/L, the shift of the peak of the quark distributions towards the small = region
is bigger. Also, as we increase the number of steps of HYP smearing, the position of the
peaks is basically unchanged, but they are more pronounced. On the other hand, the
large x region tends to be smaller. It is very reassuring to see that both effects bring
our results closer to the phenomenological parametrizations. Beyond these effects, HYP
smearing is fundamental to generate a sizeable (asymmetric in z) imaginary part in the
matrix elements. This result generates automatically an asymmetry between the quark
and the antiquark distributions, a highly non-trivial result.

The outcome of our ab initio lattice QCD calculation with a small and positive
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d(z) — u(x) is in a very good qualitative agreement with phenomenological parametriza-
tions. In a hypothetical exercise where we use a larger momentum of P; = 87/L in the
Fourier transformation than we actually have in our lattice QCD calculation, we observe
a better qualitative behavior as compared to what is expected phenomenologically, as
is shown in Fig.[6l Moreover, it is clear from both Figs.[bl and [6] that increasing the mo-
mentum implies only marginal corrections to the quasi-distributions, the corrections for
the case P3 = 6m/L being restricted from intermediate to small = regions only.

In summary, we have presented our first effort to explore the potential to calculate
quark distributions directly within the lattice QCD formulation. Although there are
clearly shortcomings, such as not being able to reach large momenta and the lack of
renormalization, our results are promising. In particular, our study of the quark distri-
bution in the mixed momentum setup indicates that only moderately larger momenta
than used here may be sufficient to reach a quantitative agreement with phenomeno-
logical parametrizations in the large x region. We are presently increasing our statistics
significantly, which will allow us to obtain data with such larger momenta. In addition,
we are testing different approaches to perform the necessary renormalization of the ma-
trix elements entering the calculation of the quasi-distributions. Finally, applying this
method to gluon configurations generated directly at the physical value of the pion mass
may open the exciting possibility to address quark distributions and therefore unravel
the structure of hadron from first principle QCD calculations.
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Appendix

The wave function and vertex corrections in Eq. (I0) were calculated in Ref. [6]. The
vertex corrections are given by:

Z(l)(é)_(1+£2) § 1A
cr \1-¢)"e1it T a—ern "
for £ > 1,
ZWE) (14N, (P)?  [(1+¢ 2¢ 1 A
G~ (75 ) m T+ (om0 - prie g 9
for 0 <& < 1, "
Zl(&)_<1+§2) -1 1A
o \1-¢)" ¢ oo 1)
for £ < 0. The wave function corrections are given by:
6ZM = Cp / h deszW(¢), (20)
where L4 e? ¢ ) A
MWy = _ 1 el
dZ00) = <1—5)1“5—1 ST 21
for £ > 1,
Wy - _ (LEEY B (1+€ oo xE-D 1 A
R e e L e R (=
(22)
for 0 < ¢ < 1, )
Moy (14+E E—1 B 1A
700 = (1_5)111 ¢ T aseon (23)
for £ < 0.

In the actual calculation, we make a change of variables in the integral term contain-
ing ¢(y, A, P3) of Eq. (I0), and also set the threshold above which the quasi-distribution
is zero. We call this value z., which is of order of A/P;. When we inverted Eq. (9]), we
kept the limits of integration from -1 to +1, which is the region where the quark dis-
tributions are defined and where factorization holds. In practice, we will integrate from
—z, to +x., the reason being that G(x > 1) # 0 and contributions from this region
should be taken into account. As we increase the value of P3, however, the closer we get
to the physical distribution and as a result ¢(z > 1) ~ 0. We also break the integral
containing ¢ into two terms, with the limits from —z. to —|z|/z. and from +|z|/z. to
+z.. We then make a change of variables, £ = x/y, and Eq. (I0) is rewritten as:

15



5 - A
q(z,p) = qlz, A, Ps) — g‘—q(x A, Py)ozW (% F)

—|zl/ze A d
Qs " §
& Z“’( r)i(enn)

21 J . 3 Py Py ]

ag [T < A dé

- £ — —) < A Pg) — + 0(a?). (24)

2 +|a@| /e P3 P3 |§|
The integrals contain both single and double poles at ¢ = 1. It can be shown that he
single pole terms cancel between Egs. (I7)-([I8) and 2I)-(22), e.g. the single pole in
the third term on the Lh.s of Eq. (I8)) is cancelled by the third term on the Lh.s of
Eq. (22). The double poles are first reduced to a single pole by a similar cancellation
when combining the vertex and wave function corrections, as in the single pole case, and
the remaining pole is taken care of by using the Cauchy’s principal value prescription.

The remaining expression is finite, with the exception that the integral of §Z(1)(¢) is
divergent as & — do00. The divergent term is:

3
()5 In(a? — 1), (25)
where we have set x. as the upper and lower limit of the integrals of (IZ[I) and (23),
respectively. The same limits of integration, both when integrating Z() and §Z®" are
necessary in order to maintain the quark number conservation. Notice that this log
divergent term is the usual UV divergence present in the wave function.
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