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Abstract: We present a subtraction method utilizing the N -jettiness observable, TN , to

perform QCD calculations for arbitrary processes at next-to-next-to-leading order (NNLO).

Our method employs soft-collinear effective theory (SCET) to determine the IR singular

contributions of N -jet cross sections for TN → 0, and uses these to construct suitable

TN -subtractions. The construction is systematic and economic, due to being based on

a physical observable. The resulting NNLO calculation is fully differential and in a form

directly suitable for combining with resummation and parton showers. We explain in detail

the application to processes with an arbitrary number of massless partons at lepton and

hadron colliders together with the required external inputs in the form of QCD amplitudes

and lower-order calculations. We provide explicit expressions for the TN -subtractions at

NLO and NNLO. The required ingredients are fully known at NLO, and at NNLO for

processes with two external QCD partons. The remaining NNLO ingredient for three or

more external partons can be obtained numerically with existing NNLO techniques. As an

example, we employ our method to obtain the NNLO rapidity spectrum for Drell-Yan and

gluon-fusion Higgs production. We discuss aspects of numerical accuracy and convergence

and the practical implementation. We also discuss and comment on possible extensions,

such as more-differential subtractions, necessary steps for going to N3LO, and the treatment

of massive quarks.
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1 Introduction

The precise knowledge of QCD corrections is a key ingredient for interpreting the data

from collider experiments. In hadronic collisions, the inclusive QCD cross section for the

production of a final state X can, if the hard scale Q associated with X is large enough,

be obtained in terms of a perturbatively calculable partonic cross section convolved with

parton distribution functions (PDFs).

Perturbative calculations performed using the leading order (LO) term in αs typically

suffer from large theoretical uncertainties due to missing higher-order perturbative correc-

tions. Often, next-to-leading order (NLO) is the first order at which the normalization and

in some cases the shape of cross sections can be considered reliable. As such, this level of

accuracy has become standard for comparing with data from the LHC. For some processes

the experimental uncertainties are becoming so small, or the perturbative uncertainties at

NLO are still so large, that next-to-next-to-leading order (NNLO) computations are called

for.

For many important benchmark processes, the required virtual amplitudes are known

at NNLO. However, as is well known, the computation of the full cross sections beyond

leading order is complicated by infrared (IR) divergences – explicit divergences in virtual

amplitudes, and divergences in the phase-space integration over the real-emission ampli-

tudes in regions where particles become soft or collinear to other particles. These diver-

gences only cancel after integrating the real-emission amplitudes over the phase space of

unresolved particles and adding the result to the virtual loop amplitudes order by order.

To handle these divergences in practice one typically makes use of some subtraction

method. That is, one subtracts terms from the real emission contributions that reproduce

the IR soft and collinear behaviour of the real emissions, which then allows the phase-space

integral of the full amplitude minus the subtraction terms to be performed numerically in

d = 4 dimensions, giving a finite result. The subtracted terms have to be sufficiently

simple that they can be integrated over the phase space of emitted particles in d = 4− 2ε

dimensions. They are then added back to the virtual contributions, where they cancel the

explicit 1/εn IR poles.

The goal of typical NLO subtraction schemes like FKS subtractions [1–3] or CS sub-

tractions [4–6] is to construct subtraction terms that reproduce the correct IR-singular

behaviour of the full real-emission amplitude point-by-point in phase space. Over the past

decade enormous effort has been devoted to extend such local subtraction methods to

NNLO using different approaches [7–38]. This extension is very involved due to the many

overlapping singularities at NNLO, which have to be isolated by appropriate phase-space

parameterizations. At the same time, the subtractions have to remain simple enough that

the 1/εn IR poles can be extracted from the integrated subtractions.

The basic idea of our method, which we call N -jettiness subtractions, is to use a

physical jet-resolution variable TN to control the infrared behaviour of the cross section.

The key point is that, if the (factorized) structure of the leading contribution to the TN -

differential cross section in the IR limit TN → 0 is known, the singular part can often be

determined analytically and used to construct an IR subtraction term. A major advantage
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of using a physical observable is that the differential and integrated subtraction terms

are then equivalent to the singular limits of a physical cross section, which can indeed be

significantly easier to calculate than the full cross section. A well-known example of such

a physical subtraction scheme is the qT -subtraction method for color-singlet production in

hadron collisions [39], which has been successfully applied to a variety of processes [40–47].

(It has also been suggested that this method can be applied to compute heavy-quark pair

production at NNLO [48, 49].) Our N -jettiness subtraction method generalizes this to

arbitrary numbers of QCD partons in the initial and final state. It employs the N -jettiness

global event shape [50] as the physical N -jet resolution variable. In this paper, we limit

ourselves to massless quarks; the extension to massive quarks is in principle possible and

commented on in section 5.

The key feature of N -jettiness is that it has very simple factorization properties in the

singular limit. The factorization theorem for the N -jettiness cross section is known [50–

52] from soft-collinear effective theory (SCET) [53–58]. It can be used to systematically

compute the leading singular contributions (thus determining the subtraction terms) by

performing standard fixed-order calculations of soft and collinear matrix elements in SCET.

At NLO, all necessary ingredients have been known for some time, and by now, essentially

all necessary NNLO ingredients are available. For processes with hadronic initial states a

key ingredient that has become available recently are the two-loop quark and gluon beam

functions [59, 60].

The price one has to pay for using a single physical observable to describe the IR is that

the subtraction does not act point-by-point in phase space, but only on a more global level

after a certain amount of phase-space integration has been carried out. In essence, the large

number of terms in a fully local subtraction method are projected onto a single, nonlocal

subtraction term. In practice, this means that the numerical convergence may be slower

than for the fully local case. However, this is compensated by the significant reduction

in complexity of the subtractions. Furthermore, as we will discuss, it is possible to make

the subtractions step-by-step more local by making the N -jettiness cross section more

differential in additional variables. This is again possible by using SCET to factorize and

calculate the singular contributions of more differential cross sections (see e.g. refs. [52, 61–

65]).

There are several important benefits of using a physical observable as jet resolution

variable, as already emphasized in refs. [66]. It allows one to directly reuse the existing NLO

calculations for the corresponding N + 1-jet cross sections, and the resulting NNLO calcu-

lation is automatically fully-differential in the Born phase space. Moreover, the calculation

will be in a form which makes it directly suitable to be combined with higher-order resum-

mation as well as parton showers by using the general methods developed in refs. [66, 67].

The idea of using N -jettiness as an N -jet resolution variable is not new. In fact, this

is what largely motivated its invention in the first place. For example, it is utilized for pre-

cisely this purpose in the Geneva Monte-Carlo program [67]. For color-singlet production,

the N -jettiness subtraction method reduces to an analogue of qT subtractions [39] using

an alternative physical resolution variable. The differential version as a subtraction was

used at NLO in ref. [68]. In its simplest form as a phase-space slicing method it has been
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successfully applied already to calculate the top quark decay rate at NNLO [69], and while

this work was being finalized to the pp→W/H + jet cross sections at NNLO [70, 71].

In this work we give a general description of how N -jet resolution variables, and specif-

ically N -jettiness, can be used as subtraction terms to compute fixed-order cross sections.

In section 2, we discuss how the IR singularities in QCD cross sections are encapsulated

by an N -jet resolution variable. We demonstrate that this naturally leads to subtraction

terms for fixed-order calculations, and show how these can be used in phase-space slicing

and as differential subtractions. In section 3, we review the definition of N -jettiness and its

general factorization theorem for N -jet production. We show how the subtraction terms

are defined in terms of functions in the factorization theorem. We explicitly construct the

subtraction terms at NLO and NNLO for generic N -parton processes. We also discuss

the extension to N3LO and to more differential subtractions. In section 4, we discuss how

these subtractions may be implemented in parton-level Monte-Carlo programs. We also

show results for Drell-Yan and gluon-fusion Higgs production at NNLO and use these as

an example to discuss some of the numerical aspects. We conclude in section 5.

2 General Formalism

2.1 Notation

We denote the N -jet cross section that we want to compute by σ(X). Here, X collectively

stands for all differential measurements and kinematic cuts applied at Born level. In

particular, it contains the definitions of the N identified signal jets in σ(X) and all cuts

required to stay away from any IR-singularities in the N -parton Born phase space.

The cross section at leading order (LO) in perturbation theory can then be written as

σLO(X) =

∫
dΦN BN (ΦN )X(ΦN ) , (2.1)

where the measurement function X(ΦN ) implements X on an N -parton final state. The

Born contribution, BN (ΦN ), is given by the square of the lowest-order amplitude, A(0), for

the process we are interested in,1

BN (ΦN ) =
∑
color

∣∣A(0)
N (ΦN )

∣∣2 or BN (ΦN ) = fa fb
∑
color

∣∣A(0)
ab→N (ΦN )

∣∣2 , (2.2)

where ΦN denotes the complete dependence of the amplitude on the external state (includ-

ing all dependence on momentum, spin, and partonic channel). For hadronic collisions,

the PDFs fa,b are included in BN (ΦN ) and ΦN also includes the corresponding momentum

fractions xa,b. Correspondingly, the integral over dΦN in eq. (2.1) includes all phase-space

integrals and sums over helicities and partonic channels. For simplicity, we also absorb into

it flux, symmetry, and color and spin averaging factors. We use N to denote the number

of strongly-interacting partons in the final state. There can also be a number of additional

nonstrongly interacting final states at Born level, which are included in ΦN but we suppress

for simplicity.

1For a tree-level process, A(0) is given by the sum of the relevant tree-level diagrams. For a loop-induced

process, like gg → H, it is the sum of the relevant lowest-order IR-finite loop diagrams.
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2.2 Singular and nonsingular contributions

Any N -jet cross section σ(X) can also be measured differential in a generic N -jet resolution

variable TN , which we write as dσ(X)/dTN . Then σ(X) may be written as

σ(X) =

∫
0
dTN

dσ(X)

dTN
=

∫ T cut
N

0
dTN

dσ(X)

dTN
+

∫
T cut
N

dTN
dσ(X)

dTN
, (2.3)

dividing the more differential cross section into a region around TN = 0 and a region away

from TN = 0. For TN to be an N -jet resolution variable it must satisfy the following

conditions:

TN (ΦN ) = 0 , TN (Φ≥N+1) > 0 , TN (Φ≥N+1 → ΦN )→ 0 . (2.4)

In words, TN must be a physical IR-safe observable that resolves all additional IR-divergent

real emissions, such that the cross section dσ(X)/dTN is physical and IR finite for any

TN > 0, and the IR singular limit corresponds to TN → 0.2 Hence, we have

dσLO(X)

dTN
= σLO(X) δ(TN ) ,

1

σLO(X)

dσ(X)

dTN

∣∣∣∣
TN>0

= O(αs) . (2.5)

We use the convention that TN is normalized to be a dimension-one quantity, and for

convenience we also define the dimensionless quantities

τ =
TN
Q

, τ cut =
T cut
N

Q
. (2.6)

Here, Q is a typical hard-interaction scale of the Born process (whose precise choice however

is unimportant). For example, canonical choices would be Q = Ecm for e+e− → jets,

Q =
√
q2
`` for Drell-Yan pp→ V → ``, Q = mH for gg → H, and Q = pjet

T for pp→ dijets.

We define the “singular” part of the TN spectrum to contain all contributions that are

singular in the TN → 0 limit, i.e., all contributions which are either proportional to δ(TN )

or that behave as lnn(τ)/τ for τ → 0. It can be written as

dσsing(X)

dτ
= C−1(X) δ(τ) +

∑
n≥0

Cn(X)Ln(τ) , (2.7)

where the Ln(τ) are the usual plus distributions,

Ln(τ) =

[
θ(τ) lnn(τ)

τ

]
+

,

∫ τcut

0
dτ Ln(τ) =

lnn+1(τ cut)

n+ 1
. (2.8)

2For particular definitions of TN , there could also be regions of Φ≥N+1 (far) away from any IR singu-

larities where TN is small or vanishing. Such regions do not pose a problem and are irrelevant for our

discussion. The typical example for TN ≡ qT at NNLO are contributions from two hard real emissions that

are back-to-back such that qT → 0. Another generic example are regions where two partons are collinear

that cannot arise from a QCD singular splitting. Such cases can be avoided by defining TN in a flavor-aware

way.
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This logarithmic structure of the singular contributions directly follows from the IR singular

structure of QCD amplitudes, the KLN theorem, and the fact that TN is an IR-safe physical

observable. Since the infrared limit of the QCD amplitudes, and hence the IR singularities,

depends only on the Born phase space, the singular coefficients Cn only depend on the

underlying ΦN . That is,

Cn(X) =

∫
dΦN Cn(ΦN )X(ΦN ) ,

dσsing(X)

dτ
=

∫
dΦN

dσsing(ΦN )

dτ
X(ΦN ) . (2.9)

We can therefore consider the singular distributions directly as a function of the full ΦN

and independently of the specific measurement X,

dσsing(ΦN )

dτ
= C−1(ΦN ) δ(τ) +

∑
n≥0

Cn(ΦN )Ln(τ)

=
∑
m≥0

[
C(m)
−1 (ΦN ) δ(τ) +

2m−1∑
n=0

C(m)
n (ΦN )Ln(τ)

](αs
4π

)m
. (2.10)

In the second line, we have expanded the singular coefficients in αs. At LO, the only

nonzero coefficient is

C(0)
−1(ΦN ) = BN (ΦN ) , (2.11)

so at LO the singular spectrum reproduces the LO cross section, consistent with eq. (2.5),

dσsing
LO

dTN
= C(0)

−1(X) δ(TN ) = σLO(X) δ(TN ) . (2.12)

At NLO, the coefficients C−1,0,1(ΦN ) are nonzero, while at NNLO, the coefficients

C−1,0,1,2,3(ΦN ) contribute.

Writing the singular spectrum in terms of plus distributions as in eqs. (2.7) and (2.10)

precisely encodes the cancellation between real and virtual IR divergences. The C−1 coef-

ficient contains the finite remnant of the virtual contributions after the real-virtual cancel-

lation has taken place. By itself, it is not unique, but depends on the boundary conditions

adopted in the definition of the plus distributions, which is encoded in the choice of τ (the

choice of Q). Changing the boundary conditions is equivalent to rescaling the arguments

of the plus distributions according to (see e.g. ref. [72])

λLn(λτ) =

n∑
k=0

(
n

k

)
lnkλLn−k(τ) +

lnn+1λ

n+ 1
δ(τ) . (2.13)

While this rescaling moves contributions between different Cn, it does not change the

overall 1/TN scaling, which implies that the sum of all terms in eq. (2.7) is unique3 and

3It is unique in the sense that it has the minimal TN dependence, only containing lnn(TN )/TN . One

could in principle include some subleading TN dependence in the coefficients, if this turns out to be useful

or convenient. This would move some contributions between the singular contributions and the nonsingular

remainder in eq. (2.15).
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in fact independent of the choice of Q.4 Once the singular spectrum is written in terms

of distributions as in eq. (2.7), one can easily integrate it up to TN ≤ T cut
N to obtain the

singular cumulative distribution (or cumulant in short)

σsing(X, T cut
N ) ≡

∫ T cut
N

0
dTN

dσsing(X)

dTN
= C−1(X) +

∑
n≥0

Cn(X)
lnn+1(τ cut)

n+ 1
. (2.14)

The “nonsingular” contributions are defined as the difference between total and sin-

gular contributions,

dσnons(X)

dTN
=

dσ(X)

dTN
− dσsing(X)

dTN
,

σnons(X, T cut
N ) =

∫ T cut
N

0
dTN

dσnons(X)

dTN
= σ(X, T cut

N )− σsing(X, T cut
N ) . (2.15)

They start at O(αs) relative to σLO(X) (which is part of dσsing). By definition of the

singular terms, the nonsingular spectrum contains at most integrable singularities for TN →
0, the largest terms being dσnons(X)/dTN ∼ αns ln2n(τ). Equivalently, the nonsingular

cumulant behaves for T cut
N → 0 as

σnons(X, T cut
N → 0) ∼ τ cut αns ln2n(τ cut)→ 0 . (2.16)

Hence, also the underlying matrix-element contributions yielding the nonsingular terms

can be safely integrated in the infrared.

2.3 TN -subtractions

Up to this point, the decomposition of a cross section into singular and nonsingular terms is

just notation and holds for any TN . The key point of the TN -subtraction method is that if

we have analytic control of the singular TN dependence, we can turn the singular spectrum

dσsing(X)/dTN and its integral σsing(X, T cut
N ) into subtractions, as discussed next. This

requires that for some N -jet resolution variable TN , the underlying coefficients Cn(ΦN ) in

eq. (2.10) can be determined explicitly.5 In particular, the ability to explicitly compute

C−1(ΦN ) is precisely equivalent to being able to compute the integrated subtractions in a

classical subtraction method. All these conditions are satisfied for N -jettiness, as we will

discuss in section 3.

2.3.1 TN -slicing

If the singular contributions for a given TN are known, we can use T cut
N to divide the phase

space into two regions: TN < T cut
N and TN ≥ T cut

N . Taking T cut
N → Tδ = δIRQ, where

4The actual physical scales appearing together with TN in the logarithms are set by the hard Born

kinematics. The reason to think of Q as a typical hard scale is that this provides the natural power

suppression of the nonsingular terms.
5They do not necessarily have to be known fully analytically, and in general they will not be. All we

really need is a sufficiently fast way to compute their numerical values for given ΦN to in principle any

desired accuracy.
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δIR = Tδ/Q is an (in-principle) arbitrarily small IR cutoff, the singular terms will numer-

ically dominate the nonsingular for TN < T cut
N . In fact, since the nonsingular cumulant

σnons(X, Tδ) is of O(Tδ/Q) = O(δIR), we can neglect it in this limit. Hence, we get

σ(X) =

∫ Tδ
0

dTN
dσ(X)

dTN
+

∫
Tδ

dTN
dσ(X)

dTN

= σsing(X, Tδ) +

∫
Tδ

dTN
dσ(X)

dTN
+O(δIR) . (2.17)

This is precisely a phase-space slicing method, which we will call TN -slicing. Calculating

σ(X) to NnLO in this way requires determining σsing(X, Tδ) to NnLO, which includes the

NnLO virtual contributions. Beyond that, since the TN spectrum only starts at O(αs)

relative to σ(X), the problem is reduced to the Nn−1LO calculation for the cross section

dσ(X)/dTN for TN > Tδ. Furthermore, if an Nn−1LO calculation is available, the slicing

only needs to be performed for the pure NnLO terms.

2.3.2 Differential TN -subtractions

It is instructive to rewrite the TN -slicing in eq. (2.17) in the form of a subtraction as follows,

σ(X) = σsing(X, Toff) +

[∫
Tδ

dTN
dσ(X)

dTN

]
−
[∫ Toff

Tδ
dTN

dσsing(X)

dTN

]
+O(δIR) . (2.18)

This reorganization shows that the integral of the singular spectrum acts as a global sub-

traction for the integrated full spectrum, while the cumulant σsing(X, Toff) is the corre-

sponding contribution of the virtual terms (sitting at TN = 0) plus the integrated subtrac-

tion. The value of Toff is arbitrary and exactly cancels between the first and third terms. It

determines the upper limit in TN up to which the subtractions are used. The subtraction

term in this case is maximally nonlocal, as it is applied after all phase-space integrations.

Hence, one would naively expect the numerical cancellations to be maximally bad. This

also shows that Tδ really is an IR cutoff below which only the singular (subtraction) terms

are used, due to limited numerical precision.

Looking at eq. (2.18), we can also move the singular spectrum underneath the TN
integration,

σ(X) = σsing(X, Toff) +

∫
Tδ

dTN
[

dσ(X)

dTN
− dσsing(X)

dTN
θ(TN < Toff)

]
+O(δIR)

= σsing(X, Toff) +

∫ Toff

Tδ
dTN

dσnons(X)

dTN
+

∫
Toff

dσ(X)

dTN
+O(δIR) . (2.19)

which turns the singular spectrum into an actual subtraction which is local (point-by-

point) in TN . It is of course still nonlocal in the remaining real radiation phase space. To

use eq. (2.19), one now has to explicitly calculate the singular differential spectrum. This

requires essentially no additional effort, since the required singular coefficients are the same

as in σsing(X, T cut
N ).

Writing it as in the second line of eq. (2.19) shows explicitly that the numerical integral

over TN now only encounters an integrable singularity for TN → 0 since the integrand is
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precisely the nonsingular contribution. The integral is cut off by Tδ, since the integrand is

still given by the difference of two diverging integrands. Finally, we note that the neglected

contributions due to the numerical IR cutoff Tδ are precisely the same as in eq. (2.17) for

the same value of Tδ. The numerical error introduced by such a cutoff is discussed in the

next section.

We stress that a technical IR cutoff analogous to δIR must exist in any numerical fixed-

order calculation using subtractions, since the QCD amplitudes (and their subtractions)

become arbitrarily large in the IR. Below the cutoff, the full QCD amplitudes are always

approximated by the subtraction terms, so that below the cutoff only the integral of the

subtraction is used, while the nonsingular cross section below the cutoff is power suppressed

by δIR and neglected.

2.3.3 Estimating numerical accuracy

We can judge the numerical accuracy of the TN -slicing and differential TN -subtractions

using some simple scaling arguments. First, it is important to quantify the effect of the IR

cutoff δIR. Using N -jettiness as an example, at NnLO relative to the Born cross section, the

most dominant singular terms in the spectrum and the cumulant are, for a given partonic

channel,

dσ

dτ
= σLO

∑
n≥1

2n

n!

(αs
4π

)n(
−
∑
i

CiΓ0

)n
L2n−1(τ) + · · · ,

σ(T cut
N ) = σLO

∑
n≥1

1

n!

(αs
4π

)n(
−
∑
i

CiΓ0

)n
ln2n(τ cut) + · · · . (2.20)

Here, Γ0 = 4 is the one-loop coefficient of the cusp anomalous dimension, Ci = CF for

quarks and Ci = CA for gluons, and the ellipsis denote terms with fewer powers of loga-

rithms at each order in αs.
6 Correspondingly, the leading nonsingular term in the cumulant

has the form

σnons(T cut
N ) = σLO

∑
n≥1

1

n!

(αs
4π

)n
C(n)

nons

(
−
∑
i

CiΓ0

)n
τ cut ln2n−1(τ cut) + · · · . (2.21)

The coefficient C
(n)
nons is not known in general, but we take C

(n)
nons = 1 here, which is the

correct value for 2-jettiness in e+e− (i.e. thrust).

We denote the missing nonsingular contribution due to approximating the full result

by the singular contributions below TN < Tδ by ∆σIR(δIR) and expand it in αs as

σnons(Tδ) ≡ ∆σIR(δIR) = ∆σ
(1)
IR (δIR)

αs
4π

+ ∆σ
(2)
IR (δIR)

(αs
4π

)2
+ · · · . (2.22)

The size of the dominant nonsingular terms in eq. (2.21) at τ = δIR is indicative of the size

of ∆σIR. For the production of a color singlet X in the pp→ X and pp→ X+jet channels,

6In principle, subleading logarithmic terms can also be numerically important due to large numerical

prefactors, especially for moderate Tδ values. However, for small enough Tδ values, the leading logarithmic

terms are a sufficient estimate.
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the missing terms at NLO and NNLO scale as (plugging in the relevant color factors):

qq̄ → X :
{

∆σ
(1)
IR (δIR) , ∆σ

(2)
IR (δIR)

}
≈ σLO

{
−10.7 δIR ln δIR , 113.8 δIR ln3δIR

}
,

gg → X :
{

∆σ
(1)
IR (δIR) , ∆σ

(2)
IR (δIR)

}
≈ σLO

{
−24 δIR ln δIR , 576 δIR ln3δIR

}
,

gq → Xq, qq̄ → Xg :
{

∆σ
(1)
IR (δIR) , ∆σ

(2)
IR (δIR)

}
≈ σLO

{
−22.7 δIR ln δIR , 513.8 δIR ln3δIR

}
,

gg → Xg :
{

∆σ
(1)
IR (δIR) , ∆σ

(2)
IR (δIR)

}
≈ σLO

{
−36 δIR ln δIR , 1296 δIR ln3δIR

}
.

(2.23)

To estimate the impact of these terms relative to the full NLO and NNLO contributions,

we write the full result for the cross section as

σ = σLO + σ(1) αs
4π

+ σ(2)
(αs

4π

)2
+ · · · . (2.24)

We assume that the K-factors at each order of perturbation theory for qq̄ → X and

qq̄ → Xg, qg → Xq processes are 10%, so σ(n)/σLO ≈ 10n. For gg → X and gg → Xg

processes, we assume the K-factors are 30%, so that σ(n)/σLO ≈ 30n for these cases. These

factors roughly scale like the prefactors in eq. (2.23). Hence, a rough estimate of the relative

size of the missing terms at each order is given by

∆σ
(1)
IR (δIR)

σ(1)
≈ a δIR ln δIR ,

∆σ
(2)
IR (δIR)

σ(2)
≈ a δIR ln3 δIR . (2.25)

The dependence of these corrections on δIR is plotted in figure 1, where we take a between

1/3 and 3. The dashed line shows the known exact NLO result for thrust. This implies

that when working to NNLO, we need δIR . 10−3 − 10−4 to have a reasonable . O(10%)

determination of the α2
s NNLO contribution to the cross section. For typical applications

with Q ∼ O(100 GeV) this implies that Tδ . 0.1−0.01 GeV. To the extent that the NNLO

terms are only a small part of the total cross section (as is the case for Drell-Yan, for

example), a larger error on the NNLO terms might be tolerable. However, we stress that

these estimates can only serve as an indication, and in practice one should carefully test

the size of missing corrections, for example by studying the δIR dependence as discussed in

section 4.3.

An important comment concerns the fact that it is in principle possible and straight-

forward (though perhaps tedious in practice) to derive subleading factorization theorems

for N -jettiness and other observables using SCET. These can then be used to systemati-

cally determine the next-to-singular O(τ) corrections and include them in the same way

in the subtractions. This would substantially reduce the size of the missing nonsingular

corrections by one power of δIR. A complete factorization theorem at subleading order for

a single-jet process has been derived for semileptonic heavy quark decays in ref. [73]. For

recent work in this direction for thrust in e+e− see e.g. refs. [74–76].

A second important aspect concerns the required numerical precision in a practical

implementation. For both TN -slicing and differential TN -subtractions, the full QCD and

singular cross sections are probed in regions of phase space with TN & Tδ, where there

are significant numerical enhancements due to the nearby IR singularity at TN = 0. For
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Figure 1. Estimated size of the missing nonsingular terms below τ = δIR as a fraction of the full

correction at NLO (blue band) and NNLO (orange band), see eq. (2.25). The dashed line shows

the known exact result for thrust.

δIR ∼ 10−4, the cancellations between the full QCD and singular TN distributions can

easily reach the O(104) level and only increase as δIR is lowered further. Getting a result at

O(10−k) relative numerical precision in this case demands at least an O(10−(k+4)) relative

numerical precision in the evaluation of the squared QCD amplitudes.

For TN -slicing, the numerical cancellations only happen after the TN integration, which

means that in the worst case the TN integral itself may have to be carried out to the same

high precision. In practice, this will strongly depend on the process and the chosen Tδ,
since the numerical cancellations actually happen between the two terms in eq. (2.17) rather

than the the last two terms in eq. (2.18). In any case, using Monte-Carlo integration to

determine the integral of the unsubtracted full result down to TN ≥ Tδ very accurately

requires very high statistics and good phase-space sampling. Since NLO codes are usually

not designed for this purpose, this strongly limits how low Tδ can be taken.

For the TN -subtractions, the QCD amplitudes in the integrand still require the same

high numerical precision at small TN to obtain an accurate result for the nonsingular spec-

trum. However, since the cancellations now happen already at the integrand level, the

TN integration itself has to be carried out only to the nominal O(10−k) relative precision.

Hence, the statistical requirements on the Monte-Carlo integration of the nonsingular spec-

trum in eq. (2.19) are much more modest compared to the TN -slicing. This also means

that Tδ can now be taken as low as the numerical precision in the integrand allows. The

main nontrivial requirement now is that one must be able to sample phase-space for fixed

TN , which we discuss further in section 4.
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3 N-jettiness Subtractions

In this section, we now specify TN to be N -jettiness and explicitly construct the N -jettiness

subtractions. We first discuss the Born kinematics and the definition of N -jettiness in

section 3.1. In section 3.2 we review the factorization theorem for the singular contributions

in TN and how the virtual QCD amplitudes enter into it. Then in section 3.3 we explicitly

write out the TN subtractions at NLO and NNLO. Finally, in section 3.4 we discuss how

the subtractions can be made more differential and thereby more local.

3.1 Definition of N-jettiness

3.1.1 Born kinematics

We always use the indices a and b to label the initial states, and 1, . . . , N to label the final

states. Unless otherwise specified, a generic index i always runs over a, b, 1, . . . , N . We

denote the momenta of the QCD partons in the ΦN Born phase space by {qa, qb; q1, . . . , qN}
and the parton types (including their spin/helicity if needed) by {κa, κb;κ1, . . . , κN}. Thus,

ΦN corresponds to

ΦN ≡ {(qa, κa), (qb, κb); (q1, κ1), . . . , (qN , κN ); ΦL(q)} , (3.1)

where ΦL(q) denotes the phase space for any additional nonhadronic particles in the final

state, whose total momentum is q. (For ep or ee collisions, one or both of the incoming

momenta are considered part of ΦL(q).) We will mostly suppress the nonhadronic final

state. For us, it is only relevant because it contributes to momentum conservation in ΦN ,

which reads

qµa + qµb = qµ1 + · · ·+ qµN + qµ . (3.2)

When there is no ambiguity, we will associate κi ≡ i (e.g., we use fa ≡ fκa), and we use

the collective label κ to denote the whole partonic channel, i.e.,

κ ≡ {κa, κb;κ1, . . . , κN} ≡ {a, b; 1, . . . , N} . (3.3)

We write the massless Born momenta qi as

qµi = Ei n
µ
i , nµi = (1, ~ni) , |~ni| = 1 . (3.4)

In particular, for the incoming momenta we have

Ea,b = xa,b
Ecm

2
, nµa = (1, ẑ) , nµb = (1,−ẑ) , (3.5)

where Ecm is the total (hadronic) center-of-mass energy and ẑ points along the beam axis.

The xa,b are the light-cone momentum fractions of the incoming partons, and momentum

conservation implies

xaEcm = nb · (q1 + · · ·+ qN + q) , xbEcm = na · (q1 + · · ·+ qN + q) . (3.6)
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The total invariant mass-squared Q2 and rapidity Y of the Born phase space are

Q2 = xaxbE
2
cm , Y =

1

2
ln
xa
xb
, xaEcm = QeY , xbEcm = Qe−Y . (3.7)

The complete dΦN phase-space measure corresponds to∫
dΦN ≡

1

2E2
cm

∫
dxa
xa

dxb
xb

∫
dΦN (qa + qb; q1, . . . , qN , q)

dq2

2π
dΦL(q)

∑
κ

sκ , (3.8)

where dΦN (...) on the right-hand side denotes the standard Lorentz-invariant N -particle

phase space, the sum over κ runs over all partonic channels, and sκ is the appropriate

factor to take care of symmetry, flavor and spin averaging for each partonic channel.

3.1.2 N-jettiness

Given an M -particle phase space point with M ≥ N , N -jettiness is defined as [50]

TN (ΦM ) =
M∑
k=1

min
i

{2qi · pk
Qi

}
, (3.9)

where i runs over a, b, 1, . . . , N . (Here we use a dimension-one definition of TN following

refs. [52, 62].) For ep or ee collisions, one or both of the incoming directions are absent.

The Qi are normalization factors, which are explained below. The pk are the M final-state

parton momenta (so excluding the nonhadronic final state) of ΦM . The qi in eq. (3.9)

are massless Born “reference momenta”, and the corresponding directions ~ni = ~qi/|~qi| are

referred to as the N -jettiness axes. For later convenience we also define the normalized

vectors

q̂i =
qi
Qi

. (3.10)

The qi are obtained by projecting a given ΦM onto a corresponding Born point

Φ̂N (ΦM ). For this purpose, any IR safe phase-space projection can be used. That is,

in any IR singular limit where ΦM → ΦN , the Born projection has to satisfy

Φ̂N (ΦM → ΦN )→ ΦN , (3.11)

including the proper flavor assignments. In particular, for M = N , we simply have

Φ̂N (ΦN ) = ΦN and so qi = pi, which implies TN (ΦN ) = 0. For M ≥ N + 1, there is

always at least one pk that cannot be exactly aligned with any of the qi, which means

that TN (ΦM ) > 0. The minimization condition in eq. (3.9) ensures that for each pk the

smallest distance to one of the qi enters the sum, which together with eq. (3.11) implies

that TN (ΦM → ΦN ) → 0. Hence, N -jettiness satisfies all the criteria of an IR-safe N -jet

resolution variable given in eq. (2.4).

Some examples of suitable Born projections are discussed in section 3.1.3 below. Al-

though the precise procedure to define the Born projection and the qi is part of the definition

of N -jettiness, it is important that it does not actually affect the singular structure of the

TN -differential cross section. Different choices only differ by power-suppressed effects, as
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explained in ref. [50], which means the precise choice only affects the nonsingular contribu-

tions. Hence, constructing the singular contributions and the subtraction terms does not

actually require one to specify the Born projection, as they are constructed in the singular

limit starting from a given ΦN .7 This fact provides considerable freedom in the practical

implementation, which we will come back to in section 4.

The singular structure of TN is determined by the minimization condition in eq. (3.9)

and the choice of the Qi. The minimization effectively divides the ΦM phase space into N

jet regions and up to 2 beam regions, where each parton in ΦM is associated (“clustered”)

with the qi it is closest to, where the Qi determine the relative distance measure between

the different qi. We can then rewrite eq. (3.9) as follows,

TN =
∑
i

T iN with T iN =
M∑
k=1

[
2qi · pk
Qi

∏
j 6=i

θ
(qj · pk

Qj
− qi · pk

Qi

)]
, (3.12)

where the T iN are the contributions to TN from the ith region.

The Qi can be chosen depending on the Born kinematics in ΦN (subject to the con-

straint that the resulting distance measure remains IR safe). A variety of possible choices

are discussed in detail in refs. [52, 62]. An “invariant-mass” measure is obtained by choos-

ing common Qi = Q. In this case, the sum of the invariant masses of all emissions in

each region will be minimized. A class of “geometric measures” is obtained by choosing Qi
proportional to Ei, which makes the value of TN itself independent of the Ei, i.e.,

Qi = 2ρiEi ⇒ q̂i = ρi
ni
2
,

2qi · pk
Qi

= ρi ni · pk , (3.13)

where the ρi are dimensionless numbers which determine the relative size of the different

regions. In this case, the sum of the small light-cone momenta, ni · pk, of all emissions

relative to their associated N -jettiness axis are minimized.

The singular structure of the cross section does explicitly depend on the distance

measure. When discussing the singular contributions in the next section, we will keep the

Qi arbitrary, thus enabling various choices to be explored using our results. [As discussed in

ref. [50], one can generalize N -jettiness further to use any IR-safe distance measure di(pk)

in eq. (3.9), which has been used for example in the application to jet substructure [77, 78].

For our purposes, the canonical form di(pk) = q̂i · pk is suited well, because the simple

linear dependence on pk simplifies the theoretical analysis and computations.]

3.1.3 Example Born projections

To construct a generic Born projection, it suffices to use any IR-safe jet algorithm to cluster

the M -parton final state into N jets with momenta Pi. One can then define massless final-

state qµi = Ein
µ
i by taking (i = 1, . . . , N)

~ni =
~Pi

|~Pi|
with Ei = P 0

i or Ei = |~Pi| or 2Ei = P 0
i + |~Pi| , (3.14)

7In this regard, the TN -subtractions are FKS-like, namely they are intrinsically a function of the Born

phase space ΦN and an emission variable, which for us is TN , as opposed to starting from a given Φ≥N+1

point.
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where any of the choices for Ei can be used. To ensure that the total transverse momentum

in the Born final state adds up to zero, one can then for example boost the hadronic

system or recoil the leptonic final state in the transverse direction. Finally, the initial-

state momenta qa and qb, which always lie along the beam directions as in eq. (3.5), are

determined by momentum conservation from eq. (3.6).

When using a geometric measure as in eq. (3.13), the canonical way to determine the

N -jettiness axes ~ni is by an overall minimization of the total value of TN . Up to NNLO

the relevant cases are M = N + 1 and M = N + 2, i.e., one and two extra emissions, in

which case the overall minimization to find the N -jettiness axes is still fairly easy to work

out explicitly.

Let us take ρi = 1 for simplicity and consider the case of hadron-hadron collisions,

such that we have N jet axes plus the two fixed beam axes ~na,b = ±ẑ. When M = N+1, it

is easy to see that N − 1 axes must be aligned with N − 1 of the pk momenta. For the last

axis, there are two possibilities, and the one which gives a smaller TN is selected: Either it

is aligned with one of the two remaining pk (this occurs if the last pk momentum lies close

enough to one of the beam directions), or it lies along the direction of the sum of the two

remaining pk. The appropriate expression for TN for M = N + 1 is then:

TN =
M∑
k=1

(Ek − |~pk|) + min
{

min
j∈1..M

{
|~pj | − |pzj |

}
, min
jk∈1..M

{
|~pj |+ |~pk| − |~pj + ~pk|

}}
. (3.15)

The first term in the overall minimization corresponds to the first case above (extra emission

clustered to the beam), whilst the second term corresponds to the second case (extra

emission clustered to a jet).

When M = N + 2 there are two extra emissions. Now, N − 2 axes will always be

aligned with N −2 of the pk momenta, and there are four possible cases how the remaining

two axes can be chosen based on the remaining four pk. The appropriate expression for

TN for M = N + 2 is

TN =
M∑
j=1

(Ej − |~pj |) + min
{

min
jk∈1..M

{
|~pj |+ |~pk| − |pzj | − |pzk|

}
, (3.16)

min
jkl∈1..M

{
|~pj |+ |~pk|+ |~pl| − |~pj + ~pk| − |pzl |

}
,

min
jkl∈1..M

{
|~pj |+ |~pk|+ |~pl| − |~pj + ~pk + ~pl|

}
,

min
jklm∈1..M

{
|~pj |+ |~pk|+ |~pl|+ |~pm| − |~pj + ~pk| − |~pl + ~pm|

}}
.

The first term in the overall minimization corresponds to both extra particles being clus-

tered to a beam direction. The second term corresponds to one particle being clustered to

a beam, and two particles being clustered together in a jet. The third term corresponds

to clustering three particles together in a jet, and the final term corresponds to clustering

two sets of two particles into two separate jets. In all cases the remaining jet directions are

set by the remaining unclustered pk momenta.
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3.2 Factorization in the singular limit

3.2.1 Factorization theorem

We start by writing the N -jettiness singular cross section differential in ΦN and all indi-

vidual T iN contributions,

dσsing(X)

dTN
=

∫
dΦN

dσsing(ΦN )

dTN
X(ΦN )

dσsing(ΦN )

dTN
=

∫ [∏
i

dT iN
] dσsing(ΦN )

dT aN dT bN · · · dT NN
δ
(
TN −

∑
i

T iN
)
. (3.17)

The factorization of the N -jettiness cross section in the singular limit [for the linear mea-

sures defined by eq. (3.9)] was derived in SCET in refs. [50–52]. It takes the form

dσsing(ΦN )

dT aN dT bN · · · dT NN
=

∫
dtaBa(ta, xa, µ)

∫
dtbBb(tb, xb, µ)

[ N∏
i=1

∫
dsi Ji(si, µ)

]
(3.18)

× ~C†(ΦN , µ) Ŝκ

(
T aN −

ta
Qa

, . . . , T NN −
sN
QN

, {q̂i}, µ
)
~C(ΦN , µ) .

The first argument(s) of the beam, jet, and soft functions Bi, Ji, and Ŝκ determine the

contributions to the T iN from the respective collinear and soft sectors. The beam function

Ba(ta, xa, µ) contains all collinear emissions (virtual and real) from the incoming parton

a, and depends on the parton’s flavor κa and light-cone momentum fraction xa. The jet

function Ji(s, µ) contains all collinear emissions from the outgoing parton i, and depends on

the parton’s flavor κi. The soft function Ŝκ contains all soft emissions between all partons

and depends on the directions q̂i. It is a matrix acting in the color space of the partonic

channel κ. More precisely, it acts in the color-conserving subspace of the full color space.

The hard Wilson coefficient ~C(ΦN , µ) is a vector in the same color space, and ~C†(ΦN , µ)

is its conjugate (see below). It contains the QCD amplitudes for the N -parton process and

depends on the full N -parton phase space ΦN .

All functions in the factorized cross sections have an explicit µ dependence (due to their

nonzero anomalous dimensions). This µ dependence exactly cancels between the different

functions at each order. The remaining internal µ-dependence is the usual one due to the

running of αs(µ) which cancels up to the order one is working at. In the general case, the

µ dependence is used to resum the logarithms of TN to all orders in αs at a given order

in logarithmic counting. For our purposes, we require the strict fixed-order expansion in

αs(µ) at NLO and NNLO.

We note in passing that starting at N4LO, the partonic QCD cross section receives

a contribution from noncancelling Glauber modes in graphs with the same structure as

figure 5 in ref. [79]. Such contributions are not reproduced by eq. (3.18). However this is

far beyond NNLO, which is the level we are concerned about here.

3.2.2 QCD amplitudes and color space

The hard coefficients ~C(ΦN ) contain the virtual N -parton amplitudes from QCD. They

formally arise as the matching coefficients from QCD onto SCET. How this matching is
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performed in practice for generic processes using QCD helicity amplitudes is discussed

extensively in refs. [80, 81] (see also refs. [82–85]). We refer the reader there for details

and only summarize the features relevant for our discussion here. The important point

is that when working in pure dimensional regularization with MS, the coefficients ~C(ΦN )

are given by the infrared-finite part, Afin, of the full N -parton QCD amplitude after UV

renormalization.8 Hence, we have

Cαa···αN (ΦN ) = −iAαa···αNfin (ΦN ) , (3.19)

where we have explicitly written out the color indices {αa, . . . , αN} of the external partons.

(All remaining dependence on external helicities and momenta are contained in ΦN .)

The color indices {αi} span the full color space for the partonic channel κ. We can now

pick a complete basis of color structures T̄αa···αNk , which span the color-conserving subspace.

(For practical purposes, the basis can be overcomplete and does not have to be orthogonal.)

For example, for κ = gqq̄ the color-conserving subspace is still one-dimensional, since the

only allowed color structure is T̄ aαβ̄ ≡ (T a
αβ̄

). For κ = ggqq̄, one choice would be

T̄ abαβ̄k =
(

(T aT b)αβ̄ , (T bT a)αβ̄ , tr[T aT b] δαβ̄

)
. (3.20)

Given a basis T̄αa···αNk , we write the hard coefficients in this basis as

Cαa···αN (ΦN ) =
∑
k

T̄αa···αNk Ck(ΦN ) ≡ T̄αa···αN · ~C(ΦN ) . (3.21)

This is in one-to-one correspondence to choosing a particular color decomposition for the

N -parton amplitude, and so the coefficients ~C are directly given by the IR-finite parts of

the color-ordered (or color-stripped) amplitudes. The precise form of the amplitude’s color

decomposition is irrelevant for our discussion and any convenient color basis can be used.

The conjugate ~C† of the vector ~C is defined by

~C† =
∑

αa···αN

C∗αa···αN T̄αa···αN = (~C∗)T T̂κ , (3.22)

where the superscript T denotes the transpose and

T̂κ =
∑

αa···αN

(T̄αa···αN )†T̄αa···αN , (3.23)

is the matrix of color sums for the basis chosen for the partonic channel κ. The typically

used color bases are not orthonormal, in which case T̂κ is not equal to the identity operator

1κ and ~C† is not just the naive complex conjugate transpose of ~C. We then have∣∣~C(ΦN )
∣∣2 ≡ ~C†(ΦN ) ~C(ΦN ) =

∑
color

∣∣Afin(ΦN )
∣∣2 . (3.24)

8The UV renormalization scheme must be the same for all functions appearing in the factorized cross

section. The explicit results we give all use conventional dimensional regularization (CDR), which requires

the QCD amplitudes to be renormalized in the CDR or ’t Hooft-Veltman (HV) scheme.

– 17 –



3.2.3 Leading order

It is instructive to see how the LO cross section arises from eq. (3.18). At LO, we have

J
(0)
i (s, µ) = δ(s) ,

B(0)
a (t, x, µ) = δ(t) fa(x, µF ) ,

Ŝ(0)
κ (ka, . . . , kN , {ŝij}, µ) = 1κ

∏
i

δ(ki) , (3.25)

where the LO soft function is the identity operator in color space,

1κ ≡ δαaβa · · · δαNβN . (3.26)

Plugging this back into eq. (3.18) we get

dσsing
LO (ΦN )

dT aN dT bN · · · dT NN
= fa fb ~C

†(0)(ΦN ) 1κ ~C
(0)(ΦN )

∏
i

δ(T iN )

=
[
fa fb

∑
colors

∣∣A(0)(ΦN )
∣∣2]∏

i

δ(T iN ) ≡ BN (ΦN )
∏
i

δ(T iN ) . (3.27)

Equation (3.17) then reproduces the LO cross section as in eqs. (2.5) and (2.12).

3.3 Single-differential subtractions

We now project onto the single-differential N -jettiness TN . Equations (3.17) and (3.18)

yield

dσsing(ΦN )

dTN
=

∫
dtaBa(ta, xa, µ)

∫
dtbBb(tb, xb, µ)

[ N∏
i=1

∫
dsi Ji(si, µ)

]
(3.28)

× ~C†(ΦN , µ) Ŝκ

(
TN −

ta
Qa
− tb
Qb
−

N∑
i=1

si
Qi
, {q̂i}, µ

)
~C(ΦN , µ) ,

where the single-differential soft function is the projection of the multi-differential one

appearing in eq. (3.18), see eq. (A.21). We expand this singular contribution to the N -

jettiness cross section as [cf. eq. (2.10)]

dσsing(ΦN )

dTN
= C−1(ΦN , ξ) δ(TN ) +

∑
n≥0

Cn(ΦN , ξ)
1

ξ
Ln
(TN
ξ

)
(3.29)

=
∑
m≥0

[
C(m)
−1 (ΦN , ξ, µ) δ(TN ) +

2m−1∑
n=0

C(m)
n (ΦN , ξ, µ)

1

ξ
Ln
(TN
ξ

)](αs(µ)

4π

)m
.

The Ln(τ) are the usual plus distributions defined in eq. (2.8). Here we explicitly denote

the dependence of the subtraction coefficients C(m)
n (ΦN , ξ, µ) on the renormalization scale

µ. The individual coefficients also depend on the arbitrary dimension-one parameter ξ,

which drops out exactly in the sum of all coefficients at each order in αs. (In section 2.2 we
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used ξ ≡ Q.) Finally, the coefficients also depend on the N -jettiness measures Qi, which

we suppress for simplicity.

To determine the subtraction coefficients, we simply expand all the functions in the

factorization theorem eq. (3.28) in terms of αs(µ),

Ji(s, µ) = δ(s) +
∑
m≥1

J
(m)
i (s, µ)

(αs(µ)

4π

)m
,

Ba(t, x, µ) = δ(t) fa(x, µF ) +
∑
m≥1

B(m)
a (t, x, µ, µF )

(αs(µ)

4π

)m
,

Ŝκ(k, {ŝij}, µ) = 1κ δ(k) +
∑
m≥1

Ŝ(m)
κ (k, {ŝij}, µ)

(αs(µ)

4π

)m
,

~C(ΦN , µ) = ~C(0)(ΦN , µ) +
∑
m≥1

~C(m)(ΦN , µ)
(αs(µ)

4π

)m
, (3.30)

plug these back, and collect all contributions to each order in αs and each power in ln TN .

Explicit results for the jet, beam, and soft functions through O(α2
s) are given in Ap-

pendix A.

3.3.1 NLO subtractions

At NLO, the differential subtractions require the subtraction coefficients C(1)
0 and C(1)

1 ,

which are the coefficients of the 1/TN and (ln TN )/TN contributions. They are given by

(with n = 0, 1),

C(1)
n (ΦN , ξ, µ) =

∣∣~C(0)(ΦN , µ)
∣∣2[fa(xa, µF ) fb(xb, µF )

N∑
i=1

J
(1)
i,n

(Qiξ
µ2

)
+B(1)

a,n

(
xa, µ, µF ,

Qaξ

µ2

)
fb(xb, µF ) + fa(xa, µF )B

(1)
b,n

(
xb, µ, µF ,

Qbξ

µ2

)]
+ fa(xa, µF ) fb(xb, µF ) ~C†(0)(ΦN , µ) Ŝ(1)

κ,n

(
{q̂i},

ξ

µ

)
~C(0)(ΦN , µ) . (3.31)

The jet function contributions in the first line effectively correspond to collinear final-

state subtractions, while the beam function contributions in the second line effectively

correspond to collinear initial-state subtractions. The soft function contribution in the last

line effectively corresponds to a soft subtraction.

As explained in section 2, the coefficient C−1 determines the integrated subtractions

plus the virtual contributions, which becomes obvious when choosing ξ = Toff . At NLO,

we have

C(1)
−1(ΦN , ξ, µ) = fa(xa, µF ) fb(xb, µF )

(
~C†(1) ~C(0) + ~C†(0) ~C(1)

)
(ΦN , µ)

+
∣∣~C(0)(ΦN , µ)

∣∣2[fa(xa, µF ) fb(xb, µF )

N∑
i=1

J
(1)
i,−1

(Qiξ
µ2

)
+B

(1)
a,−1

(
xa, µ, µF ,

Qaξ

µ2

)
fb(xb, µF ) + fa(xa, µF )B

(1)
b,−1

(
xb, µ, µF ,

Qbξ

µ2

)]
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+ fa(xa, µF ) fb(xb, µF ) ~C†(0)(ΦN , µ) Ŝ
(1)
κ,−1

(
{q̂i},

ξ

µ

)
~C(0)(ΦN , µ) . (3.32)

The first line contains the IR-finite virtual one-loop amplitudes in ~C(1)(ΦN ). The remain-

ing lines effectively correspond to the integrated collinear and soft subtractions. The NLO

beam, jet, and soft function coefficients, B
(1)
a,n(x, µ, µF , λ), J

(1)
i,n (λ), and Ŝ

(1)
κ,n({q̂i}, λ) ap-

pearing in eqs. (3.31) and (3.32) are all known and are collected in Appendix A. The PDF

factorization scale (µF ) dependence only enters via the beam functions and the PDFs.

One can see that the structure of the subtraction terms has a close resemblance with

FKS subtractions. The important difference is that here one does not have to divide up

phase space in order to individually isolate all possible IR singular regions. Instead, all

the singular regions are projected onto the single variable TN . An analogous phase-space

division for the soft emissions now happens in the calculation of the N -jettiness soft func-

tion. It is also important to note that there are no overlaps (i.e. double counting) between

the soft and collinear subtraction terms. In principle, such overlaps can exist and must be

removed, which in SCET corresponds to removing so-called zero-bin contributions [86]. A

nice feature of N -jettiness is that all such overlap contributions automatically vanish in

pure dimensional regularization at all orders in perturbation theory.

3.3.2 NNLO subtractions

For simplicity of the presentation, we define the abbreviations

J
(m)
i,n ≡ J

(m)
i,n

(Qiξ
µ2

)
, B

(m)
i,n ≡ B

(m)
i,n

(
xi, µ, µF ,

Qiξ

µ2

)
, fi ≡ fi(xi, µF ) ,

Ŝ(m)
n ≡ Ŝ(m)

κ,n

(
{q̂i},

ξ

µ

)
, ~C(m) ≡ ~C(m)(ΦN , µ) , (3.33)

where we use roman letters (B, J, S, C, f) to avoid any confusion with some of the coefficients

listed in Appendix A. The NNLO coefficients J
(2)
i,n and B

(2)
i,n as well as the soft function

coefficients Ŝ
(2)
n≥0 are all known analytically, see Appendix A.

The N -jettiness soft function describes how the soft radiation is split into the different

N -jettiness regions. Obtaining the two-loop soft constant Ŝ
(2)
κ,−1 (the coefficient of the δ(k),

see eq. (A.23)) is the remaining principal challenge. It is known analytically for processes

with two external partons, see eqs. (A.34) and (A.35), but it is currently unknown for

generic N -jet processes. It can however be determined numerically by extending the NLO

calculation in ref. [52] using existing NNLO results. A procedure to do so has been outlined

recently in ref. [87], where numerical results for 1-jettiness in pp collisions were presented.

We conveniently denote the genuine m-loop contributions from jet, beam, and soft

functions to the C(m)
n as

X(m)
n ≡

∣∣~C(0)
∣∣2(fa fb

N∑
i=1

J
(m)
i,n + B(m)

a,n fb + fa B
(m)
b,n

)
+ fa fb ~C

†(0) Ŝ(m)
n

~C(0) . (3.34)
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k V 00
k V 01

k = V 10
k V 11

k

−1 −π2/6 ζ3 −π4/360

0 0 −π2/6 2 ζ3

1 2 0 −π2/3

2 0 3/2 0

3 0 0 1

Table 1. Coefficients V mnk for the convolution Lm ⊗ Ln according to eq. (3.42).

Using this notation, we write the two-loop cross terms related to real-virtual contributions

and involving the one-loop virtual amplitudes in ~C(1) as

X(1+1)
n ≡

(
~C†(0)~C(1) + ~C†(1)~C(0)

)(
fa fb

N∑
i=1

J
(1)
i,n + B(1)

a,n fb + fa B
(1)
b,n

)
+ fa fb

(
~C†(0) Ŝ(1)

n
~C(1) + ~C†(1) Ŝ(1)

n
~C(0)

)
. (3.35)

Finally, the cross terms with two one-loop coefficients of jet, beam, or soft functions from

the associated Ln ⊗ Lm convolution are denoted as

X(1+1)
n,m ≡

∣∣~C(0)
∣∣2(fa fb

N∑
i<j=1

J
(1)
i,nJ

(1)
j,m + B(1)

a,n fb

N∑
i=1

J
(1)
i,m + fa B

(1)
b,n

N∑
i=1

J
(1)
i,m + B(1)

a,n B
(1)
b,m

)

+ fa fb

N∑
i=1

J
(1)
i,n
~C†(0) Ŝ(1)

m
~C(0) + B(1)

a,n fb ~C
†(0) Ŝ(1)

m
~C(0) + fa B

(1)
b,n
~C†(0) Ŝ(1)

m
~C(0) .

(3.36)

With these definitions, the NNLO subtraction coefficients read

C(2)
3 (ΦN , ξ, µ) = X

(2)
3 +X

(1+1)
1,1 , (3.37)

C(2)
2 (ΦN , ξ, µ) = X

(2)
2 +

3

2

(
X

(1+1)
0,1 +X

(1+1)
1,0

)
, (3.38)

C(2)
1 (ΦN , ξ, µ) = X

(2)
1 +X

(1+1)
1 + 2X

(1+1)
0,0 − π2

3
X

(1+1)
1,1 , (3.39)

C(2)
0 (ΦN , ξ, µ) = X

(2)
0 +X

(1+1)
0 − π2

6

(
X

(1+1)
0,1 +X

(1+1)
1,0

)
+ 2ζ(3)X

(1+1)
1,1 , (3.40)

C(2)
−1(ΦN , ξ, µ) = fa fb

(
~C†(0)~C(2) + ~C†(1)~C(1) + ~C†(2)~C(0)

)
(3.41)

+X
(2)
−1 +X

(1+1)
−1 − π2

6
X

(1+1)
0,0 + ζ(3)

(
X

(1+1)
0,1 +X

(1+1)
1,0

)
− π4

360
X

(1+1)
1,1 .

The δ(TN ) coefficient C(2)
−1 again corresponds to the integrated NNLO subtraction piece and

contains the full IR-finite O(α2
s) virtual N -parton amplitudes in ~C(2).
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The constants multiplying the X
(1+1)
n,m in equations (3.37)-(3.41) are the coefficients

V mn
k arising in the convolution Lm ⊗ Ln,

(Lm ⊗ Ln)(τ) ≡
∫

dτ ′ Lm(τ − τ ′)Ln(τ ′) = V mn
−1 δ(τ) +

m+n+1∑
k=0

V mn
k Lk(τ) . (3.42)

They are given in table 1 for m,n ≤ 1. Their expression for general m,n can be found in

Appendix B of ref. [72].

3.3.3 Toward N3LO subtractions

Using the notation introduced in the previous subsection it is straightforward to also write

down the N3LO N -jettiness subtraction terms. Besides the genuine three-loop terms X
(3)
n

according to eq. (3.34), we now have “two-loop times one-loop” cross termsX
(1+2)
n = X

(2+1)
n

and X
(1+2)
n,m = X

(2+1)
n,m as well as the “(one-loop)3” cross terms X

(1+1+1)
n , X

(1+1+1)
n,m , and

X
(1+1+1)
n,m,l , where the latter is associated with the convolution Ln ⊗ Lm ⊗ Ll.

The N3LO subtraction coefficients then schematically take the form

C(3)
5 (ΦN , ξ, µ) = X

(3)
5 + cross terms ,

... (3.43)

C(3)
0 (ΦN , ξ, µ) = X

(3)
0 + cross terms ,

C(3)
−1(ΦN , ξ, µ) = X

(3)
−1 + fa fb

(
~C†(0)~C(3) + ~C†(1)~C(2) + ~C†(2)~C(1) + ~C†(3)~C(0)

)
+ cross terms .

The cross terms in eq. (3.43) are a linear combination of the above listed X’s, whose

numerical coefficients can be easily worked out by evaluating the relevant convolutions

among the Ln≤3 distributions in analogy to the NNLO case.

For processes with only two colored external partons, so e+e−→qq̄, DIS, or pp→ color

singlet, analytic expressions for all X
(3)
n≥0 are in fact available. This is because the three-

loop anomalous dimensions of jet and beam functions, the PDFs, and the hard function

are known [88–95], which also fixes the three-loop soft anomalous dimension. This means

the complete set of O(α3
s) logarithmic (Ln) terms of the renormalized jet, beam, and soft

functions are determined by their RGE. The only coefficient that is not fully known is C(3)
−1 ,

associated with the integrated N3LO subtractions plus virtual corrections. The C(3) are

known from the IR-finite parts of the three-loop quark and gluon form factors [96, 97].

As the cross terms only involve known lower-order contributions, the only missing piece

in eq. (3.43) then is X
(3)
−1 , for which one has to compute the three-loop µ-independent

constants of the jet, beam, and soft functions.

3.4 Constructing more-differential subtractions

As mentioned already, the TN -subtractions we have defined thus far are nonlocal, in the

sense that all the singular regions are projected onto the single variable TN and the subtrac-

tion acts only after the corresponding phase-space integrations. It is conceivable that in

order to improve the numerical stability or convergence of the NNLO calculation one might

– 22 –



wish to use a more local subtraction – indeed, many of the available NNLO subtraction

schemes utilize highly local subtraction terms.

In our approach, it is straightforward, at least conceptually, to progressively increase

the locality of the subtractions. All one needs to do is split TN up into further IR-safe

observables that cover the phase space and which are sensitive to emissions in different

regions, and/or introduce further observables that resolve the nature of emissions, e.g.

allowing one to discriminate between double-real and single-real(+virtual) emissions in a

given region. The subtraction is then given by the singular cross section differential in all

of these observables. In practice, this requires the relevant factorization theorem for this

more-differential cross section.

Let us demonstrate how this works for a simple example. The factorization theorem

in eq. (3.18) is already differential in the individual N -jettiness contributions T iN . For

simplicity, we take N = 0 and consider the X + 0j NNLO cross section. In this case, 0-

jettiness (aka beam thrust) effectively splits the event into two hemispheres (beam regions)

a and b, whose N -jettiness axes are defined by the beam directions. The total 0-jettiness is

given by T0 = T a0 + T b0 , where T a0 and T b0 are the contributions from the two hemispheres

[cf. eq. (3.12) and its discussion].

Following the procedure in section 3.3 we can use the total T0 to construct a subtrac-

tion. However, instead of taking the sum, we can also consider Ta ≡ T a0 and Tb ≡ T b0
separately, and perform the subtraction differential in both of these observables. Each

of them is then sensitive to a subset of the singular regions, namely, collinear (and soft)

emissions closer to beam a will only affect Ta, whilst emissions closer to beam b will only

affect Tb.
Following the logic of section 2.3, we first write down the appropriate formula for the

corresponding double-differential phase-space slicing:

σ(X) =

∫ Tδ
0

dTa
∫ Tδ

0
dTb

dσsing(X)

dTa dTb
+

∫
Tδ

dTa
∫ Tδ

0
dTb

dσ(X)

dTa dTb

+

∫ Tδ
0

dTa
∫
Tδ

dTb
dσ(X)

dTa dTb
+

∫
Tδ

dTa
∫
Tδ

dTb
dσ(X)

dTa dTb
+O(δIR) . (3.44)

Here, we substitute in the double-differential singular cross section when both Ta and Tb
are below the IR cutoff Tδ, which is correct up to O(δIR). Having either Ta or Tb nonzero

requires at least one additional emission, so the remaining three regions only require an

NLO calculation. Of course, there are singularities in the second term as Tb → 0 with

nonzero Ta (and similar singularities in the third term when Ta → 0 with nonzero Tb), but

these are handled as part of the NLO calculation.

Performing the slicing method using both Ta and Tb has no clear advantage over the

slicing method using T0 alone, as in both methods one basically removes a small region

of size Tδ around T0 = 0, and handles it using the singular cross section. However, let us

rewrite eq. (3.44) as a subtraction by adding and subtracting the singular cross section for

the shaded region in figure 2, arranged in the following way:

σ(X) = σsing(X, Ta < Toff , Tb < Toff)
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Tδ Toff
Tδ

Toff

Tb

Ta

Figure 2. Division of the Ta, Tb phase space for double-differential N -jettiness subtractions.

+

∫ Toff

Tδ
dTb

[
dσ(X, Ta < Tδ)

dTb
− dσsing(X, Ta < Tδ)

dTb

]
+

∫ Toff

Tδ
dTa

[
dσ(X, Tb < Tδ)

dTa
− dσsing(X, Tb < Tδ)

dTa

]
+

∫ Toff

Tδ
dTa

∫ Toff

Tδ
dTb

[
dσ(X)

dTa dTb
− dσsing(X)

dTa dTb

]
+

∫
dTa

∫
dTb

dσ(X)

dTa dTb
[
1− θ(Ta < Toff) θ(Tb < Toff)

]
+O(δIR) . (3.45)

This equation is the two-variable analogue of eq. (2.19). The parameter Toff controls again

where we turn off the subtraction, and the dependence on it precisely cancels between all

contributions. The total cumulant in the first term contains the two-loop virtual correc-

tions together with the corresponding integrated subtraction terms. The cross sections in

the second and third terms are differential in one of the variables and integrated in the

other. Since one of the variables is nonzero, while the other is integrated, they require an

NLO calculation with one additional resolved emission. These terms contain all the real-

virtual contributions and the singular cross section acts as the corresponding real-virtual

subtraction. The fourth term involves the double-differential cross sections and since both

variables are nonzero only requires a LO calculation with two resolved emissions, one in

each hemisphere. The double-differential singular cross section then acts as the correspond-

ing double-real subtraction, which is point-by-point in both Ta and Tb. (Contributions with

two real emissions in the same hemisphere are part of the NLO calculations in the second

and third terms.) Hence, by considering separately Ta and Tb, one is able to disentangle

different real-virtual and double-real contributions and also make the subtractions more

local. The price one has to pay is that the double-differential singular cross section in the

last term requires the double-differential NNLO soft function, which is more complicated.

(For the beam and jet functions this requires no additional effort.)
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A further important point to make is that Ta and Tb are defined such that requiring

Ta > Tδ or Tb > Tδ forces the corresponding emission to be in hemisphere a or b. At NLO,

there is only one real emission, so only one out of Ta and Tb can be nonzero. Then, the

double-differential subtraction essentially splits the T0-subtraction into two pieces, acting

in the two hemispheres. At NNLO, this splits the real-virtual contributions into the two

pieces in the second and third lines of eq. (3.45). If this is undesired, one can instead

consider the two variables Tmin = min{Ta, Tb} and Tmax = max{Ta, Tb}. This effectively

folds the phase space in figure 2 in half along the diagonal where Ta = Tb, and combines

the second and third terms in eq. (3.45) into one.

Now let us return to the general case with N partons in the Born process. Then

there are N + 2 contributions T aN , T bN , T 1
N , . . . , T NN , and one can consider the subtraction

separately in all of them. At NLO, only one of them can be nonzero, while at NNLO at most

two of them can be nonzero. This means that there will be many different contributions,

where in each contribution only one or two of the T iN are differential and nonzero, while

all the others are integrated over. Each T iN can only be nonzero when the corresponding

emission is in the ith N -jettiness region. Hence, if desired, using the individual T iN as the

resolution variables automatically yields a division of phase space into different singular

regions around each of the N partons, very similar to the phase-space divisions encountered

in traditional local subtraction methods. On the other hand, if the proliferation of phase-

space regions is undesired, one can still have the same gain at NNLO as in eq. (3.45) by

considering two combinations of all T iN , e.g. the minimum and maximum nonzero T iN , or

the sum of all T iN together with the sum of all but the largest T iN .

Instead of or in addition to splitting TN into its different components, one can also in-

crease the locality of the subtraction by performing it differentially in both TN and another

independent N -jet resolution variable. For example, one could look into each N -jettiness

region i and compute the scalar sum of transverse momenta with respect to the correspond-

ing N -jettiness axis ET i =
∑

k∈i|pTk|, performing the subtraction also differential in the

ET i. Doing so resolves part of the radiation phase space, which would otherwise be inte-

grated over when considering only TN by itself. For the X + 0j case one could for example

consider T0 together with the transverse momentum pT of the color-singlet final state X.

The relevant factorization formulae differential in T0 and pT have been discussed and writ-

ten down in refs. [63, 98] (see also refs. [99, 100]), and the corresponding double-differential

two-loop quark beam functions have been computed in ref. [101].

We have discussed several options how to extend the single-differential N -jettiness sub-

tractions, but of course this is not an exhaustive list. Constructing such more-differential

subtractions requires the appropriate singular cross section differential in all of the chosen

jet resolution variables, and in order to experience the maximum advantage in terms of con-

vergence, these differential cross sections should reproduce the correct singular behaviour in

all of the relevant singular kinematic regimes. The factorization of multi-differential cross

sections in SCET accurate in all relevant kinematic regimes is a topic that has received

much interest recently, see e.g. refs. [52, 61–65], and it would be interesting to apply this

work to the issue of calculating NNLO QCD cross sections.
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4 Practical Considerations and Implementation

In this section, we discuss in more detail how the singular cross section in eq. (3.29)

can be implemented in practice as a subtraction term following our general discussion in

section 2.3. We first discuss the NLO case in section 4.1, where we also highlight the

similarities to FKS subtractions, and then the NNLO case in section 4.2. In section 4.3, we

discuss numerical aspects using the NNLO rapidity spectrum in Drell-Yan and gluon-fusion

Higgs production as an example.

4.1 NLO

4.1.1 FKS subtractions

In the notation of eq. (2.1), the cross section at NLO is given by

σNLO(X) =

∫
dΦN BN (ΦN )X(ΦN )

+

[∫
dΦN VN (ΦN )X(ΦN ) +

∫
dΦN+1BN+1(ΦN+1)X(ΦN+1)

]
ε→0

, (4.1)

where VN is the N -parton virtual one-loop contribution and BN+1 is the N + 1-parton

real-emission contribution,

VN (ΦN ) = fa fb
αs
4π

∑
color

[
A†(0)
ab→NA

(1)
ab→N +A†(1)

ab→NA
(0)
ab→N

]
(ΦN ) ,

BN+1(ΦN+1) = fa fb
∑
color

∣∣A(0)
ab→N+1(ΦN+1)

∣∣2 . (4.2)

The additional αs in BN+1 compared to BN is contained in A(0)(ΦN+1). As indicated in

eq. (4.1), the limit ε→ 0 can only be taken in the sum of VN and integral over BN+1.

When implementing eq. (4.1) using FKS subtractions [1–3, 102, 103], the cross section

is obtained as follows:

σNLO(X) =

∫
dΦN

{
(BN + V S

N )(ΦN )X(ΦN )

+
∑
k

∫
δIR

dΦrad

[
(Bk

N+1X)(Φk
N+1)− SkN+1(ΦN ,Φrad)X(ΦN )

]}
+O(δIR) ,

V S
N (ΦN ) =

[
VN (ΦN ) +

∑
k

∫
dΦrad S

k
N+1(ΦN ,Φrad)

]
ε→0

. (4.3)

Here, the phase space is first sampled over ΦN . For a fixed ΦN point, one then further

samples over the radiation phase space Φrad, where the sum over k runs over all the different

IR-singular regions. The real-emission contribution and measurement (BN+1X)(ΦN+1) ≡
BN+1(ΦN+1)X(ΦN+1) are evaluated at a constructed point Φk

N+1 = Φ̂k
N+1(ΦN ,Φrad). The

superscript k on Bk
N+1 indicates that BN+1 is divided up between the regions in such a

way that it is precisely reproduced in the sum over all regions. The phase-space map Φ̂k
N+1

and the subtraction terms SkN+1 are specific to each singular region. The SkN+1 are directly
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constructed in the singular limit, meaning they are functions of ΦN and Φrad only, and in

particular do not depend on the actual map Φ̂k
N+1. In practice, there is again a tiny IR

cutoff δIR required on the Φrad integral due to limited numerical precision and the fact that

Bk
N+1 and SkN+1 each individually diverge. The subtracted virtual, V S

N , contains the finite

remainder after combining the virtual contributions with the integral of the subtractions

and cancelling all 1/ε IR poles.

4.1.2 TN -subtractions

As discussed in section 2.3, the full cross section for X at TN > 0 only requires a lower-order

calculation. At NLO, we need its LO expression given by

dσ(X)

dTN

∣∣∣∣LO

TN>0

=

∫
dΦN+1 (BN+1X)(ΦN+1) δ[TN − TN (ΦN+1)] , (4.4)

where it is obvious that this is a LO quantity.

Since the subtractions are used up to the upper cutoff TN < Toff , as seen in eq. (2.19), it

is most convenient to set ξ = Toff in the subtraction coefficients. For the singular spectrum

at TN > 0, we can simply drop C−1 and replace Ln(τ)→ lnn(τ)/τ . The subtraction terms

at NLO are then

σsing(ΦN , Toff) =

∫ Toff

0
dTN

dσsing(ΦN )

dTN
= C−1(ΦN , Toff) ,

dσsing(ΦN )

dTN

∣∣∣∣
TN>0

=
1

TN

[
C0(ΦN , Toff) + C1(ΦN , Toff) ln

( TN
Toff

)]
θ(TN < Toff) , (4.5)

where for convenience we included the θ(TN < Toff) in the singular spectrum.

Using the above with eq. (2.17), the TN -slicing at NLO becomes

σNLO(X) =

∫
dΦN σ

sing(ΦN , Tδ)X(ΦN )

+

∫
dΦN+1 (BN+1X)(ΦN+1) θ[TN (ΦN+1) > Tδ] +O(δIR) . (4.6)

This calculation is very easy from an implementation point of view, since it boils down

to performing two LO phase-space integrals. As already eluded to, the main practical

limitation are the large numerical cancellations between both terms, requiring the phase-

space integrals to be evaluated to very high precision.

Using eq. (4.4), the differential TN -subtraction in eq. (2.19) takes the form

σNLO(X) =

∫
dΦN σ

sing(ΦN , Toff)X(ΦN )

+

∫
Tδ

dTN
{∫

dΦN+1 (BN+1X)(ΦN+1) δ[TN − TN (ΦN+1)]

−
∫

dΦN
dσsing(ΦN )

dTN
X(ΦN )

}
+O(δIR) . (4.7)
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For a numerical implementation, one must be able to solve the δ function in the dΦN+1 in-

tegral, which amounts to being able to sample over all of ΦN+1 that gives a fixed TN (ΦN+1).

One option to do so is to decompose ΦN+1 as

ΦN+1 = ΦN ⊗ TN ⊗ Ωrad , dΦN+1 = dΦN dTN dΩrad , (4.8)

where ΦN = Φ̂N (ΦN+1) is precisely the Born projection used to define TN (ΦN+1), see

section 3.1. The Ωrad ≡ Ωrad(ΦN+1) contains the remaining information needed to fully

specify ΦN+1, which includes the continuous angular radiation variables as well as the

discrete information about flavor, spin, and in which N -jettiness region the additional

emission goes. We can then rewrite eq. (4.7) as

σNLO(X) =

∫
dΦN

{
σsing(ΦN , Toff)X(ΦN ) (4.9)

+

∫
Tδ
dTN

[∫
dΩrad (BN+1X)(ΦN⊗TN⊗ Ωrad)− dσsing(ΦN )

dTN
X(ΦN )

]}
+O(δIR).

One now samples first over ΦN and then TN . For fixed ΦN and TN , one further samples

over Ωrad and evaluates the real-emission contribution at the ΦN+1 point reconstructed

from all of these. Being able to reconstruct ΦN+1(ΦN , TN ,Ωrad) is equivalent to inverting

the Born projection. Recall however, that the singular contributions dσsing(ΦN )/dTN are

independent of the Born projection. Therefore, one has the freedom to specifically choose

the Born projection to facilitate this inversion, making it easily possible.

Note that the Ωrad integral contains a discrete sum over all N -jettiness axis/regions.

If one were to separate TN into its individual components T iN as discussed in section 3.4,

this sum would become explicit and the single subtraction term dσsing(ΦN )/dTN would

effectively separate into different subtraction terms for each region.

We also note the close similarity of eq. (4.9) with the FKS subtraction in eq. (4.3).

Basically, TN ⊗Ωrad now acts as Φrad, while the split up into singular regions is now deter-

mined by the definition of TN . The LO piece C(0)
−1 of σsing supplies the Born contribution

BN , and the NLO piece C(1)
−1 corresponds to V S

N .

4.2 NNLO

At NNLO, the subtraction terms are

σsing(ΦN , Toff) = C−1(ΦN , Toff) ,

dσsing(ΦN )

dTN

∣∣∣∣
TN>0

=
1

TN

3∑
n=0

Cn(ΦN , Toff) lnn
( TN
Toff

)
θ(TN < Toff) . (4.10)

As at NLO, we have chosen ξ = Toff and included the θ(TN < Toff) in the singular spectrum.
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The full TN -differential cross section at TN > 0 is now needed at NLO, where it is

given by

dσ(X)

dTN

∣∣∣∣NLO

TN>0

=

{∫
dΦN+1 (BN+1X + VN+1X)(ΦN+1) δ[TN − TN (ΦN+1)]

+

∫
dΦN+2(BN+2X)(ΦN+2) δ[TN − TN (ΦN+2)]

}
ε→0

=

∫
dΦN+1

{
(BN+1X + V S

N+1X)(ΦN+1) δ[TN − TN (ΦN+1)]

+
∑
k

∫
dΦrad

[
(Bk

N+2X)(Φk
N+2) δ[TN − TN (Φk

N+2)]

− SkN+2(ΦN+1,Φrad)X(ΦN+1) δ[TN − TN (ΦN+1)]
]}

. (4.11)

In the second equation we wrote it in the form of an NLO calculation with FKS-like

subtractions, analogous to eq. (4.3), where now Φk
N+2 = Φ̂k

N+2(ΦN+1,Φrad).

In general, the Φ̂k
N+2 map used in the N + 1-jet NLO calculation will not preserve

TN , that is, TN+1[Φ̂k
N+2(ΦN+1,Φrad)] 6= TN (ΦN+1). This means we have to be careful in

implementing the Tδ cutoff, because in order for the neglected pieces to be nonsingular,

the cutoff must be applied on the true TN (ΦN+2). We can do this by treating the cutoff

analogous to the measurement X. That is, we define the NLO calculation

dσNLO(X, Tδ)
dΦN+1

= (BN+1X + V S
N+1X)(ΦN+1) θ[TN (ΦN+1)− Tδ]

+
∑
k

∫
dΦrad

{
(BN+1X)(Φk

N+2) θ[TN (Φk
N+2)− Tδ]

− SkN+2(ΦN+1,Φrad)X(ΦN+1) θ[TN (ΦN+1)− Tδ]
}
, (4.12)

which is fully-differential in ΦN+1 and satisfies∫
Tδ

dTN
dσ(X)

dTN

∣∣∣∣NLO

TN>0

=

∫
dΦN+1

dσNLO(X, Tδ)
dΦN+1

. (4.13)

Using the above together with eq. (2.17), the TN -slicing at NNLO is given by

σNNLO(X) =

∫
dΦN σ

sing(ΦN , Tδ)X(ΦN ) +

∫
dΦN+1

dσNLO(X, Tδ)
dΦN+1

+O(δIR) . (4.14)

This is again quite easy to implement, only requiring a LO phase-space integral for the first

term and a NLO calculation for the second term. The practical limitation is the achievable

numerical precision in the NLO calculation and the ΦN+1 integral, which strongly limits

how low Tδ can be pushed.

From eq. (2.19), the differential TN -subtraction at NNLO takes the form

σNNLO(X) =

∫
dΦN σ

sing(ΦN , Toff)X(ΦN )

+

∫
Tδ

dTN
[

dσ(X)

dTN

∣∣∣∣NLO

TN>0

−
∫

dΦN
dσsing(ΦN )

dTN
X(ΦN )

]
+O(δIR) . (4.15)
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To implement this numerically, one must be able to compute the TN spectrum dσ(X)/dTN
to NLO for a given TN , which requires to solve the δ functions in eq. (4.11). For ΦN+1

we can use the same procedure as at NLO together with the N + 1-jet NLO cross section

dσNLO(X, Tδ)/dΦN+1, giving

σNNLO(X) =

∫
dΦN

{
σsing(ΦN , Toff)X(ΦN ) +

∫
0
dTN

[∫
dΩrad

dσNLO(X, Tδ)
dΦN+1

∣∣∣∣
ΦN⊗TN⊗Ωrad

− dσsing(ΦN )

dTN
X(ΦN ) θ(TN − Tδ)

]}
+O(δIR) . (4.16)

This can be implemented like the NLO case in eq. (4.9), with the LO BN+1(ΦN+1) replaced

by dσNLO(X, Tδ)/dΦN+1. The subtraction in eq. (4.16) is not completely local in TN , since

the ΦN+2 points being integrated over in dσNLO(X, Tδ)/dΦN+1 will generically not have the

correct TN value. However, a simple phase-space map Φ̂k
N+2 that approximately preserves

TN might be sufficient in practice.

To achieve an exact point-by-point cancellation in TN , one also has to solve the δ(TN−
TN (ΦN+2) constraint in eq. (4.11). This requires constructing a map Φ̂k

N+2 for the N+1-jet

NLO calculation that preserves TN so TN [Φ̂k
N+2(ΦN+1,Φrad)] = TN (ΦN+1) and is equivalent

to inverting the Born projection Φ̂N (ΦN+2) underlying the definition of TN (ΦN+2). This

is quite a bit more challenging than at NLO. It has been achieved in ref. [67] for a slightly

modified version of TN . Assuming, we have a Φ̂k
N+2 map like this, we can pull the Tδ cut

out of the NLO calculation, such that

dσNLO(X, Tδ)
dΦN+1

=
dσNLO(X)

dΦN+1
θ[TN (ΦN+1)− Tδ] (4.17)

dσNLO(X)

dΦN+1
= (BN+1X + V S

N+1X)(ΦN+1)

+
∑
k

∫
dΦrad

[
(BN+1X)(Φk

N+2)− SkN+2(ΦN+1,Φrad)X(ΦN+1)
]
.

The differential TN -subtraction then becomes

σNNLO(X) =

∫
dΦN

{
σsing(ΦN , Toff)X(ΦN )

+

∫
Tδ

dTN
[∫

dΩrad
dσNLO(X)

dΦN+1

∣∣∣∣
ΦN⊗TN⊗Ωrad

− dσsing(ΦN )

dTN
X(ΦN )

]}
+O(δIR) .

(4.18)

The subtraction is now fully localized in TN , and the only nonlocality is in the dΩrad

variables.

In a practical implementation of eq. (4.16) or eq. (4.18), the subtraction terms are

easily evaluated and the most nontrivial ingredient is in fact the NLO calculation of

dσNLO(X)/dΦN+1, for which one can use any existing FKS-like NLO calculation or one

can iterate the N -jettiness subtractions and perform it using TN+1-subtractions. Note that

in all cases above the X measurement is performed inside dσNLO(X)/dΦN+1. If the Φ̂k
N+2

map preserves X, so X(Φk
N+2) = X(ΦN+1), then it can be pulled out of the N+1-jet NLO

calculation.
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Figure 3. The absolute value of the full, singular, and nonsingular contributions to the T0 spectrum

for Drell-Yan production. The NLO O(αs) corrections are shown on the left, and the pure NNLO

O(α2
s) corrections are on the right.
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Figure 4. The nonsingular T0 spectrum for Drell-Yan as a function of τ = T0/mZ . The NLO

O(αs) corrections are shown on the left, and the pure NNLO O(α2
s) corrections are on the right.

4.3 Example: NNLO rapidity spectrum for Drell-Yan and Higgs

To illustrate our method with a nontrivial example, we consider the rapidity distribution

of the vector boson in Drell-Yan production, pp→ Z/γ → `+`−, and of the Higgs boson in

gluon fusion, gg → H, which are known to NNLO [39, 40, 104–108]. Since the size of the

perturbative corrections in the two cases are very different, they provide very useful and

complementary test cases.

In both cases, 0-jettiness T0 is the resolution variable and all of the ingredients neces-

sary to implement the T0-subtractions through NNLO are known. (We use the geometric

measure with ρi = 1, see eq. (3.13), which makes T0 identical to beam thrust.) The re-

sults are obtained for the LHC with a center-of-mass energy of 13 TeV. We always use

CT10 NNLO PDFs [109]. We choose common renormalization and factorization scales,

µR = µF = µ, with µ = mZ for Drell-Yan production and µ = mH for Higgs production.

For the latter we use mH = 125 GeV and work in the top EFT limit. For the Z+ 1-jet and

H + 1-jet NLO calculations we use MCFM [110, 111].

An important validation of the N -jettiness subtractions is to confirm that the singular
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Figure 5. The absolute value of the full, singular, and nonsingular contributions to the T0 spectrum

for gluon-fusion Higgs production. The NLO O(αs) corrections are shown on the left, and the pure

NNLO O(α2
s) corrections are on the right.
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Figure 6. The nonsingular T0 spectrum for gluon-fusion Higgs production as a function of τ =

T0/mH . The NLO O(αs) corrections are shown on the left, and the pure NNLO O(α2
s) corrections

are on the right.

TN spectrum is correctly describing the TN → 0 singularities of the full QCD result.

This is done by calculating the nonsingular TN spectrum as in eq. (2.15) as the difference

of the full QCD and singular TN spectra. The decomposition of the T0 spectrum into

singular and nonsingular components is shown in figures 3 and 5 for Drell-Yan and Higgs

production, respectively, where we separately show the O(αs) (NLO) and O(α2
s) (pure

NNLO) corrections, counted relative to the LO Born cross section. (We plot the magnitudes

of the contributions on a logarithmic scale, and the dips at large T0 and around T0 = 1 GeV

are due to the spectra going through 0. The small jitters in the pure NNLO nonsingular

are due to numerical inaccuracies.) One can clearly see the large numerical cancellations

between the full and singular results for small T0, where the nonsingular spectrum is several

orders of magnitude smaller than the full and singular spectra.

As shown in eq. (2.19), the nonsingular spectrum is precisely the quantity that one

integrates numerically when using the differential TN -subtractions. The fact that the non-

singular only contains integrable singularities is seen in figures 3 and 5 by its smaller slope

toward T0 → 0. To check explicitly that the subtractions work and the nonsingular does not
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Figure 7. The NNLO rapidity distribution in Drell-Yan production. We plot the various ingredients

in the T0-slicing method for Tδ = 0.1 GeV, where in all cases the error bars correspond to the up

and down scale variation. The blue histogram shows for comparison the NNLO result from Vrap.
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Figure 8. The scale uncertainty band in the Drell-Yan rapidity distribution for both Vrap and

T0-slicing, relative to the central scale from Vrap at NLO (right) and NNLO (left).

contain any 1/TN singularities, we consider the distribution dσnons/d ln τ = τdσnons/dτ ,

which must go to 0 in the TN → 0 limit. We plot it in figure 4 for Drell-Yan and in figure 6

for Higgs production, again separately for the NLO and pure NNLO corrections, and using

τ = T0/mZ and τ = T0/mH , respectively. One can see that dσnons/d ln τ → 0 for τ → 0, as

it must. The error bars come from the statistical integration uncertainties in the full result

obtained from MCFM. The numerical uncertainties in the singular result are negligible in

comparison.

To obtain results for the NNLO rapidity spectrum, we use the simple T0-slicing in

eq. (4.14). As explained earlier, the missing O(δIR) contributions due to the Tδ cutoff

are the same irrespective of how the subtractions are implemented. At NLO, we use
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Figure 9. The NNLO rapidity distribution in gg → H production. We plot the various ingredients

in the T0-slicing method for Tδ = 0.1 GeV, where in all cases the error bars correspond to the up and

down scale variation. The blue histogram shows for comparison the NNLO result from HNNLO.
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Figure 10. The scale uncertainty band in the Higgs rapidity distribution for both HNNLO and

T0-slicing, relative to the central scale from HNNLO at NLO (right) and NNLO (left).

Tδ = 0.03 GeV (δIR ≈ 3.2 × 10−4 for Drell-Yan and δIR = 2.4 × 10−4 for Higgs) and at

NNLO we use Tδ = 0.1 GeV (δIR ≈ 1.1× 10−3 for Drell-Yan and δIR = 8× 10−4 for Higgs).

These values are at the lower end of τ values plotted in figures 4 and 6, and are mainly

limited by the MCFM statistics.

Specifically, we use MCFM to compute the NLO cross section for T0 > Tδ in the

second term in eq. (4.14), ∫
dΦ1

dσNLO(Y, Tδ)
dΦ1

(4.19)

in bins of Y for the processes pp → Z/γ → `+`− + jet and pp → H + jet. Since there
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are no cuts on the final-state jets other than the requirement T0 > Tδ, for small Tδ the

calculation probes deep into the singular region and care must be taken to obtain reliable

and numerically stable results. This is combined with our own implementation of the

NNLO singular cross section for T0 < Tδ, σsing(Y, Tδ), in the first term of eq. (4.14).

The results for the rapidity spectra are shown in figures 7 and 9 for Drell-Yan and

Higgs production, respectively. The two contributions from T0 < Tδ and T0 > Tδ are shown

in red and green and the total result given by their sum in black. The error bars here show

the scale variations up and down by a factor of two. Note that the relative size of the two

contributions and the degree of cancellation between them can change significantly as the

scale (or Tδ value) is changed. To validate the results from T0-slicing method, we compare

to results from Vrap [104, 105] for Drell-Yan and from HNNLO [39, 108] for Higgs, which

are shown by the blue line and band. For both processes we find excellent agreement.

In figures 8 and 10 we show the fractional difference of the T0-slicing results relative to

Vrap and HNNLO, respectively. At NLO with Tδ = 0.03 GeV, the agreement is excellent.

For Drell-Yan at NNLO, there is a small offset between the two results visible in figure 8,

representing ≈ 0.1% of the total cross section. A similar offset is also present in the Higgs

case, but hardly visible because the scale variations are much larger. It is due to the

missing O(δIR) nonsingular terms for T0 < Tδ = 0.1 GeV. A smaller value of Tδ would be

needed to reduce this effect. The size of the missing nonsingular terms we observe here is

also consistent with our estimates in section 2.3.3. Nevertheless, it is actually encouraging

to see that even with the simple T0-slicing we are able to obtain this level of agreement.

We would expect that an implementation of the differential T0-subtractions will allow one

to use δIR values well below 10−4.

We conclude this discussion by noting that it is important, particularly for more com-

plex processes, to carefully quantify the size of the neglected O(δIR) nonsingular contribu-

tions. In particular, as already seen in figure 1, one cannot draw any conclusions for their

possible size at NNLO from knowing their size at NLO. Also, the difference in the result

when varying the Tδ value is not necessarily a good estimate of the absolute size of the

missing nonsingular terms, because as discussed in section 2.3.3, their scaling with δIR for

δIR → 0 is much weaker than linear. A crucial check one should perform is to plot the

nonsingular distribution as in figures 4 and 6 and check its convergence toward zero.

5 Conclusions

Higher-order computations in QCD require the use of some subtraction technique that

allows one to extract the collinear and soft phase-space divergences from the real-emission

diagrams, and cancel these against the explicit divergences from the virtual loop diagrams.

We explained how a subtraction scheme can be constructed using an IR safeN -jet resolution

variable to control the approach to the IR-singular limit. The N -jettiness observable TN
is ideally suited for this task due to its known and simple factorization properties. Our

resulting N -jettiness subtraction method is similar in spirit to the qT subtraction method

introduced by Catani and Grazzini for color-singlet production, but may be applied to
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processes with arbitrarily many colored final-state partons (plus any color-singlet final

state).

In our method, the subtraction term corresponds to the appropriate fixed-order ex-

pansion of the singular N -jettiness cross section, which can be efficiently computed using

SCET. In this context, SCET allows the subtraction term to be broken down into various

pieces (beam, jet, and soft functions) that are easier to compute, with the beam and jet

functions being reusable for processes with any number of jets. The extension beyond

NNLO is possible and requires the calculation of the beam, jet, and soft functions at

three-loop order.

We discussed in depth the details of the subtraction procedure, giving explicitly the

equations and ingredients needed to construct the TN -subtraction terms at NLO and

NNLO. The only ingredient which is not explicitly known is the µ-independent constant

term of the NNLO N -jet soft function for three or more N -jettiness axes. It can however

be obtained relatively straightforward with existing technology. We also discussed how the

N -jettiness subtractions can be implemented in practice. To demonstrate the method and

study some of its numerical aspects, we presented NNLO results for the Drell-Yan and

Higgs rapidity spectra computed using 0-jettiness subtractions in its simplest form as a

slicing method.

We have also suggested and discussed several different ways in which the numerical

convergence of the N -jettiness subtraction method can be systematically improved. One

option would be to include the leading nonsingular terms in the subtraction. These correc-

tions are described by subleading factorization theorems for N -jettiness and SCET offers

a systematic framework to compute them. Another way to improve the numerical con-

vergence would be to make the subtraction more local, by performing the subtraction

differentially in additional observables (such as pT ) and/or splitting the total N -jettiness

observable into its components in the jet and beam regions. Much of the recent work in

SCET on deriving factorization formulae for multi-differential cross sections can be very

useful in this direction.

We only explicitly discussed the case of massless partons here. The construction of

analogous TN -subtractions for processes involving massive quarks is possible with the same

techniques. For mq � Q, one would consider a massive quark jet with its own N -jettiness

axis making use of the tools in SCET developed for the treatment of massive collinear

quarks [112–117]. For Q ∼ mq, e.g. tt̄ pair production and similar processes, an analogous

approach to refs. [48, 49] can be used. This amounts to treating the heavy quarks as part of

the hard interaction (without its own N -jettiness axis) together with a more complicated

soft function to account for soft gluon emissions from the heavy quarks. We leave further

development in this direction to future work.
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A Subtraction Ingredients

We write the αs expansion of the QCD beta function and the cusp and noncusp anomalous

dimensions as

µ
d

dµ
αs(µ) = β[αs(µ)] , β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
, (A.1)

and

Γcusp(αs) =
∞∑
n=0

Γn

(αs
4π

)n+1
, γiF (αs) =

∞∑
n=0

γiF n

(αs
4π

)n+1
. (A.2)

The coefficients of the MS beta function and cusp anomalous dimensions we need are

β0 =
11

3
CA −

4

3
TF nf ,

β1 =
34

3
C2
A −

(20

3
CA + 4CF

)
TF nf , (A.3)

and

Γqn = CFΓn , Γgn = CAΓn ,

Γ0 = 4 ,

Γ1 = 4
[
CA

(67

9
− π2

3

)
− 20

9
TF nf

]
=

4

3

[
CA(4− π2) + 5β0

]
. (A.4)

For the quark jet and beam functions in MS we have [92, 94]

γqJ 0 = γqB 0 = 6CF ,

γqJ 1 = γqB 1 = CF

[
CA

(146

9
− 80ζ3

)
+ CF (3− 4π2 + 48ζ3) + β0

(121

9
+

2π2

3

)]
. (A.5)

For the gluon jet and beam functions in MS we have [93, 95, 118]

γgJ 0 = γgB 0 = 2β0 ,

γgJ 1 = γgB 1 = CA

[
CA

(182

9
− 32ζ3

)
+ β0

(94

9
− 2π2

3

)]
+ 2β1 . (A.6)

A.1 Jet function

We write the αs expansion of the quark (i = q) and gluon (i = g) jet functions as

Ji(s, µ) =
∞∑
n=0

(αs(µ)

4π

)n
J

(n)
i (s, µ) . (A.7)
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The coefficients have the form

J
(m)
i (s, µ) = J

(m)
i,−1 δ(s) +

2m−1∑
n=0

J
(m)
i,n

1

µ2
Ln
( s
µ2

)
, (A.8)

where the Ln(x) are plus distributions as defined in eq. (2.8). The jet function is naturally

a distribution in s/µ2, and this is the only µ dependence of the coefficients. Rescaling the

arguments of the distributions using eq. (2.13), we have

J
(m)
i (Qiki, µ) =

1

Qi
J

(m)
i,−1

(Qξ
µ2

)
δ(ki) +

1

Qi

2m−1∑
n=0

J
(m)
i,n

(Qiξ
µ2

) 1

ξ
Ln
(ki
ξ

)
,

J
(m)
i,−1(λ) = J

(m)
i,−1 +

2m−1∑
n=0

J
(m)
i,n

lnn+1λ

n+ 1
,

J
(m)
i,n (λ) = J

(m)
i,n +

2m−1−n∑
k=1

(n+ k)!

n! k!
J

(m)
i,n+k lnkλ , (A.9)

where ξ is an arbitrary dimension-one parameter, which exactly cancels between the differ-

ent rescaled coefficients and that we can choose at our convenience. The J
(m)
i,n (λ) are the

coefficients appearing in the explicit expressions for the subtraction terms in sections 3.3.1

and 3.3.2.

The jet function coefficients in eq. (A.8) read up to two loops

J
(1)
i,1 = Γi0 ,

J
(1)
i,0 = −γ

i
J 0

2
,

J
(2)
i,3 =

(Γi0)2

2
,

J
(2)
i,2 = −Γi0

2

(3γiJ 0

2
+ β0

)
,

J
(2)
i,1 = Γi1 − (Γi0)2π

2

6
+
γiJ 0

2

(γiJ 0

2
+ β0

)
+ Γi0 J

(1)
i,−1 ,

J
(2)
i,0 = (Γi0)2ζ3 + Γi0γ

i
J 0

π2

12
− γiJ 1

2
−
(γiJ 0

2
+ β0

)
J

(1)
i,−1 . (A.10)

The δ(s) pieces for the quark jet function are [119, 120]

J
(0)
q,−1 = 1 ,

J
(1)
q,−1 = CF (7− π2) ,

J
(2)
q,−1 = CF

[
CF

(205

8
− 67π2

6
+

14π4

15
− 18ζ3

)
+ CA

(1417

108
− 7π2

9
− 17π4

180
− 18ζ3

)
+ β0

(4057

216
− 17π2

9
− 4ζ3

3

)]
, (A.11)
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and for the gluon jet function they are [93, 118, 121]

J
(0)
g,−1 = 1 ,

J
(1)
g,−1 = CA

(4

3
− π2

)
+

5

3
β0 ,

J
(2)
g,−1 = C2

A

(4255

108
− 26π2

9
+

151π4

180
− 72ζ3

)
+ CAβ0

(
−115

108
− 65π2

18
+

56ζ3

3

)
(A.12)

+ β2
0

(25

9
− π2

3

)
+ β1

(55

12
− 4ζ3

)
.

A.2 Beam function

The beam function is given by [51, 94]

Bi(t, x, µ) =
∑
j

∫
dz

z
Iij(t, z, µ, µF ) fj

(x
z
, µF

)
, (A.13)

where fj(x, µF ) are the standard PDFs and Iij(t, z, µ, µF ) are perturbative matching coef-

ficients. Here, we have explicitly separated the µF dependence, which cancels between the

matching coefficients and the PDFs, such that the beam function is µF independent up to

higher orders in αs(µ). (Usually, one takes µF = µ in the fixed-order beam function, since

these are not really formally distinct scales.) For our purposes, the µF dependence in the

beam function determines the complete µF factorization scale dependence in the singular

fixed-order cross section, while the µ dependence contributes to the usual renormalization

scale dependence.

We expand the beam function matching coefficients as

Iij(t, z, µ, µF ) =

∞∑
n=0

I(n)
ij (t, z, µ, µF )

(αs(µ)

4π

)n
. (A.14)

The perturbative coefficients have the structure

I(m)
ij (t, z, µ, µF ) = I(m)

ij,−1

(
z,
µ2

µ2
F

)
δ(t) +

2m−1∑
n=0

I(m)
ij,n

(
z,
µ2

µ2
F

) 1

µ2
Ln
( t

µ2

)
, (A.15)

where the Ln(x) are the plus distributions defined in eq. (2.8). The beam function is nat-

urally a distribution in t/µ2. Rescaling the arguments of the distributions using eq. (2.13),

we have

I(m)
ij (Qk, z, µ, µF ) =

1

Q
I(m)
ij,−1

(
z,
µ2

µ2
F

,
Qξ

µ2

)
δ(k) +

1

Q

2m−1∑
n=0

I(m)
ij,n

(
z,
µ2

µ2
F

,
Qξ

µ2

) 1

ξ
Ln
(k
ξ

)
,

I(m)
ij,−1(z, λF , λ) = I(m)

ij,−1(z, λF ) +
2m−1∑
n=0

I(m)
ij,n (z, λF )

lnn+1λ

n+ 1
,

I(m)
ij,n (z, λF , λ) = I(m)

ij,n (z, λF ) +

2m−1−n∑
k=1

(n+ k)!

n! k!
I(m)
ij,n+k(z, λF ) lnkλ , (A.16)
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where ξ is an arbitrary dimension-one parameter, which exactly cancels between the differ-

ent rescaled coefficients and that we can choose at our convenience. From these coefficients

we also define the corresponding beam function coefficients as

B
(m)
i,n (x, µ, µF , λ) =

∑
j

∫
dz

z
I(m)
ij,n

(
z,
µ2

µ2
F

, λ
)
fj

(x
z
, µF

)
, (A.17)

which are the coefficients appearing in the explicit expressions for the subtraction terms in

sections 3.3.1 and 3.3.2.

The results for the coefficients in eq. (A.15) are as follows. At LO, we simply have

I(0)
ij,−1(z, λF ) = δijδ(1− z) . (A.18)

The NLO coefficients have been computed in refs. [51, 94, 95], and are given by

I(1)
ij,1(z, λF ) = Γi0 δijδ(1− z) ,

I(1)
ij,0(z, λF ) = −γ

i
B 0

2
δijδ(1− z) + 2P

(0)
ij (z) ,

I(1)
ij,−1(z, λF ) = 2I

(1)
ij (z) + lnλF 2P

(0)
ij (z) . (A.19)

The NNLO coefficients have been computed in refs. [59, 60], and read

I(2)
ij,3(z, λF ) =

1

2
(Γi0)2 δijδ(1− z) ,

I(2)
ij,2(z, λF ) = Γi0

[
−
(3

4
γiB 0 +

β0

2

)
δijδ(1− z) + 3P

(0)
ij (z)

]
,

I(2)
ij,1(z, λF ) =

[
Γi1 − (Γi0)2π

2

6
+
γiB 0

2

(γiB 0

2
+ β0

)]
δijδ(1− z) + 2Γi0 I

(1)
ij (z)

− 2(γiB 0 + β0)P
(0)
ij (z) + 4

∑
k

P
(0)
ik (z)⊗zP (0)

kj (z) + lnλF 2Γi0 P
(0)
ij (z) ,

I(2)
ij,0(z, λF ) =

[
(Γi0)2ζ3 + Γi0γ

i
B 0

π2

12
− γiB 1

2

]
δijδ(1− z)− Γi0

π2

3
P

(0)
ij (z)− (γiB 0 + 2β0)I

(1)
ij (z)

+ 4
∑
k

I
(1)
ik (z)⊗zP (0)

kj (z) + 4P
(1)
ij (z)

+ lnλF

[
−γiB 0 P

(0)
ij (z) + 4

∑
k

P
(0)
ik (z)⊗zP (0)

kj (z)
]
,

I(2)
ij,−1(z, λF ) = 4I

(2)
ij (z) + lnλF

[
4
∑
k

I
(1)
ik (z)⊗zP (0)

kj (z) + 4P
(1)
ij (z)

]
+ ln2λF

[
β0 P

(0)
ij (z) + 2

∑
k

P
(0)
ik (z)⊗zP (0)

kj (z)
]
. (A.20)

Explicit results for the matching functions I
(1)
ij (z) and I

(2)
ij (z) as well as the splitting func-

tions P
(0)
ij (z) and P

(1)
ij (z) and all required convolutions between them can be found in

refs. [59, 60] in the same notation that we use here.
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A.3 Single-differential soft function

The single-differential N -jettiness soft function is related to the one of eq. (3.18), which is

multi-differential in the soft contributions to the T iN , by

Ŝκ(k, {q̂i}, µ) =

∫ [∏
i

dki

]
δ
(
k −

∑
i

ki

)
Ŝκ({ki}, {q̂i}, µ) . (A.21)

Recall that the subscript κ encodes the information on the Born partonic channel. For the

soft function, it specifies the color space of the external partons in which it acts.

We expand the soft function in αs(µ) as

Ŝκ(k, {q̂i}, µ) =
∑
n

(αs(µ)

4π

)n
Ŝ(n)
κ (k, {q̂i}, µ) , (A.22)

where the perturbative coefficients can be written as

Ŝ(m)
κ (k, {q̂i}, µ) = Ŝ

(m)
κ,−1({q̂i}) δ(k) +

2m−1∑
n=0

Ŝ(m)
κ,n ({q̂i})

1

µ
Ln
(k
µ

)
. (A.23)

The soft function is naturally a distribution in k/µ and this is the only µ dependence of

the coefficients. Rescaling the arguments of the plus distributions using eq. (2.13), we have

Ŝ(m)
κ (k, {q̂i}, µ) = Ŝ

(m)
κ,−1

(
{q̂i},

ξ

µ

)
δ(k) +

2m−1∑
n=0

Ŝ(m)
κ,n

(
{q̂i},

ξ

µ

) 1

ξ
Ln
(k
ξ

)
,

Ŝ
(m)
κ,−1({q̂i}, λ) = Ŝ

(m)
κ,−1({q̂i}) +

2m−1∑
n=0

Ŝ(m)
κ,n ({q̂i})

lnn+1λ

n+ 1
,

Ŝ(m)
κ,n ({q̂i}, λ) = Ŝ(m)

κ,n ({q̂i}) +

2m−1−n∑
k=1

(n+ k)!

n! k!
Ŝ

(m)
κ,n+k({q̂i}) lnkλ . (A.24)

The dimension-one parameter ξ is again arbitrary and exactly cancels between the coeffi-

cients. The coefficients Ŝ
(m)
κ,n ({q̂i}, λ) are those appearing in the explicit expressions for the

subtraction terms in sections 3.3.1 and 3.3.2. In the rest of this subsection the dependence

on the jet axes q̂i of the soft function and its anomalous dimension is always understood

and we often suppress the explicit {q̂i} argument.

The renormalization scale dependence of the soft function is subject to the renormal-

ization group equation derived in ref. [52],

µ
d

dµ
Ŝκ(k, µ) =

1

2

∫
dk′
[
γ̂S(k − k′) Ŝκ(k′) + Ŝκ(k − k′) γ̂†S(k′)

]
, (A.25)

with the soft anomalous dimension

γ̂S(k, µ) = 2Γcusp[αs(µ)]

{
1

µ
L0

(k
µ

)∑
i

T2
i + δ(k)

1

2

∑
i 6=j

Ti ·Tj ln
[
(−1)∆ij ŝij + i0

]}
+ γ̂S [αs(µ)] δ(k)

= Γcusp[αs(µ)]

{
2C

1

µ
L0

(k
µ

)
+ δ(k)

[
L({ŝij}) + I

]}
+ γ̂S [αs(µ)] δ(k) . (A.26)
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Here, ∆ij = 1 if the partons i and j are both incoming or both outgoing and ∆ij = 0 if

one of them is incoming and the other one outgoing. The invariant

ŝij ≡
2qi · qj
QiQj

= 2q̂i · q̂j (A.27)

is always positive with our conventions and corresponds to an angular measure between

any two partons (depending on the precise choice of the Qi). Note that Γcusp(αs) here

has the overall color factor removed, see eqs. (A.2) and (A.4). To write the last line in

eq. (A.26), we defined the abbreviations

C =
∑
i

T2
i = 1κ

∑
i

Ci (with Cq = Cq̄ = CF , Cg = CA) ,

L({ŝij}) ≡
∑
i 6=j

Ti ·Tj ln ŝij ,

I ≡ iπ
∑
i 6=j

Ti ·Tj ∆ij = iπ
[
2(Ta + Tb)

2 −C
]
. (A.28)

Note that for ee and ep collisions, I is always proportional to 1κ and can be ignored, as

it drops out of eq. (A.25). Similarly, for pp collisions it can be ignored for 0-jet and 1-jet

processes where the color space is still trivial. Up to two loops the noncusp soft anomalous

dimension is given by

γ̂κS(αs) = 0 + C γS 1

(αs
4π

)2
+O(α3

s) ,

γS 1 = CA

(
−64

9
+ 28ζ3

)
+ β0

(
−56

9
+
π2

3

)
. (A.29)

The fixed-order coefficients in eq. (A.23) are as follows. At leading order, we have

Ŝ
(0)
κ,−1({q̂i}) = 1κ . (A.30)

The one-loop coefficients are given by [52]

Ŝ
(1)
κ,1({q̂i}) = −2Γ0 C ,

Ŝ
(1)
κ,0({q̂i}) = −Γ0 L({ŝij}) ,

Ŝ
(1)
κ,−1({q̂i}) =

∑
i 6=j

Ti ·Tj

[
ln2 ŝij −

π2

6
+ 4

∑
m 6=i,j

Iij,m({q̂i})
]
, (A.31)

where

Iij,m({q̂i}) = I0

( ŝjm
ŝij

,
ŝim
ŝij

,
{ ŝjl
ŝjm

,
ŝil
ŝim

, φlm

}
l 6=i,j,m

)
ln
ŝjm
ŝij

+ I1

( ŝjm
ŝij

,
ŝim
ŝij

,
{ ŝjl
ŝjm

,
ŝil
ŝim

, φlm

}
l 6=i,j,m

)
. (A.32)

The I0 and I1 are finite phase-space integrals, which are required for three or more N -

jettiness axes. They are not known fully analytically, but can be evaluated numerically
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for a given set {q̂i}. Their explicit expressions and an algorithm to reduce them to simple

one-dimensional numerical integrals for arbitrary N is provided in ref. [52]. With only

three N -jettiness axes, the integrals are still planar. Starting from four axes, the angles

φlm also enter, which are the azimuthal angles between the q̂m and q̂l axes in the plane

transverse to the q̂i and q̂j axes.

Iteratively solving the RGE in eq. (A.25), we obtain the two-loop coefficients

Ŝ
(2)
κ,3({q̂i}) = 2Γ2

0 C2 ,

Ŝ
(2)
κ,2({q̂i}) = Γ0 C

[
3Γ0 L + 2β0

]
,

Ŝ
(2)
κ,1({q̂i}) = Γ2

0

(
L2 +

1

2
[I,L]− 2π2

3
C2
)

+ 2Γ0

(
β0L−C Ŝ

(1)
κ,−1({q̂i})

)
− 2Γ1C ,

Ŝ
(2)
κ,0({q̂i}) = Γ2

0 C
(

4C ζ3 −
π2

3
L
)
− Γ1L−CγS 1

− Γ0

2

({
L, Ŝ

(1)
κ,−1({q̂i})

}
+
[
I, Ŝ

(1)
κ,−1({q̂i})

])
− 2β0 Ŝ

(1)
κ,−1({q̂i}) . (A.33)

For two external partons, κ = qq̄ and κ = gg, the result for the two-loop constant is

known analytically [122–124] and does not depend on the whether the partons are incoming

or outgoing, i.e., it is the same for 0 → qq̄, q → q, and qq̄ → 0, and similarly for two

gluons [125],

Ŝ
(2)
qq̄,−1 = CF

[
CA

(
−640

27
+

4π2

3
+

22π4

45

)
− CF

3π4

10
+ β0

(
−20

27
− 37π2

18
+

58ζ3

3

)]
, (A.34)

Ŝ
(2)
gg,−1 = CA

[
CA

(
−640

27
+

4π2

3
+

17π4

90

)
+ β0

(
−20

27
− 37π2

18
+

58ζ3

3

)]
. (A.35)

The two-loop constants Ŝ
(2)
κ (κ = ggg, qq̄g) required e.g. for 1-jettiness in pp collisions,

have recently been computed numerically in ref. [87]. The two-loop constant for arbitrary

N -jet processes can in principle be obtained numerically from known results for two-loop

soft amplitudes as outlined in ref. [87].
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