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Abstract

We present a study of the B spectrum performed in the framework of Heavy Quark Effective
Theory expanded to next-to-leading order in 1/mb and non-perturbative in the strong
coupling. Our analyses have been performed on Nf = 2 lattice gauge field ensembles
corresponding to three different lattice spacings and a wide range of pion masses. We
obtain the Bs-meson mass and hyperfine splittings of the B- and Bs-mesons that are in
good agreement with the experimental values and examine the mass difference mBs −mB

as a further cross-check of our previous estimate of the b-quark mass. We also report on
the mass splitting between the first excited state and the ground state in the B and Bs

systems.
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1 Introduction

Lattice studies of the hadron spectrum provide valuable indications on the reliability of ef-
fective field theories. A phenomenologically relevant example is given by effective field the-
ories for heavy quarks, such as Heavy Quark Effective Theory (HQET) or Non-Relativistic
QCD (NRQCD).

In this respect, hyperfine splittings are of great theoretical interest, since they vanish
in the static (1/mh → ∞) limit, and thus serve to probe subleading terms in the heavy
quark expansion. In the context of lattice NRQCD, for example, it was found that in order
to obtain a determination of the hyperfine splittings of bottomonium that is consistent
with experiments, the perturbative improvement of the NRQCD action to at least one-
loop order is required [1–3], for values of the lattice spacing of about 0.1 fm. The Υ

spectrum, on the other hand, is well reproduced within NRQCD, and has been used in the
literature as a quantity to set the lattice spacing [4,5]. Hyperfine splittings have also been
studied within the HISQ approach to heavy quarks [6].

In contrast to other studies, our results are based on non-perturbatively renormalized
HQET including the next-to-leading order in the inverse heavy quark mass. Regarding
specifically the B spectrum, it is well known that the masses of the pseudoscalar Bq and
vector B∗q differ as a result of spin effects [7]. This mass difference is produced in HQET
by a O(1/mh) chromomagnetic term in the Lagrangian that breaks the heavy quark spin
symmetry of the static theory [8, 9].

Another quantity of interest is the SU(3) isospin breaking quantity mBs −mB. Most
of the dependence on the heavy quark mass cancels in the difference and the statistical
correlations between the strange and light-quark measurements should lead to a much
improved precision in the determination of the difference compared to what would be
possible for the individual masses. In [10], the mass of the B-meson has been used to
determine the b-quark mass. Since the mass of the Bs-meson could have equally well been
used, it is instructive to study how the strange-light mass difference propagates to the
b-quark mass measurement.

Relatively little is known experimentally on the radial excitations of B-mesons, usually
denoted by B′. CDF has claimed the observation of a resonant state B(5970) that may be
interpreted as a B′ state [11]. Lattice predictions for the radial excitation energies of the B
system have been made in the framework of NRQCD [12,13] and HQET [14–22], but, with
the exception of the most recent studies, control of the continuum extrapolation has been
limited, if possible at all. An additional difficulty that always needs to be addressed is in
disentangling single particle excitations from multi-particle states. We use the notation Br

(or Br
q with q = u/d or s) for the excited states that we observe. They might be identified

with radial excitations B′, but without a dedicated study including also multi-hadron
operators, we are unable to conclusively determine the nature of these excited states.

In this paper, we report on our estimate of the hyperfine splittings ∆HF
q m in the B

and Bs systems, and on the mass differences mBr −mB, mBr
s
−mBs and mBs −mB from

Nf = 2 lattice simulations.
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β = 5.5 β = 5.3 β = 5.2

HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

amstat
bare 0.969(12) 1.000(12) 1.317(15) 1.350(15) 1.520(17) 1.553(17)

ambare 0.594(14) 0.606(14) 0.993(17) 1.014(17) 1.214(18) 1.239(18)

ωkin/a 0.520(11) 0.525(10) 0.415(8) 0.418(8) 0.377(7) 0.380(7)

ωspin/a 0.949(37) 1.090(42) 0.73(28) 0.883(33) 0.655(24) 0.812(30)

Table 1: Values of HQET parameters at the physical point ω(z = zb). As determined in [10], we
have used zstat

b = 13.24 to interpolate the parameters of HQET at static order, and zb = 13.25 for
the parameters of HQET expanded to NLO. The bare coupling g0 is given by β = 6/g2

0 .

2 Theoretical setup

2.1 HQET on the lattice

Heavy Quark Effective Theory (HQET) can be formulated with a lattice regulator. The
resulting lattice field theory can be non-perturbatively matched to QCD in the continuum
limit. This provides a rigorous and systematically improvable approach to the study of the
B-meson system. The HQET action at O(1/mh) reads

SHQET = a4
∑

x

{
Lstat(x)− ωkinOkin(x)− ωspinOspin(x)

}
, (2.1)

Lstat(x) = ψh(x)D0 ψh(x) , (2.2)

Okin(x) = ψh(x)D2 ψh(x) , (2.3)

Ospin(x) = ψh(x)σ ·Bψh(x) , (2.4)

where the subscript h denotes a heavy (static) quark field satisfying 1+γ0
2 ψh = ψh, and the

operators are normalized such that the classical (tree level) values of the coefficients are
ωkin = ωspin = 1/(2mh). The energy levels computed in this theory are relative to a bare
mass mbare, which at tree level is simply mh, but has to absorb a power-divergent shift
at the quantum level, implying that it will take a different value depending on whether
the O(1/mh) terms are included or not. The renormalizability of the static theory can be
preserved at NLO by considering a strict expansion of correlation functions in 1/mh,

〈O〉 = 〈O〉stat + ωkin a
4
∑

x
〈OOkin(x)〉stat + ωspin a

4
∑

x
〈OOspin(x)〉stat , (2.5)

where the suffix “stat” denotes an expectation value measured in the static theory.
The values of the parameters mstat

bare and {mbare, ωkin, ωspin} required to match to QCD
have been determined in [10,23] using the Schrödinger Functional scheme. In order to keep
this paper self-contained, we summarize in Table 1 their values for the three lattice spacings
a(β) and two static discretizations (HYP1, HYP2 [24]) that we use. The parameters are
given at zb = L1Mb where Mb is the Renormalization Group Invariant (RGI) b-quark
mass and L1 is the linear extent of the lattice used for the matching.

2.2 The variational method

For spectroscopic applications, having good control over contributions from excited states
is crucial to reduce the systematic error on the determination of the ground state. For this
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purpose it is necessary to use a variational method [25–29], which starts from matrices of
correlation functions,

Cstat
ij (t) =

∑
x,y

〈
Oi(x0 + t,y)O∗j (x)

〉
stat

,

(2.6)
C

kin/spin
ij (t) =

∑
x,y,z

〈
Oi(x0 + t,y)O∗j (x)Okin/spin(z)

〉
stat

,

containing all pairwise correlators of some set of interpolating fields Oi , i = 1, . . . , N , and
proceeds to solve the generalized eigenvalue problem (GEVP)

Cstat(t) vstat
n (t, t0) = λstat

n (t, t0)Cstat(t0) vstat
n (t, t0) , n = 1, . . . , N , t > t0 . (2.7)

From the generalized eigenvalues λstat
n (t, t0) and the corresponding eigenvectors vstat

n (t, t0),
the effective energy levels can be computed as [29,30]

Eeff,stat
n (t, t0) = −1

a
[log λstat

n (t+ a, t0)− log λstat
n (t, t0)] ,

Eeff,x
n (t, t0) =

λx
n(t, t0)

λstat
n (t, t0)

− λx
n(t+ a, t0)

λstat
n (t+ a, t0)

, (2.8)

where x ∈ {kin, spin} and

λx
n(t, t0)

λstat
n (t, t0)

=
(
vstat
n (t, t0) , [[λstat

n (t, t0)]−1Cx(t)− Cx(t0)]vstat
n (t, t0)

)
. (2.9)

The corresponding asymptotic behaviour is known to be

Eeff,stat
n (t, t0) = Estat

n + βstat
n e−∆Estat

N+1,n t + . . . , (2.10)

Eeff,x
n (t, t0) = Ex

n + [βx
n − βstat

n t∆Ex
N+1,n ]e−∆Estat

N+1,n t + . . . , (2.11)

where the energy gap is defined as ∆Em,n = Em − En.
In our study, the operator basis used is given by heavy-light bilinears with varying

levels of Gaussian smearing [31] applied to the light quark field,

Ok(x) = ψh(x) γ0γ5 ψ
(k)
q (x) , ψ(k)

q (x) =
(
1 + κG a

2 ∆
)Rk ψq(x) , (2.12)

where q = u/d or s. The covariant Laplacian ∆ is built from gauge links that have been
triply APE smeared [32,33] in the spatial directions, and the smearing parameters κG and
Rk are chosen so as to approximately cover the same sequence of physical radii at each
value of the lattice spacing, as discussed in [10]. We solve the GEVP for the matrix of
correlators in the static limit for N = 3.

An illustration of two typical plateaux of the energies Espin
1 and Estat

2 is shown in
Fig. 1. The plateau regions used for weighted averaging have been chosen by applying the
procedure already discussed in [34,35] in order to ensure that the systematic errors due to
excited-state contributions are less than a given fraction (typically 1/3) of the statistical
errors on the GEVP results. As a consistency check, we have also employed a global fit of
the form of eqs. (2.10) and (2.11) to our data. The values of En obtained from the fit are
compatible with the plateau values, and generally exhibit smaller statistical errors. We
therefore consider our errors to be estimated conservatively.
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Figure 1: Illustration of typical plateaux for the O(1/mb) chromomagnetic energy a2Espin
1 (top)

and the first excited state static energy aEstat
2 (bottom), computed on the CLS ensemble N6

(a = 0.048 fm, mπ = 340MeV).

2.3 Computing masses

We start by recalling the definition of the Bq-meson mass as it has been used to non-
perturbatively fix the HQET parameters for the static quark discretizations HYP1 and
HYP2 in [10]. On the lattice one combines the HQET parameters (see Table 1, or [36] for
a more detailed discussion) with the large volume computations of ground state energies,

mstat
Bq (mπ, a) = mstat

bare + Estat
1

∣∣
mq
, (2.13a)

mBq(mπ, a) = mbare + Estat
1

∣∣
mq

+ ωkinE
kin
1

∣∣
mq

+ ωspinE
spin
1

∣∣
mq
. (2.13b)

We use the subscript mq to indicate that the corresponding energy results from the GEVP
analysis of correlation functions in the heavy-light (q = d) or heavy-strange (q = s) sector
along the lines presented in Section 2.2. The PDG valuemB = 5.2795 GeV in [7] has already
been used as input to determine mb [10] and thus the HQET parameters ωi. However, re-
computing mB at fixed values of the HQET parameters serves as a non-trivial cross-check
of our calculation. Additionally, we will compute mBs in the very same way. All remaining
observables presented in the present paper are mass splittings which can be computed with
the data resulting from our GEVP analysis. We now give their explicit definition before
discussing any combined chiral and continuum extrapolation in Section 2.4.
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e-id β κd = κsea κs τ τcfg τexp heavy-light heavy-strange

HYP1 HYP2 HYP1 HYP2

A4 5.2 0.135900 0.1352850 2 8 106 1012 [1,1] 1000 [1,1]
A5c 0.135940 0.1352570 2 4 39 501 [1,1] 500 [1,1]
A5d 500 [1,1] – –
B6 0.135970 0.1352390 2 2 39 636 [1,1] 636 [1,1]
E5 5.3 0.136250 0.1357770 4 16 151 1000 [1,1] 1000 [1,1]
F6 0.136350 0.1357410 2 8 151 500 [1,1] 600 [1,1]
F7 0.136380 0.1357300 2 8 151 602 [100,1] 200 [1,2]
G8 0.136417 0.1357050 2 2 56 410 [1,1] – –
N5 5.5 0.136600 0.1362620 0.5 8 488 477 [300,1] – –
N6 0.136670 0.1362500 2 4 108 950 [2,2] 707 [100,2]
O7 0.136710 0.1362430 2 4 108 980 [1,1] – 490 [1,2]

Table 2: Measurement details for observables in the light- and strange-quark sector. For each
ensemble we list the light- and strange-quark hopping parameter, the trajectory length τ , the
distance of saved configurations τcfg and the exponential autocorrelation time τexp in MDU. For
each individual static quark discretization we then specify Nms [m,d], i.e., the total number of
measurements starting from the mth saved configuration using every dth. Note that for A5 we
have two independent Monte-Carlo chains.

The hyperfine splitting of the Bq-meson system, mB∗q −mBq , is given by

∆HF
q m (mπ, a) = −4

3
ωspinE

spin
1

∣∣
mq

, q = s, d , (2.14)

and depends on the HQET parameter ωspin and the large-volume measurement of Espin
1 .

The strange-light mass difference mBs −mBd
, at the static and O(1/mb) level, reads,

∆stat
s−dm (mπ, a) = ∆s−dE

stat
1 , (2.15a)

∆s−dm (mπ, a) = ∆s−dE
stat
1 + ωkin∆s−dE

kin
1 + ωspin∆s−dE

spin
1 , (2.15b)

respectively, where we have defined the shorthand ∆s−dQ = Q|mq=ms
−Q|mq=md

. Finally,
the mass gaps for excited states, mBr

q
−mBq , can be computed from ∆Em,n = Em − En

via

∆stat
r,q m (mπ, a) = ∆Estat

2,1

∣∣
mq
, (2.16a)

∆r,qm (mπ, a) = ∆Estat
2,1

∣∣
mq

+ ωkin∆Ekin
2,1

∣∣
mq

+ ωspin∆Espin
2,1

∣∣
mq
, (2.16b)

to static and O(1/mb) accuracy, respectively. As any observable computed on the lattice,
these quantities depend on the input parameters used in the simulation. The strange
and bottom quark mass have been fixed to their physical value along the lines reported
in [10,36,37], such that only the dependences on the light quark mass—here parameterized
by mπ—and lattice spacing a remain.

We have extracted the energies on a subset of gauge ensembles from the Coordinated
Lattice Simulations (CLS) effort for Nf = 2. The parameters of the simulations and
the statistics entering our analysis are collected in Table 1 of [10]. Remaining details
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of the measurements have been summarized in Table 2.1 The light quark is treated in
a unitary setup with mπ in the range [190 MeV, 440 MeV], and the bare strange quark
mass has been tuned on each CLS ensemble to its physical value by using the kaon decay
constant fK to set the scale [37] and mK = 494.2 MeV. The lattice spacings are a/fm ∈
{0.048, 0.065, 0.075} for β ∈ {5.5, 5.3, 5.2}, corresponding to the CLS ensemble ids N–O,
E–G and A–B, respectively. All lattices have mπL ≥ 4, such that finite-volume effects are
sufficiently exponentially suppressed at the level of accuracy we are working at.

Our data analysis takes into account correlations between different observables as well
as intrinsic autocorrelations of the Hybrid Monte Carlo (HMC) algorithm resulting from
slow modes in the simulation. As these contributions rapidly grow towards the continuum
limit, it is mandatory to estimate and include a-priori unknown long-tail contributions
from the autocorrelation function of each individual observable. Further details of our
analysis method can be found in Appendix A.

2.4 Extrapolation to the physical point

To extrapolate our data to the continuum limit and to the physical point, we take ex-
pressions from heavy meson chiral perturbation theory (HMχPT) if available, and a linear
ansatz otherwise.

In the chiral regime, the mass of the B-meson can be extrapolated to the physical
point using a functional form motivated by HMχPT [38]. Defining a subtracted mass by
removing the leading non-analytic (in the quark mass) term, viz.

msub
Bq ,δ(y, a) = mBq(mπ, a) + cq

3ĝ2

16π

(
m3
π

f2
π

− (mexp
π )3

(f exp
π )2

)
, (2.17)

with cq = 1 in HMχPT at NLO for q = d but zero otherwise, the parameterization reads

msub
Bq ,δ(y, a) = Bq + Cq (y − yexp) +Dq,δa

2 . (2.18)

In (2.17) the B∗Bπ-coupling ĝ = 0.492(29) is taken from [39] and y = m2
π/(8π

2f2
π) (with

the convention f exp
π = 130.4 MeV and mexp

π = 134.98 MeV). We use the same set of
measurements for fπ and mπ on each CLS ensemble as reported in foregoing analyses [10,
36]. We add the subscript δ to distinguish the two available static discretizations which
are combined in the extrapolation to obtain the parameter Bq ≡ mBq at the physical point
(y, a) = (yexp, 0). For the Bq-meson mass an extrapolation quadratically in the lattice
spacing is justified as we have full O(a) improvement at work in (2.13) at the static order
and O(a) terms are then suppressed by a factor 1/mb once NLO terms in HQET are taken
into account. For the case of mB that has been explicitly checked in [10] and it is therefore
conceivably valid also here for mBs .

In Fig. 2 we show the continuum and chiral extrapolations of mBs and mBs −mB at
next-to-leading order in 1/mb. In this and the following Figures, filled symbols and dashed
curves represent our HYP1 data set, while open symbols and dash-dotted curves represent
our HYP2 data set. For both, equal colours and symbols refer to the same lattice spacing
as indicated by equal values of the bare gauge coupling, given by β = 6/g2

0 in the legend,
1 For the B6-ensemble a preliminary value of κs has been used, which produces a bare subtracted quark

mass which differs by about 1 MeV from the final one.
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c.f. Tables 1 and 2. The solid black line is the continuum limit given by the part of the fit
function which is independent of the lattice spacing a. Accordingly, the difference between
the solid and non-solid lines represents the cutoff effect as fitted through a given ansatz.

For the hyperfine splitting, we can perform the chiral and continuum extrapolation
using

∆HF
q,δm (y, a) = [mB∗q −mBq ]

[
1− c̄q 3

2 ĝ
2 (y ln y − yexp ln yexp) + C̄q (y − yexp)

]
+ D̄q,δ a+ ¯̄Dq,δ a

2 , (2.19)

with the continuum part coinciding, in the case q = d, with the expression derived in [40].
Hence, we can probe two ansätze for the chiral extrapolation by setting c̄d = 0, 1. Since
in principle the O(a) improvement of the hyperfine splitting is not implemented, we have
included linear cutoff effects, but also study the scaling behaviour with an O(a2) ansatz by
setting either D̄q,δ or ¯̄Dq,δ to zero in the equation above. In general, our data is not sensitive
enough to clearly separate O(a) scaling from O(a2) such that individual fits lead to similar
results. As additional safety measure we account for a systematic error by increasing the
uncertainty of the favoured O(a) extrapolation in order to cover the mean value obtained
from the corresponding O(a2) extrapolation. As will be seen in the following, this only
occurs in the case of mB∗s −mBs .

Since, to our knowledge, no systematic HMχPT formulae exist in the literature for
the mass splittings mBr

q
−mBq , we again employ a simple linear ansatz in m2

π:

∆stat
r,q m (y, a) = [mBr

q
−mBq ]

stat + Cstat
q (y − yexp) + Estat

q,δ a
2 , (2.20)

∆r,qm (y, a) = [mBr
q
−mBq ] + C ′q(y − yexp) + E′q,δa+ E′′q,δa

2 . (2.21)

For the mass splitting ∆r,qm at next-to-leading order in HQET, one can in fact define

∆1/m
r,q m (y, a) ≡ ∆r,qm (y, a)−∆stat

r,q m (y, a) (2.22)

and take the continuum limit of the leading (static) and next-to-leading order piece (1/m)
separately. While for the former eq. (2.20) can be employed, the 1/mb-correction term has
to be extrapolated using ansatz (2.21) with E′′q,δ = 0. Both pieces can again be combined
after the physical point is reached, leading to an improved signal that is dominated by
the static extrapolation. No matter what way is pursued, all extrapolations lead to results
that are well compatible within errors.

We perform the full analysis using two static discretizations (HYP1,HYP2) while only
one may already suffice. The reason is that the universality of the continuum limit, a
property that can be rigorously guaranteed for renormalizable theories, implies that both
static discretizations have to lead to equal results in the continuum. At finite lattice
spacing the two discretizations have inherently different lattice artifacts, best seen among
our observables in Fig. 3. To this end one can either take the two independently in order
to show that universality holds or—as we usually do—combine both in one fit in order to
stabilise the χ2-minimization. It furthermore serves as a non-trivial check that the whole
procedure has been applied correctly and consistently.

3 Results

Using the HQET parameters of Table 1 at zb = 13.25, we obtain for the B-meson mass
mB = 5.285(62)GeV by employing eqs. (2.17) and (2.18) with cq = 1 as extrapolation

8
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Figure 2: Chiral and continuum extrapolation of mBs
(left) and mBs

− mB (right) according
to (2.18). The open triangle represents the corresponding result for extrapolating the static order
data. Here and in the following Figures, filled symbols and dashed curves represent our HYP1 data
set, while open symbols and dash-dotted curves represent our HYP2 data set. The solid black line
is the continuum limit for the given fit ansatz.

ansatz. Note, however, that the experimental value mB = 5.2795 GeV has been used as
input in [10] to fix the b-quark mass. Therefore mB is not a prediction of the theory in our
setup, and the number above should be regarded as a consistency check of the approach.

3.1 Ground states

As first quantities beyond mB, we compute the Bs-meson mass and the mass difference
mBs−mB. Their continuum and chiral extrapolations at next-to-leading order in 1/mb are
shown in Fig. 2 and compared to the extrapolated value of the static data at the physical
point. The raw data for the mass difference mBs − mB and the hyperfine splittings is
collected in Tables 3 and 4.

From the extrapolation of the form of eqs. (2.17) and (2.18) with cq = 0, we obtain
the result:

mBs = 5383(63) MeV , mBs −mstat
Bs

= 58(12) MeV , (3.1)

where the error includes statistic and systematic uncertainties (scale setting, HQET param-
eters), combined in quadrature as explained in Appendix A. Although our result for mBs

comes with a much larger error compared to the PDG value, mB0
s

= 5366.77± 0.24 MeV,
the difference between the mean values is only one fourth of our error.

In the combination mBs − mB, the error is reduced due to correlations among the
heavy-light and heavy-strange measurements, although the latter have been performed on
a subset of the available ensembles only, as it can be inferred from Table 2.

Our results for the Bs-B mass splitting at O(1/m) and in the static approximation are

mBs −mB = 88.9(5.7)(2.3)χ MeV , (3.2a)

[mBs −mB]stat = 85.0(5.1)(2.2)χ MeV , (3.2b)

both in good agreement with the PDG value of [7] mBs − mB = 87.35(23) MeV. Here,
the quoted mean and statistical error results from an HMχPT extrapolation ansatz that
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Figure 3: Chiral and continuum extrapolation of the hyperfine spin splitting of the B-meson (left)
and of the Bs-meson (right). For mB∗ −mB we show the extrapolation from ansatz (2.19) with
c̄d = 1 and leading a-effects, while for mB∗

s
− mBs

we have to set c̄s = 0. In both panels the
open triangle at the physical point reflects the corresponding fit result using an a2-scaling ansatz.
Details are given in Table 3.

∆s−dm [MeV] ∆stat
s−dm [MeV]

e-id y HYP1 HYP2 HYP1 HYP2

A4 0.0771(14) 55.2(2.6) 56.0(2.3) 51.9(2.1) 53.1(1.8)
A5 0.0624(13) 68.8(1.8) 66.0(1.6) 62.6(1.8) 63.4(1.7)
B6 0.0484(9) 71.6(4.9) 70.2(3.5) 66.5(3.9) 67.3(3.1)
E5 0.0926(15) 52.8(2.7) 51.9(1.9) 48.8(2.0) 49.2(1.7)
F6 0.0562(9) 70.9(5.7) 70.3(4.0) 66.5(5.2) 64.7(3.9)
F7 0.0449(8) 69.7(3.2) 74.0(2.5) 67.1(3.0) 69.4(2.4)
N6 0.0662(10) 64.0(6.7) 68.0(3.7) 62.8(4.8) 63.3(3.2)
O7 0.0447(7) – 72.2(6.9) – 70.2(5.3)

LO-a2 yexp, a = 0 91.2(5.8) 87.2(5.2)
NLO-a2 yexp, a = 0 88.9(5.7) 85.0(5.1)

Table 3: Mass splitting between Bs- and Bd-meson at static and next-to-leading order HQET.

is obtained by appropriately combining eq. (2.18) for the light and strange quark sector.
As systematic error due to the chiral extrapolation ansatz we quote its difference to the
standard m2

π-extrapolation.
For the hyperfine spin splittings, we obtain

mB∗ −mB = 41.7(4.2)(3.2)a(0.3)χ MeV , (3.3a)

mB∗s −mBs = 37.8(3.3)(5.8)a MeV , (3.3b)

where we quote the mean value obtained with c̄d = 1 for the B-meson case and add
the difference w.r.t. the result obtained from the ansatz with c̄d = 0 as a systematic
error estimate for the chiral extrapolation. As mentioned earlier, we also account here
for a systematic error between linear and quadratic continuum extrapolations. The O(a)

extrapolations are shown for both the B and the Bs system in Fig. 3. The filled/empty
symbols at the physical point are the results using either an O(a), or an O(a2) term in the
continuum extrapolation.
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∆HF
d m [MeV] ∆HF

s m [MeV]

e-id y HYP1 HYP2 HYP1 HYP2

A4 0.0771(14) 52.3(2.1) 62.0(2.4) 54.2(2.2) 63.1(2.5)
A5 0.0624(13) 51.1(2.0) 60.5(2.4) 52.9(2.1) 62.9(2.5)
B6 0.0484(9) 50.1(2.2) 58.7(2.5) 52.1(2.0) 60.8(2.4)
E5 0.0926(15) 51.9(2.1) 59.6(2.4) 53.6(2.4) 62.4(2.7)
F6 0.0562(9) 50.0(2.5) 58.1(2.7) 49.6(2.0) 57.4(2.3)
F7 0.0449(8) 46.1(1.9) 54.1(2.2) 47.9(2.0) 56.1(2.2)
G8 0.0260(5) 48.1(2.9) 53.7(2.6) – –
N5 0.0940(19) 52.6(2.8) 57.7(3.6) – –
N6 0.0662(10) 51.1(3.0) 53.3(2.9) 51.2(2.4) 55.8(2.4)
O7 0.0447(7) 51.7(3.7) 54.4(3.1) – 53.7(2.4)

LO-a2 yexp, a = 0 45.2(2.9) 43.6(2.4)
LO-a1 yexp, a = 0 42.0(4.2) 37.8(3.3)
NLO-a2 yexp, a = 0 44.9(2.9)
NLO-a1 yexp, a = 0 41.7(4.2)

Table 4: Hyperfine splittings in the light- and strange-quark sector.

Our result for the hyperfine splitting for the B-system is in good agreement with the
experimental value mB∗ − mB = 45.78(35) MeV [7], whereas the Bs hyperfine splitting
differs noticeably from the experimental value mB∗s − mBs = 48.7+2.3

−2.1 MeV. Our results
are smaller than the experimental value and than our result for the hyperfine splitting
of the B (the opposite of the situation for the experimental values). Since the hyperfine
splitting came out far too small in the quenched approximation [34], this is suggestive
of a residual quenching effect from the quenching of the strange quark in our Nf = 2

simulations. Moreover, Fig. 3 indicates larger cutoff effects in the case of the hyperfine
splitting for the Bs.

3.2 Excited states

For the mass splittings between the ground state Bq and the first excited state, denoted
here by Br and Br

s, we obtain

mBr −mB = 791(73) MeV , [mBr −mB]stat = 701(65) MeV , (3.4a)

mBr
s
−mBs = 566(57) MeV , [mBr

s
−mBs ]

stat = 547(34) MeV . (3.4b)

after adding the individually extrapolated results for [mBr
q
−mBq ]

stat and [mBr
q
−mBq ]

1/m.
In Fig. 4 these values are shown (as pentagons, slightly shifted at the physical point) for
comparison with an extrapolation according to eq. (2.21). The raw data is collected in
Tables 5, 6, and 7.

We conclude this Section by remarking that for the excited states the interpretation
of our results in terms of mass differences of physical one-meson states, e.g. “radial exci-
tations”, is not straight forward. Although our values for these mass gaps are larger than
what a multi-hadron state made of, e.g., a B(∗)

(s) -meson and a small number (≤ 2) of phys-
ical pions would produce, we cannot unambiguously conclude that our Br

q states actually
correspond to radial excitations of the ground-state Bq-mesons. In a rigorous approach,
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∆r,dm [GeV] ∆stat
r,d m [GeV]

e-id y HYP1 HYP2 HYP1 HYP2

A4 0.0771(14) 0.692(37) 0.703(33) 0.619(27) 0.625(25)
A5 0.0624(13) 0.736(18) 0.738(17) 0.655(16) 0.664(15)
B6 0.0484(9) 0.622(66) 0.665(57) 0.552(56) 0.592(52)
E5 0.0926(15) 0.753(27) 0.758(25) 0.676(24) 0.682(23)
F6 0.0562(9) 0.719(57) 0.721(54) 0.658(52) 0.654(47)
F7 0.0449(8) 0.760(32) 0.756(26) 0.678(32) 0.676(30)
G8 0.0260(5) 0.67(11) 0.70(9) 0.63(11) 0.65(9)
N5 0.0940(19) 0.83(11) 0.71(14) 0.697(35) 0.709(31)
N6 0.0662(10) 0.78(9) 0.76(8) 0.634(72) 0.668(58)
O7 0.0447(7) 0.71(12) 0.71(8) 0.64(10) 0.63(8)

LO-a2 yexp, a = 0 0.787(71) 0.701(65)
LO-a1 yexp, a = 0 0.84(12)

Table 5: Mass gaps between the excited state Br
d- and the Bd-meson at static and next-to-leading

order HQET.

∆r,sm [GeV] ∆stat
r,s m [GeV]

e-id y HYP1 HYP2 HYP1 HYP2

A4 0.0771(14) 0.774(45) 0.748(34) 0.640(23) 0.650(22)
A5 0.0624(13) 0.760(15) 0.753(15) 0.670(11) 0.677(11)
B6 0.0484(9) 0.719(49) 0.704(35) 0.641(22) 0.641(21)
E5 0.0926(15) 0.791(66) 0.676(44) 0.609(29) 0.624(25)
F6 0.0562(9) 0.689(30) 0.722(24) 0.643(18) 0.642(17)
F7 0.0449(8) 0.665(24) 0.660(19) 0.593(15) 0.601(14)
N6 0.0662(10) 0.698(49) 0.718(36) 0.621(38) 0.643(32)
O7 0.0447(7) – 0.736(38) – 0.669(29)

LO-a2 yexp, a = 0 0.570(47) 0.547(34)
LO-a1 yexp, a = 0 0.519(74)

Table 6: Mass gaps between the excited state Br
s- and the Bs-meson at static and next-to-leading

order HQET.
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∆
1/m
r,d m [MeV] ∆

1/m
r,s m [MeV]

e-id y HYP1 HYP2 HYP1 HYP2

A4 0.0771(14) 73(27) 78(21) 133(38) 98(26)
A5 0.0624(13) 71(11) 75( 8) 90(11) 76( 9)
B6 0.0484(9) 70(31) 73(20) 78(45) 64(28)
E5 0.0926(15) 77(17) 75( 9) 182(71) 52(40)
F6 0.0562(9) 61(31) 68(21) 47(24) 80(17)
F7 0.0449(8) 82(18) 80(11) 71(19) 59(15)
G8 0.0260(5) 36(26) 54(15) – –
N5 0.0940(19) 132(110) 6(95) – –
N6 0.0662(10) 149(59) 94(31) 77(31) 76(18)
O7 0.0447(7) 75(25) 84(17) – 67(26)

LO-a1 yexp, a = 0 0.090(40) 0.019(46)

Table 7: Subleading HQET contributions to the mass gaps between excited and ground states.
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Figure 4: Chiral and continuum extrapolation of mBr −mB (left) and mBr
s
−mBs

(right). Both
represent an extrapolation with ansatz (2.21) and E′′q,δ = 0 for HQET to order 1/mb. The open
triangle represents the corresponding result for extrapolating the static order data. For details see
Tables 5 and 6. We also add the continuum point (filled black pentagon) corresponding to the
combination given in eq. (3.4).
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Figure 5: The measured gap mBr
q
− mBq

vs. 2mπ for the excited states Br
q with q = d (left)

and q = s (right) on each individual CLS ensemble and with HYP2 discretization of the static
quark. The boxes are an estimate of the expected gap for a two-hadron state B∗q(−p) + π(p)

with one unit of lattice momentum p = |p| = 2π/L. The lower edge of the boxes corresponds to
∆HF
q m+

√
m2
π + (2π/L)2 and the upper edge includes an additional contribution p2/(2mB∗

q
) as a

naive estimate for the kinetic energy of the B∗q . The dotted line is ∆ = 2mπ corresponding to a
three-hadron state Bq + π + π.

states above multi-hadron thresholds need to be treated as resonances in order to obtain
precise values for their masses and widths, and to associate them with the states observable
in experiments.

Since our lattice study is unquenched, the excited states can also be multi-particle
states involving additional pions, beside the desired one-particle state. While it has been
argued that the overlap of single-hadron interpolating operators to multi-hadron states is
small [41,42], the two-hadron states may have a weaker volume suppression [43]. Moreover,
a chiral extrapolation linear in m2

π might not be adequate for a multi-hadron state, and a
different extrapolation ansatz for these states, e.g. linear in mπ, might also yield somewhat
smaller mass gaps.

In continuum (and infinite-volume) physics, any excited Bq-meson state, Bx
q , which

strongly decays into an `-wave Bq+π state, i.e. a resonance in the `-wave Bq+π scattering
channel, implies that the corresponding two-hadron state Bx

q + π with relative angular
momentum ` has the correct quantum numbers to couple to our interpolating operators
used for the Bq. For the q = d sector, the set of possible two-hadron excited states includes

• B∗ + π in P-wave which would have a non-interacting two-hadron energy gap of
∆ & 181 MeV,

• B′∗ + π in P-wave, where B′∗ is a radial excitation (JP = 1−),

• B∗0 + π in S-wave, where B∗0 is an orbital excitation (JP = 0+),

• B∗2 + π in D-wave, where B∗2 is an orbital excitation (JP = 2+), like the observed
B∗2(5747)0 state which would lead to a non-interacting two-hadron energy gap of
∆ & 598 MeV.
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Figure 6: The same data points as in the right panel of Fig. 5 for the measured Br
s mass gaps,

together with estimates of the energy gap for a two-hadron state B∗(−p) + K(p) (boxes) and a
three-hadron state Bd + K + π (dashed lines).

On a finite lattice, the energies of states with non-zero relative angular momentum are
lifted due to the minimal momentum of |p| = 2π/L. Since the s-quark is quenched in our
study, we cannot have excited states in the B sector with an s-quark from the sea, like
B∗s + K. On the other hand, in the Bs sector there are two flavour combinations for each
of the corresponding excited state of the B sector, e.g. B∗s + π and B∗ + K (corresponding
to B∗ + π).

In Figs. 5 and 6 we show our data points on the various ensembles together with an
estimate for the gaps of some two-hadron states. The comparison indicates that some of
the two-hadron states can be close in energy to the excited states we measured. Depending
on the pion mass on a given ensemble, the energy gaps determined according to eqs. (2.16)
may in fact be the energy splitting to the lowest lying Bx + π state, if this is lighter than
the radial excitations B′q.

Below three- or more-hadron thresholds, the infinite volume scattering matrix (up
to corrections which vanish exponentially in the spatial lattice extent) may be inferred
from the finite volume energy spectrum [44–48]. In practice this requires the construction
of correlation matrices which contain two-hadron as well as single hadron operators. To
date, this procedure has been carried out successfully in some simple systems such as π−π
and π−K scattering, and the energy dependence of the scattering phase shift has been
determined with a sufficient resolution to clearly discern resonant behaviour (see e.g. [49]
for a recent review). Without performing such a dedicated study, we are not able to
conclusively determine the nature of the excited state we observe.

4 Conclusions

In this paper, we have presented results for the B-meson spectrum obtained in the frame-
work of lattice HQET expanded to O(1/mb). Within this approach the existence of a
continuum limit is guaranteed, as numerically tested with high accuracy in previous stud-
ies [50, 51]. In contrast to the HQET expansion in continuum perturbation theory, our
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Source mBs
mB∗ −mB mB∗

s
−mBs

mBs
−mB mBr −mB mBr

s
−mBs

↓ 5383(63) 41.7(4.2) 37.8(3.3) 88.9(5.7) 791(73) 566(57)

A4 0.46 % 2.52 % 3.51 % 12.48 % 9.79 % 9.93 %
A5 0.30 % 1.32 % 1.81 % 3.14 % 6.67 % 5.78 %
B6 0.03 % 1.50 % 0.39 % 0.23 % 1.04 % 0.06 %
E5 0.28 % 0.40 % 1.80 % 0.46 % 4.72 % 1.51 %
F6 0.10 % 0.34 % 0.45 % 8.62 % 5.07 % 6.72 %
F7 0.21 % 0.82 % 1.50 % 34.56 % 17.87 % 23.42 %
G8 0.53 % 5.25 % 0.00 % 0.05 % 6.46 % 0.03 %
N5 1.90 % 8.04 % 0.45 % 0.01 % 7.94 % 0.05 %
N6 5.97 % 1.33 % 29.18 % 31.56 % 14.60 % 27.70 %
O7 4.50 % 6.34 % 13.49 % 8.05 % 25.32 % 14.42 %
ω 62.84 % 31.75 % 46.61 % 0.04 % 0.09 % 0.05 %
ZA 21.13 % 0.27 % 0.63 % 0.75 % 0.40 % 0.19 %

Table 8: Distributions of relative squared errors, σ2
i /
∑
j σ

2
j among different sources i for the mean

values given in (3.1)-(3.4). In the second row we repeat them in MeV for the reader’s convenience,
including only the statistical error of the mean. Remaining relative errors enter through the scale
setting procedure only.

approach is manifestly non-perturbative in the strong coupling. We perform the contin-
uum extrapolation from lattice resolutions in the range 0.08–0.05 fm. Pion masses, in our
setup with Nf = 2 degenerate flavours, reach down to values of about 190MeV. The accu-
racy is at the 10% level, for the different splittings presented (e.g., hyperfine and Bd–Bs

splittings), and we always find consistency within two standard deviations with values from
the PDG, whenever a comparison is possible.

Hyperfine splittings probe higher-order terms in HQET and the reported results rep-
resent an important check on the validity and the reliability of the asymptotic HQET
expansion, truncated at NLO, at the b-quark mass scale. Compared to previous quenched
results, we observe a significant shift for the hyperfine splitting in the B-meson sector,
which now agrees with the experimental determination. In our Nf = 2 simulations, the
hyperfine splitting in the Bs sector appears to suffer from a residual quenching effect, which
is in line with what was seen for Nf = 0. In order to ascertain that the quenching of the
strange quark is indeed the root cause of the reduced Bs hyperfine splitting seen here, we
plan to extend our computations to simulations of the Nf = 2 + 1 theory [52].

A dominant source of uncertainty in our results is represented by cutoff effects (see
Tab. 8). This does not come unexpected since we have not implemented O(a) improvement
at O(1/mb). While implementing a fully non-perturbative improvement programme at
this order is probably too difficult, one may consider perturbative (tree level or one-loop)
improvement for future applications.

We also determined the mass gaps for excited states in both the B and the Bs sectors.
The results are consistent with a radial splitting, e.g. as computed for the Bc system in [6],
but these excited states might also be two- or multi-hadron states.

Knowledge of the mass splittings is relevant for the computation of hadronic pa-
rameters within the sum-rules approach and when comparing results from the lattice to
sum-rules estimates. The mass gaps of excited states are also an important information
for the computation of form-factors on the lattice, for example for the B → π`ν and the
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Bs → K`ν decays, as currently endeavored by the ALPHA Collaboration [53, 54], and in
general in the spectral analysis of two- and three-point functions.
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A Determination of the statistical error in the presence of autocorrela-
tions

In order to compute the statistical error in the presence of both correlations between the
different observables and of autocorrelations along the HMC trajectories by which our
ensembles were generated, we employ the methods of [55–58], which we briefly outline
below.

The starting point is the computation of the “primary” observables Ciα, where i labels
the Nmeas gauge configurations, and α is an aggregate label for the different correlators
measured (stat, spin, kin), the Euclidean time separation t between the source and sink,
and the different smearing levels employed at source and sink. The gauge average Cα and
the variance σ2

Cα
are computed as usual. To estimate the true statistical error σCα of the

gauge average, we also require the integrated autocorrelation time τ int
Cα

, which is computed
from the autocorrelation function

Γ
(1)
αβ ≡ ΓCαCβ (τ) = lim

K→∞

1

K

K∑
i=1

(
Ci+τα − Cα

) (
Ciβ − Cβ

)
, (A.1)

where τ is the separation in simulation time along the Markov chain. In order to take into
account the long-time tail of Γ, the conservative estimate [56]

τ int
Cα =

1

2
+

1

Γ
(1)
αα(0)

(
W−1∑
τ=1

Γ(1)
αα(τ) + τ expΓ(1)

αα(W )

)
(A.2)

is used, where τ exp is an estimate of the exponential autocorrelation time of the Markov
chain. The values used in our analysis are listed in Table 2. The window size W is
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automatically chosen as the point τ = W where Γαα(τ) comes close to zero within about
1.5 of its estimated error. The true statistical error is then given by

σ2
Cα

= 2τ int
Cα

σ2
Cα

Nmeas
. (A.3)

For derived observables Dα′ , which are functions of gauge averages of the primary
observables Cα, and in our case include the generalized eigenvalues and eigenvectors as
well as the energies derived from them, we compute the derivatives

Jα′α ≡
∂Dα′

∂Cα
(A.4)

and the autocorrelation function [56]

Γ
(2)
α′β′(τ) ≡

∑
α,β

Jα′αΓ
(1)
αβ(τ)Jβ′β . (A.5)

The variance of the derived observable Dα′ is then given by

σ2
Dα′

= Γ
(2)
α′α′(0) (A.6)

and its statistical error by

σ2
D
′
α

= 2τ int
D′α

σ2
D′α

Nmeas
, (A.7)

where the integrated autocorrelation time τ int
D′α

is again estimated using (A.2), with Γ(2)

substituted for Γ(1).
Since the extraction of plateau values from a weighted fit requires knowledge of the

errors of the individual points, in principle this procedure should be iterated, with the
plateau averages as secondary derived observables of the derived observables. However,
the integrated autocorrelation times for the effective energies in the plateau region do not
markedly differ. Therefor, it is sufficient to employ their variances (as estimated using
e.g. a Jackknife procedure for error propagation) to weight the fit, treating only the fitted
values as derived observables. This simplified procedure has been adopted here.

In order to extract the final answer in physical units, the plateau values must be com-
bined with each other and with the HQET parameters and lattice spacing, propagating
the errors on each of those to the final result, where the HQET parameters are statisti-
cally independent of the large-volume observables; similarly, in extrapolating to the chiral
and continuum limits, the results obtained from different ensembles are statistically in-
dependent, and their contribution to the error of the final result f can thus be added in
quadrature:

σ2
f =

∑
e

σ2
f (e) +

∑
i,j

∂f

∂Yi
CYiYj

∂f

∂Yj
, (A.8)

where the Yi are the additional parameters, CYiYj is their (known) covariance matrix, and
σ2
f (e) is the error computed according to eqn. (A.7) when taking into account only the

fluctuations of Cα on ensemble e [56–58].

18



aEstat
n=1 a2Ekin

n=1 −a2Espin
n=1

e-id HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

A4 0.4193(5)11 0.3841(4)11 0.8538(9)8 0.8987(6)8 0.02281(16)7 0.02183(13)7

A5c 0.4151(5)10 0.3802(4)10 0.8520(6)7 0.8962(4)7 0.02253(18)7 0.02154(14)7

A5d 0.4143(6)10 0.3791(5)10 0.8510(9)7 0.8961(6)7 0.02210(24)7 0.02105(20)7

B6 0.4069(10)11 0.3716(8)11 0.8490(10)7 0.8946(7)7 0.02187(29)7 0.02067(22)7

E5 0.3845(4)12 0.3511(4)12 0.8115(9)9 0.8523(6)9 0.01762(19)9 0.01675(15)9

F6 0.3727(10)13 0.3392(8)13 0.8089(15)9 0.8490(9)9 0.01697(33)9 0.01632(24)9

F7 0.3700(11)13 0.3354(9)13 0.8087(15)9 0.8486(9)9 0.01563(33)9 0.01519(24)9

G8 0.3672(13)11 0.3327(11)11 0.8044(27)9 0.8470(16)9 0.01633(57)9 0.01508(38)9

N5 0.3195(5)16 0.2885(5)16 0.7414(15)12 0.7749(9)12 0.01018(25)12 0.00973(18)12

N6 0.3129(9)16 0.2825(6)16 0.7423(19)12 0.7727(11)12 0.00989(33)12 0.00899(21)12

O7 0.3093(10)16 0.2785(8)16 0.7389(26)12 0.7746(14)12 0.01000(42)12 0.00916(28)12

Table 9: Raw data for plateau-averaged ground state energies in the heavy-light sector. The
subscript to the statistical error is the value of tmin in the GEVP analysis.

B Effective energies and matrix elements

In this Appendix we provide the numerical results of our GEVP analysis after performing
a weighted plateaux average

Ex
n =

∑
tw(t)Eeff,x

n (t, t0)∑
tw(t)

, w(t) =
(
σ
[
Eeff,x
n (t, t0)

])−2
(B.1)

for t ∈ [tmin, tmax] and t0 ≥ tmin/2, see Section 2.2. The specific value of tmax is irrelevant
due to noise dominated data at large time separations.2 As a consequence of the expo-
nential growth of the noise-to-signal ratio, the quoted errors are dominated by the error
at tmin and we decided to quote tmin as subscript to the statistical error in the following
Tables. For determining tmin, we use t0 = t− 1 in the GEVP, and then t0 = tmin − 1 once
tmin is fixed. The errors quoted are those entering the corresponding effective energy plots
presented below and do not contain the tail contribution of the error. Since the autocorre-
lation is expected to be the same among different time slices in the plateau region, it does
not affect the estimate (B.1) and can be added, including the exponential tail, whenever
needed explicitly. In fact, all values quoted for derived observables as presented in the
main text have the exponential tail included as discussed in Appendix A.

The same procedure has been used to obtain matrix elements px. We include them in
the present paper (Table 13-14) in order to complete the data set used in [10,36].

A special case is the ensemble labeled A5 for which we have two independent Monte
Carlo histories/replicas (A5c and A5d). Here, measurements and a subsequent GEVP
analysis have been independently performed for both replicas in the heavy-light sector
but only on A5d for heavy-strange. The results from different replicas are then combined
before derived observables as presented in the main text are computed.

2 For plotting convenience we set tmax/a = ∞ in the plots.
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aEstat
n=2 a2Ekin

n=2 −a2Espin
n=2

e-id HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

A4 0.655(9)10 0.622(8)10 0.931(22)9 0.975(16)9 0.0249(14)7 0.0210(12)7

A5c 0.668(5)9 0.633(4)9 0.926(10)8 0.969(7)8 0.0246(7)6 0.0213(6)6

A5d 0.668(8)9 0.631(7)9 0.932(16)8 0.977(11)8 0.0268(11)6 0.0234(9)6

B6 0.617(17)10 0.597(16)10 0.926(20)8 0.970(14)8 0.0256(14)6 0.0218(11)6

E5 0.608(7)11 0.577(6)11 0.878(10)9 0.915(6)9 0.0204(13)8 0.0182(10)8

F6 0.590(13)11 0.556(12)11 0.862(17)9 0.901(11)9 0.0192(23)8 0.0157(18)8

F7 0.594(12)11 0.559(11)11 0.859(15)9 0.902(10)9 0.0072(67)10 0.0104(49)10

G8 0.577(27)11 0.548(23)11 0.853(13)8 0.906(9)8 0.0277(36)8 0.0230(28)8

N5 0.490(5)13 0.462(4)13 0.805(30)13 0.779(17)13 0.0112(11)10 0.0103(8)10

N6 0.468(14)15 0.446(11)15 0.815(19)12 0.822(12)12 0.0113(14)10 0.0116(10)10

O7 0.465(17)14 0.432(13)14 0.777(8)10 0.815(5)10 0.0118(17)10 0.0096(13)10

Table 10: Raw data for plateau-averaged 1st excited state energies in the heavy-light sector. The
subscript to the statistical error is the value of tmin in the GEVP analysis.

aEstat
n=1 a2Ekin

n=1 −a2Espin
n=1

e-id HYP1 HYP2 HYP1 HYP2 HYP1 HYP2

A4 0.43905(46)10 0.40430(40)10 0.8585(8)7 0.9024(5)7 0.02365(22)7 0.02220(17)7

A5c 0.43856(53)9 0.40378(46)9 0.8590(11)7 0.9006(7)7 0.02308(29)7 0.02214(24)7

B6 0.43224(41)12 0.39722(32)12 0.8556(4)7 0.8990(3)7 0.02273(11)7 0.02139(9)7

E5 0.40063(44)12 0.36736(36)12 0.8157(11)9 0.8561(7)9 0.01820(31)10 0.01753(21)10

F6 0.39468(35)14 0.36063(27)14 0.8122(6)9 0.8530(4)9 0.01683(12)9 0.01612(9)9

F7 0.39217(66)14 0.35837(54)14 0.8118(11)9 0.8534(7)9 0.01627(22)9 0.01576(16)9

N6 0.32827(44)17 0.29799(33)17 0.7429(11)12 0.7758(6)12 0.00991(18)12 0.00941(12)12

O7 – 0.29571(34)16 – 0.7753(8)12 – 0.00905(15)12

Table 11: Raw data for plateau-averaged ground state energies in the heavy-strange sector. The
subscript to the statistical error is the value of tmin in the GEVP analysis.
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Figure 7: Effective energies Eeff,x
n,δ following our GEVP analysis in the heavy-light (top) and heavy-

strange (bottom) sector on ensemble A4.
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Figure 8: Effective energies Eeff,x
n,δ following our GEVP analysis in the heavy-light (top) and heavy-

strange (bottom) sector on ensemble A5c.
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Figure 9: Effective energies Eeff,x
n,δ following our GEVP analysis in the heavy-strange sector on

ensemble A5d.
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Figure 10: Effective energies Eeff,x
n,δ following our GEVP analysis in the heavy-light (top) and

heavy-strange (bottom) sector on ensemble B6.
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Figure 11: Effective energies Eeff,x
n,δ following our GEVP analysis in the heavy-light (top) and

heavy-strange (bottom) sector on ensemble E5g.
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Figure 12: Effective energies Eeff,x
n,δ following our GEVP analysis in the heavy-light (top) and

heavy-strange (bottom) sector on ensemble F6.
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Figure 13: Effective energies Eeff,x
n,δ following GEVP analysis in the heavy-light (top) and heavy-

strange (bottom) sector on ensemble F7.
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Figure 14: Effective energies Eeff,x
n,δ following our GEVP analysis in the heavy-light sector on

ensemble G8.
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Figure 15: Effective energies Eeff,x
n,δ following our GEVP analysis in the heavy-light sector on

ensemble N5.
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Figure 16: Effective energies Eeff,x
n,δ following our GEVP analysis in the heavy-light (top) and

heavy-strange (bottom) sector on ensemble N6.
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Figure 17: Effective energies Eeff,x
n,δ following our GEVP analysis for heavy-light (top) and heavy-

strange (bottom) sector on ensemble O7c.
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