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Abstract

The particle discovered in the Higgs boson searches at the LHC with a mass of about
125 GeV can be identified with one of the neutral Higgs bosons of the Next-to-Minimal
Supersymmetric Standard Model (NMSSM). We calculate predictions for the Higgs-
boson masses in the NMSSM using the Feynman-diagrammatic approach. The pre-
dictions are based on the full NMSSM one-loop corrections supplemented with the
dominant and sub-dominant two-loop corrections within the Minimal Supersymmetric
Standard Model (MSSM). These include contributions at O

(
αtαs, αbαs, α

2
t , αtαb

)
, as

well as a resummation of leading and subleading logarithms from the top/scalar top
sector. Taking these corrections into account in the prediction for the mass of the Higgs
boson in the NMSSM that is identified with the observed signal is crucial in order to
reach a precision at a similar level as in the MSSM. The quality of the approximation
made at the two-loop level is analysed on the basis of the full one-loop result, with
a particular focus on the prediction for the Standard Model-like Higgs boson that is
associated with the observed signal. The obtained results will be used as a basis for
the extension of the code FeynHiggs to the NMSSM.
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1 Introduction
The spectacular discovery of a boson with a mass around 125 GeV by the ATLAS and
CMS experiments [1, 2] at CERN constitutes a milestone in the quest for understanding
the physics of electroweak symmetry breaking. Any model describing electroweak physics
needs to provide a state that can be identified with the observed signal. While within the
present experimental uncertainties the properties of the observed state are compatible with
the predictions of the Standard Model (SM) [3, 4], many other interpretations are possible
as well, in particular as a Higgs boson of an extended Higgs sector.

One of the prime candidates for physics beyond the SM is supersymmetry (SUSY), which
doubles the particle degrees of freedom by predicting two scalar partners for all SM fermions,
as well as fermionic partners to all bosons. The most widely studied SUSY framework is
the Minimal Supersymmetric Standard Model (MSSM) [5, 6], which keeps the number of
new fields and couplings to a minimum. In contrast to the single Higgs doublet of the
(minimal) SM, the Higgs sector of the MSSM contains two Higgs doublets, which in the CP
conserving case leads to a physical spectrum consisting of two CP-even, one CP-odd and
two charged Higgs bosons. The light CP-even MSSM Higgs boson can be interpreted as the
signal discovered at about 125 GeV, see e.g. [7, 8].

Going beyond the MSSM, this model has a well-motivated extension in the Next-to-
Minimal Supersymmetric Standard Model (NMSSM), see e.g. [9,10] for reviews. The NMSSM
provides in particular a solution for naturally associating an adequate scale to the µ param-
eter appearing in the MSSM superpotential [11, 12]. In the NMSSM, the introduction of
a new singlet superfield, which only couples to the Higgs- and sfermion-sectors, gives rise
to an effective µ-term, generated in a similar way as the Yukawa mass terms of fermions
through its vacuum expectation value. In the case where CP is conserved, which we as-
sume throughout the paper, the states in the NMSSM Higgs sector can be classified as three
CP-even Higgs bosons, hi (i = 1, 2, 3), two CP-odd Higgs bosons, Aj (j = 1, 2), and the
charged Higgs boson pair H±. In addition, the SUSY partner of the singlet Higgs (called
the singlino) extends the neutralino sector to a total of five neutralinos. In the NMSSM the
lightest but also the second lightest CP-even neutral Higgs boson can be interpreted as the
signal observed at about 125 GeV, see, e.g., [13, 14].

The measured mass value of the observed signal has already reached the level of a pre-
cision observable, with an experimental accuracy of better than 300 MeV [15], and by itself
provides an important test for the predictions of models of electroweak symmetry breaking.
In the MSSM the masses of the CP-even Higgs bosons can be predicted at lowest order in
terms of two SUSY parameters characterising the MSSM Higgs sector, e.g. tan β, the ratio
of the vacuum expectation values of the two doublets, and the mass of the CP-odd Higgs
boson, MA, or the charged Higgs boson, MH± . These relations, which in particular give rise
to an upper bound on the mass of the light CP-even Higgs boson given by the Z-boson mass,
receive large corrections from higher-order contributions. In the NMSSM the corresponding
predictions are modified both at the tree-level and the loop-level. In order to fully exploit
the precision of the experimental mass value for constraining the available parameter space
of the considered models, the theoretical predictions should have an accuracy that ideally is
at the same level of accuracy or even better than the one of the experimental value. The the-
oretical uncertainty, on the other hand, is composed of two sources, the parametric and the
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intrinsic uncertainty. The theoretical uncertainties induced by the parametric errors of the
input parameters are dominated by the experimental error of the top-quark mass (where the
latter needs to include the systematic uncertainty from relating the measured mass parame-
ter to a theoretically well-defined quantity, see e.g. [16–18]). However, the largest theoretical
uncertainty at present arises from unknown higher-order corrections, as will be discussed
below.

In the MSSM1 beyond the one-loop level, the dominant two-loop corrections ofO(αtαs) [19–
24] and O(α2

t ) [25, 26] as well as the corresponding corrections of O(αbαs) [27, 28] and
O(αtαb) [27] are known since more than a decade. (Here we use αf = Y 2

f /(4π), with Yf
denoting the fermion Yukawa coupling.) These corrections, together with a resummation of
leading and subleading logarithms from the top/scalar top sector [29] (see also [30, 31] for
more details on this type of approach), a resummation of leading contributions from the bot-
tom/scalar bottom sector [27,28,32–35] (see also [36,37]) and momentum-dependent two-loop
contributions [38,39] (see also [40]) are included in the public code FeynHiggs [21,29,41–45].
A (nearly) full two-loop EP calculation, including even the leading three-loop corrections,
has also been published [46,47], which is, however, not publicly available as a computer code.
Furthermore, another leading three-loop calculation of O(αtα2

s), depending on the various
SUSY mass hierarchies, has been performed [48,49], resulting in the code H3m (which adds the
three-loop corrections to the FeynHiggs result up to the two-loop level). The theoretical un-
certainty on the lightest CP-even Higgs-boson mass within the MSSM from unknown higher-
order contributions is still at the level of about 3 GeV for scalar top masses at the TeV-scale,
where the actual uncertainty depends on the considered parameter region [29,43,50,51].

Within the NMSSM beyond the well known full one-loop results [52–55] several codes
exist that calculate the Higgs masses in the pure DR scheme with different contributions
at the two-loop level. Amongst these codes SPheno [56, 57] incorporates the most complete
results at the two-loop level, including SUSY-QCD contributions from the fermion/sfermions
of O(αtαs, αbαs), as well as pure fermion/sfermion contributions of O(α2

t , α
2
b , αtαb, α

2
τ , αταb),

and contributions from the Higgs/higgsino sector in the gauge-less limit ofO(α2
λ, α

2
κ, αλακ) [58]

as well as mixed contributions from the latter two sectors of O(αλαt, αλαb). The in-
cluded Higgs/higgsino contributions are genuine to the NMSSM, they are proportional to
the NMSSM parameters λ2 = 4π ·αλ and κ2 = 4π ·ακ. The tools FlexibleSUSY [59],
NMSSMTools [60, 61] and SOFTSUSY [62–64] include NMSSM corrections of O(αtαs) and
O(αbαs) supplemented by certain MSSM corrections. NMSSMCalc [54, 55, 65, 66] provides
the option to perform the NMSSM Higgs mass calculation up to O(αtαs) with the DR
renormalisation scheme applied to the top-/stop-sector, while in the electroweak sector at
one-loop order on-shell conditions are used. It has been noticed in a comparison of spectrum
generators in the NMSSM that are currently publicly available that the numerical differences
between the various codes can be very significant, often exceeding 3 GeV in the prediction
of the SM-like Higgs even for the set-up where all predictions were obtained within the DR
renormalisation scheme [67]. While the sources of discrepancies between the different codes
could be identified [67], a reliable estimate of the remaining theoretical uncertainties should
of course also address issues related to the use of different renormalisation schemes. Beyond
the pure DR scheme, so far only the code NMSSMCalc [54,55,65,66] provides a prediction in a

1As mentioned above, we focus in this paper on the case of real parameters, i.e. the CP-conserving case.
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mixed OS/DR scheme, where genuine two-loop contributions in the NMSSM up to O(αtαs)
have been incorporated. The resummation of logarithmic contributions beyond the two-loop
level is not included so far in any of the public codes for Higgs-mass predictions in the
NMSSM. Accordingly, at present the theoretical uncertainties from unknown higher-order
corrections in the NMSSM are expected to be still larger than for the MSSM.

Concerning the phenomenology of the NMSSM it is of particular interest whether this
model can be distinguished from the MSSM by confronting Higgs sector measurements with
the corresponding predictions of the two models. In order to facilitate the identification of
genuine NMSSM contributions in this context it is important to treat the predictions for
the MSSM and the NMSSM within a coherent framework where in the MSSM limit of the
NMSSM the state-of-the-art prediction for the MSSM is recovered.

With this goal in mind, we seek to extend the public tool FeynHiggs to the case of the
NMSSM. As a first step in this direction we present in this paper a full one-loop calculation of
the Higgs-boson masses in the NMSSM, where the renormalisation scheme and all parameters
and conventions are chosen such that the well-known MSSM result of FeynHiggs is obtained
for the MSSM limit of the NMSSM. We supplement the full one-loop result in the NMSSM
with all higher-order corrections of MSSM type that are implemented in FeynHiggs, as
described above. In our numerical evaluation we use our full one-loop result in the NMSSM
to assess the quality of the approximation that we make at the two-loop level. We find that
for a SM-like Higgs boson that is compatible with the detected signal at about 125 GeV this
approximation works indeed very well. We analyse in this context which genuine NMSSM
contributions are most relevant when going beyond the approximation based on MSSM-type
higher-order corrections. We then apply our most accurate prediction including all higher-
order contributions to a phenomenologically interesting scenario. We compare our prediction
both with the result in the MSSM limit and with the code NMSSMCalc [65]. We discuss in
this context the impact of higher-order contributions beyond the ones of O(αtαs), that are
not implemented in NMSSMCalc.

The paper is organized as follows. In sect. 2 we describe our full one-loop calculation in
the NMSSM, specify the renormalisation scheme that we have used and discuss the contribu-
tions that are expected to be numerically dominant at the one-loop level. The incorporation
of higher-order contributions of MSSM-type is addressed in sect. 3. Our numerical analysis
for the prediction at the one-loop level, including a discussion of the quality of the approxi-
mation in terms of MSSM-type contributions, and for our most accurate prediction including
higher-order corrections is presented in sect. 4. The conclusions can be found in sect. 5.

2 One-loop result in the NMSSM
For the sectors that are identical for the calculation within the MSSM the conventions as
implemented in FeynHiggs are used, as described in [44]. Therefore the present section is
restricted to the quantities genuine to the NMSSM. For a more detailed discussion of the
NMSSM, see e.g. [9].
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2.1 The relevant NMSSM sectors
The superpotential of the NMSSM for the third generation of fermions/sfermions reads

W = Yt
(
Ĥ2 · Q̂3

)
û3 − Yd

(
Ĥ1 · Q̂3

)
d̂3 − Yτ

(
Ĥ1 · L̂3

)
ê3 + λŜ

(
Ĥ2 · Ĥ1

)
+ 1

3κŜ
3, (1)

with the quark and lepton superfields Q̂3, û3, d̂3, L̂3, ê3 and the Higgs superfields Ĥ1, Ĥs,
Ŝ. The SU(2)L-invariant product is denoted by a dot. The Higgs singlet and doublets are
decomposed into CP-even and CP-odd neutral scalars φi and χi, and charged states φ±i ,

H1 =
(
v1 + 1√

2 (φ1 − iχ1)
−φ−1

)
, H2 =

(
φ+

2
v2 + 1√

2 (φ2 + iχ2)

)
, S = vs + 1√

2
(φs + iχs) , (2)

with the real vacuum expectation values for the doublet- and the singlet-fields, v{1,2} and vs.
Since Ŝ transforms as a singlet, the D-terms remain identical to the ones from the MSSM.
Compared to the CP-conserving MSSM the superpotential of the CP-conserving NMSSM
contains additional dimensionless parameters λ and κ, while the µ-term is absent. This term
is effectively generated via the vacuum expectation-value of the singlet field,

µeff = λvs. (3)

As in the MSSM it is convenient to define the ratio

tan β = v2

v1
. (4)

Soft SUSY-breaking in the NMSSM gives rise to the real trilinear soft-breaking parameters
Aλ and Aκ, as well as to the soft-breaking mass term m2

S of the scalar singlet-field,

Lsoft = −m2
1H
†
1iH1i −m2

2H
†
2iH2i −m2

S|S|2 −
[
λAλS (H2 ·H1) + 1

3κAκS
3.+ h.c.

]
(5)

The Higgs potential VH can be written in powers of the fields,

VH = . . .− Tφ1φ1 − Tφ2φ2 − TφS
φs (6)

+ 1
2
(
φ1, φ2, φs

)
Mφφ

φ1
φ2
φs

+ 1
2
(
χ1, χ2, χs

)
Mχχ

χ1
χ2
χs

+
(
φ−1 , φ

−
2

)
Mφ±φ±

(
φ+

1
φ+

2

)
+ · · · ,

where the coefficients bilinear in the fields are the mass matrices Mφφ, Mχχ and Mφ±φ± .
For the CP-even fields the (symmetric) mass matrix reads

Mφφ =


m̂2
As

2
β −M2

Zc
2
β (m̂2

A +M2
Z) sβcβ µeff (2λvcβ − κvsβ) + λv

µeff
cβ

. m̂2
Ac

2
β −M2

Zs
2
β µeff (2λvsβ − κvcβ) + λv

µeff
sβ

. . λκv2cβsβ + λ2v2

µ2
eff
m̂2
A + κ

λ
µeff

(
4κ
λ
µeff + Aκ

)
 ,

(7)

where sβ and cβ denote the sine and cosine of the angle β, and

m̂2
A = M2

H± −M2
W + λ2v2. (8)
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The lower triangle in eq. (7) is filled with the transposed matrix element. For the CP-
conserving case the mixing into the eigenstates of mass and CP can be described at lowest
order by the following unitary transformationsh1

h2
h3

 = Ue(0)

φ1
φ2
φs

 ,
A1
A2
G0

 = Uo(0)

χ1
χ2
χs

 , (
H±

G±

)
= Uc(0)

(
φ±1
φ±2

)
. (9)

The matrices U{e,o,c}(0) transform the Higgs fields such that the mass matrices are diago-
nalised at tree level. The new fields correspond to the five neutral Higgs bosons hi and Aj,
the charged pair H±, and the Goldstone bosons G0 and G±.

In eq. (7) the third row and column depend explicitly on µeff. The numerical value of
µeff has an important impact on the singlet admixture after performing the rotation into the
mass eigenstate basis. For instance, for values of µeff large enough that

(Mφφ)33 � (Mφφ)i3 , i ∈ {1, 2} , (10)

the mass of the singlet becomes decoupled from the doublet masses.
The superpartner of the scalar singlet appears as a fifth neutralino. The corresponding

5× 5 mass-matrix reads

Y =


M1 0 −MZsw cos β MZsw sin β 0
0 M2 MZcw cos β −MZcw sin β 0

−MZsw cos β MZcw cos β 0 −µeff λv sin β
MZsw sin β −MZcw sin β −µeff 0 λv cos β

0 0 λv sin β λv cos β −2κ
λ
µeff

 . (11)

It is diagonalised by a unitary matrix

DY = N∗YN† = diag
{
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
,mχ̃0

5

}
. (12)

Also in eq. (11) µeff can have a significant influence on the mixing between the singlino and
the doublet higgsino fields. For instance, for sufficiently large values of µeff such that

(Y)55 � (Y)i5 , i ∈ {3, 4} , (13)

the singlino mass decouples from the masses of higgsinos and gauginos.

2.2 Renormalisation Scheme
In order to derive the counterterms entering the 1-loop corrections to the Higgs-boson masses
the independent parameters appearing in the linear and bilinear terms of the Higgs potential
in eq. (6) have to be renormalised. The set of independent parameters from the Higgs-sector
used for the presented calculation is formed by

MSSM-like: Th1,2 , µeff , M2
H± , tan β , M2

W , M2
Z

genuine NMSSM: Th3 , κ , λ , Aκ , v =
√
v2

1 + v2
2 .

(14)
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Here Thi
denotes the tadpole coefficient for the field hi (as indicated by the subscript) in the

mass eigenstate basis. Parameters that do not enter the MSSM calculation are considered
as genuine of the calculation in the NMSSM. Although the vacuum expectation value v is
not a parameter genuine to the NMSSM, its appearance as an independent parameter is a
specific feature of the NMSSM Higgs-mass calculation, see below.

For all parameters appearing only in the NMSSM-calculation, besides the additional
tadpole coefficient, a DR-scheme is applied. This is a difference to the calculations performed
in [54,55,65,66], where the electric charge e is renormalised instead of the parameter v. These
two parameters are related to each other by

v =
√

2swMW

e
→ v

(
1 + δv

v

)
= v

[
1 + 1

2

(
δM2

W

M2
W

+ δs2
w

s2
w
− 2δZe

)]
, (15)

with the renormalisation constants for the W -boson mass, δM2
W , the sine of the weak mixing

angle, δs2
w, where s2

w ≡ 1−M2
W/M

2
Z , s

2
w + c2

w = 1, and the electric charge renormalised as

e→ e (1 + δZe) . (16)

Considering δM2
W and δs2

w already fixed by on-shell conditions for the gauge-boson masses [44],
either δZe or δv in eq. (15) can be fixed by an independent renormalisation condition (and
the other counterterm is then a dependent quantity). The renormalisation prescription [54]
where δZe is fixed by renormalising e in the static limit results in a non-DR renormalisa-
tion for δv. For the self-energies in the Higgs sector δv enters the counterterms for the
renormalised Higgs potential,

VH → VH + δVH, (17)

with coefficients involving λ and κ, like

δ(2)

δφsδφi
δVH

∣∣∣∣∣
φl,χm,φ

±
n =0
⊃ −κµeff {sin β, cos β} (δv + . . .) , (18)

for the self-energies with each an external doublet and singlet field. The ellipsis in eq. (18)
denote other renormalisation constants that are fixed in the DR-scheme and thus do not
contribute with a finite part. However, a finite contribution from δv would lead to a κ-
dependence of all loop contributions entering via δv, in particular also of the corrections
from the fermions and sfermions (while the fermion and sfermion contributions to the un-
renormalised self-energy are κ-independent). A finite contribution from δv would further-
more imply the rather artificial feature that a self-energy involving an external gauge singlet
field would receive a counterterm contribution involving the renormalisation constant δZe
for the electric charge. We therefore prefer to use the DR-scheme for the renormalisation of
v, which means that we use a scheme where δZe is a dependent counterterm. This leads to
the relation

δZdep
e = 1

2

[
δs2

w
s2

w
+ δM2

W

M2
W

− δv2

v2

]
, (19)
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which implies

δZdep
e

∣∣∣fin
= 1

2

[
δs2

w
s2

w
+ δM2

W

M2
W

]fin

(20)

for the finite part of δZdep
e . In this scheme the numerical value for the electric charge e

(and accordingly for the electromagnetic coupling constant α) is determined indirectly via
eq. (20). In order to avoid a non-standard numerical value for α in our numerical results,
we apply a two-step procedure: in the first step we apply a DR renormalisation for v as
outlined above. As a second step we then reparametrise this result in terms of a suitably
chosen expression for α. By default we use the same convention as for the MSSM result
that is implemented in FeynHiggs, namely the expression for the electric charge in terms
of the Fermi constant GF , in order to facilitate the comparison between the FeynHiggs
result in the MSSM and our new result in the NMSSM. Taking the MSSM limit of our
new NMSSM result, the MSSM result as implemented in FeynHiggs is recovered, since the
described calculational differences are genuine NMSSM effects that vanish in this limit. For
the numerical comparison with NMSSMCalc we will use instead α(MZ). The procedure of the
reparametrisation is outlined in the following section.

2.3 Reparametrisation of the electromagnetic coupling
The couplings gI and gII in two different renormalisation schemes are in general related to
each other by

gI
(
1 + δZI

g

)
= gII

(
1 + δZII

g

)
, (21)

because of the equality of the bare couplings. The corresponding shift in the numerical values
of the coupling definitions is obtained from the finite difference of the two counterterms,
∆ ≡ gIIδZII

g − gIδZI
g . Accordingly, a reparametrisation from the numerical value of the

coupling used in scheme I to the one of scheme II can be performed via

gI = gII + ∆ . (22)

Since ∆ is of one-loop order, its insertion into a tree-level expression generates a term of
one-loop order, etc.

In our calculation the reparametrisation of the electromagnetic coupling is only necessary
up to the one-loop level, since all corrections of two-loop and higher order that we are going to
incorporate have been obtained in the gauge-less limit (some care is necessary regarding the
incorporation of the MSSM-type contributions of O(α2

t ), see [26,68]). At this order the shift
∆ can simply be expressed as ∆ = gII

(
δZII

g − δZI
g

)
. Specifically, for the reparametrisation

of the electromagnetic coupling constant GF the parameter shift ∆GF
reads

∆GF
= e

(
δZe − δZdep

e − 1
2∆rNMSSM

)
. (23)

Here δZe is the counterterm of the charge renormalisation within the NMSSM according to
the static (Thomson) limit,

δZe = 1
2Πγγ(0) + sw

cw

ΣγZ
T (0)
M2

Z

, (24)
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(i,j) (1|2, 1|2) (1, s) (2, s) (s, s)
order O(Y 2

t ) O(λYt) O(λYt) O(λ2)
fields top/stop stop stop stop

topologies

Table 1: Topologies and their order in terms of the couplings in the top/stop sector that
contribute to the self-energies of the CP-even fields φi at one-loop order in the gauge-less
limit. The numbers 1 and 2 denote the doublet-states as external fields, while s denotes an
external singlet. The internal lines depict either a top (solid) or a scalar top (dashed).

and Πγγ(0), ΣγZ
T (0) are the derivative of the transverse part of the photon self-energy and the

transverse part of the photon–Z self-energy at zero momentum transfer, respectively. The
counterterm δZdep

e has been defined in eq. (19), and for the quantity ∆rNMSSM we use the
result of [69] (see also [70]).2 The numerical value for the electromagnetic coupling e in this
parametrisation is obtained from the Fermi constant in the usual way as e = 2MW sw

√
GF

√
2.

Similarly, for the reparametrisation of the electromagnetic coupling defined in the previ-
ous section in terms of α(MZ) the parameter shift ∆α(MZ) reads

∆α(MZ) = e
(
δZe − δZdep

e − 1
2∆α

)
. (25)

The numerical value of e in this parametrisation is obtained from α(MZ) = α(0)/(1−∆α),
and α(0) is the value of the fine-structure constant in the Thomson limit.

2.4 Dominant Contributions at One-Loop Order
As explained above, we will supplement our full one-loop result with all available higher-
order contributions of MSSM type. This means in particular that the two-loop contributions
are approximated by the two-loop corrections in the MSSM (i.e. omitting genuine NMSSM
corrections) as included in FeynHiggs, and further corrections beyond the two-loop level are
included. In order to validate this approximation we analyse at the one-loop level the size
of genuine NMSSM corrections w.r.t. the MSSM-like contributions.

Since the corrections from the top/stop sector are usually the by far dominant ones,
we start with a qualitative discussion of those contributions before we perform a numerical
analysis in the following section. In the MSSM the leading corrections from the top/stop
sector are commonly denoted as O(αt), indicating the occurrence of two Yukawa couplings
Yt. In the limit where all other masses of the SM particles and the external momentum

2For the sample scenario defined in tab. 2 below the numerical value of ∆rNMSSM from [69] turns out to
be close to 3.8%, with only a weak dependence on λ for the range of λ values discussed in this paper.

8



are neglected compared to the top-quark mass, for dimensional reasons the correction to the
squared Higgs-boson mass furthermore receives a contribution proportional to m2

t . This gives
rise to the well-known coefficient GFm

4
t of the leading one-loop contributions. In the NMSSM

the formally leading contributions either are of O(Y 2
t ) (involving two Yukawa couplings), of

O(λYt) (involving one Yukawa coupling), or of O(λ2) (involving no Yukawa coupling). The
various contributions from the top/stop sector are summarized in tab. 1. The contributions
in the second column are the ones of MSSM-type, while the entries in the third through fifth
column represent the genuine NMSSM corrections, involving only scalar tops.3

For the doublet fields, the couplings between the Higgs- and stop-fields in the gauge-less
limit are proportional to the top-quark Yukawa-coupling,

iΓφ2 t̃i t̃j = i
√

2Yt
[
At · cφ2

ij (θt̃) +mt · (−1)1−i δij
]
, iΓφ1 t̃i t̃j = i

√
2Ytµeff · cφ1

ij (θt̃), (26a)

while the corresponding coupling for the singlet field reads

iΓφs t̃i t̃j = i
√

2λ cot β mt · cφs
ij (θt̃). (26b)

The non-vanishing quartic Higgs–stop couplings read

iΓφ2φ2 t̃i t̃j = −iY 2
t · δij, iΓφ1φs t̃i t̃j = −iλYt · cφ1φs

ij (θt̃). (27)

Here functions of the mixing angle of the stop-sector, θt̃, are denoted by c with the appropri-
ate indices and superscripts for the involved fields. These functions c can never be larger than
1. In the singlet–stop coupling we have explicitly spelled out a factor λv1Yt = λmt cot β to
highlight the appearance of the factor mt in eq. (26b) instead of the usual factor mt/MW ∼ Yt
in eq. (26a).

The genuine NMSSM couplings of a singlet to stops are seen to follow the pattern men-
tioned above, i.e. they give rise to contributions of O(λYt) (third and fourth column in tab. 1)
or O(λ2) (fifth column), whereas the MSSM-like contributions are of O(Y 2

t ) (second column).
Those different patterns do not only indicate a distinction between the MSSM-like and the
genuine NMSSM contributions, but also give rise to a significant numerical suppression4 of
the genuine NMSSM contributions w.r.t. the MSSM-like ones for λ < Yt. If one demands
validity of perturbation theory up to the GUT scale, this relation is always fulfilled, since
then λ and κ are bound from above [12] by

λ2 + κ2 . 0.5, (28)

so that λ . 0.7, where the largest values are only allowed for vanishing κ. The size of the
genuine NMSSM contributions will be discussed numerically in the following sections.

3 Incorporation of higher-order contributions
The masses of the CP-even Higgs bosons are obtained from the complex poles of the full
propagator matrix. The inverse propagator matrix for the three CP-even Higgs bosons hi

3We discuss here only the Higgs boson self-energies. However, the same line of argument can be made
for the tadpole contributions.

4For the trilinear couplings in eq. (26), comparing the Higgs singlet with the doublet, an additional
potential suppression factor of O(mt/At) and/or O(mt/µeff) appears.
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from eq. (9) is a 3× 3 matrix that reads

∆−1
(
k2
)

= i
[
k2
1−Mhh + Σ̂hh

(
k2
)]
. (29)

Here Mhh denotes the diagonalised mass matrix of the CP-even Higgs fields at tree level,
and Σ̂hh denotes their renormalised self-energy corrections5. The three complex poles of the
propagator in the CP-even Higgs sector are given by the values of the external momentum
k for which the determinant of the inverse propagator-matrix vanishes,

det
[
∆−1

(
k2
)]
k2=m2

hi
−iΓhi

mhi

!= 0, i ∈ {1, 2, 3}. (30)

The real parts of the three poles are identified with the the square of the Higgs-boson
masses in the CP-even sector. The renormalised self-energy matrix Σ̂hh is evaluated by
taking into account the full contributions from the NMSSM at one-loop order and, as an
approximation, the MSSM-like contributions at two-loop order of O(αtαs, αbαs, α2

t , αtαb)
at vanishing external momentum taken over from FeynHiggs [21, 29, 41–45], where also
the resummation of leading and subleading logarithms from the top/scalar top sector is
incorporated [29], 6

Σ̂hh

(
k2
)
≈ Σ̂(1L)

hh

(
k2
)∣∣∣NMSSM

+ Σ̂(2L + beyond)
hh

(
k2
)∣∣∣MSSM

k2=0
. (31)

In order to facilitate the incorporation of the MSSM-like two-loop contributions from Feyn-
Higgs, the renormalisation scheme chosen for the NMSSM contributions closely follows the
FeynHiggs conventions as described in [44]. Accordingly, the stop masses are renormalised
on-shell. For our numerical evaluation below we employ the MSSM contributions obtained
from the version FeynHiggs 2.10.27. The poles of the inverse propagator matrix are de-
termined numerically. The algorithm for this procedure is the same as the one described
in [54]. For the generation and calculation of the self energies the tools FeynArts 3.9 [71,72]
and FormCalc 7.4 [73, 74] have been used. The implementation of the NMSSM with real
parameters was based on an automatically generated FeynArts model file obtained by an
early version of SARAH [75].

4 Numerical Results
A particular goal of our numerical analysis is to test the kind of approximation in terms of
MSSM-type contributions that we have used at the two-loop level. For this purpose a genuine
NMSSM scenario will be studied, which gives rise to a SM-like Higgs with a predicted mass
at the two-loop level of around 125 GeV and a singlet-like Higgs field with a mass that can
be above or below the one of the SM-like state. In order to investigate the influence of the

5Details on the calculation of the renormalised self-energy contributions will be presented in a future
publication.

6In the public version of FeynHiggs for the NMSSM also the recent results for momentum-dependent
two-loop contributions in the MSSM of [38,39] will be implemented.

7More recent updates of FeynHiggs contain additional contributions that are not relevant for our present
investigation.
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extended Higgs and higgsino sector of the NMSSM compared to the MSSM the parameter
λ will be varied. In the limit λ → 0 and constant µeff all singlet fields decouple from the
remaining field spectrum. Increasing the value of λ directly translates to increasing the
influence of genuine NMSSM-effects. A detailed study of the one-loop result and the quality
of approximations based on partial contributions will be presented here. In order to study the
approximation of restricting to MSSM-like contributions beyond one-loop order at O(αtαs),
we will compare our result with the public tool NMSSMCalc [65], which incorporates the
genuine NMSSM-type contributions of O(αtαs) using a hybrid DR/on-shell renormalisation
scheme. While for the MSSM various other higher-order corrections are implemented in
FeynHiggs, the corresponding contributions have not been taken into account in NMSSMCalc.
We will compare in this context the numerical effect of the NMSSM-type contributions of
O(αtαs) as implemented in NMSSMCalc with the MSSM-type contributions of this order, and
we will investigate the numerical impact of the MSSM-type corrections beyond O(αtαs).

In our numerical discussion below we will just focus on the masses of the two lighter CP-
even states. A more detailed investigation for all states in the Higgs sector and their relevant
mixing contributions in different scenarios will be provided in a forthcoming publication.

4.1 Numerical Scenario and Treatment of Input Parameters
The sample scenario for our study is defined by the parameters given in tab. 2. The parameter
λ is varied if not stated otherwise. For values λ & 0.32 the mass of the lightest state becomes
tachyonic at tree-level for this scenario, and therefore the analyses will be performed only
for values of λ up to 0.32. The choice for the top-quark mass in the loop contributions will
be the pole mass mOS

t for the comparison with NMSSMCalc and mMS
t (mt) for the remaining

studies. Using the MS top-quark mass allows us to include the resummation of leading and
next-to-leading logarithms implemented in FeynHiggs. The renormalisation scale for the
studies in this chapter will be fixed at the used value of the top-quark mass.

The viability of the discussed scenario is tested with the full set of experimental data
implemented in the tool HiggsBounds 4.1.3 [76–80]. In order to obtain the necessary input
for HiggsBounds we made use of NMSSMTools 4.4.0 [9] and linked it with HiggsBounds.
While our calculation assumes an on-shell renormalised stop-sector as in [44], the SLHA
input file for NMSSMTools needs DR-parameters for the stop-sector. Thus a conversion from
the on-shell into the DR scheme is necessary for the parameters of the sample scenario given
in tab. 2. We only accounted for the dominant effect of these conversions that occurs for
Xt = At − µeff cot β by applying the on-shell to DR conversion outlined in [81]. We find
that the scenario is in agreement with the experimental limits implemented in HiggsBounds
4.1.3.

4.2 Full Result at Two-Loop Order
The full results for the tree-level, one- and two-loop Higgs-mass predictions in the sample
scenario defined in tab. 2 are shown as a function of λ in fig. 1 for the two lighter CP-even
fields. The term “full result” refers to all one-loop corrections in the NMSSM (includ-
ing the full momentum dependence and also the reparametrisation of the electromagnetic
coupling in terms of the Fermi constant), supplemented with all available contributions of
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Higgs sector parameters: heavy fermion masses:

MH± tan β µeff Aκ κ

1000 8 125 −300 0.2
mOS
t mMS

t (mt) mMS
b (mb) mτ

173.2 167.48 4.2 1.78

sfermion- and gaugino-parameters:

Mq̃ Ml̃ At Aτ , Ab, Aq Al M
(GUT)
1 M2 M3

1500 200 −2000 −1500 −100 ≈ 143 300 1500

Mq̃ universal squark mass breaking parameter
Ml̃ universal slepton mass breaking parameter
At/b/q trilinear breaking term for stop-/sbottom/the lighter squark-generations
Aτ/l trilinear breaking term for stau/the two lighter slepton-generations
M{1,2,3} Gaugino mass breaking parameters for U(1)Y, SU(2)L, SU(3)c.

Table 2: Definition of the analysed sample scenario. All dimensionful parameters are given
in GeV. All DR-parameters are defined at mMS

t (mt). All stop-parameters are on-shell
parameters. As indicated by the superscript “(GUT)”, M1 is related to M2 by the usual
GUT relation, M (GUT)

1 = 5s2
w/(3c2

w)M2.

O(αtαs, αbαs, α2
t , αtαb) from the MSSM, and including the resummation of large logarithms.

For this study the parameter λ will be varied between 0.1 and 0.32. The lower limit on the
parameter λ has been chosen such that in the considered parameter region a cross-over type
behaviour occurs only for the two smaller masses, mh1 and mh2 (for values λ < 0.1 there
is another point with cross-over behaviour of the two larger Higgs-boson masses; however,
because of the small values of λ this region is less suitable for studying the behaviour of the
genuine NMSSM-corrections, which scale with λ).

The variation of the two masses with λ clearly shows a cross-over type behaviour between
the masses, which is correlated to their mixing character w.r.t. the singlet field and the
doublet fields. For small values of λ the field h1 is doublet-like in this scenario and, based
on the prediction incorporating all available higher-order corrections, can be identified with
the signal that was detected at the LHC at about 125 GeV. The prediction for mh1 varies
only very little with λ in this region. The field h2, on the other hand, is predominantly
singlet-like in this parameter region, and its mass prediction falls steeply with increasing λ.
The cross-over occurs at λ(0)

c ≈ 0.26 at tree-level, at λ(1)
c ≈ 0.22 at one-loop order, and at

λ(2)
c ≈ 0.23 at two-loop order. Above the cross-over point the behaviour of the two masses

and the admixture of the fields h1 and h2 in terms of singlet and doublet fields are reversed.
The two fields are evenly mixed between singlet- (i.e., genuine NMSSM-type) and doublet-
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Figure 1: Mass of the lightest and next-to lightest CP-even Higgs-states, mh1 (left) and
mh2 (right), at tree-level, one-loop and two-loop order. At one-loop order all corrections
of the NMSSM are included with their momentum-dependence. The two-loop corrections
are approximated by the MSSM-type contributions of O(αtαs, αbαs, α2

t , αtαb) including the
resummation of the leading and next-to-leading logarithms (see text). The dotted line repre-
sents 125 GeV. The λ values for which a cross-over behaviour between the masses occurs are
at the tree-level λ(0)

c ≈ 0.26, at one-loop order λ(1)
c ≈ 0.22 and at two-loop order λ(2)

c ≈ 0.23.

field (i.e., MSSM-type) components for λ(n)
c , with n = 0, 1, 2. The heaviest CP-even Higgs

field, h3, is doublet-like in the depicted interval of λ. As in the MSSM, the larger masses
(of doublet-like fields) are affected by higher-order corrections to a lesser extent than the
lighter states. Since at λ(n)

c the MSSM-type and genuine NMSSM-type contributions enter
at equal footing, the SM-like state is most sensitive to genuine NMSSM-type contributions
in the region of the cross-over behaviour.

4.3 Numerically leading Contributions at the one-loop Level
For the prediction in the MSSM the top/stop sector contributions are numerically leading.
In the studied scenario, given in tab. 2, the genuine NMSSM-corrections are suppressed
w.r.t. the corresponding MSSM-like stop-corrections since λ . 0.32 < Yt, see the discussion
in sect. 2.4. Thus, the genuine NMSSM corrections from this sector are expected to be
sub-leading.

In order to study the impact of the genuine NMSSM contributions we compare the ap-
proximation based on the leading MSSM-type one-loop corrections in the gauge-less limit of
O(Y 2

t ), labelled as “t/t̃-MSSM” in fig. 2, with the one where the genuine NMSSM correc-
tions of O(λYt, λ2) are incorporated. The difference between the mass predictions in the two
approximations is plotted as a function of λ for mh1 and mh2 in the left plot of fig. 2.8 We
find that for the whole range of λ in the plot the impact of the genuine NMSSM corrections
of O(λYt, λ2) remains less than 0.5 GeV. The largest difference between the two approxima-
tions occurs for the light singlet-like state h1 at large values of λ close to the upper limit of
λ ≈ 0.32 shown in the plot. In fact, for mh1 the difference between the two approximations

8The prediction for the heaviest CP-even state, mh3 , is not shown here since the difference between the
two approximations does not exceed 10 MeV in our sample scenario .
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is seen to rise sharply for increasing values of λ. On the other hand, at the λ value where
the cross-over behaviour occurs, λ(1)

c , the difference between the two approximations is seen
to have a local maximum but remains small, below 0.1 GeV. For the doublet-like state,
which has a one-loop mass of more than 130 GeV (see fig. 1), the corrections from genuine
NMSSM-contributions remain below the level of 1h over the whole range of λ. Thus, the
approximation based on the MSSM-type contributions is seen to provide a very accurate
prediction for the top/stop sector contributions to the mass of a doublet-like state. For the
singlet-like state, where the deviation grows with λ, the deviation reaches ≈ 1% for the
one-loop mass of the singlet-like state of ≈ 40 GeV for λ ≈ 0.32.
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Figure 2: Absolute difference between partial and full results for the one-loop masses of
the two lighter CP-even fields. The value of λ where the cross-over behaviour occurs is
λc ≈ 0.22. Left: Absolute difference between the mass predictions including and excluding
the genuine NMSSM contributions from the stops of O(λYt, λ2) for mh1 and mh2 . Right:
Absolute differences between the mass predictions based on two different one-loop approx-
imations and the full one-loop result. The solid lines, labelled as “t/t̃-MSSM”, depict the
difference between the full result and the approximation based on the leading MSSM-type
contributions from the top/stop sector, ∆mhi

=
∣∣∣m(1L)

hi
−mt/t̃-MSSM

hi

∣∣∣. The dashed lines, la-
belled as “t/t̃-MSSM + HG”, show the corresponding result where the leading MSSM-type
contributions from the top/stop sector are supplemented by the contributions from the Higgs-
/higgsino- and gauge-/gaugino-sectors, ∆mhi

=
∣∣∣m(1L)

hi
−mt/t̃-MSSM+HG

hi

∣∣∣.
The sharp increase of the corrections of O(λYt, λ2) for the highest values of λ that is

visible for the light singlet-like field in the left plot of fig. 2 indicates that the approximation
for the stop sector of restricting to the MSSM-type contributions becomes questionable for
the singlet-like state in this region. However, as shown in the right plot of fig. 2, in this
parameter region the stop sector as a whole ceases to provide a reliable approximation
of the full one-loop contributions. In the right plot the difference between the full result
and the approximation based on the leading MSSM-type contributions from the top/stop
sector, ∆mhi

=
∣∣∣m(1L)

hi
−mt/t̃-MSSM

hi

∣∣∣, is shown together with ∆mhi
=
∣∣∣m(1L)

hi
−mt/t̃-MSSM+HG

hi

∣∣∣,
where in the latter case the leading MSSM-type contributions from the top/stop sector
are supplemented by the contribution from the Higgs-higgsino and gauge-/gaugino-sectors.
While for the singlet-like state the deviation between the leading contributions from the
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top/stop sector and the full one-loop result becomes huge for the largest values of λ, reaching
the level of 20 GeV, the deviations stay small, far below the level of 1 GeV, if the leading
contributions from the top/stop sector are supplemented by the contributions from the Higgs-
/higgsino- and gauge-gaugino-sectors. This result for the singlet-like state can be understood
from the fact that the gauge couplings of the singlet-like state are heavily suppressed and that
therefore the leading contributions for large λ arise from the Higgs and higgsino sector. Thus,
improving on the approximation of MSSM-type contributions in the stop sector requires the
incorporation of the contributions from the Higgs and higgsino sector, while the genuine
NMSSM contributions in the stop sector are of minor significance in this context.

For the doublet-like state, namely h1 for values λ . λc and h2 for λ & λc, the difference
between the full one-loop result and the result based on the leading contributions from the
top/stop sector amounts to a shift of about 5 GeV that is essentially independent of λ except
for the region where the cross-over behaviour occurs. This nearly constant shift arises mainly
from sub-leading contributions in the top/stop sector. As indicated by the dashed lines, the
inclusion of the contributions from the Higgs and the gauge sector reduces the difference to
the full one-loop result by about 1 GeV.

As a result of the comparison performed in this section the MSSM-type top/stop sector
contributions of O(Y 2

t ) have been verified as the leading one-loop contributions to MSSM-
like fields. The genuine NMSSM top/stop sector contributions of O(λYt, λ2) have the largest
impact on singlet-like fields for large values of λ, where however an approximation based only
on contributions from the fermion/sfermion sector is in any case insufficient. Our analysis
at the one-loop level therefore shows that approximating the result for the top/sector by
the leading MSSM-type contributions turns out to work well in the parameter regions where
the top/stop sector itself yields a reasonable approximation of the full result. These findings
provide a strong motivation for applying the same kind of approximation also at the two-loop
level.

4.4 Comparison with NMSSMCalc
For the comparison of our results with available tools the code NMSSMCalc [65] is particularly
suitable, since it is the only public tool using also a mixed DR/on-shell renormalisation
scheme. In this section the numerical differences between the results for the masses of the
two lighter Higgs states from NMSSMCalc and our calculation will be discussed at different
orders for the scenario given in tab 2. Both codes, NMSSMCalc and our calculation, labelled
NMSSM-FeynHiggs in the following, have been adapted for this comparison. The two codes
interpret the input parameters in the stop-sector as defined for on-shell renormalised masses
of the stops9. Since NMSSMCalc uses a different charge renormalisation associated with the
value α(MZ) for the electromagnetic coupling constant, we have reparametrised our result
as described in sec. 2.3. The numerical values for α(MZ) and ∆α have been taken directly
from NMSSMCalc for this comparison,

∆α = ∆α(5)
had + ∆αlep = 5.89188 · 10−2, α(MZ) = 1/128.962 . (32)

After the reparametrisation is applied the only difference between the one-loop Higgs-mass
predictions of NMSSM-FeynHiggs and NMSSMCalc stems from the finite contribution of δv used

9We thank Kathrin Walz for providing a modified version of NMSSMCalc for this feature.
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in NMSSMCalc. Beyond the one-loop level only MSSM two-loop contributions of O(αtαs) (cal-
culated for on-shell renormalised top- and stop-masses) are considered in NMSSM-FeynHiggs
for this comparison, as only their NMSSM-counterparts are implemented in NMSSMCalc.
Two-loop corrections beyond the ones of O(αtαs) as well as the resummation of logarithms,
which are incorporated in the default version of NMSSM-FeynHiggs, are not included for
the analysis in this section (for a discussion of their size see sec. 4.5). For simplicity, we
will refer to this reduced set of two-loop contributions as “two-loop order” throughout this
section. The remaining differences between the Higgs-mass calculations of NMSSMCalc and
NMSSM-FeynHiggs in this set-up are summarised in tab. 3. The applied modifications ensure
that the comparison between the codes will quantify the numerical impact of the genuine
NMSSM two-loop corrections of O(Ytλαs, λ2αs).

NMSSMCalc NMSSM-FeynHiggs

one-loop αem(MZ) renormalised ↔ αem(MZ) reparametrised
two-loop NMSSM O(αtαs) ↔ MSSM O(αtαs)

Table 3: Main calculational differences between NMSSMCalc and our result (labelled NMSSM-
FeynHiggs) in the set-up used for the comparison in sec. 4.4. The difference at one-loop order
is caused only by the different renormalisation of the electric charge, described in sec. 2.3.
At two-loop order the codes in this set-up only differ by the genuine NMSSM contributions
of O(Ytλαs, λ2αs). The two-loop MSSM corrections beyond O(αtαs) and the resummation
of logarithms are switched off in NMSSM-FeynHiggs for the comparison in sec. 4.4.

We used the SM parameters as specified in the built-in standard input files of NMSSMCalc
for this comparison. We passed over the input values in the quark- and squark-sectors as
on-shell parameters from NMSSM-FeynHiggs to NMSSMCalc. The pole mass for the top, mt =
173.2 GeV, has been used in the loop contributions in this section, and the renormalisation
scale has been chosen as mt. For the comparison the identical value αMS

s (m(OS)
t ) = 0.1069729

has been used for both codes (using the evaluation in NMSSMCalc with the routines of [82]).
In a first step the one- and two-loop results of NMSSMCalc and NMSSM-FeynHiggs have

been compared in the MSSM-limit, where λ and κ vanish simultaneously. Both the effects of
the different renormalisation schemes and the reparametrisation have to vanish in this limit
and thus the results have to be identical. The one- and two-loop results for the mass of the
lightest CP-even field obtained in this limit with both codes, 140.742 GeV and 116.902 GeV,
respectively, are in agreement with each other with a precision of better than 1 MeV.

This confirms that the MSSM-contributions are treated identically in both calculations.
Thus all observed differences between the results for non-vanishing values of λ and κ can be
associated to the treatment of the genuine NMSSM-contributions and residual higher-order
effects of the different renormalisation of v after the reparametrisation.

For the sample scenario defined in tab. 2 the absolute differences between the two mass
predictions are plotted in fig. 3 as functions of λ for the two lighter CP-even states at one-
and two-loop order10, ∆mhi

= mNMSSM-FH
hi

−mNMSSMcalc
hi

. The left plot in fig. 3 shows the mass
10The variation of the mass of the heaviest state is smaller than 2 MeV and thus not plotted in fig. 3.
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Figure 3: Difference between the mass predictions for the two lighter CP-even fields h1 and
h2 from NMSSMCalc and NMSSM-FeynHiggs at one- and two-loop order, ∆mhi

= mNMSSM-FH
hi

−
mNMSSMcalc
hi

. The result of NMSSM-FeynHiggs has been reparametrised to α(MZ). The points
where the cross-over behaviour of the fields h1 and h2 occurs at one- and two-loop order are
λ(1)

c ≈ 0.21 and λ(2)
c ≈ 0.24, respectively.

for the lighter state h1, and the mass for the heavier state h2 is shown in the right plot. The
state h1 behaves doublet-like for values λ . λ(n)

c and singlet-like for values λ & λ(n)
c . The

behaviour of h2 is the opposite. The values of ∆mhi
are seen to be positive for the doublet-

like field and negative for the singlet-like field. We find that the difference between the two
calculations is small for both mass predictions over the whole range of λ. As expected, the
largest differences, reaching about 150 MeV for ∆mh1 , occur for the mass of the singlet-like
state for the largest values of λ in the plot. The mass of the doublet-like state is affected to a
lesser extent by approximating theO(αtαs) correction by the MSSM-type contributions. The
relative differences in the cross-over region are found to be less significant than for the largest
values of λ. The general shape of the one-loop difference, caused by the different treatment
of the charge renormalisation, is seen to be maintained at the two-loop level. The main
feature at the two-loop level is the shift in the cross-over points by ∆λc = λ(2)

c − λ(1)
c ≈ 0.03

between one- and two-loop order, while otherwise the difference in the O(αtαs) contributions
is found to have a very small effect. This can be seen for instance by comparing the local
and global extrema at λ(n)

c and for the largest values of λ. Specifically, for λ = 0.32 we find
that the impact of the genuine NMSSM contributions of O(αtαs) that are implemented only
in NMSSMCalc amounts to ∆mh1(λc) . 50 MeV for h1 (for a Higgs mass of mh1 ≈ 40 GeV)
and ∆mh2(λc) . 30 MeV for h2 (for a Higgs mass of mh2 ≈ 125 GeV).

These results confirm that the approximation in terms of MSSM-type contributions at
the two-loop level induces an uncertainty that is numerically small if λ < Yt, as discussed in
the previous sections. As expected, the approximation works best for the MSSM-like fields,
but the relative effect stays below the level of about 0.13% even for the light singlet mass
and large values of λ. The different renormalisation schemes for δv and δZe at the one-loop
level have a larger, but still small impact on the results in the considered scenario.
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4.5 Impact of additional Corrections beyond O(αtαs)
While the genuine NMSSM two-loop corrections of O(Ytλαs, λ2αs) induce a very small effect
below 50 MeV, the MSSM two-loop corrections beyondO(αtαs) and the resummation of large
logarithms can result in a shift for the mass of the light doublet-like field of several GeV.
In order to quantify the impact of the additional MSSM-contributions of O(α2

t , αbαs, αtαb)
and the resummation of logarithms, which are incorporated in NMSSM-FeynHiggs, the results
with and without these corrections are plotted as functions of λ in fig. 4. Here the one-loop
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Figure 4: Mass predictions for the two lighter CP-even fields h1 and h2 for different
contributions at two-loop order. The blue lines include all MSSM-type corrections of
O(αtαs, αbαs, α2

t , αtαb) and the resummation of large logarithms as included in FeynHiggs
2.10.2, while for the red curves only the MSSM-type corrections of O(αtαs) are included
beyond the full one-loop contributions. The thin horizontal line marks 125 GeV.

MS-value of the top-quark, mMS
t (mt), is used in the loop contributions. A sizeable shift of

about 3–4 GeV can be observed for the mass of the doublet-like field. As expected, the
impact of the MSSM-type two-loop contributions on the mass prediction for the singlet-
like field remains small. In comparison with the contributions discussed in the previous
section we find that the effect of the additional corrections beyond O(αtαs) can exceed the
numerical impact of the genuine NMSSM-corrections of O(Ytλαs, λ2αs) by more than two
orders of magnitude.

5 Conclusions
We have presented predictions for the Higgs-boson masses in the NMSSM obtained within the
Feynman-diagrammatic approach. They are based on the full NMSSM one-loop corrections
supplemented with the dominant and sub-dominant two-loop corrections of MSSM-type,
including contributions at O(αtαs, αbαs, α2

t , αtαb), as well as a resummation of leading and
subleading logarithms from the top/scalar top sector. In order to enable a direct comparison
with the corresponding results in the MSSM, the renormalisation scheme and all parameters
and conventions have been chosen such that the well-known MSSM result of the code Feyn-
Higgs is recovered in the MSSM limit of the NMSSM.
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In our phenomenological analysis we have investigated a scenario where depending on
the value of λ either the lightest or the next-to-lightest neutral Higgs state can be identified
with a SM-like Higgs boson at about 125 GeV. As expected, in both cases this state is
doublet-like, i.e. it receives only small contributions from the singlet state of the NMSSM.
The inclusion of the higher-order contributions which are known for the MSSM is crucial in
this context in order to obtain an accurate prediction for the mass spectrum.

We have investigated different approximations at the one-loop level in comparison with
our full one-loop result for the NMSSM. We have found that the approximation of the result
for the top/stop sector in terms of the leading MSSM-type contributions works well in the
parameter regions where the top/stop sector itself yields a reasonable approximation of the
full result. It therefore appears to be well motivated to make use of this approximation at
the two-loop level. The genuine NMSSM top/stop sector contributions of O(Ytλ, λ2) can
be significant for singlet-like fields if λ is large. For such large values of λ, however, the
improvement achieved by including those genuine NMSSM contributions from the top/stop
sector is by far overshadowed by the fact that contributions from the Higgs- and higgsino-
sector become more and more important for a singlet-like Higgs field.

We have compared our predictions with the public code NMSSMCalc for on-shell parame-
ters in the top/stop sector. For the purpose of this comparison we have done an appropriate
reparametrisation of the electromagnetic coupling constant, and we have switched off the
two-loop corrections beyond the ones of O(αtαs) as well as the resummation of leading and
subleading logarithms in our code. After those adaptations the predictions of the two codes
only differ in the charge renormalisation at the one-loop level and in the genuine NMSSM
top/stop sector contributions of O(Ytλαs, λ2αs) at the two-loop level. Since these differences
arise only from contributions beyond the MSSM, agreement between the predictions of the
two codes is expected in the MSSM limit of the NMSSM. We have indeed found that the
results obtained with the two codes perfectly agree with each other in this case. For the case
of the NMSSM we have compared the predictions of the two codes as a function of λ. We
have found that the differences stay small over the whole range of λ, with a maximum differ-
ence in the mass of the light singlet-like state of about 150 MeV in the considered scenario.
The difference is mainly caused by the different treatment of the charge renormalisation at
the one-loop level, while the effect of the genuine NMSSM top/stop sector contributions of
O(Ytλαs, λ2αs) is found to be significantly smaller.

As a final step of our numerical analysis we have investigated the impact of the MSSM-
corrections beyond O(αtαs) and the resummation of large logarithms that are incorporated
in our code but not in NMSSMCalc. While those corrections are small for the mass of the
singlet-like state, they amount to an effect of 3 − 4 GeV for the mass of the doublet-like
state in the considered scenario. This is more than two orders of magnitude larger than the
corresponding effect of the genuine NMSSM-corrections of O(Ytλαs, λ2αs).

The results presented in this paper will be used as a basis for the extension of the code
FeynHiggs to the NMSSM.
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