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ABSTRACT: Non-perturbative aspects of N = 2 supersymmetric gauge theories of class S
are deeply encoded in the algebra of functions on the moduli space Mg, of flat SL(N)-
connections on Riemann surfaces. Expectation values of Wilson and ’t Hooft line operators
are related to holonomies of flat connections, and expectation values of line operators
in the low-energy effective theory are related to Fock-Goncharov coordinates on Mgys.
Via the decomposition of UV line operators into IR line operators, we determine their
noncommutative algebra from the quantization of Fock-Goncharov Laurent polynomials,
and find that it coincides with the skein algebra studied in the context of Chern-Simons
theory. Another realization of the skein algebra is generated by Verlinde network operators
in Toda field theory. Comparing the spectra of these two realizations provides non-trivial
support for their equivalence. Our results can be viewed as evidence for the generalization
of the AGT correspondence to higher-rank class S theories.
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1 Introduction

There has been a lot of recent progress in the study of N’ = 2 supersymmetric field theories
in four dimensions (see [1] for a survey). Highlights include exact results on the expecta-
tion values of certain observables like Wilson and ’t Hooft loop operators, and powerful
algorithms for the computation of the spectra of BPS states. Many of these results are
deeply related to mathematical structures on the moduli spaces of vacua.

A rich and interesting class of A/ = 2 theories, often referred to as class S, arises from
the twisted compactification of the six-dimensional (2,0) theory with Lie algebra g on a
Riemann surface C, 5, of genus g with n punctures [2][3]. Class S theories of type g = A
admit weakly-coupled Lagrangian descriptions specified by pair of pants decompositions of
Cgn- Each of the 3g —3+n cutting curves defining the pants decomposition corresponds to
an SU (2) gauge group, while each of the n punctures corresponds to an SU(2) flavor group.
Alday, Gaiotto, and Tachikawa (AGT) made the striking observation that the four-sphere
partition functions of A; theories can be expressed in terms of the correlation functions of
Liouville conformal field theory on Cy,, [4].

An important goal is the generalization of the AGT correspondence to higher rank. The
origin of class S theories from the six-dimensional (2,0) theory suggests that the relations
to two-dimensional conformal field theory may have interesting generalizations for N > 2.
In particular, Ay_; theories are expected to be related to SU(N) Toda field theory [5],
and a lot of evidence has been accumulated for this conjecture, including [6-20]. It has
been proven in [14] for a particular subclass of the Ay_; theories in class & which may
be represented as quiver gauge theories with linear or circular quiver diagrams. However,
neither side of this higher-rank AGT correspondence is well-understood. Usual methods do
not apply because class & theories of type g = Ay_1 with IV > 2 do not have Lagrangian
descriptions in general. It is therefore unclear what should play the role of instanton
partition functions in these non-Lagrangian theories. Similarly, the Toda conformal blocks
seem to be poorly understood at the time of writing.

Parallel developments came from the insight of Gaiotto, Moore, and Neitzke (GMN)
that the BPS spectrum of a class S theory is encoded in geometrical structures on the
moduli space Myae of vacua of the theory on R? x S* [3, 21-23]. The six-dimensional
description of class S theories implies that My,c is isomorphic to Hitchin’s moduli space
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Figure 1. Triangle of relations between 4d N = 2 supersymmetric gauge theories labeled by
Riemann surfaces Cy ., (left), conformal field theory (Liouville or Toda) on Cg, (right), and the
moduli space of flat SL(N, C)-connections on Cg ,, (bottom). We also indicate the interpretation of
line defects in each description.

My of solutions to the self-duality equations on Cg,,, (see [24] for a review). This space
has a hyperkahler structure, and in one of its complex structures it can be identified with
the moduli space Mg, of complex flat connections. This leads to the key relation

-/\/lvac(R3 X Sl) - Mﬂat(cg,n) . (1'1)

An important manifestation of this relation is that vacuum expectation values of BPS line
operators in class S theories can be expressed as holonomies of flat connections on Cg ,.

It has subsequently been observed in [25] that the origin of the AGT correspondence
can be understood from the relation to Mg, (see [26]). Thus there appears to be a triangle
of relations between N = 2 supersymmetric gauge theories, conformal field theories, and
moduli spaces of flat connections, as depicted in figure 1.

In this paper, we make the first steps towards a generalization of this triangle of rela-
tions to higher rank. Given the difficulties in tackling directly higher-rank gauge theories
and Toda field theory, we focus first on flat connections. We will describe in detail the
quantum algebra A%t of functions on the moduli space of flat SL(N, C)-connections, which
the arguments of GMN relate to the algebra A" of quantized line operators in class S
theories of type Ay_1. We will moreover show that Af#* can be identified with the algebra
AVer of Verlinde loop and network operators in SU(N) Toda field theory. Given the central
role played by these algebras in the approach of [25], we may regard the relations

Aline ~ Aﬂat ~ AVer (1'2)

as support for a higher-rank AGT correspondence.
Before summarizing our results in more detail, we now give some background about
line operators and their role in the AGT correspondence.

Line operators and framed BPS states

BPS line operators in class S theories are supersymmetric generalizations of Wilson and
't Hooft line observables, describing the effect of inserting heavy dyonic probe particles
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Figure 2. The algebra of line operators can be quantized by twisting R? x S' such that a plane
C C R? rotates as one moves along the S'. BPS line operators wrap S* and align along the axis R
at the origin of C.

labeled by electric and magnetic charge vectors.! Such a line operator can be viewed as
descending from a surface operator in the six-dimensional (2, 0) theory, which is labeled by
a representation R of g and supported on ¥ = S x o, with p a path in Cy,,. This leads to
a relation between the vacuum expectation value (vev) of the line operator L(R;p) on S*
and the classical holonomy of a flat connection A along the path © on Cgy,:

(L(R;p) ) = trrHol,A . (1.3)

BPS line operators thus provide natural coordinate functions on Myggs.

As argued in [22, 29], the vev of a UV line operator L can be represented in the IR
in terms of a set of vevs of line operators X, with charge + defined using the low-energy
abelian gauge fields:

L~ QL) . (1.4)
v

The coefficients Q(L, ) are integers which count the BPS states supported by the line
operator L, called framed BPS states. The IR line operators &, are Darboux coordinates
on My, that are closely related to the coordinates constructed by Fock and Goncharov in
their study of higher Teichmiiller spaces [30].

The line operators can be quantized by twisting R? x S into the fibered product R x
C x4S* such that a coordinate z on C rotates as z — ¢z after going around S* [22, 31, 32].
BPS conditions then constrain line operators on S* to be located at points along the axis R
and at the origin of C (see figure 2). The relation (1.4) between UV and IR line operators

becomes
L~ QLyiq)X, (1.5)
¥
where the noncommutative variables /'LA’AY satisfy the relation /{/7/{)7/ = q%<%7/> /'\A,’WJW/ ap-

pearing in the quantization of the algebra of functions on higher Teichmiiller spaces. The

! Note that allowed sets of “mutually local” line operators are specified by a certain topological data,
which impose some restrictions on the representations [22, 27, 28]. This subtlety will not affect our conclu-
sions in an essential way, as noted for the A; case in [26].



coefficients Q(L,v; q) are the framed protected spin characters defined in [22] as
Q(L,7;q) = tryesq”™(—g2)?" (1.6)

where ’H%PS is the Hilbert space of framed BPS states, and .J; and I3 are generators
of the SO(3) and SU(2)r symmetries. GMN conjectured that framed BPS states have
I3 = 0 (“no exotics conjecture”), which implies in particular that the Q(L,~;q) are linear
combinations of su(2) characters with positive integral coefficients. The coefficients of
¢™ X, in the decomposition (1.5) of a line operator are dimensions of Hilbert spaces graded
by the IR electromagnetic charges v and the so(3) spins m.

The noncommutative algebra of IR line operators 2?7 determines via (1.5) the algebra
of UV line operators, which may be represented by relations of the form

L« = Z o(L, L', L";q)L" . (1.7)
I
The order in which we multiply operators corresponds to their ordering along the axis R.
The algebra generated by the operators L can be viewed as a noncommutative deformation
of the algebra of functions on Mg,¢, with ¢ the deformation parameter. For A; theories,
it was argued in [22] that this algebra is isomorphic to the algebra of quantum geodesic
length operators in quantum Teichmiiller theory.

The role of line operators in the AGT correspondence

Expectation values of line operators in A; theories on the four-ellipsoid EﬁhQ = {23 +
e2(x? + 23) + €3(2% + 23) = 1} can be calculated by localization [33-35] and take the
schematic form

(L), = /da (T(a))* L(a) . (1.8)

The integration is performed over variables a = (ay, ..., ap) representing the zero modes of
the h = 3g — 3 4+ n scalar fields in the vector multiplets. ¥(a) represents the contribution
of the path integral over the lower half-ellipsoid with zg < 0, and L is a finite difference
operator acting on the variables a. It is natural to interpret the right hand side of (1.8) as
an expectation value in an effective zero-mode quantum mechanics. By localization, this
quantum mechanics in finite volume can be shown to represent the exact result for (L), e,.
The functions ¥(a) can be identified with the instanton partition functions (see [36] for a
review and references) that were found to be related to Liouville conformal blocks by AGT.

The approach proposed in [25] establishes the relation between the wave-functions
U(a) in (1.8) and the Liouville conformal blocks without using the relation to the instanton
partition functions observed in [33]. It is based on the observation that the effective zero-
mode quantum mechanics in which line operators take the form (1.8) coincides with the
quantum-mechanical system obtained by quantizing a real slice Mﬂffat in Mg,t. This follows
from the fact that the algebra Aleifé generated by the supersymmetric line operators on
E! ., factorizes as AN ~ Agﬂf‘/t62 X A?;;q into two copies of the noncommutative algebra
Ag“ obtained in the quantization of the algebra of coordinate functions on Mgy, as argued
for instance in [37]. The two copies correspond to line operators supported on xy = 1 =



2o = 0 and zg = x3 = x4 = 0, respectively. The same conclusion can be reached from
the observation made in [32] that the algebra of line operators supported on g = x; =
xg = 0, for example, is isomorphic as a noncommutative algebra to the algebra of line
operators in R3 x S1 defined via (1.7) with A = ¢ /e2. The twisting of R? x S! inducing

the noncommutativity models the residual effect of the curvature near the support of the

line operators on Eé@.

Duality invariance of the expectation values (1.8) may then be combined with the
line
€1€9

wave functions ¥(a) = ¥,(a), now considered as multivalued analytic functions of the

representation theory of A to obtain a precise mathematical characterization of the
gauge coupling constants 7 = (71,...,7,) [25]. It was furthermore shown in [25] that the
Virasoro conformal blocks represent the same mathematical objects. Within conformal
field theory one may, in particular, define a natural family of operators called the Verlinde
loop operators representing the action of the quantized algebra of functions on Mg, on
spaces of conformal blocks.

Having established the relation between wave-functions ¥, (a) and the Liouville con-
formal blocks it remains to notice that the functions ¥(a) in (1.8) must coincide with the
instanton partition functions defined in [38]. Different arguments in favour of this identi-
fication can be found in [33] and in [37]. This line of argument establishes the validity of
the relations between conformal blocks and instanton partition functions conjectured in [4]
for all A; theories of class S.2 A crucial role is played by the relation of the algebra A%at
to the algebra AVe" generated by the Verlinde line operators. This relation is generalized
to theories of higher rank in our paper, thereby supporting the natural generalization of
the AGT correspondence to class S theories of type An_1.

Overview

In this paper, we start a program to generalize the AGT correspondence to higher rank
based on the central role of line operators and the moduli space of flat connections in the
approach of [25].

The six-dimensional origin of class S theories of type Ax_1 suggests that there should
exist a family of line operators that correspond to coordinate functions on the moduli

space Mé\fn = ﬂsft(N’C) (Cg,n) of flat SL(N,C)-connections. While for A; theories traces

2

ns for

of holonomies along simple closed loops as in (1.3) were enough to parameterize M
higher rank we consider in addition some functions associated with networks on Cy ,,. These
network functions are constructed from a collection of holonomies along open paths that
are contracted at junctions with SL(N)-invariant tensors. Such networks arise naturally
from products of simple curves by applying SL(NN) skein relations at their intersections.
The algebra Aé\fn of functions on ./\/lé\fn can be described in terms of a set of generators
(loop and network functions) and the relations that they satisfy (section 2). A standard
way to quantize Ag{n into a noncommutative algebra is to use quantum skein relations

to resolve intersections in a product of operators (this deformation can be defined using

2A somewhat similar approach to the case ez = 0 had previously been outlined in [39].



the Reshetikhin-Turaev construction of knot invariants in terms of quantum group theory).
This gives a product of the form (1.7), where the operators L may also be network operators.

In section 3, we give several explicit examples of algebras Ag{n and their quantizations
for basic surfaces: three-puncture sphere Cp3, one-punctured torus Ci i, four-punctured
sphere Cp4. Using pants decompositions of surfaces Cy,, we can build the algebras .Aé\fn
from these building blocks, in the spirit of the “tinkertoys” approach [40].

In section 4, we describe an explicit representation of the algebra Aé\jn in terms of
Fock-Goncharov coordinates [30]. Loop and network functions are expressed in terms of
positive Laurent polynomials, as in the relation (1.4) between UV and IR line operators.
The natural quantization of Fock-Goncharov coordinates then determines uniquely the
quantization of Aé\fn. For all the cases that we compared, we find that the resulting
quantum relations coincide with the ones obtained from skein quantization. Furthermore,
the existence of such quantum relations turns out to lead to a unique quantization of the
Fock-Goncharov polynomials, as in (1.5). This allows us obtain many examples of framed
protected spin characters (1.6) in higher-rank theories.

In section 5, we define Verlinde network operators, which are natural generalizations
of Verlinde loop operators [41, 42] acting on spaces of conformal blocks in Toda field
theory. We show that the algebra AV generated by the Verlinde network operators can
be identified with the quantized algebra Ag{n. To see this, we first observe that the braiding
matrix in Toda field theory, from which the Verlinde network operators are built, is related
via a twist to the standard R-matrix of the quantum group U,(sly). In turn, this R-matrix
is used to construct the quantum skein algebra defining the quantized version of Aé\fn.

As an outlook, we make a few observations in section 6 about the comparison of the
spectra of the operators representing the skein algebra in Toda field theory and in the
quantum theory of the moduli space of flat connections, respectively. The appendices
collect some background about Fock-Goncharov coordinates and about quantum groups.



2 Algebra of loop and network operators

This section describes relevant background on the algebra Ag{n of functions on the moduli
space ./\/lé\f ,, of flat connections on a punctured Riemann surface Cg ,,, which can be described
in terms of generators and relations. We construct a set of generators for Agfn consisting
of functions associated with simple loops and networks naturally associated with a pair
of pants decomposition of Cy . Other functions can then be obtained by taking products
of generators and resolving intersections with skein relations. The number of generators
obtained in this way typically exceeds the dimension of the moduli space, as is reflected in
the existence of polynomial relations between the coordinate functions. The algebra .Ag{n
has a Poisson structure, and it can be deformed into a noncommutative algebra .Ag{n(q) by
applying the skein relations that encode the representation theory of the quantum group
Uy(sly). We study in detail the case of pair of pants Cy 3, which is the building block for
any Cgp. This will illustrate the crucial role of networks at higher rank. We also present
some results for the punctured torus C;; and the four-punctured sphere Cp 4. Using pants
decompositions one may use these results to get a set of coordinates allowing us to cover

Mé\fn at least locally.

2.1 Moduli space of flat connections

The close relationship between 4d A/ = 2 supersymmetric theories in class S and Hitchin
systems is revealed by compactifying on a circle S'. The moduli space My of vacua of
such theories with gauge group G on R? x S! can be identified with the moduli space of
solutions to Hitchin’s equations on Cg,, [3][22]. These equations imply that the complex
connections A(¢) built out of a connection A and a one-form ¢,

A =R¢Cl'o+A+RCp, (2.1)

are flat for all values of the parameter ¢ € C* (R is the radius of S).> Mg is a hyper-
Kahler space, and with the appropriate choice of complex structure it is identified with
the moduli space of flat Gc-connections on Cy ,,, with singularities at the punctures. We
will only consider the cases where the singularities at the punctures are of regular type®.
Flat connections modulo gauge transformations are then completely characterised by the
representation of the fundamental group 71(Cy ) generated by the holonomy matrices. The
holonomy of a flat G¢-connection V = d + A along a closed curve v € m1(Cy ) is given by
Hol(y) = Pexp fv A € Ge. The moduli space My, is thereby identified with the space of
representations of 71(Cy ) into G called the character variety:

Myac =~ HOHl(T['l (Cg,n)7 G(C)/G(C : (22)

More explicitly we have

g9 n
M = {(Al,...,Ag,Bl,...,Bg,Ml,...,Mn)\ [[aBiA'B; ! = HMa}/G(&
a=1

=1

3We will restrict to the case ¢ = 1 henceforth.
4Regularity means that the connection is gauge-equivalent to a meromorphic connection with simple
poles at the punctures.



where A;, B; € G¢ are holonomy matrices for based loops going around the A- and B-
cycles for each of the g handles, and M, € G¢ are holonomy matrices for based loops
going around each of the n punctures. These matrices are considered modulo the action of
G¢ by simultaneous conjugation.

For 4d N = 2 theories of type An_1, the complexified gauge group is G¢ = SL(N, C).
We are thus interested in the moduli space Mé\{n = Mgft(N’(c) (Cy,n) of flat SL(N,C)-
connections on a Riemann surface C, 5, modulo gauge transformations. It has a dimension

given by
dim[M),] = —x(Cgn) Aim[SL(N,C)] = (29 + n — 2)(N* - 1), (2.3)

with the Euler characteristic x(Cyn) = 2 — 29 —n. We can furthermore fix the conjugacy
classes of the holonomies M, around the punctures (as we will see, this amounts to re-
stricting to a symplectic leaf of the Poisson variety M;Vn) The moduli space ./\;lé\fn of flat
connections with M, in fixed conjugacy classes has the dimension

dim[M_),,] = —x(Cgn) iim[SL(N, C)] — nrank[SL(N, C)]
= (29+n—2)(N?*—=1)—n(N —1). (2.4)

2.2 Trace functions

The algebra Aé\fn = Funalg(/\/lé\fn) of algebraic functions on fon can be described in
terms of generators and relations, as we now review. Traces of holonomy matrices provide
coordinate functions for Mé\fn (see e.g. [43] for a review). They can be expressed as traces
of words made out of letters given by the holonomy matrices A;, B;, M,. The relation
coming from the fundamental group m1(Cy,) allows us to eliminate one of the holonomy
matrices, say M,,, which leaves (1 — x) independent letters (for n > 0). General upper
bounds are known for the maximal length of words that form a generating set of .Aé\f n- The
generators can be taken to be traces of words with lengths up to N(N +1)/2 for N < 4,
or up to N2 for N > 4 (see references in [44]). The difference between the number of
generators and the dimension of Mé\f . is then accounted for by the existence of polynomial
relations P, = 0, which are consequences of the Cayley-Hamilton theorem. The algebra

.AN

g’”
polynomial relations:

is thus described as the polynomial ring generated by trace functions quotiented by

AN, =CltrA;, trA;By, -] /{Pa}. (2.5)

Note that this algebraic structure of Mé\fn does not distinguish between different sur-

N
g?“

generators and relations is the same for the one-punctured torus C;; and for the three-

faces with the same number of letters. For example, the description of A’ in terms of

punctured sphere Cp 3, which both have (1 — x) = 2 letters.

Examples for N =2: Let us first consider the particularly simple example of SL(2, C)-
connections on the one-punctured torus Cq,;. The moduli space is given by

M3, ={(A,B,M)|[ABA'B~' = M}/SL(2,C) . (2.6)



The algebra of functions Ail is generated by the trace functions
trA, trB, trAB . (2.7)

Since the dimension of /\/li1 is 3, there is no relation between these 3 generators. However,
the generators are related to the trace of the holonomy around the puncture via

(trA)% + (trB)? + (trAB)? — trAtrBtrAB = —trM + 2, (2.8)

and therefore they do satisfy a relation once we fix the conjugacy class of M to obtain
M2,

A more typical example is the sphere Cp4 with four punctures, which we label by A,
B, C, D. The moduli space is

M3, ={(A,B,C,D)|ABCD =1}/SL(2,C) . (2.9)

The holonomies A, B, C can be taken to be 3 independent letters, while D = (ABC) ™.
The algebra of functions A%A is generated by traces of words with maximal length equal
to 3:

A, B, C, AB=S, BC=T, CA=U, ABC=D"! CBA. (2.10)
These 8 trace functions satisfy 2 polynomial relations (we use the notation 4; = trA):

D +trCBA = ATy + B1U1 +C1S1 — A1B1Cy , (211)
Dy -trCBA = SiTyUy + S} + T} + U + A + B} + C%
—A1B1S51 — B1C{ThT — C1A U — 4.

The first relation allows to eliminate trCBA since it is linear. The algebra of functions
‘A%A is then described as the quotient of the polynomial ring

(C[AlaBlaclaDhSlaThUl] (212)
by the quartic polynomial

P = SiTWUs + 8% + T2 + U? + A1 ByC1 Dy + A2 + B2 + C2 + D?
*(AlBl + ClDl)Sl — (3101 + DlAl)Tl — (ClAl + BlDl)Ul —4. (213)

This gives a 6-dimensional quartic hypersurface in C’.
In general, the number of words in r letters of length up to 3 is

e (3)+(5) = ) (2.14)

This number of generators becomes quickly much larger than the dimension 3(r — 1) of
Mgm, which implies that there are many polynomial relations.



Example for N = 3: The description of Ag}n for surfaces with 2 letters is very similar
to that of Ag’n for surfaces with 3 letters (see for example [45] and references therein).
The generators of Ail can be taken to be the traces of the 10 following words with length
up to 6 (note that the Cayley-Hamilton theorem implies that A~ ~ A? so it counts as 2
letters):

At B (AB)*, (AB™HE (ABAT'BTH)E . (2.15)
These generators satisfy 2 relations (similar to the relations (2.11) for Aj ,):

trABAT!B™! + trBAB!ATl = (..,
trABAT'B™! . trBAB AT = (..). (2.16)

Eliminating trBAB~'A~! with the first relation, we can then describe .Ai{”l as an &-
dimensional sextic hypersurface in C°.

2.3 DPoisson structure

N
g’”’

references. Note that unlike the algebraic structure described in the previous subsection,

There is a Poisson structure on the moduli space M see [46] for a review and further
the Poisson structure does distinguish between surfaces with the same x(Cg4,). Goldman
gave a general formula for the Poisson bracket of trace functions in terms of intersections

of curves [47]:

{trHol(«), trHol(5)} = Z e(p; a, B) [trHol(apﬂp) - %trHol(a)trHol(B) , (2.17)

pEaNS

where €(p; o, B) = %1 is the oriented intersection number at the point p, and «,, 5, are the
curves «, 3 based at p.

As an illustration we can consider C1; with N = 2. Since the A- and B-cycles intersect
once, Goldman’s formula gives

1
{trA,trB} = trAB — itrAtrB . (2.18)

Note that the right-hand side can be written as the derivative of the relation (2.8) by trAB.
This indicates that the Poisson structure on Mil is compatible with its structure as an
algebraic variety. The Poisson algebra for the traces functions (2.15) on Mg 3 and M3,
has been studied in [48].

2.4 Classical skein algebra

é\j », have a topological origin. Let us take again the example

of C1,1 with N = 2. The product of the traces associated with the A- and B-cycles is given
by

Relations between functions in A

trAtrB = trAB + trAB™! . (2.19)

~10 -
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Figure 3. Top: The product of the trace functions for the A- and B-cycles on C;; gives the trace
functions associated with the curves obtained by resolving the intersection. Bottom: Locally, the
crossing is replaced by two pairs of non-intersecting segments. This is the classical skein relation
for N = 2.

Graphically, we can interpret this as resolving the intersection of the A- and B-cycles into
a pair of curves that curl up around the torus in two ways (see figure 3). This procedure
is reminiscent of the classical skein relations in knot theory, which are linear relations
between knot diagrams (projections of knots onto a plane) that differ only locally around
an intersection. In fact, skein relations are nothing else than graphical representations of e-
tensor identities such as €, = 6568 —526¢, which can be used to derive the relation (2.19).

The SL(2) skein relation implies that Ag}n can be described in terms of simple curves
without self-intersections. In the case of Cp 3 with N = 2, the trace function trAB~!, which
corresponds to a figure-8 curve surrounding the punctures A and B and intersecting itself
once, can be expressed in terms of non-intersecting curves as

trAB™! = AJB 0507 = AGB T (eqpe + 5365)
= —trAB + trAtrB , (2.20)
where we used B = —¢(B)"le and trB~! = trB. Similarly, trCBA on Cy4 corresponds
to the Pochhammer curve with three self-intersections and can be expressed in terms of
simple curves by applying the skein relation, as in (2.11).
An important difference for N > 2 is that the skein relations involve N-valent junctions,

associated with SL(N)-invariant e-tensors (see for example [49]). In the case N = 3, the
e-tensor identity

008 = eqpmecd™ + 045¢ (2.21)

corresponds to the skein relation expressed graphically as
d c dw_¢e¢ wcC d c
X ) (
a b a” € b a b

For general N > 2, the resolution of a self-intersection via skein relations therefore produces

(2.22)

a network with two junctions. Let us consider again a figure-8 curve around two punctures:

trAB™! = AIB 525, = AIB™Y ( L TTIN 2 e 5352) (2.23)

(N — 2)]
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Figure 4. The application of the skein relation for general N to a self-intersecting curve produces
a network with two N-valent junctions connected by an edge with multiplicity N — 2.

This relation can be represented graphically as in figure 4.

The natural appearance of junctions in the algebra Af]\,[n motivates us to adopt a set of
generators for .Aé\fn which does not consist exclusively of trace functions, but also includes
network functions.

2.5 Loop and network functions

The set of generators of Agfn described in subsection 2.2 involves traces of large words
of the holonomy matrices A;, B;, M,, which are generally associated with curves that
have self-intersections. In this paper, we will mostly trade such self-intersecting curves for
networks with junctions using the skein relations. Our generators are thus associated with
simple loops (without self-intersections) and with networks.

Loops: Each loop on Cy,, gives N — 1 trace functions A;, ¢ = 1,... N — 1, which can
be taken to be the coefficients of the characteristic polynomial of the associated holonomy
matrix A € SL(N,C):

det(A = AI) = (=Y + (=) 1A + ()Y 240+ =My + 1. (2.24)
The coefficients A; are sums of all principal ¢ X 4 minors of A:

A= > [Alnyny, (2.25)

N1y N

where we denote the determinant of A with the rows and columns nq, ..., ny_; removed
by
[A]nl”'nN—i = 56"1"'nN7im1miA?fl . AZ”bzﬁm ny—ili-li (2.26)

We can also write the loop functions A; as traces of exterior powers of A:
1 .
Ay = trA Ay = 5[(trA)2 —tr(AY)], ..., A;=tr(AA). (2.27)

The loop function A; corresponds to the i** fundamental antisymmetric representation A*C]
of SL(N, C). Note that if we replace A by its inverse A~! in the expression for A; we obtain
the complex conjugate representation Ay_;. For example, the fundamental representation
corresponds to A7 = trA, while the antifundamental representation corresponds to Ay_1 =
trA~!. We can thus represent loop functions graphically by an oriented loop labeled by an
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itj+k=N

Figure 5. Left: Loop functions are depicted as oriented simple closed curves labeled by integers
t =1,...,N — 1. Reversing the orientation amounts to replacing ¢ by N — ¢. Right: Trivalent
junctions with all outgoing edges (source) or all incoming edges (sink). Edges are labeled by
integers 1, j, k that sum to N.

integer i = 1,..., | N/2|, where | N/2] is the integral part of N/2. Reversing the orientation
corresponds to replacing A by A~! the fundamental A; by the antifundamental Ay _1,
and so on (see figure 5 left). For even N, the (N/2)*™" representation is self-adjoint, and so
the corresponding loop does not need an orientation.

Figure 6. Network with two trivalent junctions and three edges surrounding two punctures. The
edges carry the ¢*", j** and k'™ antisymmetric representations of SL(N,C), with i +j + k = N.
The network function NN, is constructed by contracting ¢ copies of the holonomy matrix Uy, j
copies of Ug, and k copies of Ug with the two e-tensors at the junctions.

Networks: We also construct functions associated with networks. By a network® we
mean a closed directed graph whose edges carry antisymmetric representations and whose
vertices carry invariant tensors.® The vertices, or junctions, are in principle N-valent but
they can always be resolved into trivalent junctions, on which we therefore focus. The
three edges that meet at a junction (either all outgoing or all incoming) are labeled by
positive integers ¢, j, k satisfying ¢+ j 4+ k = N, which indicate that they carry respectively
the ¢, 7', k™ antisymmetric representations (see figure 5 right). Junctions do not have
labels since there is only one invariant tensor €.,y in A'O® AV0 ® AFO. A network
function is defined by contracting the holonomy matrices along the edges with the e-tensors
at the junctions. The resulting function is invariant under simultaneous conjugation of the
holonomy matrices. For example, a network consisting of two junctions connected by three

5Closely related objects go under the names of spin networks, trace diagrams, tensor diagrams, bird-
tracks, webs, etc.

SWe prefer this definition to the one given by Samuel Johnson in his Dictionary of the English Language
(1755): “Network: Any thing reticulated or decussated, at equal distances, with interstices between the
intersections.”
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oriented edges as in figure 6 gives (N — 1)(N — 2)/2 network functions Njjj of the form

1 e L L
P — l mi . l mg l i+l l ]m2+] Mi4+j5+1 . my ni-ny
szk i'j'klﬁml.--mN 1n 1n; 72 n;41 2 niyj U3 Nitjt1 U3 nNG (,228)

where Uy, Ug, Ug are the holonomy matrices (in the fundamental representation) along
the three edges. If we reverse the orientation of the edges we obtain another set of (N —
1)(N — 2)/2 network functions, which we denote by Njy.

From networks to self-intersecting curves: Network functions can also be expressed
in terms of the holonomy matrices A;, B;, M, generating a representation of m(Cyp). In
order to do this, let us recall that a flat SL(IV)-connection can always be trivialized by
gauge transformations in any simply-connected domain. Covering Cy ,, by simply-connected
domains one may describe the flat connections in terms of the constant transition functions
from one domain to another. Equivalently, one may describe flat connections using branch-
cuts, a collection of curves or arcs on Cy ,, such that cutting along the branch-cuts produces
a simply-connected domain. The holonomy Hol(v) will then receive contributions only
when the curve ~ crosses branch-cuts. Hol(vy) can therefore be represented as the product
of “jump”-matrices associated with the branch-cuts crossed by <, taken in the order in
which the different branch-cuts are crossed.

Considering the network Njj;, defined in (2.28), for example, we can use the branch-
cuts depicted in figure 7. The “jump”’-matrices associated with these branch-cuts coincide
with the holonomy matrices A and B around the two punctures depicted in figure 7. The
holonomy matrix associated with the middle arc labeled by the letter k is the identity, as
no branch-cut is crossed. It follows that we can express N;j;; as

1

Nijk = Wﬁml...m]\]

Cy—1lmy —1myi cmig s
m1 ., m i+1 . i+7 i+7+1 L. A AMN N1y
A ny A nliB Ni41 B Nitj 5ni+ﬂ'+1 5”N € ’

| I _ s
_ 10 M4y mi m; p—1mit1 Imiy;
- Tﬂéml"'mi+jA m o ARB Rl Bl

= trA'B™ — trA"1B!AB I 4 ... (2.29)

Figure 7. The branch-cuts (orange lines) encode the holonomies A and B around the punctures.
The edges of the network V;j, are associated with the holonomies of the branch-cuts that they
cross: i times A, j times B~!, and k times the identity I. The right-hand side shows two of the
self-intersecting curves that appear in the expansion of the network function in terms of traces.

We thus see that this point of view relates network functions to trace functions as-
sociated with self-intersecting curves as in subsection 2.2. As illustrated on the right of
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Figure 8. A maximal set of commuting Hamiltonians is provided by the functions associated with
cutting curves (red) and with pants networks (blue) in a pair of pants decomposition of the surface
Con-

figure 7, the corresponding trace functions are typically associated with very complicated
curves with many self-intersections. This is one of the advantages of working with networks
instead of self-intersecting curves. Different labelings of a network with a given topology
account for a family of intricate curves. Notice that the relation (2.29) between network
and trace functions can also be seen as a consequence of skein relations, given that it
involves contractions of e-tensors. We have shown a simple example in figure 4.

2.6 Commuting Hamiltonians

The moduli space ./\;lé\fn with fixed conjugacy classes for the holonomies around the punc-
tures exhibits the key features of an integrable Hamiltonian system. Firstly, ./\;té\fn is a
symplectic manifold. Fixing the conjugacy classes of the holonomies around the punctures

N

gn Viewed as a
’

corresponds to restricting to a symplectic leaf of the Poisson manifold M
symplectic foliation.

We can moreover find a maximal set of Hamiltonians, that is a number of Poisson-
commuting functions equal to half the dimension of the moduli space Mé\fn. Goldman’s
formula (2.17) implies that trace functions associated with curves that do not intersect
each other automatically Poisson-commute. In the case N = 2 we can simply consider the
trace functions associated to a maximal number of mutually non-intersecting closed curves
on Cy . Cutting C,4,, along such a collection of curves defines a decomposition of C ,, into
(29 — 2 + n) pairs of pants with (3¢ — 3 + n). The traces of holonomies associated with

these curves thus provides a maximal set of Poisson-commuting Hamiltonians:
. .. -
#{cutting loops} =39 —3 +n = 3 dim M?],n . (2.30)

However, for N > 2, the cutting curves alone do not suffice to get a maximal set of com-
muting Hamiltonians. We therefore supplement them by the two-junction networks (2.28)
that can be put on each pair of pants (see figure 8). Each cutting curve provides (N — 1)
trace functions, and each pants network provides (N — 1)(N — 2)/2 network functions.
They add up to give a number of functions which is precisely half the dimension (2.4) of
the moduli space of flat connections with fixed holonomies around the punctures:

(3g —3+n)(N—1)+ (2g—2—|—n)(N_ 1)2(N_2> = %dim/\?tfxn . (2.31)
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Figure 9. The neighborhood of a cutting loop (red) on Cg,,, can look either like Co 4 or like Cy ;.
In each case we can find a natural conjugate loop (green).

The Poisson-commutativity of the trace functions associated to cutting curves among
themselves and with the networks is obvious from the fact that they do not intersect
(Goldman’s formula (2.17) applies to self-intersecting curves, and hence to the networks
as well). On the other hand, it is not obvious that the network functions associated with
pants networks Poisson-commute among themselves, {Nijk, Nimn}t = 0. Although we do
not have a general proof, we checked that they commute up to the case N = 6.

2.7 Tinkertoys

N
g7n

maximal set of commuting Hamiltonians described in the previous subsection by sufficiently

In order to get a complete system of coordinates for MZ we need to supplement the
many additional coordinate functions. A natural way to find additional variables that do
not Poisson-commute with the pants networks N;j; on Cp 3 is to take the pants networks
Nijk with reverse orientation.

Simple additional coordinates that do not Poisson-commute with the trace functions
associated to the cutting curves defining the pants decomposition can also be defined in a
simple way. Each cutting curve is contained in a subsurface isomorphic either to a four-
holed sphere or a one-holed torus embedded in C, ., see figure 9 for an illustration. In the
case of Cp 4, natural additional coordinates are associated with curves surrounding another
pair of holes than the cutting curve under consideration. In the case of Ci; one may, for
example consider an additional coordinate associated with the B-cycle if the cutting curve
is the A-cycle, see figure 9.

Altogether, the cutting loops and their conjugate loops, together with the pants net-
works of both orientations provide a complete set of coordinates on /\;lé\fn that cover this
space at least locally. We can therefore reduce the study of /\;lé\fn for a generic Riemann
surface Cy ,, to the study of pants networks on Cp 3, and of pairs of conjugate loops on Cp 4
and Cq,1. This motivates us to focus on these three cases in the following subsections.

Note that the additional coordinates on ./\;lf]\f », that we introduced above are not canon-
ically conjugate. However, it should be possible to define generalisations of the Fenchel-
é\fn in terms of which one may pa-
rameterise the coordinate functions defined above. Such Darboux coordinates were shown

Nielsen coordinates, a set of Darboux coordinates for M

in the case N = 2 to play a key role in the relation to integrable systems [39].
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AB AB

Figure 10. Left: Product of two knots K4 and Kp in the 3-manifold C,,, x [0,1]. Right: The
corresponding loop operators that intersect classically are superposed at the quantum level.

2.8 Skein quantization

Motivated by the applications to supersymmetric gauge theories, we will next discuss the
quantization of the moduli space ./\/l]g\{n of flat SL(N, C)-connections on a Riemann surface
Cgn- This means in particular to construct a family of noncommutative deformations
qu\{n(q) of the algebra Agfn of functions on Mé\fn parameterized by one parameter ¢ = e’
The loop and network functions get replaced by generators of the noncommutative algebra
AN.(g). In the classical limit ¢ — 1 (& — 0), the product AB of two operators reduces
to the commutative product AB of the corresponding functions, while the commutator
[A, B] = AB — BA should reproduce the Poisson bracket {4, B}.

This problem has been extensively studied in the past, starting from [50], and moti-
vated in particular by the relation to Chern-Simons theory” [51][52]. Considering Chern-
Simons theory on three-manifolds M3 of the form C,4,, x I, with I an interval with coordi-
nate ¢, one may note that parameterised closed curves on C ,, naturally define knots in M3.
In the context of Chern-Simons theory it is natural to relate the ordering of the factors
in a product of generators in Aéxn(q) to the ordering of observables according to the value
of their “time”-coordinates t. Given two knots K4 and Kp one may define their formal
product K4Kp to be the link composed of K4 in Cy,, x [1/2,1] and Kp in Cy,, x [0,1/2],

KaKp = {(z,t) € Cgnx[0,1]|(z,2t—1) € K4 for t > 1 ;(2,2t) € Kpfort < 3 } . (2.32)

This operation is depicted in Figure 10. A natural set of relations to be imposed on the
product in Af;{n(q) has been identified, severely constrained by the topological nature of
Chern-Simons theory leading to the definition of isotopy invariants of knots and links.
The first constructions of quantum sly invariants were provided by Reshetikhin and
Turaev [53] using the representation theory of the quantum group U,(sln). It was later

A lot of the research in this direction was devoted to Chern-Simons theories with compact gauge groups
like SU(N). However, the resulting algebras Aixn(q) appearing in this context turn out to be independent
of the real form of the corresponding complex group (here SL(N)) under consideration.
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observed that the resulting algebra can be described without the use of quantum groups
in terms of generators and relations. In the following we will briefly describe the work of
Sikora [54] on link invariants in R which uses both points of view (see also [49] for SL(3),
and [55] for similar formulations).

Sikora describes in [54] a construction of isotopy invariants of certain ribbon graphs
called N-webs. The N-webs are composed of oriented ribbons emanating from, or ending
in, N-valent vertices called sources or sinks, respectively (see [54] for a more formal defi-
nition). We will see that the N-webs are closely related to the networks considered in this
paper. This construction can be understood as a special case of Reshetikhin and Turaev’s
constructions. It can be described using the projections of N-webs to R? called N-web
diagrams. The web-diagram may be decomposed into pieces of three types: (i) crossings,
(ii) sinks or sources, and (iii) cups or caps of the form

/N N

With each of these pieces one associates intertwining maps between tensor products of fun-
damental representations [J of U, (slx). The maps associated with crossings, in particular,

are in a basis eq,..., ey for C represented by
ep X eq fora>"b,
Rlea®ep) = qIN { g 3eq @ ey fora=b, (2.33)

eb®ea—|—(q_%—q%)ea®eb for a < b,

or by the inverse map R~!, depending on which edge is on top of the other:

N /

R R™1

VRN 1/ 1 (2.34)

The maps associated with sinks are the unique (up to normalization) intertwining maps
from the N-fold tensor product of the fundamental representation of Uy(sly) to the trivial
representation, while the conjugate of this map is associated with the sources. In a similar
way one associates to the caps the unique (up to normalization) intertwining maps from
the tensor products of fundamental representations [J with the anti-fundamental represen-
tations [J to the the trivial representation. The maps associated with the cups are the
conjugate intertwining maps, respectively. Explicit formulae can be found in [54]. Using
these building blocks one constructs the invariant associated with an N-web by compos-
ing the intertwining maps associated to the pieces in the natural way specified by the
decomposition of the given N-web diagram into pieces.

The isotopy invariants of N-webs defined in this way satisfy various relations that can
be used to calculate them explicitly. These relations relate invariants associated with N-
web diagrams that are identical outside of suitable discs D C R?. A typical example may
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be graphically represented as

qZINXq;NX -l ) > < (2.35)

Such relations are quantum analogs of the skein relations discussed previously. Before

NI
N|=

_qi

entering into a more detailed description of the skein relations, let us note that the local
nature of the skein relations will allow us to use the same relations as defining relations for
the algebras Ag{n (q) we are interested in. This will be the basis for the approach used in
the next section, as is illustrated in particular by Figure 22 below. The three-dimensional
isotopy invariance of the N-web invariants ensures that the resulting algebra has a three-
dimensional interpretation via (2.32). It is easy to see that the relation (2.35) reproduces
Goldman’s bracket (2.17) in the limit 7 — 0.

We shall now turn to a more detailed description of the set of relations proposed in [54].
The first condition in [54] is the crossing condition (2.35).8 Next, the quantum invariant
for the union of two unlinked knots must be equal to the product of the quantum invariants
for the knots. There are also conditions for the contraction of a trivial knot and for the
Reidemeister move of type I:

Q A \o =y
[ (2.36)

We have been using the notation [n] defined as

[n] qn/2 _ q—n/2
g2 — g1/

— q(n*].)/Q + q(nf?’)/Q + ..+ qf(nil)/2 . (237)

Finally, there is a relation between two nearby N-valent junctions (a source and a sink)
and a sum of positive braids labeled by permutations o (with lengths I(0)):

N\ o N f

_ _qfiN(Nfl) ; <_q v )l(a) /f o \
(2.38)

It was shown in [54] that the relations above suffice to characterize the resulting invariant
of N-webs uniquely.

Note that the edges do not carry labels in Sikora’s formulation. For our goals it
will be convenient to represent 7 parallel edges between two junctions by a single edge
with label 7. This will allow us to define the quantized counterparts of the networks

8We choose conventions that agree with the calculations in terms of Fock-Goncharov holonomies in

section 4. They are related to the bracket used in [54] by the redefinition ¢ — ¢~2

—N(N-1)/4

, and then the renormal-
ization of each junction by ig and of each edge carrying the ™" antisymmetric representation by

1/[z]!. We also introduce some signs in (2.36).
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Figure 11. Reduction of contractible cycles. The square reduction on the right is valid for N = 4.
Our conventions are that thin edges carry the fundamental representation, while thick edges carry
the (N — 2)'" antisymmetric representation.

introduced previously. A quantum network corresponding to the network shown in figure 6,
for example, may be represented by an N-web obtained by splitting the N edges connecting
one source and one sink into three groups of i, j, and k edges.

The relation (2.38) allows to derive skein relations for the resolution of all possible
crossings in terms of N-web diagrams without crossings. Of particular interest is the
following special case of the fundamental skein relation obtained by contracting (N — 2)
pairs of edges from the upper and lower parts of (2.38):

XX

We indicate that the edge between the two junctions carries the label N — 2 by drawing it

thicker than the other edges associated with the fundamental representation. The funda-
mental skein relation with the other ordering at the crossing has ¢ replaced by ¢~!. A large
set of useful relations can be derived from the relations stated above, including reduction
moves of contractible bubbles (digons), squares, hexagons, etc. Such relations were worked
out in [56-58]. We show some examples in figure 11.

Sikora’s construction allows one to recover the construction of quantum sl invariants
previously given by Murakami, Ohtsuki, and Yamada in [55] (a useful summary is given
in [59]). This construction uses trivalent graphs with a “flow” built out of the following
two types of vertices:

(2.40)
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The edges connected at such vertices cary labels with values in {0,1,...,N —1}. An edge
with label 0 can be removed, and an edge with label i is equivalent to an edge with label
N — i with opposite orientation, as depicted on the left of figure 5. The vertices (2.40) can
be represented in terms of pairs of the sources and sinks used in Sikora’s formulation, as
explained in [54].

It is possible to derive an expression for a general skein relation resolving the crossing
of lines labeled by arbitrary 7,5 € {0,1,..., N — 1} [55] (see [59] for the normalization):

z\ j ‘N i AT
:q%Zq_% i \ Ai+j—n
\ n=0 ] —
JA I Ry (2.41)

with m = min{i, j, N —i, N — j}. For the other ordering at the crossing, one should replace

gby ¢~'. When i = j = 1 this expression reproduces the fundamental skein relation (2.39).
We will also need skein relations for N = 4 with ¢ = 2 (thick line) and j =1or j =2:

+q—1/2) ( R l
g (2.42)

Let us finally note that the link invariants constructed in [55] also correspond to sim-
ple special cases of the Reshetikhin-Turaev construction. The label i € {0,1,...,N — 1}
assigned to an edge of a colored N-web is identified with the label for one of the irre-
ducible representation M; = A'0J of the quantum group Uy(sln) that is obtained as the
i*™" antisymmetric tensor power of the fundamental representation [J. The linear map
R;j : M ® M; — M; ® M; appearing on the left hand side of (2.41) can be obtained from

the universal R-matrix R of Uy (sln) via
Rij = Bij(mj @ mi)(R), (2.43)

with P;; the permutation of tensor factors, P;; : M; @ M; — M;® M;. The trivalent vertices
in (2.40) are associated with the Clebsch-Gordan maps (with k =i + j):

Cl o M; ® Mj — My, CY: My — M;@ M . (2.44)

In the case where i + j = NN, one edge carries the trivial representation and can thus be
removed. This gives cap and cup maps:

COy_ it Mi@My_; —C, CYT . Cs My_j© M . (2.45)

Quantum invariants of a network are then obtained by composing the intertwining maps
associated with the pieces of the network.
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Figure 12. Pants network on a pair of pants Cg 3.

3 Quantization of tinkertoys

In this section we will describe the algebras obtained by using skein quantization in some
simple examples associated with surface C,, with (g,n) being (0,3), (1,1) and (0,4). As
explained previously, it seems reasonable to regard the results as building blocks for the
description of the algebras associated with more general surfaces Cg .

3.1 Pants networks

As the prototypical illustration of the role of network operators, we consider flat SL(N, C)-
connections on a three-punctured sphere Cy 3, also known as the pair of pants, or pants for
short. As we mentioned in subsection 2.6, any Riemann surface C,, can be decomposed
into pants by choosing a maximal set of simple loops that do not intersect. The pair of
pants Cp 3 is hence not merely the simplest example, but also the most essential one, from
which any other surface can in principle be understood. The main novelties for the case
N > 2 will be apparent in this example. Indeed, any simple loop on Cp 3 can be deformed
into a loop surrounding a puncture, so networks are the only relevant objects in this case.
A particularly important network has two trivalent junctions and three edges, running
between every pair of punctures; we call it the pants network (see figure 12). The number
of possible pants network operators is given by the partition of N into three strictly positive
integers ¢ + j + k = N, which gives (Nz_l) =(N-1)(N-2)/2.

In terms of 4d N = 2 gauge theories, Cp 3 corresponds to the theory T studied by
Gaiotto [2], which can be used as a fundamental building block for more general theories.
T is a strongly coupled N' = 2 superconformal field theory with no known weakly-coupled
Lagrangian description (except for T, which is free). It has SU(N)? flavor symmetry and
SU(2) x U(1) R-symmetry. It contains operators @ and @ with scaling dimension (N — 1)
that transform in the trifundamental representations (OJ,0, ) and (0J, 0, 0) of SU(N)3.
There are also Higgs branch operators pi, g2, 3, which have scaling dimension 2 and
transform in the adjoint of one SU(N). Finally, there are Coulomb branch operators u,(:)
with dimension k; the labels take the values k = 3,...,N and ¢ = 1,...,k — 2, so their
number is (N —1)(N —2)/2. We see that this matches nicely the number of pants networks.
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The fundamental group of the sphere Cy 3 with three punctures A, B, C is represented
by the loops v4,vB,yc around each puncture satisfying one relation:

m1(Co3) = {(va,vB:YC)|YAVBYC =0} (3.1)

where v, denotes a contractible loop. The corresponding holonomy matrices A, B, C
satisfy ABC = (—1)V~T (the sign is chosen for consistency with (2.40) and (4.6)). The
moduli space of flat SL(N, C)-connections has the dimension

dim[M{ls] = N? — 1. (3.2)

The functions coming from the loops around the punctures, A;, B;, C;, withi=1,..., N—1,
and from the pants network with both orientations, Ny, Ny, witha =1,...,(N — 1)(N —
2)/2, provide the correct number of coordinates on Még:

(N-1)(N—-2)

3(N—1)+2 :

=N?-1. (3.3)

Fixing the eigenvalues of the holonomies around the punctures then gives 3(N — 1) con-
straints and leaves us with only the pants networks:

dim[M{’s] = (N —2)(N —1) . (3.4)

SL(3)

The first non-trivial case is N = 3. We will show how to obtain a closed Poisson algebra
involving the loops and pants network, together with an extra six-junction network. This
gives 10 generators satisfying 2 polynomial relations, which can be quantized using quantum
skein relations.

Loop and network functions: There are two loop functions for each holonomy matrix,
namely the coefficients of the characteristic polynomial, which can be expressed in terms of
traces as in (2.27): A; = trA and Ay = trA~! (and similarly for B and C). The network
function N and its reverse N7 can be constructed as in (2.28) by fusing the three edges at
the two trivalent junctions with e-tensors (see figure 13 left):”

Ny = _em"PU;anﬁsUzc)tGTSt )
Ni = —emnp(Ug )7 (U )5 (U™ (3-5)

Alternatively, we can construct the network functions as in (2.29) by associating holon-
omy matrices with the edges of the network according to which branch-cuts they cross (see
figure 13 right). This gives the following expressions:

N1 = —€mnp At (C e = trAC™! — A1Cy
Ni = —mnp(A™H)MCle™ = trA™1C — A0 . (3.6)

9The overall sign is chosen for later convenience, so that N; will be expressed as a positive Laurent
polynomial in the Fock-Goncharov coordinates, as in (4.24).
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Figure 13. Left: Construction of the network operator /Ny on Cy 3 from the holonomy matrices Ug,
Up, U, along its edges contracted with e-tensors at the junctions. Right: The holonomy matrices
A, B, C are associated with the branch-cuts (dashed) starting at the punctures A, B, C. Two
edges of the network N; intersect the branch-cuts and are thus associated with A and C~1.

The several possible choices for the position of the branch-cuts all lead to the same network
function:

Ny = trAC™! — A4,Cy =trBA™! — BjAy =trCB™! — (1B, . (3.7)

A term such as trBA ™! corresponds to a self-intersecting figure-8 loop going around the
punctures B clockwise and A anticlockwise. Resolving the intersection with the skein
relation in (2.22) produces the relation (3.7) (see figure 14).

BNONO,

Figure 14. Applying the skein relation to a self-intersecting loop going around two punctures
produces a network and pair of loops around the punctures.

Closed Poisson algebra: We would like to find a set of generators including A;, B;, C;
and Np, Ny that forms a closed Poisson algebra. The Poisson brackets can be obtained
from Goldman’s formula (2.17). Since the Poisson bracket is proportional to the intersection
number, the loop functions A;, B;, C; around the punctures obviously Poisson-commute
with everything:

{Ai,e} = {Bi,e} ={Cj,e} =0. (3.8)

To apply Goldman’s formula to the pants networks we use their expressions (3.6) in terms
of trace functions. We get

{N;,N1} = {trAC" 1 trA7!C} = ~trCBA + tr(CBA) ' = - W, + Wy, (3.9)

where the functions W7 and W correspond to the six-junction networks shown in figure 15
and are related to the so-called Pochhammer curves trCBA and tr(CBA)~! via the skein
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Figure 15. The Poisson bracket of the pants networks N; and N; can be expressed in terms of
Pochhammer curves or in terms of the 6-junction network W, and its reverse W;.

relation and reductions in (2.39) and figure 11 (with ¢ = 1):

W1 = trCBA — A1Ay — B1By — C1Cy
Wl = tI‘(CBA)_l — A1A2 — BlBQ — 0102 . (310)

If we want to obtain a closed Poisson algebra we thus need to add W; and W; to the

set of generators and compute their Poisson brackets. We find that they indeed close:'°

{N;,W} = trB"'C?BA — trCB 'CBA +trA !B 'AC — trCB™!
= —N1Wi + 3N? + 2N1 (A1 By + B1C2 + C1Ag) — 6N; + A
{N;, W1} = —trCB2C A ' + t'B'CB'C'A ! —trA"'B'AC + trCB™!
= NiWi — 3N} — 2N1(A1 By + B1Co + O1As) +6N7 — A,
{W,W1} = tr(BAC)'!ACB — tr(CBA) 'ACB + tr(ACB) !CBA
—tr(BAC) " '!CBA + tr(CBA) 'BAC — tr(ACB)'BAC
= 3(N} — N}) + 2N2(AsBy + ByCy + ChAy)
—2N?(A1By 4 B1Cy + C1Ag) + N{A — NiA | (3.11)

and the remaining Poisson brackets can be deduced by replacing every object by its reverse:
A A1 A = Ay, Ni — Ny, Wi — Wi, and so on. Here we have defined

A = A1 A3ByCy + B1BoCy Ay + C1CoAs By + ABy + BiCy + Ci 44
+A5B2 + ByC2 + Cy A2 — 3(AyBy + ByCy + ChAy) . (3.12)

In conclusion, we have obtained a closed Poisson algebra with the generators
Aini7CiaN17N1aW17W1 . (313)

Since the dimension of the moduli space Mg’?) is 8, there must be 2 relations between these
10 generators.

Relations: A simple way to obtain a relation is to consider the product of N; and Nj.
We can draw these networks on Cg 3 such that they have two intersections, which we resolve

0Because of the large number of self-intersections to resolve, it is tedious to get the expressions in
terms of networks (second lines) from applying skein relations. However, they can be derived easily with
Mathematica in the explicit representation of loop and network functions as Fock-Goncharov polynomials
that we will present in section 4.
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Figure 16. The product N;N; can be expressed in terms of the networks W, and W, via the skein
relation.

by applying the skein relation (see figure 16). The resulting networks can be simplified via
the square reduction of figure 11 (with ¢ = 1), and the polynomial relation is then P; = 0
with

P1 = NiNi — (Wi + Wi + A1 B1Cy + A3 BoCo + A1 Ay + B1By + C1Cy + 3) .(3.14)
The second relation Py = 0 comes from the product of Wy and W;:!!

Py = (Wi +6) (W +6) — [Nf* + N2(AsBy + BaCy + A1Cs) + NiA
—|—Ai1)) + B? + Cf + A%AgBlCl + AlB%Bgcl + A13101202
+A%B%CQ + AQB%C% + A%BQC% — 2(A%B2C2 + AQB%CQ + AQBQC%) + reverse
+A1A2B1ByC1Coy + A1 A2 B1 By + B1B2C1Coy + C1C2A1 As
—3(A13101 + AQBQCQ) — 9(A1A2 + B1By + 0102) + 27| , (3.15)

Here “+reverse” means that all the previous terms should be added with reverse orientation.
We have therefore arrived at a description of the algebra A873 in terms of the 10
generators (3.13) satisfying the 2 relations P; and Pa:

A%,S = (C [Ai7Bi7Ci7N17N17 W17 Wl] /{7)1,7)2} . (316)

It is straightforward to relate our description involving networks to the description in terms
of trace functions as in (2.15) and (2.16).

Remarkably, we can write the Poisson brackets in terms of derivatives of the polynomial
relations (this can be compared with [48]):

OPy 0Py 0Py OPs
oW, OW, oW, W,
OP, 0Py OP1 0P,
ON, OW,  OW; ON;

OP1 0Py OPy 9P,
oW, ON,  ON, oW’
OP, 0Py 0P, 0P,
ON1 ON, ON; ON;

{Ny, N1} =

{N1, Wi} =

{N1, W1} = {Wy, W} =

(3.17)

This indicates that that the Poisson structure of Mgg is compatible with its structure as
an algebraic variety.

Quantization: Quantum versions of the polynomial relations P; and Ps, in which the
network functions are replaced by noncommuting operators, can be obtained by applying
the quantum skein relations in (2.39) and figure 11.

1This complicated expression is also more readily obtained in the explicit representation presented in
section 4.
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Figure 17. The quantum product of N Jffl resolved via the quantum skein relation.
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The quantum relation P; is obtained by superposing the operators N; and ]fﬁ and
resolving their two intersections via the quantum skein relation (see figure 17):

Nlﬁl = q7%VAV1 + q%ﬁﬁ + 121131@1 + AQEQCQ + AlAQ + Bléz + 6'102 + [3] . (3.18)

The operator N 1, which appears first in the product, is drawn on top of the second operator

Ni. Note that the product N1N1 with inverted order would give the same expression but

with the replacement ¢ — ¢~ .

The quantization of the second relation Po gives

(Wi +16]) (Wi +16]) = a3 5 + NP(AaBy + BoCr + ArCo) 4 2 N
+ A3+ B3+ O + A2A,B,C) + A\ B?ByCy + A1 B1C2 s
—(q + q_l)(A%BQCA'Q + AQB%O2 + AQBQO%) + reverse
+1414ng1320162 — (q -3+ q_l)(zzhAgBlBQ + Blégélég + 0162141/12)
—(2(]2 +q— 3+ q_l + 2(]_2)(1413101 + AQEQC'Q)
—(2(]2 +qg+ 3+ qil + 2q*2)(1211/12 -+ Blgz + élég)
+¢® +2¢* + P +37 +3¢+T7+3¢  +3¢ 2+ P +2¢ g0, (3.19)

1 and in A we have replaced

where now “+ reverse” also implies the replacement ¢ — ¢~
the coefficient of 3 by 2q + ¢ 2.

We also find the following quantum commutators:

2B + BoCy + CoAy)

2 A

12(A132 + B1Cy + C1 Ay
(V-

—(q—q7")
( 1A~ NiA) (3.20)

g7 —q 2N

where in A we have made the replacement 3 — [3]. These relations reduce at first order in
h to the Poisson brackets (3.9) and (3.11). For example, with a little bit of rewriting we
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Figure 18. The pants networks N,, Np, N, differ from one another by the choice of the edge
(thick) that carries the second antisymmetric representation of SL(4).

obtain
[Ny, W] = (1 — q@)WiNy + (q — q72)]\£712 + (q% - qu)ﬁl(fhgz + B1Cy + C1 Ay)
(P +q>—q 2 —q )N+ (1—¢ HA
=h| — WlNl + 3]@12 + 2]@1(1‘1132 + Blég + 6'1142) — 6N1 + A + O(hQ)
= h{Ny, W1} + O(h?) . (3.21)

SL(4)

We find a similar structure for SL(4) loop and network operators. The loop functions 4;
around the puncture A are

Ay = trA Ag = % [(trA)? — tr(A?)] | Az =trA™1 . (3.22)

We can construct three pants networks N,, Ny, Ve, differing by the choice of the edge that
carries the second antisymmetric representation of SL(4) (see figure 18):

1
Na = _iemnqu:langsU{))tUguemtu = trCBil —C1Bs,

1
N = = emmp Uiy Up Up UL, = trAC™! = A1Cs

1
Ne = _ﬁemnquZLr £ UR, UL, = trBA™ — B1 A3 . (3.23)

Pants networks with the same orientation Poisson-commute with each other:
{Na,Np} = {Np, Ne} = {Nc,Na} =0, (3.24)
but they do not commute with their reverses:

{Na, Na} = {Np, Np} = {Ne, Ne} = trCBA — tr (CBA) ™! |

{Na,N.} = trtCB'AB™! — trCB2A |

{N¢, Np} = trBATICA™! —trBA2C ,

{Np, Na} = trAC™'BC™! —trAC™B . (3.25)

As in the SL(3) case, to obtain a closed Poisson algebra we would need to add the functions
appearing in the Poisson brackets of the pants networks to the set of generators, compute
their Poisson brackets, and so on. Repeating this procedure until the Poisson algebra
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Figure 19. Product of pants networks: NaNy, (top), NaNa (middle), NaNp (bottom).

closes would lead to a large number of generators, satisfying many polynomial relations.
Ultimately, it should be possible to choose the set of 15 independent generators of A373 to
be given by the loop functions around the punctures and by the pants networks:

AiaBivciaNa7Na7Nb7Nb7NC7NC . (326)

This can be compared with the 15 generators of the ring of invariants of two matrices given
in [60].

Many quantum relations can be easily obtained by applying quantum skein relations
to products of pants networks. We show a few examples in figure 19.

3.2 One-punctured torus

Our next simple example is the torus with one full puncture, denoted by C; 1 (see figure 20).
The corresponding 4d gauge theory is the so-called N' = 2* SU(N) gauge theory, which
can be obtained from the A/ = 4 theory by giving a mass to an adjoint hypermultiplet.
The fundamental group of C;1 consists of three loops, the A-cycle v4 (meridian), the
B-cycle vp (longitude), and the loop 7s around the puncture, subject to one relation:

m(C11) = {(va, v8, Y |vavBY ' = M} - (3.27)

The holonomy matrices by A, B, and M satisfy ABA~!B~! = M. We can also combine
the matrices A and B into matrices C = (AB)~! and C' = AB~! associated with the

curves vo = (yavg) "
gives (IV — 1) loop functions.

and yor = 7y Avgl, respectively. Each of these holonomy matrices
We also consider a particular two-junction network N; with two junctions whose edges

go around the A- and B-cycles (in contrast to the case of Cy 3, there are many two-junction
networks that we can consider on C; ;). The network Ny and its reverse N each contributes
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Figure 20. One-punctured torus C; ;. The A- and B-cycles are shown, together with a network
operator Ny, consisting of three edges and two junctions.

(N — 1)(N — 2)/2 operators. Together, the operators coming from A, B, C and from
the networks Ny, N7 add up to the dimension (2.3) of the moduli space of flat SL(N)-
connections on Cy 1:

(N -1)(N—-2)

3(N—1)+2 :

= N? —1=dim[M7,] . (3.28)

SL(2)

We start by briefly reviewing the well-studied case of flat SL(2, C)-connections on the one-
punctured torus Cy 1 [22] (see also [61][39][25]). The Poisson bracket of the A-cycle function
A1 = trA and the B-cycle function By = trB is (by Goldman’s formula (2.17)):

1 1
{Al, Bl} =trAB — 514131 = —1}1“1&]3_1 + §A1B1 . (329)

The extra traces C; = trAB and O] = trAB~! correspond to curves that go once around
the A-cycle and once around the B-cycle (in different directions). Applying the skein
relation to products of loop functions gives

AB, = C1+CY C1Cy =A2+ B+ M; -2, (3.30)

which can be combined to obtain the relation P; = 0 with

Py =A1BCy — (A2 + B} +C? + M, —2) . (3.31)
The Poisson bracket between the generators Ay, By, C can be written as
10P;
A, B} = —=—— 3.32
{ 17 1} 2 Cl Y ( )

and cyclic permutations of Ay, By, Cj.
To obtain quantum relations, we apply the quantum skein relation:

AyBy = qiCy + ¢ 30 (3.33)

1

Inverting the order in the product amounts to exchanging g <> ¢~ ", so we can obtain the

g-deformed commutation relation

Q%Alél - q_iélfil = (q% - q_%) Ch (3.34)
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Figure 21. Left: Covering of C;1 with two branch-cuts (dashed lines). Each branch-cut is as-

sociated with a holonomy matrix A or B. Right: C;, described as a square with opposite sides
identified, and with the puncture at the corners. The holonomy matrices associated with the three
edges of the network N; are determined by the branch-cuts that they cross.

Note that this relation can be written as a quantum commutator

(A1, By] = (qié —1)B1A; + (qi - qu)él ) (3.35)
which reproduces the Poisson bracket (3.29) at first order in A. Similarly, the quantum
skein relation leads to the quantization of the cubic relation (3.31):

~ 1 A~ A~ A 1 ~ 1 ~ 1 A
P1=q1A1BCy — <q§A% +q 2B} +q2C7 + M, — [QD . (3.36)

SL(3)

We now have the loop functions A; = trA and Ay = trA~! and similarly for B;, M;, C;,

and C]. There are many different two-junction networks that can be put on C; ;. A natural

choice is the network that goes once around the A-cycle and once around the B-cycle. The

associated network function N7 and its reverse N7 can be expressed as

— m yn P _rst
N1 = emnpUg,, Up JUge™

ct

Ni = enmnp(Ug ) (U e (U™ (3.37)

T S

As explained in section (2.5), the network functions N; and Nj can also be obtained from
the transition functions in a covering of C; ;. We can for example cover C; ; with one patch
that overlaps itself along two branch-cuts that go around the A- and B-cycles and intersect
at the puncture (see figure 21). The network N; has one edge that crosses the branch-cut
associated with A (with reverse orientation), one that crosses the branch-cut associated
with B, and one that does not cross any branch-cut. This gives the following expressions

Ni = emnp(AH"B"6%,e = AyBy — CY
N1 = emnpA" (B "5 = A1By — Cf (3.38)

with C] = trAB™! and C} = trA~!B. Such relations between networks and products of
intersecting loops can of course also be understood as arising from the skein relation (2.22)
(see figure 22):

AsBy = N1 + Cé , A1By = Nl + Ci . (339)
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Figure 22. Relations between loop and network operators arise from the skein relation.

The quantization of relations such as (3.39) can be obtained by applying quantum
skein relations to resolve the intersection of the A- and B-cycles:

AQBlZéN—i_ %é, AB: %{ %CA’
AyBy = 5Ny + q3C) AyBy = g 5N, 4+ ¢3C (3.40)

Here the operator N{ corresponds to the flipped network shown on the left of figure 23.

Changing the ordering in the product of two operators simply inverts ¢, so we can
deduce expressions for commutators, whose leading terms in A correspond to the Poisson
brackets. For example we obtain

1

[Ag, Bi] = (g5 —q &)N1 + (¢35 —q3)Ch  —  {Ag, B} = <N1—202>. (3.41)

We can also apply the quantum skein relation to the product of N; and ]fflz
NNy = q 2 We + q2Ws + Ay Ay + BBy + C1.Co + My + My + [3] (3.42)
where Ws is a network with six junctions shown on the right of figure 23. The same network
Wg also appears in the product
N|Cy = We+q2 A1 Ay + ¢ 2B, B, . (3.43)

More complicated relations are impractical to derive in this way, but can be computed in
the explicit representation of the loop and network operators in terms of Fock-Goncharov
polynomials, as we will discuss in section 4. We have for example the classical relation

Figure 23. Left: Flipped network N{. Right: Network Wy appearing in the product N;Nj.
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(also given in [45][62])

A1 Ay By BoCyCy = [Nf’ £ N2(AyBy + BoCy + CaAy) (3.44)
+N1 (A1 Ay B1Cy + AIC) + A3By — 3A1 By + cyclic)
—(A1B3C3 — 2A2ByCy + A3 + cyclic) + reverse
— N7 N1 (A1 As + cyclic) — (A1 Ay By By + cyclic)
+3(A1B1Cy + A2BoCy) + My Mo + 6(My + M2) 4+ 9 .

Here “+cyclic” means adding the terms obtained by cyclic permutation of A, B,C, and
“+reverse” the terms obtained by reversing the orientation, Ay <> As, N1 < N1, and so on.
Recall that at the classical level the algebraic structures of Mé\f 3 and M{V 1 are the same, so
that the relation (3.44) is the counterpart of the relation (3.15) for the 3-punctured sphere.
The Poisson structures on /\/lé\f 3 and M{V , can also be related via a symplectic quotient,
as explained in [63].

In conclusion, we can describe the algebra -A?,l in terms of the 10 generators A;, B;,
M;, C;, N1, Ny satisfying the relations (3.42) and (3.44). Classically, these generators form
a closed Poisson algebra (as noted in [62]):

{A1,B1} = Cy — éAlBl ; {A2,B1} = N1 — §A2Bl ;
{B1,C1} = Ay — %3101 ; {B2,C1} = N1 — %BQCI ;
{C1, A1} = By — éC1A1 ; {Co, A1} = Ny — §C2A1 ;
{AL N} = AN+ AsCy — By (AL N} = S AL, — 4By 4 €y
(BN} = —BiNy + 2B, — G | {Bi N} = S Byl — By + Ay
[C1 N} = —5CaNy + BaCy — Ay [C1 M) =GNy — ACs 4 By
{N1, N1} = A1B1Cy — A3 B2 . (3.45)

The remaining Poisson brackets can be obtained by reversing the orientation. In addition,
the functions M; associated with the curve around the puncture are central elements of the
Poisson algebra, {M;, e} = 0.

Fixing the values of the central elements M; leaves us with a 6-dimensional moduli
space /\7151)’71 which is symplectic. A natural maximal set of commuting Hamiltonians consists
of the A-cycle functions A; together with a network N5 that surrounds the puncture and
has one edge along the A-cycle (see figure 24):

Ny = —€mnp A M" 6P, = trAM — A1 M . (3.46)

This network is the pants network in the pants decomposition obtained by cutting C; i
along the A-cycle. It is related to the network N7 defined above via

No = —N1C1 — NlBl + A9 B1Cq + BoCoy — A% + Ay . (3.47)
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Figure 24. A maximal set of commutting Hamiltonians on ./\;lil is provided by the A-cycle
functions A; and the pants network Ns.

The A-cycle functions A; and the pants network No Poisson-commute, as is obvious from
the fact that they do not intersect:

{A1, Ao} = {A1, 1} = {A, 1} =0. (3.48)

SL(4)
The A-cycle functions are 4; = trA, Ay = 1 [(trA)? — tr(A?)], A3 = trA~!. We define
three networks which are going once around the A-cycle and once around the B-cycle, and
differ by the choice of the branch that is doubled:

No = emnpgUn, Un UL UL e

Ny = emnqum UL, U} UL e rstu

Ne = S€mnpgUnyUp, UctUguerst“ . (3.49)

Quantum relations between the loop and network operators can be obtained by apply-

ing quantum skein relations:

>
>
1>
>

AiBy = ¢ 5Ny, + g5 1 AB, = Q%N{)Jrq% 3,

A3By = ¢ 5 Vi +q% A:’:, ; A3By = q%ﬁ{, +q_%él )

AiBy = ¢ i Na +qi N, AsBy = ¢ VAN, + g N,

A3By = g iNa +q1 A;; ; AyBy = g VAN, + ¢ ié ;

AsBy = q2Ch+q 2Co + Ny (3.50)

Here the networks with a prime are flipped, and N4 is the four-junction network shown in
figure 25.

Figure 25. Network N4 that appears in the product Ay By (thick lines carry A%0)).
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Figure 26. Sphere Cy 4 with 4 punctures A, B, C, D. The holonomy matrices S and T are associated
with loops surrounding pairs of punctures.

3.3 Four-punctured sphere

The next example (with x = —2) is the sphere Cp4 with four full punctures, denoted by
A, B, C, D. Its fundamental group can be expressed in terms of the loops v4,vB,Yc, YD
surrounding the punctures clockwise, subject to one relation:

m1(Co,a) = {(va, 7B, vC, YD) |VAVBYCYD = Yo} - (3.51)

We associate the holonomy matrices A, B, C,D to these loops, satisfying ABCD =
(—1)N ~!1. In addition, we consider the loops vg and yr surrounding pairs of punctures:
S = AB and T = BC (see figure 26). We also define the two networks Nap, Nop
(and their inverses Nap, Nop) around punctures A, B, and C, D, respectively, which are
adapted to the pants decomposition determined by the curve ~g. Each of the holon-
omy matrices A,B,C,D,S, T gives (N — 1) functions, while each of the four networks
Nag,Ncp, Nag, Nop gives (N — 1)(N — 2)/2 functions. This gives the following number
of functions:

(N-1)(N—-2)

6(N —1)+4 5

= 2(N? — 1) = dim[M{,] . (3.52)

Fixing the conjugacy classes of A, B, C,D gives 4(N — 1) constraints.

SL(2)

The generators Ai, By, Cy, D1,S51,T1 do not form a closed Poisson algebra on their own.
Indeed, applying the quantum skein relation gives

A A

S1Th = q~

ol
ol

Ul + q { + Alél + Blﬁl s (353)

with U; = trBD and Uj = trAC (up to an overall sign for later convenience). The leading
order in & gives the Poisson bracket

{51, Th} =-U1 + U{ . (3.54)
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Figure 27. The product STy generates networks via skein relations.

We can eliminate Uj via the relation (3.53), but then we must include U; in the set of
generators in order to obtain a closed Poisson algebra. The closure of the Poison alge-
bra with the 7 generators Ay, B1,Cy, D1, 51,11, U; is implied by the following g-deformed

commutators:

(f%SlTl - qéT}S} = (¢t —q)Uy (q% q %)(A1C1 + B1Dy)

¢ 20 - 20Ty = (07— )1 — (q2 — ¢ 2) (A1 By + CiDy)

14 14 1 1 1

q 20181 — 251U = (¢ — )Ty — (¢2 — ¢ 2)(B1C1 + A1 Dy) . (3.55)

Since dim[,/\/l%A] = 6, there must be one relation between the 7 generators. It is provided
by the product of U; and Uj:

Ulﬁ{ = qS% + q_lff + qégl(fhél + élbl) + q_éﬁ(éléﬁ + Albl)
+A1B,C1Dy + A + BY + CF + DY — 27 (3.56)
Eliminating U{ with the relation (3.53) we obtain the familiar cubic relation (see for ex-
ample [25])
Pr=q 25T — ¢ 18} — T2 — ¢ U7
1 ~ A A A oA 1~ AoA A A 1.~ A A ~ A
—q7§Sl(AlBl + ClDl) — q§T1(B101 + A1D1) — q7§U1(A101 + B1D1)
—Alélélf)l - A% — B% — 012 — b% -+ [2]2 . (357)

Note that the same relation holds with U; replaced by Uj and ¢ by ¢~'. We thus have a
presentation of the algebra A3,4 in terms of 7 generators satisfying the cubic relation Py:

Aj4 = C[A1, B1,C1, D1, 81, Ty, Ui /Py (3.58)

The Poisson brackets can be expressed as derivatives of Py, for example

oP
{Sl,Tl} = 87(]1 =517, —2U; — (A101 + BlDl) . (359)

SL(3)

For Riemann surfaces with dim[m1(Cy,)] = 3 such as Cp 4, the SL(3) character variety has
dimension 16, and is generated by a minimal number of 45 trace functions, see [60][64]. This
implies the existence of 29 relations between the generators. Choices for the 16 independent
generators were given in [65]. In terms our description, we can take the following loop and
pants network functions:

Ai)B’iuciaS’iuﬂan/7NABaNAB7NAC)NAC b (360)
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Figure 28. The six-junction network Ng that appears in the product NapNag.
with
Nuyp = trAB™! — A\ B, , Nac =trAC™! — 4,0y . (3.61)

We can then apply quantum skein relations to products of generators to obtain relations.
For example we get (see figure 27)

SiTy = q_%NBD + Q%N]%D + Napc + B1Dy (3.62)
with
Npp = trBD™! — B D, | Npp =trAB™IC — ByU7
Naipc = trCB™'A — A Npc — C1Nap — A1 BoC . (3.63)
We also find

NABﬁAB = q_%NG + q%ﬁﬁ
+S1A232 + SQAlBl + glgg + 12111212 + 3132 + [3] , (3.64)

with (see figure 28)

N¢ = trABA™'B™! — 818y — A1 Ay — B\ B> . (3.65)
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4 Fock-Goncharov holonomies

We now give an explicit representation of the algebra Agn in terms of polynomials in the
coordinates defined by Fock and Goncharov in their seminal work on higher Teichmiiller
theory [30]. The holonomy matrices constructed with their methods have some nice pos-
itivity properties, which imply that all loop and network functions are given by Laurent
polynomials with positive integral coefficients. Relations between generators can then
be easily obtained (with the help of Mathematica for higher rank). Thanks to the natural
quantization of the Fock-Goncharov coordinates, these relations can be quantized uniquely.
In all examples we have studied perfect agreement is found with the results of skein quan-
tization presented in the previous section. The most non-trivial part of the quantization
concerns the positive integral coefficients in the loop and network polynomials. We will

1/2 __ a5 expected

see that they get quantized to positive integral Laurent polynomials in ¢
from their interpretation as the framed protected spin characters of Gaiotto, Moore, and

Neitzke [22]. We give many examples up to N = 4 for the surfaces Cy 3, C1,1, and Co 4.

4.1 Fock-Goncharov coordinates

Fock and Goncharov defined useful systems of coordinates for Mé\fn associated with trian-
gulations of Cy ,,. Provided that Cy, is a hyperbolic surface with at least one puncture, it
can be decomposed into triangles with vertices at the punctures. There are —2x triangles
and —3y edges in this ideal triangulation. Each ideal triangle can then be further decom-
posed into N? small triangles, which produces a so-called N-triangulation (see figure 29).
The Fock-Goncharov coordinates x,, with o = 1,...,d, are associated with the vertices of
these small triangles (excluding the punctures of C, ). There are (N — 1) coordinates on
each edge, and (N 5 1) coordinates inside each face, which add up to d = dim[/\/lg’[n] (see

appendix A for more details).

é\fn can be neatly encoded in a system of oriented arrows

on the edges of the small triangles of the N-triangulation (see figure 29 right). The Poisson

The Poisson structure on M

Co,g C

Figure 29. Left: ideal triangulation of the three-punctured sphere Cy 3 into two triangles. Right:
N-triangulation of an ideal triangle into N2 small black and white triangles (here for N = 4). The
Poisson structure ¢ is encoded in the arrows circulating clockwise around the small black triangles.
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bracket between two Fock-Goncharov coordinates is given by
{Za, 28} = caprazs , (4.1)
with

€ap = #(arrows from z, to xg) — #(arrows from zg to z,) € {0,£1,£2} . (4.2)

A monomial z3'---23* can be encoded in a vector of exponents a = (ag,...,aq), called
tropical a-coordinates.!> The Poisson bracket between two monomials z, = [], 22> and
zn =11, xPe is given by
{Ta,zp} = Z(aaaagbg)xaxb = (a'eb)zarp = — Z(xaba)xaxb ) (4.3)
a,fB «

In the last expression, the combinations x, = 3Eapap are the tropical x-coordinates of
the monomial x,. Clearly, monomials with x, = 0 for all « are central elements of the
Poisson algebra (we will see below that they correspond to traces of holonomies around
the punctures). The moduli space Mé\fn is a symplectic fibration over the space of central
monomials.

4.2 Holonomies

Fock and Goncharov constructed holonomies on the triangulated surface Cg4, using the
snake matrices reviewed in appendix A. The general procedure to obtain the holonomy
for a curve 7 is to choose a curve homotopic to v on the graph I' that is dual to the
triangulation and multiply the matrices assigned to the corresponding edges and vertices
of the dual graph.

More precisely, the dual graph I" must be fattened and decomposed into rectangles
along its edges and hexagons around its vertices (see figure 30). There are three types of
segments in the decomposed fat graph: the segments e crossing an edge of the triangulation,
the segments s intersecting the dual graph, and the segments v around the vertices of the
dual graph. The segments e and v are oriented clockwise around the punctures, while the
segments s are not oriented. The matrices e,s,v € SL(N, C) assigned to the segments e, s, v
of the decomposed fat graph are the snake matrices defined in appendix A (normalized to
have unit determinant):

€r, = Hl(l'l)HQ(.Tg) s HN—1($N—1) s s=5 s Vy = F. (44)

Here the matrix e,, depends on the (N — 1) coordinates x1,...,zny_1 along the relevant
edge in the triangulation (for conciseness we only indicate the coordinate that is closest
to the puncture around which it rotates). Similarly, the matrix v, depends on all the
coordinates inside the relevant face in the triangulation. For example, for N = 3 we have

10 0 001 1 0 0
e, =10z O , s=10-10], ve=|1 1 0] . (4.5)
0 0 z122 1 00 11422

12The a; are coordinates for the tropicalization of the A-space defined by Fock and Goncharov, which is
dual to the X-space parameterized by the z;. The A-space is isomorphic to the space of laminations on

Coon-
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T1

Z2

Figure 30. Two triangles in a triangulation and the corresponding dual graph T' (black). The fat
dual graph (dashed) is decomposed into rectangles and hexagons, and its segments are associated
with matrices e, s, v.

The holonomy for a path on the fat graph with successive segments (s1, 82, , Spm),
where s; € {e,s,v}, is given by the product of the corresponding matrices: sy, - - - S2S1.
The holonomy around a rectangle or an hexagon is (projectively) equal to the identity:

eses = vsvsvs = (—1)V 7T, (4.6)

Note that this sign is consistent with our conventions for the contraction of a fundamental
loop in (2.39) (in the classical case ¢ = 1).

The holonomy for any curve v on the surface Cg4, is obtained by choosing a curve
homotopic to v on the fat graph and multiplying the corresponding matrices (the proper-
ties (4.6) ensure that the choice of curve on the graph is irrelevant). Fock and Goncharov
showed that the resulting holonomy matrix is conjugate to a matrix whose minors are given
by Laurent polynomials with positive integral coefficients (in any coordinate system, that
is for any triangulation).'® Tt follows that the loop functions A; that we defined in (2.25)
as sums of principal minors (invariant under conjugation) will also be given by positive
integral Laurent polynomials in the variables xi/ N We will moreover observe in explicit
examples below that the network functions (2.28) also turn out to be positive integral Lau-
rent polynomials, but we did not find an easy derivation of this property from the positivity
of the minors.

A loop or network function L will always contain a highest term with unit coefficient,
that is a monomial x, = [], 22> such that any other monomial xp, = [], 5% has b, < a,
for all a:

L=a'ad?-ad+-- (4.7)

13In the case of a holonomy for a loop running around a puncture, the resulting matrix is moreover
conjugate to a triangular matrix.

40 —



In contrast, other monomials in L have integral coefficients  that can be larger than 1:
L=+ Q1+ Q2+ . (4.8)
The product of two loop or network functions L and L’ can be expanded as

LL' =) oL, L';L")L" . (4.9)
I

For SL(2), Fock and Goncharov proved the positivity of the coefficients ¢(L, L'; L") by ap-
plying the skein relation shown in figure 3 to the intersections between the loops associated
with L and L' and by reducing contractible loops as in (2.36).!* Note that the positivity
of the SL(N) skein relation (2.22) immediately implies that a product of loop or network
functions can be written as a finite sum with positive coefficient. However, reduction moves
such as those shown in figure 11 can spoil this positivity since they involve negative signs.

4.3 Quantization

The Fock-Goncharov coordinates admit a natural quantization. The algebra .Afxn of func-
tions on Mé\f » can be g-deformed into a noncommutative algebra .Af]\{n (¢) by promoting the
coordinates x, to operators I, satisfying the relations

i’aig = qgo‘ﬁfﬁﬁia . (4.10)

It is convenient to work with logarithmic coordinates X, defined via z, = exp X,, and
the corresponding operators Xa, which satisfy the commutation relation (recall ¢ = exp h)

[(Xo, X = M{ X0, X5} = heqap - (4.11)

A monomial in the Fock-Goncharov coordinates can be quantized by first expressing it as
an exponential of a sum of logarithmic coordinates, and then promoting them to operators
(as in [61] for example):

n
Ta = H xde = expz aXa BN Ta = expz a0 Xa = q_% 2a<pdafapdp Hﬁ:gﬁ ,
(e (e [e%
(4.12)

where in the last step we used the Baker-Campbell-Hausdorff formula. Similarly, the
quantum product of two monomials is given by

Ta*x Tp = eXpZ ag X, * expz ngg — 3 XaslaXabsXs] exp Z(aa + ba)Xa
«a B o

= ¥ Py, . (4.13)

MMore precisely, their proof does not apply to the loop functions A; that we are using, but to their
slightly different “canonical maps” T = tr(A‘) from the space of integral .A-laminations to the space of
positive Laurent polynomials.
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The loop and network functions that we want to quantize are positive integral Laurent
polynomials in the Fock-Goncharov coordinates. The monomials z, that they involve can
simply be quantized as in (4.12). It is much less obvious to determine how to quantize the
positive integral coefficients Q of the monomials. Fock and Goncharov conjectured that

these quantum coefficients are positive Laurent polynomials in ¢*/2

. They also conjectured
that the highest term, which has a unit coefficient classically, has a unit coefficient in the
quantum operator too. We will make the assumption that all the unit coefficients in a loop
or network polynomial remain unit coefficients in the quantized operator (as expected from
the interpretation of these coefficients as protected spin characters in [22]). What remains

to find is how the non-unit coefficients Q get quantized:

L=xa+4Quop +--- SN L=3a4+Qdp+--- . (4.14)
Our strategy is to demand that the classical loop and network functions, which satisfy
some relations of the form (4.9) (such as (3.14) and (3.15) for Cp3), get quantized into
operators satisfying quantized versions of these relations. This requirement turns out to
be powerful enough to determine uniquely the coefficients in expansions of the loop and
network generators into monomials of quantised Fock-Goncharov-coordinates. We will
illustrate this quantization procedure in many examples in the following subsections.
We first need to determine how the quantized relations look like. The classical relations
are typically of the form (4.9) and get quantized to

L«L' =Y (L, L1, (4.15)
IA/’

where the cq(fl, L' " ) are some functions of g. On the left-hand side, the quantum product
LI’ generates some powers of ¢ as in (4.13). Focusing on the monomials in L, I, and L”
with unit coefficients, we can then read off the quantum coefficients cq(ﬁ, L L ). We will
see that they are integral Laurent polynomials in ¢'/2N. The resulting quantum relations
agree with the ones that we could obtain from skein quantization, such as (3.18).

We can then determine the quantum coefficients Q” by comparing coefficients of mono-
mials with the same exponents on both sides of the quantum relations. We will find that

1/2

the Q7 are always finite positive integral Laurent polynomials in ¢*/2 which are invariant

1

under g <» ¢~'. This is in agreement with the positivity conjectures made in [22] for the

protected spin characters.
4.4 Pants networks

We come back to the basic example of flat SL(N,C)-connections on the pair of pants
Co,3- The abstract structure of the algebra of loop and network operators was discussed in
subsection 3.1.

SL(3)

A 3-triangulation of the pair of pants Cp 3 is shown in figure 31 left. We denote the Fock-
Goncharov coordinates on the edges of the triangles by a;, b;, ¢;, with ¢ = 1,2, and on the
faces by z, y.
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Figure 31. Left: 3-triangulation of the sphere Cy 3 with three punctures labeled by A, B,C. The
edges carry two coordinates each, a;, b;, ¢; and the faces one each, x, y. Right: The dual graph, and
the branches U,, Uy, U, projected on the fat graph. The white junction indicates the base point
for the loops in 71(Co 3).

Loop functions: The dual graph consists of three edges U,, Uy, Ue, which we can
project on segments of the fat graph to obtain the following holonomy matrices:

U, = svglsemsvy ls | Uy = eb_21 , Uc = vaee, vy . (4.16)

The holonomy matrices for the three clockwise loops around the punctures can then be
expressed as

A=U,'U., B=U.'U,, C=U,'U, (4.17)

so that they satisfy the relation ABC =1 from 7 (Cp 3). The eigenvalues of these matrices
correspond (up to normalizations) to products of coordinates along parallel loops around
the punctures in the 3-triangulation (see figure 32 left):

. (1,041,041@2) y a1 = bQCQ N a9 = blclxy ,
B: (1, B1, B1P2) , B1 =ciaz, P2 =caaixy,
C: (Lv,m02) 1 =aib, 72 = agbyy . (4.18)

Defining the loop functions A; = trA and Ay = trA~!, we can write the compact expression

—k!
A; = Haj "1+ g + arag) (4.19)
J
where the normalization factor is determined by the Cartan matrix x of SL(3):

2 -1 _ 1(21
/f—(_l 2) , K 1—3<12> . (4.20)

This simple interpretation of the loop functions comes from the fact that for a path around
a puncture the Fock-Goncharov holonomy matrix can be written as a triangular matrix:

B 1 0 0
o
A= Haj 1 by + a1 o1 0 . (4.21)
j b1ba(1 4 c2 + cox + c1cx) bian (1 + = + 1z + c1zy) a1ag
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B »p— A B = A
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m (V] VUVl = 2'
az Y b az Y b2
A 3 A 3
T C1 as | T C " vy
ay b ay by
aq a9 | aj a2
c > B C : B

Figure 32. Left: Paths homotopic to the loop around the puncture A on the 3-triangulation of
Co,3, which correspond to the monomials oy = bacy and as = bicizy. Right: Paths homotopic to
the network Ny, corresponding to vy = agbicoxy (dark) and vo = a1bycizy (dashed).

The normalization factor ensures that det A = 1. Note that the tropical x-coordinates all
vanish for A;, B;, C;, which implies that they are central elements of the Poisson algebra
(recall (4.3)).

Network functions: We construct the network function N; and its reverse N; by fus-
ing the three edges at the two trivalent junctions with e-tensors (see (3.5), or alterna-
tively (3.6)):

— m n p _rst
Ny = _EmnPUarUbsUctE )

Ni = —emnp(Ug ) (U )E (U™ (4.22)

s S

This gives polynomials with 25 terms each. Three of these terms stand out: the highest
term, the lowest term, and the middle term (which also happens to be the only term with
a non-unit coefficient). They can be written in terms of monomials v; and vy that have
a geometric interpretation as paths homotopic to the network on the 3-triangulation (see
figure 32 right):

1
Ny > Hl/i i (1 + 211 + I/1V2) s V= agblchy s
i
_ 1
Ni > HVZ- "2 (1420 + 1119) vy = arbscrxy . (4.23)
7

The full expression for Ny is
— 741
Ny=J]w ™ (U +y+agy + by + coy + agbry + agcay + bicay + asbicoy + agbiay
i

+agcoxy + bicoxy + 2v1 + ajasbicoxy + asbibacoxy + agbicicaxy
+asbycar?y + aragbicor®y + asbibacar®y + ajasbibacar®y + asbicicary

+ajasbicicox®y + asbibacicaz®y + ajasbibacicox®y + V11/2) . (4.24)

This is consistent with the expression obtained in [62] from products of trace functions
(see also [66]). The tropical a-coordinates of N; (the exponents of its highest term) and
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its tropical x-coordinates are given by
1
a(Nl) = 5(271717272717373> > X(Nl) = (07070707070711_1) : (425)
Poisson brackets: The Poisson bracket for the pants networks is computed by us-

ing (4.3). The Poisson tensor (4.2) can be read off from the 3-triangulation in figure 31,
and is given in the basis {a1, as, b1, ba, c1, 2, x,y} by

0O 0 0 0 0 o0 -11

O 0 0 0o 0 o0 1 -1

0 000 0O 0O 1 -1

0 000 0O 0 -11
= 4.26
c 00000 0—11 (4.26)

O 0 0 0 0 o0 1 -1

1 -1-11 1 -1 0 O

-11 1 -1-11 0 O

This gives the Poisson bracket (3.9)

{Nl,Nl} = —W1 =+ Wl . (427)

The network functions W; and W; have 187 terms each, with the following highest, lowest,
and middle terms:

— __1
Wy > HO'j " (1 + 801 +0’10’2) s o1 = alagblbgclcgyg ,
J

Wy > HJ]- "2 (1 + 809 + 0102) , 09 = a1a2b1b2clch3 . (4.28)
J

All the Poisson brackets (3.11) between the generators Ny, N1, W1, Wi can be easily com-
puted in this way.

Classical relations: It is easy to obtain the polynomial relations between the generators
A;, B;, C;, Ny, N1, W1, Wi. One useful method is to start with a product, say N1Np, and to
look for a combination of generators with the same highest term, in this case A1 B1Cq, in
order to cancel it. Then we find that the highest terms in Ny N; — A; B1C; can be cancelled
by W and W;. Repeating this procedure a few more times leads to the relation P; given
in (3.14). After implementing this algorithm in Mathematica we can obtain relatively
complicated relations such as Py given in (3.15). In contrast, it would be very laborious
to derive this relation purely from applying skein relations, because it would require the
resolution of many intersections in the products W1Wi, Nj, and NZ. Of course, the fact
that Py is a combination of several product expansions of the form (4.9) implies that
its coefficients can appear somewhat unnatural (this comment applies even more for the
quantized relation (3.19)).
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Quantization of the relations: We now want to obtain quantum versions of the poly-
nomial relations P; and Po, in which the network functions are replaced by noncommuting
operators. Each term in the classical relations can acquire at the quantum level a coeffi-
cient that is an arbitrary function of the quantization parameter ¢ = ¢ and that reduces
to the classical integral coefficient in the limit ¢ — 1.

The quantum product of polynomials in the Fock-Goncharov coordinates can be ob-
tained by applying the product (4.13) to each pair of monomials. For example, the quantum
product ]fﬁ]\ﬂ will produce a certain power of g for each pair of monomials coming from
Nl and Np. Let us consider first the highest terms x5 and x5 in N; and N; with tropical
a-coordinates

1 1
a=3(21,122133), a=3(1,221,1,233). (4.29)

These two monomials Poisson-commute, {xa, 5} = 0, which implies that their quantum
product does not produce any power of ¢:

Tala = Tata - (4.30)
This implies that the corresponding term in P; with tropical a-coordinate
at+a=(1,1,1,1,1,1,2,2) (4.31)

must have the same coefficient as Nlﬁl This term turns out to be the hlghest term in
AlBlCl, and so, by an overall rescahng, we can set the coefficients of N1N1 and A13101
to one in the quantum relation P;. The next highest terms in the relation have tropical
a-coordinates (1,1,1,1,1,1,2,1) and (1,1, 1,1,1,1,1, 2). They correspond respectively to
the hlghest terms of the operators Wi and Wl, as well as to two products of monomials i in
N1 N, with coefficients q_l/ 2 and ql/ 2. This fixes the quantum coefficients of W1 and W1
in 791.

Repeating this procedure for the next highest terms in the relation allows us to de-
termine all the quantum coeflicients, except for the constant term 3 in P;. We find that
it should quantize as Q2Q2 — 1, where Q2 and Q9 are the quantlzatlons of the coefficients
of 2 that appear in the expansion of the network operators Ny and Ny (recall (4.23)). We
will show momentarily that Q2 = Q2 = [2] and thus the 3 should quantize as [2]2 —1 = [3].
The quantum relation P; finally takes the form

Nlﬁl = q_%Wl + q%ViVl + A1 B1Cy + Ay ByCo + Ay Ay + B1By + C1Cy + 3] . (4.32)

Pleasingly, this quantum relation agrees exactly with the result (3.18) that we obtained in
section 3.1 by applying the quantum skein relation.

Applying the same procedure (with the help of Mathematica) to the second relation
P leads to the quantum relation given in (3.19).

Quantization of the generators: Having quantized the relations, we would now like
to quantize the generators themselves, as described in subsection 4.3. The generators
are polynomials in the Fock-Goncharov coordinates with integer coefficients. The unit
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coeflicients should not be affected by the quantization, but we need to find how to quantize
the non-integral coefficients that appear in front of some monomials. We will see how the
quantum relation (3.18) can be used to determine these quantum coefficients uniquely.
There is only one term in the expansion for N7 with a non-unit coefficient, namely the
middle term with the factor of 2 in (4.23). In the quantum operator N1, this coefficient of
2 will be replaced by a function @2 of ¢. We can determine 3 by finding a term in the
quantum relation that is linear in it. For example, the monomial 1 /ay appears in ]\Aflﬁl
with the coefficient 02, and also in Wl and W, with unit coefficient. Since W; and W;
appear in the quantum relation (3.18) with factors of ¢'/? and ¢ /2, we deduce that the

coefficient of 2 in Nj simply becomes a quantum [2] in Ni:
2¢N; 5 Qu=qi+qr=[2eDN,. (4.33)
The coefficient of 2 in Ny similarly quantizes to Q2 = [2]. So we have (up to normalization)

N1 21421 4+ 11 N Nl ) 1+[2]ﬁ1+ﬁlﬁ2 ,
Nl S 1425 4+ i1 1> Nl 51+ [2]&2 + ine . (434)

Among the 187 monomials in the network Wy, 24 have a coefficient 2, 4 a 3,12 a 4, 6
ab,2a6,and 1 an 8. Let us focus on the monomial 8y/x in Wj. In the classical relation
Py given in (3.14), the coefficient of 8 is cancelled by 8 pairs of monomials in N1 Ny, Za,
from N and x5, from N7, whose products give y/x. For example we have

1 1
a; = —5(1,2,2,1,1,2,3,0) 5 51 — 5(1;2,2a1;1727033) (435)

satisfying a; +a; = (0,0,0,0,0,0,—1,1). In the quantum relation, however, the quantum
product of the corresponding monomials in N7 N7 produces some power of ¢ as in (4.13):

1.t .5
PP latea; 4 A
Ta;La; = 271 1xa1+51 = (4Za;+a; - (4'36)

Summing over the contributions of all such pairs (a;,a;), we obtain the expression for the
quantization of the term 8y/x in W, (recall there is a factor of ¢~/2 in front of W1 in the
quantum relation (3.18)):

sewr b 2> @R =g 432 +3¢ g i =2PeWr. (437

The quantization of all the non-unit coefficients in the network operators W, and ﬁfl can
be determined in the same way. We find

1 _1 3 1 _1 _3 3
2—q2+q =12, 8—q2+3q2+3¢ 2+q 2=[2]",
3 qtltqg =03, doq+24q =B +1=[27,
5—q+3+q'=[3]+2, 6—>qg+4+q'=[3+3. (4.38)

We see that all the quantized coefficients in the loop and network operators are positive

1/2 1

integral Laurent polynomials in ¢*/~, and are also invariant under ¢ — ¢~ ".
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Figure 33. 4-triangulation of Cp 3. Left: The green lines represent the eigenvalues «; of the
holonomy matrix A around the puncture A. Right: Paths corresponding to v; (continuous), vo
(fine dashed), and v5 (dashed) appearing in Nj.

This provides further evidence for the positivity conjectures of Gaiotto, Moore, and
Neitzke [22] about the framed protected spin characters (1.6), which should take the form

QL, 7;q) = trysesq™ (4.39)
with J3 a generator of so(3).

SL(4)

We find a similar structure for SL(4) loop and network operators. For example, the
holonomy matrix A around the puncture A has the following eigenvalues (see figure 33):

—1
A Ha i (1, a1, a1, yags)
’l
a1 =bgeg, ag =bacowsys, az=biciriroy1Y2 , (4.40)

with the SL(4) Cartan matrix

2 -1 0 321
1
k=|-12 -1, wl=g 22| (4.41)
0 -1 2 123

The loop functions A; can be expressed in terms of the ay:

A = trA = H a; mi 1+ a1 + g + ajanas)
1 2 2
Ay = 3 [(trA) — H Q; 1+ as + ajag + asas + ajasas + alaQag)
Az = trA™ 1 H a 1 + ag + agas + ajasas) . (4.42)

We can construct three pants networks N, Ny, N¢ (and their reverses), differing by
the choice of the edge that carries the second antisymmetric representation of SL(4) (recall
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figure 18):

1
Ny = _iemnqu;angsUﬁtUguersm =trCB™! — C1Bs

1
Nb = _iemnquZLr gsUIt))tUgueTStu = tI'AC_l - AIC3 ’

1
N, = —iemnqug; n UP Ul " =trBA™! — B1 A3 . (4.43)

These pants network functions contain 176 terms each, all with unit coefficient apart from
12 that have a coefficient of 2. Some of the terms have an interpretation as paths homotopic
to the network (see figure 33), and we can write for example

1
N, > Huz- " (14 2v1 4 2109 + v11903) (4.44)
i

—1

Na > H VZ-_HSi (14 2v3 4 2v9v3 + 111903) (4.45)
7

with v = agbic3r123Y1Y3, V2 = arazbacar1w2y1y2, and v3 = asbzc1T2w312Y3.

Quantum relations can be obtained by using the quantum skein relations for U, (sls)
(see figure 19). The quantization of the network operators can then be obtained from
these relations. In particular, the 12 coefficients of 2 appearing in each pants operator get
quantized to [2] = ¢"/? + ¢~'/2, much in the same way as for SL(3). A more elaborate
illustration is provided by the network that appears with a factor of ¢'/2 in the relation
for Naﬁb (see figure 19). This network operator contains 2344 terms with a coefficient of
2, 184 with a 3, 815 with a 4, 123 with a 5, 91 with a 6, 115 with an 8, 6 with a 9, 14 with
a 10, 8 with a 12, and 4 with a 16. Every coeflicient gets quantized in a unique way. Note
however that coefficients that are the same classically can quantize in different ways:

N|=

2 —>q%+q7
3= q+1+q" or 3,

4 q+2+qt  or 2 +2077,
5= q+3+q ",

6 qd+20: 4202 4q 2 or  Be243¢:  or ghdtgl
82444207 or @2 43¢ 43¢ 4q 7,

9 = 2¢+5+2¢ "1,

10 = g2 +4g2 +4¢7 2 +q 2

125 ¢ +3q+443¢" +q7> o 27 4> +4g77 +2g77
16 = ¢> +4g+6+4¢ " +q° or 207 + 64 + 67 +2077 . (4:46)

or 2,

4.5 One-punctured torus
SL(2)

We start by briefly reviewing the well-studied case of flat SL(2, C)-connections on the one-
punctured torus Ci; [22] (see also [61]). A triangulation of C;; and its dual graph are
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Figure 34. Left: One-punctured torus C; ;. The A- and B-cycles are shown, together with a
network operator N;. Right: A triangulation of C;; into two triangles. The dual graph consists of
the edges U,, Uy, U, and corresponds to the network Vy.

shown on the right of figure 34. The three edges of the dual graph can be used to express
all the loop and network functions. After projecting the edges on the fat graph, we can
express the corresponding holonomy matrices as products of (normalized) snake matrices:

U, = sv_lseavy ) Uy = e;l , U, = vesv s . (4.47)

The holonomy matrices for the A- and B-cycles, and for the clockwise closed loop around
the puncture (all based at the black junction in figure 20) are expressed as

A =U,U.!, B=U,U;", M = U, U 'U, U, U UL . (4.48)

In terms of the Fock-Goncharov coordinates a, b, ¢ on the edges of the triangulation, these
loop functions are given by

A = \/%—i—\/i—i-\/l%, Bl—\/%Jr\/ng\/l;b, Mlzabc+£. (4.49)
These results were already derived by Gaiotto, Moore, and Neitzke [22], who emphasized
that they were unexpected from classical reasoning. Indeed, the vev of a Wilson line
operator in a representation R of the gauge group would naively correspond in the IR
theory (where the gauge group is broken to its Cartan subgroup) to a sum of vevs of
Wilson lines labeled by the weights of R. In the case of A; in (4.49), these IR Wilson
lines correspond to the terms v/be and 1 / Vbe. However, extra contributions, such as \/bTC,
come as a surprise. They were attributed to interesting bound states in [22].
The Poisson bracket of A; and B; can be obtained by direct calculation from (4.1)
and agrees with (3.29):

1 1
{Al, Bl} =trAB — §A1B1 == —’CI“AAB_1 + §A1B1 . (450)

The traces C; = trAB and C] = trAB~! correspond to curves that go once around the
A-cycle and once around the B-cycle (in different directions) and take the form

c 1 ) a 11
=/ S =./= 24 -+ =) . (451
C ca—i—\/;—i—\/a, ! \/:(bc—lrb—ir +b+ab> (4.51)
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Figure 35. Left: 3-triangulation of C;,;. The edges carry two coordinates each, a;, b;, ¢;, and the
faces one each, x, y. Right: the A-cycle (red), the B-cycle (green), the loop around the puncture
(black), and the network Nj corresponding to the dual graph (blue).

As explained in subsection 4.3, in order to quantize the generators we first write them

B

in terms of logarithmic coordinates A, B, C' defined via a = e?, b = e?, ¢ = ¢®, and then

promote these coordinates to operators fl, B, C satisfying the commutation relations
[A,B] = [B,C]=[C,A] = 2h . (4.52)
For example, the quantized A-cycle operator is given by
Ay = e 3(B40) 4 3(B-0) 4 o3(B4C) (4.53)

We can explicitly check that the quantum relation (3.36) is satisfied by using the quantum
product (4.13).

A key point is that the loop function C{ contains a coefficient of 2 in (4.51), and it is
not clear a priori how to quantize it. However, the quantum relation (3.33) imposes that
this 2 in € be replaced by the quantum integer [2] = ¢*/2 + ¢~/ in (4.

SL(3)

A 3-triangulation of C;; is shown in figure 35. There are now two Fock-Goncharov coor-
dinates for each edge, a;, b;, ¢;, with ¢ = 1,2, and one for each triangle, x, y. We express
the holonomy matrices corresponding to the three branches of the dual graph as

U, = svglsewvy , Uy, = eb_21 , U. = vxe@sv;ls ) (4.54)

These three branches can be used to construct all the loop and network functions, exactly
as in (4.48) for the SL(2) case.
The loop functions M; = trM and My = trM~! can be expressed compactly as

-1
—K. .
M; = Huj T+ g+ pape) (4.55)
J
where ©1 = ajagbibacico and g = alagblbzclcgm3y3 correspond to products of coordinates

along paths surrounding the puncture. The A-cycle functions A; = trA and Ay = trA~!
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Figure 36. Left: Paths corresponding to the monomials a; = bic1z, as = bacay, f1 = a1bix, B2 =

1551

H1 (s,

asboy, and (1 = ajasbibacica. Right: Paths corresponding to vp = agbicoxy and vy = ajbecixy.

similarly involve the monomials ay = bicix and as = bacoy, which are products of coordi-
nates along paths homotopic to the A-cycle (see figure 36):

Ar = [Jo; ™ [1+b1+bra+ biboz + ar(l + by + bay + a2)]
J
-1
Ay = H a; "2 [1 + by + boy + b1boy + 042(1 + b1 + bix + Oél)] . (456)
J
Interestingly, the tropical x-coordinates of the terms in A; involving only the «; (namely

the highest, middle, and lowest terms) reproduce the weight systems of the fundamental
and anti-fundamental representations. More specifically, the tropical x-coordinates (b, bs)

are
" a1 (0,1) e a1y (1,0)
A5 ]Jo; " S ¢ (1,-1) A3 [Ja; @ S ar + (-1,1)  (4.57)
j 1 (=1,0), i 1 (0,-1).

The B-cycle functions B; have similar expressions, involving the monomials 81 = a1biz
and 3 = agboy. The Poisson bracket between 3; and «; can be neatly expressed in terms
of the Cartan matrix « (as in [67]):

{Bi, o} = KkijBicj {Bi, Bj} = {ai, a5} = 0. (4.58)
The network function N; and its reverse N; defined as
Ni = emnpUq, U Ug ™"
N1 = emnp(Ua ) (U, (U e (4.59)

contain 28 terms each, only one of which has a non-unit coefficient of 2. The full expression
for NV} is precisely the same as the expression (4.24) for the pants network function on Cp 3,
apart from three extra terms:

-1
Ni(Ci1) = Ni(Co3) + H v; " (agb1bazy + bicicoxy + caarasry) . (4.60)
J
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The loop functions Cf = trAB™! and C} = trA~'B are polynomials with 27 terms, 8
of which have a coefficient of 2.
The quantization of relations such as (3.39) can be obtained by using the quantum

product:
AyBy = Q%Nl + q_%éé ; A1By = q_%N{ + C]%éb ;
A1By = Q%N1 + q_%éi ) AyBy = q_%N{ + qééﬁ : (4.61)

Here the network operator ]\7{ corresponds to the flipped dual graph (see figure 23). This
agrees with the relations (3.40) obtained by applying the quantum skein relation.

In order for these quantum relations to hold, the coefficients of 2 appearing in the
classical functions Ny, C!, and N] must be replaced by the quantum integer [2] = ¢'/? +
¢~ /2 in the operators Ny, C’l’, and NJ.

We can also reproduce the quantum relations (3.42):

A A 1 A~ 1 2 A A A A A A ~ N

NiN1 = q 2 We + q2We + A1As + B1 By + C1Cy + My + Ma + [3] (4.62)
where Ws is a network with six junctions shown in figure 23. The same network W also
appears in the product

ﬁ{é’g = Ws + q%fllflg + C]_%Blég ) (4.63)
We can further compute the classical relation (also obtained in [45] and [62])
A1 As By ByC1Cy = [Nf’ + N2(AyBy + BoCy + CaAy) (4.64)
+N1(A1AyB1Co + A2C) 4+ A3By — 34 By + cyclic)
—(A1B3C3 — 2A2ByCy + A3 + cyclic) + reverse
— N1 N1 (A1 As + cyclic) — (A1 Ay By Bo + cyclic)
+3(A1B1Cy + A3 B2Cy) + My My + 6(My + M) +9 .

Here “+cyclic” means adding the terms obtained by cyclic permutation of A, B,C, and
“+reverse” the terms obtained by reversing the orientation, A; < Ao, N1 < N and so
on. We also managed to quantize the relation (4.64) but the result is not very enlightening
so we omit it (in a basis where each monomial is ordered alphabetically, we need to add
terms that vanish in the classical limit ¢ — 1).

SL(4)
The 4-triangulation of Cy 1 has 15 coordinates, 3 for each edge, a;, b;, ¢;, and 3 for each face,

{zi,yi}, with i = 1,2,3 (see figure 37). The A-cycle functions A; and As have 21 terms
each, while Ay has 56 terms, some of which can be expressed as

_ __1
Ay > HO&Z- 1 (1 + o1 + 1o + 0110420[3) s
%
_57_1 2
Ay > H Q; 2 (1 + a9 + a1 + a3 + a3 + a1a2a3) , (4.65)
7

1
Az > H Q; Fai (1 + az + agas + ajasas)
%
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Figure 37. 4-triangulation of C; ;. The edges carry three coordinates each, a;, b;, c¢;, and the faces
three each, z; and y;. The paths corresponding to the monomials a; = bicixax3, A = bacox1ys3,
and ag = bzczy1y2 appearing in the loop functions A; are indicated.

with a1 = bicixexs, ag = bacex1ys, and as = bscsyiye. The tropical x-coordinates
{b1,bo,bs} of these terms in A; and As reproduce the weight systems of the fundamen-
tal and anti-fundamental representations (similarly to (4.57)), while those in Ay form the
weight system of the second antisymmetric representation:

ar1adas : (0,1,0)
o, | areeas : (1,-1,1)
A2 5 [J o, ™ § cna, anas - (=1,0,1),(1,0,—1) (4.66)
i as : (-1,1,-1)
1 : (0,—1,0) .

We define three networks homotopic to the dual graph, differing by the choice of the branch
that is doubled (their expansions contain 223 monomials each):

1
Na = §€mnqu;nTUgsU£tUgu€r8tu s
N _ 1 Um n Up Uq rstu
b — 2€mnpq ar VbsVptVecut ’
1
NC = iemanUZLr gsUgtUguETStu . (467)

The quantum relations in (3.50) allow to uniquely determine how all the integral
coefficients of 2, 4, and 8 appearing in the Fock-Goncharov expansions of the network
functions get quantized:

(4.68)

4.6 Four-punctured sphere

Another example is a sphere Cp 4 with four full punctures, A, B, C, D. It can be triangu-
lated into four triangles, as shown in figure 38.
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SL(2)

The loop around the punctures give the following trace functions:

1 1
Al = Vacf + —— B1 = Vbce + ,
! I aer ! N
1 1
C1 = def + —— Dy = vVabd + . (4.69)

Vdef Vabd

We also consider loops surrounding pairs of punctures, S = AB, T = BC, and U = BD
(see [22]):

1

51:W(l—l—a%—e—i—ae—l—abe—i—aef—i—abef),
1

T = 140 bf +b bdf + bed,

1 JW( +b+ f+bf +bef + bdf + bedf)

U, = ! (14+c+d+ cd+ acd + cde + acde) . (4.70)
acde

These polynomials do not contain any non-unit coefficients, so their quantization is straight-
forward. In particular, we can reproduce the quantum relation P (3.57).

The loop function associated with the holonomy U’ = AC does however contain
coefficients of 2 and 4:

!

1
U= ———  (ab’cdef? + ab’cef? + ab’cef + ab’de f% + ab’def + ab’ef?
1 \/abﬁ\/&\/éf( f f f f f f

+2ab’ef + ab®e + abce f? + abeef + abdef? + abdef + 2abe f>
+4abef + 2abe + abf + ab + aef>
+2aef +ae+af +a+bef +be+ef +e+1). (4.71)

The quantization of these non-unit coefficients can be determined by demanding that the
quantum relation (3.53) holds. We find that we must make the following replacements:

[ SIS

2 5 q2+q 2, 4—q+2+q7. (4.72)

SL(3)

A 3-triangulation of Cp4 is shown in figure 38. Each holonomy matrix gives two loop
functions, for example

—1
—K. .
Ai = Ho‘j (It tara) ar =agerfy, g =arcafizizszy . (4.73)
J

The monomials «; are products of coordinates along paths surrounding the puncture on
the 3-triangulation (see figure 38). The operators coming from S, T, U have 48 terms each.
The operators .S; contain the terms

-1
—K. .
Si > HU]- Y (1 +o0; + 0'102) s g1 = a2b2€2f21'11‘3 s o9 = CL1b161f1:L‘21’4 (.4.74)
J
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Figure 38. 3-triangulation of Cy 4. The edges on the left and on the right are glued together. The
paths corresponding to the monomials a; = ascy fo and as = ajc f1x12324 are indicated.

We can reproduce the quantum relations (3.62) and (3.64), provided that we quantize
the non-unit integer coefficients appearing in the network operators as follows:

2 g7 4477, 3 q+1+4q", Ao q+2+q",
55 q+3+q", 65qg+4+q ' or q¢2+22+2¢2+q 2, (4.75)
T—q+5+q ., 8—q2+3¢2+3¢2+q 3, 10q2+4q2+4g 2 +q 2.

Note that among the 21 coefficients of 6 appearing in Ng, 13 are quantized to q + 4 + ¢ 1
and 8 to ¢3/2 + 2¢1/2 + 2¢71/2 4 ¢=3/2.
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5 Relation to conformal field theory

We will now explain how the quantized algebras Ag{ (q) of functions on MN arise naturally
in conformal field theory. We first review several aspects of sl/(N) Toda ﬁeld theory.!> We
then define Verlinde network operators, which are natural generalizations of Verlinde loop
operators. We show that their algebra is equivalent to the quantum skein algebra described
in section 2.8. Our arguments are based on the fact that the braid matrix is twist-equivalent
to the R-matrix of the quantum group U, (sly) defining the skein algebra.

5.1 Toda field theory and Wy-algebra
The Lagrangian for s/(N) Toda field theory has the form

N-1
i i a b(627¢)
L= 5-(0:6,0 ¢)+u;e : (5.1)
where ¢ = (¢1,...,¢n-1) is a two-dimensional scalar field and (-,-) denotes the scalar

product in R¥~1. The vectors e; are the simple roots of the Lie algebra sl(N). Our
conventions on the Lie algebra sl(/NV) are summarized in Appendix B.1. The parameters
are the dimensionless coupling constant b and the scale parameter pu.

The example of Liouville theory corresponding to the case N = 2 [69, 70] suggests
that we should to be able to construct the Toda field ¢(z, ) using chiral free fields ¢;(z),
j=1,..., N — 1 with mode expansion

1 .
vi(2) =¢j —ipjlnz + Z —alz"" (5.2)
n#0 n
where the modes satisfy
[al al ] = 10ii0n+m afj =a Djqk) = —idjk . (5.3)

In order to build the non-chiral fields ¢;(z, Z) out of the chiral free fields ¢;(z) one must
of course supplement them with a similar collection of anti-chiral fields ¢;(Z).
The chiral algebra of Toda conformal field theory is a W-algebra. It is an associa-

tive algebra generated by holomorphic currents W7(z) of spin j = 2,..., N (see [71] for a
review). These can be constructed in the free-field representation via the Miura transfor-
mations

N-1

11 :(Qo+ (hw—i,09)) ZWN F(2)(Qa)F (5.4)

1=0

where : : denotes Wick ordering, @ = b+ b~!, and W9(2) = 1, W!(z) = 0. The currents
W*(2), k=2,..., N, have mode expansions

Wk(z) = i Why=n=k (5.5)

n=—oo

15 A somewhat different approach leading to important results is described in [68] and references therein.
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The modes L, = W2 of the stress energy tensor T(z) = W?(z) = (Qp, 9%*p) — 1(9¢p, d¢)
generate a Virasoro subalgebra

i(n3 - n)6n+m . (5.6)

[Ln, Lin] = (n —m) Ly m + 12

The modes of the currents W¥(z) satisfy nonlinear commutation relations which contain a
quadratic term. The Wy-algebra is therefore not a Lie algebra.

Irreducible representations V, of the Wy-algebra are labeled by an (N — 1)-component
vector « in the Cartan subalgebra of Ay_1. The representations V, are generated from
highest-weight vectors v, which are annihilated by the positive modes of W*(z), and eigen-
vectors of W(’f with eigenvalues determined by «. The representation space of V, is gener-
ated by acting on v, with the modes W*  for n > 0, as usual.

It will be useful to distinguish three types of representations. A distinguished role
will be played by the representations which have @ = —bw; — b_le, where w; and w;
are weights of finite-dimensional representations of sl/(N). Such representations are called
fully degenerate to reflect the fact that the vectors in these representations satisfy the
maximal possible number of inequivalent relations of the form P;(W¥, )v, = 0 for certain
polynomials P;. For generic o one has no such relations in the representations V,, which
are then called fully non-degenerate. There are various intermediate cases, called semi-
degenerate, in which there do exist relations of the form P;(W*, )v, = 0, but the number
of inequivalent relations of this type is smaller than in fully degenerate representations.
This happens for example if o = kwq, with k € C.

5.2 Conformal blocks

Conformal blocks can be introduced elegantly as certain invariants in the tensor product of
representations of Wy-algebras associated with Riemann surfaces C, ;. The definition will
be spelled out explicitly only for the case g = 0, more general cases are discussed in [72].
We shall associate a highest-weight representation V, = V,, of the Wy-algebra with the

" puncture P, of Cy, for r =1,...,n. Let t, be local coordinates around P, such that
t.(Pr) = 0. Conformal blocks can be defined as linear functionals

J:O,n : ®:~l:1vr —C (57)
satisfying an invariance condition of the form
Fon (Wk[nk] ’ U) =0, vE Q1 Vr, (5'8)

where W¥[n;] is defined for meromorphic (1 — k)-differentials 13 (¢) on Cy,, by expanding
)= ) tnmok) (5.9)
nez

and setting

_ZZWI(QL[id®"'®1:[/;§®~-®id]. (5.10)

r=1neZ
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The conditions (5.8) generalize the conformal Ward identities [73]. The value of a conformal
block on vectors ®;'_;w, can be interpreted as a generalized correlation function of n chiral
vertex operators V,, (wy|P;). If w, = v,, is the highest-weight state in the representation

Va,., one calls V,, (P,) = V,, (va,|Pr) a primary field, otherwise a descendant.

Space of conformal blocks: The invariance conditions (5.8) represent an infinite system
of linear equations defining a subspace of the dual vector space to ®;'_;V;. The vector space
defined in this way is called the space of conformal blocks CB(V},],Con) associated with
the Riemann surface Cp, with representations V; at the punctures. This space is infinite-
dimensional, in general. We now want to get a first idea about the “size” of this space.

In the case N = 2, the conformal block for Cp 3 is known to be defined uniquely up to
normalization by the invariance property (5.8). Using this same equation one may express
all values Fp4(ws ® w3 ® we ® wi) associated with Co 4 in terms of

Fou(Vay @ Vag @ L¥ 100, ®va,) = Fr,  FreC, keZsg. (5.11)

One therefore finds that the space of conformal blocks associated with Cp 4 is infinite-
dimensional and isomorphic as a vector space to the space of formal power series in one
variable. This space is far too big to be interesting for physical applications, as stressed
in [25, 74]. Only if the growth of the complex numbers F}, ensures convergence of series
like F((2) =), %szk, can one integrate the canonical connection on spaces of conformal
blocks defined by the energy-momentum tensor at least locally. Further conditions like
existence of an analytic continuation of F'(z) to the Teichmiiller space 7 4, and reasonable
growth at the boundaries of 7o 4 characterize the subspaces of CB(V}4),Co4) of potential
physical interest.

In the case N = 3, one generically finds an infinite-dimensional space of conformal
blocks already for the three-punctured sphere. Using the invariance property (5.8), it is
possible to express the values of the conformal blocks associated with Cp 3 in terms of [75]

Fo.3(Vas @ (W3 ) ke, @ va,) € C . (5.12)

Therefore, similarly to (5.11), the space of conformal blocks associated with Cy 3 is infinite-
dimensional. It can also be identified with the space of formal Taylor series in one variable.
In analogy to the case N = 2, n = 4 mentioned above we may expect that the physically
relevant subspaces of CB(V3], Co 3) may have a representation as spaces of analytic functions
in one variable.

At general rank (N — 1), the number of extra variables required to get similar rep-
resentations for the spaces of conformal blocks associated with Cp3 is equal to half of
the dimension'® of the moduli space of flat connections (N — 1)(N — 2)/2. One way
to understand this is by considering, as in [76] [77], the difference between the number
of basic 3-point functions and the number of constraints from the Ward identities (5.8)
and corresponding to generators of the Wy-algebra. There are N(N — 1)/2 descendant

16This number is equal to the dimension of the Coulomb branch of the T gauge theory. Together with
the 3(N —1) parameters of the momenta c, it gives the (N +4)(N —1)/2 parameters of the T theory [76].
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operators constructed by acting with the modes (W’jl)" on a highest-weight state, for
l=1,2,....,k—1and k=2,3,..., N, which lead to 3N(N — 1)/2 basic 3-point functions
after taking into account the three primaries. Subtracting N2 —1 constraints corresponding
to generators VVlk, forl=—-k+1,—-k+2,....,k—1and k= 2,...,N, gives precisely the
number (N — 1)(N —2)/2 of unconstrained positive integers parameterizing the conformal
block associated with Cg 3.

Gluing construction: Given a possibly disconnected Riemann surface with two marked
points Pg, 1 = 1,2, surrounded by parameterized discs one can construct a new Riemann
surface by pairwise identifying the points in suitable annular regions around the two marked
points, respectively. Having conformal blocks associated with two surfaces C; with n; 4+ 1
punctures Pg, Pi ... 7Priu one may construct a conformal block associated with the surface
C12 obtained by gluing annular neighborhoods of P¢, i = 1,2 as follows

‘FC12(U1®"'®U711 ®w1®‘--®wn2):

- Z For,(01 @ -+ @ vny @ vy) Fep (€00 @ wy @ -+ @ wpy) . (5.13)
VGIB

The vectors v, and v, are elements of bases {v,;v € Zg} and {v);v € I} for the repre-
sentation V3 which are dual with respect to the invariant bilinear form (.,.)s on V. The
parameter 7 in (5.13) is the modulus of the annular region used in the gluing construction
of Cy2. The rest of the notations in (5.13) are hopefully self-explanatory. The case where
PS, 1 =1,2, are on a connected surface can be treated in a similar way.

A general Riemann surface Cy,, can be obtained by gluing 2g —2+n pairs of pants Cj 3,
v=1,...,29g—2+n. It is possible to construct conformal blocks for the resulting Riemann
surface from the conformal blocks associated with the pairs of pants Cj3 by recursive
use of the gluing construction outlined above. This yields families of conformal blocks
parameterized by (i) the choices of representations Vg used in the gluing construction, and
(ii) the choices of elements of the spaces CB(Cj3), v=1,...,29 —2+n.

Closely related to the gluing construction of conformal blocks are constructions of con-
formal blocks using chiral vertex operators. To any 3-point conformal block F € CB(Cy3)
we may associate a chiral vertex operator Viz(22, )(v2|2) : Vo, — Va, such that

a3

(v, Vr(am, ) (v2l)vr),, = F(vz @ va @ v1) (5.14)

holds for all v; € Vo, @ = 1,2,3. The field Vz(22, ) (va,|2) associated with the highest-
weight vector v,, € V,, is called a primary field, and all other fields are called descendants.
A graphical representation is given in figure 39. Conformal blocks associated with n-
punctured spheres Cp ,, can be constructed using compositions of chiral vertex operators in

the form
(vn, Vg, _| (ai75n1_3)(vn,1|zn,1) e Vg, (ﬁofal)(vﬂzg) Ul)an , (5.15)

assuming that z, = co and z; = 0.
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Figure 39. Vertex operator as an intertwiner of highest-weight representations V,,.

5.3 Free-field construction of chiral vertex operators

There is a useful way to construct chiral vertex operators in terms of the free fields ¢;(2).
Basic building blocks are the normal-ordered exponential fields

Va(o) = el@#l@) (5.16)

The normal-ordered exponential represents densely defined unbounded operators on M =
F@L2(RN~1) for Im(o) > 0, F being the Fock space generated by the oscillators a’,. Rep-
resenting the momenta p; as multiplication operators on L?(R™ 1) leads to a representation
of the operators e(®%) appearing in (5.16) as finite difference operators on functions ¥ (p).
For our goals it will often suffice to adopt the closely related definition of the operators
e(®9) ag formal shift operators mapping the highest-weight vector vg € V3 t0 vg4a € Vats-
The fields V,(0) may then be identified with the chiral primary fields V' ( Sta, ﬁ) (z) for the
algebra Wy via

Valo)vg = 22V (4 o) (2)vs vg € Vg, (5.17)

assuming that z = . For later use, let us note that the normal-ordered exponentials
satisfy the exchange relations

V(0" Va(o) = e mi@Bsenl =)y () Vy(o') . (5.18)

An important role is furthermore played by the screening charges which are defined as

o+2m
Qi(o) = / do’ Vie, (') . (5.19)

Powers of the screening charges like Q7 (0) = (Q;(0))" make sense as unbounded self-
adjoint operators on M if the power n is sufficiently small compared to b=2. Higher powers
can be defined by analytic continuation in b2, and the result can be represented explicitly
using suitable modifications of the contours of integration in (5.19). The key property of
the screening charges @Q; (o) follows from the fact that the commutator of the fields Vi, (o)
with the generators of the Wiy-algebra can be represented as a total derivative. This implies
that the screening charges commute with the generators WF.

More general primary fields can therefore be constructed by multiplying normal-ordered
exponentials with monomials formed out of the screening charges. In the case N = 2 one
may consider composite fields of the form V(o) = V4 (0)Q%(0), s € Z>¢. For N = 3 one
could consider, more generally, fields of the form V,Q7'Q5*Q7*Q5" - --. One should note,
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however, that there exist many linear relations among these fields, as follows from the fact
that the screening charges @; satisfy the Serre relations of the quantum group U, (sin) [78],

Q7Q; = (a+¢ HQiQ;Qi — Q;Q7 with |i —j]=1. (5.20)

Using these relations it is elementary to show that in the case N = 3 arbitrary screened
vertex operators can be expressed as linear combinations of

Va(0) = Va(0)@Q1' ™ (0)Q3"*(0)Qi3(0) (5.21)

where s = (s1, s2,5), and

/

o427 o
Qi3(0) = Q1Q2 — qQ2Q1 = (1 — q2)/ da'/ do"Vie, (0")Vie, (0”) . (5.22)

g

Indeed, the relations (5.20) can be rewritten as

Q1Q13 = ¢~ 'Q13Q1 , Q2013 = qQ13Q2 - (5.23)

By making repeated use of these relations together with!”
Q1Q% = ¢"Q5Q1 + [n],Q5 ' Qs (5.24)
we can then express an arbitrary product of charges Q' Q5*Q7°Q5" - - - as linear combina-
tion of monomials of the form Q7' *Q5* °Q5,, reducing any screened vertex operator to

(5.21).
By using the screened vertex operators V7 one may represent more general chiral vertex
operators via

Vi(o)vg = zA‘*Vs(ﬁ‘?‘B)(z)vg , with ' = B+ a+ b(sie1 + s2e3) . (5.25)

It is clear that we cannot represent the most general chiral vertex operators in terms of
screened vertex operators using only integer values of s1, so. It is therefore useful to observe
that Q1(0), Q2(0) and Q13(0) are proportional to positive self-adjoint operators, allowing
us to consider also non-integer values for the powers s1, s2, s in (5.21). The arguments
used in [69, 70] for the case N = 2 can easily be adapted to establish that Qi(c) and
Q2(0) are positive self-adjoint. The operator Q13(c) defined in (5.22) can be shown to
be proportional to a positive operator by expressing it as an ordered double integral and
normal-ordering the product Vi, (0)Vpe,(0”). Considering non-integer s1, sy allows us to
get arbitrary values for the weights (', a, §) appearing in (5.25).

It is furthermore important to note that the difference between 3 and £ is independent
of the parameter s in (5.21). By varying s one may therefore define via (5.25) an infinite
family of chiral vertex operators Vj ( B‘?‘B) (z) intertwining between the same two representa-
tions B’ and 8. The correspondence (5.14) between chiral vertex operators and conformal
blocks on the three-punctured sphere associates with each chiral vertex operator Vi ( ﬁ?‘ﬂ) (2)

n —n

"Here we are using [n]q = L—L =¢" ' +¢" 3 4+ 4 ¢
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a conformal block Fs € CB(Cp3). It seems plausible that the conformal blocks Fs generate
a basis for the physically relevant subspace of conformal blocks on C 3.

To generalize these observations to N > 3 let us note that it directly follows from (5.20)
that the space of screened vertex operators forms a module for the nilpotent sub-algebra of
Uy (sl ), with action of the generators E; represented by right multiplication with @;. One
may define screening charges Q;j(0) associated with the generators Eyj, j > i of Uy(sln)
recursively via Q; i1+1(0) = Q;(0) together with

Qij(0) = Qir(0)Qkj(0) — qQki(0)Qir(0), 1<i<k<j<N. (5.26)
More general screened vertex operators can be constructed as

Va(0) = Va(0) [Q1F (0)Q1¥ (0) -+~ QTN (0)] x -+
x[Q3 (o) Q3N (0)] x -+ x QNN (0],

where s = {s;;;4 < j}. This may be extended to a module for the Borel-subalgebra of

(5.27)

U,(sly) with generators H; and E; by identifying H; with the adjoint action of —ip’/b.
For general o one may identify the resulting module with the Verma module of U, (slx)
with weight w, = —a/b. The observations above imply a relation between screened vertex
operators and representations of U,(sly) on the level of vector spaces. This relation will
be strengthened considerably below.

As before one may use the screened vertex operators V(o) to define chiral vertex
operators via the obvious generalization of (5.25) to N > 3. Fixing the difference 8’ — 8
defines a subspace in the space of parameters s of dimension (N — 1)(N — 2). This
dimension coincides with half of the dimension of the moduli space of flat connections on
Co,3, which was previously found to be equal to the dimension of the space of parameters
labeling inequivalent elements in CB(Cp3). This observation raises our hopes that the
screened vertex operators V3 (o) can indeed be used to construct bases for CB(Cp 3).

Degenerate fields: For special values of o and s one may observe that the screened
vertex operators satisfy certain differential equations relating derivatives of V(o) to the
Wi-currents. These fields are called degenerate fields. The basic example for this phe-
nomenon occurs in the case @ = —bw; when [p?, V3(0)] = ibh;VE(0), where by, i =1,..., N
are the weights of the fundamental representation. We will use the simplified notation
D¥(o) for the screened vertex operators V(o) satisfying these conditions. They satisfy an
N*-order operator differential equation [79], which is essentially equivalent to the equations
expressing the decoupling of null-vectors in the Verma module V_;,,, within the framework
of [73], see e.g. [75][68]. State-operator correspondence in CFT relates the allowed values
of ' to the so-called fusion rules, the rules determining the set of labels of the primary
fields that can appear in the operator product expansion of fields V_y,, (21)V3(22).

The operator product expansion of degenerate fields generates further degenerate fields.
It follows from the fusion rules that the screened vertex operators VS,,(o) that can be
generated by recursively by performing operator product expansions of the operators D(c)
are labeled by the weights A\ of finite-dimensional representations'® M), of Uy(sln). The

18We identify M; = M., in our notations, with w; being the weight of the representation AL
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allowed powers of screening charges collected in s = {s;;,i < j} are constrained by the
fusion rules determining the fields Vg (22) appearing in the operator product expansion
V_pa(21)Va(22). The s;; have to be integers constrained by the condition that (8 — ')
coincides with one of the weights of the vectors in R ).

5.4 Braiding and fusion of degenerate fields

It was shown in [79] that the degenerate fields D*(o) satisfy exchange relations of the form

N
D'(02)D(01) = Y BP(p)} D*(01)D'(02) . (5.28)
k=1

Note that the matrix BD(p) appearing in (6.10) is operator-valued in general, being de-
pendent on the zero-mode operator p = (p',...,p"V"!). The matrix BP(p) satisfies a
modified form of the Yang-Baxter equation called dynamical Yang-Baxter equation, and
BP(p) therefore represents an example of what is called a dynamical R-matrix. It was
furthermore shown in [80] that there exist linear combinations D*(c) = Z;VZI c(p)é- Di(o)
satisfying exchange relations of the form (6.10) with a matrix BP(p) that is p-independent,
and will therefore be denoted by B. The matrix B is different from the standard braid-
matrix R representing the braiding of two fundamental representations of the quantum
group U = Uy(sly) (see appendix B.2 for the relevant background on U, (sly)). R can be
obtained from the universal R-matrix R of U,(sly) as

R=P(mmg®m,)(R), (5.29)

where P is the operator permuting the two tensor factors of CN @ CV. The relation between
B and R was subsequently clarified in [81], where is was shown that B can be obtained
in a similar way as (5.29) from a universal R-matrix R that is related to R by a Drinfeld
twist J € U ®U such that R = Jo1 'R J. The twist J that relates R and R satisfies the
cocycle condition

(A®i1d)(T) - Tz = ([d@A)T) - T3 - (5.30)

As explained in appendix B.3, one may extend the action of J to m-fold tensor products,
allowing us to define operators

T = (rp @ @) (T (5.31)

The cocycle condition (5.30) implies that J (m) i independent of the order in which tensor
products are taken.

Let us consider the space VO,, spanned by the compositions of vertex operators
Dim=i1 (g ... 1) == D™ (0,,) D1 (0y,_1)--- D (o)) with ip € {1,...,N} for k =
1,...,m. The space VO,, carries a representation of the braid group B,, with m strands
represented in terms of the braid matrices B. It follows from the fact that R and R are
related by the Drinfeld twist J that the linear operator J }m) maps the braid group repre-
sentation on VO,, to the standard braid group representation on the m-fold tensor product
of fundamental representations of U, (sly).
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P1 P4

P2 P&

Figure 40. Part of a decomposition of CAgJH_d with n punctures P, and d marked points @y into
three-holed spheres Cy 3 and annuli A,, with m marked points.

By repeated use of the operator product expansion one may construct other degen-
erate vertex operators D5 (o) starting from the products D' (g, ...,01). The vertex
operators D3(o) that can be obtained in this way have weights A associated with the
finite-dimensional irreducible representations of U, (sl ). It easily follows from the results
described above that the braid group representation generated by products of the vertex
operators D3 (o) is isomorphic to the braid group representation on the tensor product of
the corresponding representations of U, (sly). This implies, in particular, that the vector
space spanned by the vertex operators D5 (o) with fixed A is isomorphic to the space on
which the finite-dimensional irreducible representation My with highest weight X is realized.

5.5 Conformal blocks with degenerate fields

Let us consider conformal blocks associated with a Riemann surface CAg,ner with n + d
punctures (see figure 40). We assume that fully degenerate representations Dy, are associ-
ated with the punctures Qg, k = 1,...,d. The remaining n punctures P., r =1,...,n are
assumed not to be fully degenerate. We may alternatively consider Qx, k =1,...,d, as a
collection of distinguished points on the Riemann surface Cg4, which has punctures only at
P.,r=1,...,n. We may start from a pants decomposition o = (v,I") of the surface C ,.
Cutting C4,, along the simple closed curves contained in v = {v1,...,73¢—34n} decom-
poses the surface into spheres Cj 3 with three boundary components which can be holes or
punctures. The trivalent graph I' on g, has exactly one vertex within each Cg 3; it allows
us to distinguish pants decompositions related by Dehn twists. The pants decomposition
specified by o0 = (v,T") can always be refined to a decomposition into a collection of annuli
A® and three-holed spheres TV such that each of the fully degenerate punctures is contained
in one of the annuli A°. This can be done by cutting along additional simple closed curves
on Cy, which do not intersect any of the curves in v, do not mutually intersect, and do not
contain any Qg, k =1,...,d. We furthermore need to cut out discs around the punctures
P.,r=1,...,n. A chosen orientation of the edges of I" allows us to distinguish an incoming
and an outgoing boundary component of each annulus A°.

The gluing construction of conformal blocks allows us to construct families of confor-
mal blocks out of two types of building blocks: The conformal blocks associated with the
three-holed spheres, and the conformal blocks associated with the annuli A¢. Of particular
interest for us will be the latter. Let CB(A,,) be the space of conformal blocks associated
with an annulus with m marked points associated with fully degenerate representations,
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and incoming and outgoing boundary components associated with non-degenerate repre-
sentations. We shall fix the representation associated with the incoming boundary com-
ponent to be Vg, and we assign fully degenerate representations V_py,,...,V_py,, to the
m marked points, respectively. The set of representations associated with the outgoing
boundary component is then restricted by the fusion rules to a finite set. We will assign
to the outgoing boundary component the direct sum of all representations allowed by the
fusion rules.

It follows from the fusion rules that the resulting space of conformal blocks CB(A4,,) is
finite-dimensional. A basis for CB(A4,,) can be constructed explicitly using the degenerate
vertex operators defined above,

]:Am(vm+1 QUm,®- - QU1 & UO) = (Uerl’ Di::i(vmb-m) : D ! (U1|01)UU ),8/ ) (532)

where vg € Vg, vig1 € Vg, and Df\’z (vg|ok) are the descendants of the degenerate vertex
operators Df\’z (o)) associated with vectors vy, € V_py, for k=1,...,m.

It follows from the results discussed in the previous subsection that the space of con-
formal blocks CB(A,,) is naturally isomorphic (as a module for B,,) to the tensor product

of the m finite-dimensional representations M}, , ..., My, of the quantum group U,(sly),

1
CB(An) ~ My, ®---® My, . (5.33)
)

This isomorphism is realized by a linear operators J )(\: /\l(p) that is constructed by com-

bining the change of basis removing the p-dependence with the Drinfeld twist J.

5.6 Verlinde network operators

Verlinde network operators are generalizations of Verlinde loop operators [41, 42] to Toda
CFT of higher rank, and were previously studied in [82]. In order to define the Verlinde
network operators one needs to consider conformal blocks associated with a Riemann sur-
face Cy 44, as above. Our definition will be based on certain relations between the spaces
of conformal blocks with varying number d of fully degenerate insertions. In order to de-
scribe these relations we will employ the set-up introduced in the previous subsection, in
particular the decomposition of Cg 4 into three-holed spheres T, and annuli A°, and the
isomorphism (5.33) which can be applied locally for each annulus A°€.

This needs to be combined with one further ingredient. We will conjecture that there
exist exchange relations between fully degenerate chiral vertex operators and generic chiral
vertex operators,

Di(z Z Z B3 (a)VE (22) DY (21) (5.34)
where |z1| = |22/, and furthermore operator product expansions of the form

D' Z Z FZ o bhj (D (w = 2)val2) (5.35)

where hg are the weights of the fundamental representation with highest weight w;. These
relations would imply that there exist linear relations between the spaces of conformal
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Figure 41. Verlinde network operator.

blocks associated with surfaces C,,4q4 and C;’n +q related by moving a degenerate field
from one annulus A to another one A¢. So far we do not have a proof of these relations.
We expect that such a direct proof should be possible using the free-field representation
of the vertex operators. One may furthermore note that the relations (5.34), (5.35) follow
from the results of [82] if the vertex operator V} is associated with a semi-degenerate
representation V,. Further generalizations of these braid relations were found in [20]. The
general statement should follow from this special case if the operator product expansion of
sufficiently many semi-degenerate vertex operators generates vertex operators associated
with fully non-degenerate representations, as is generally expected.

By combining these ingredients we are now ready to define generalizations of the Ver-
linde loop operators as follows (see figure 41). The isomorphisms (5.33) allow us to associate
maps between spaces of conformal blocks with all the maps between tensor products of rep-
resentations used in the Reshetikhin-Turaev construction. These maps may be composed
with the moves (5.34), (5.35) describing the motion of a fully degenerate puncture from
one annulus to another. One may in particular consider compositions of these two types
of fusion and braiding operations for degenerate fields starting and ending with the space
of conformal blocks associated with a surface Cy;, with no fully degenerate insertions. It
is clear that such compositions can be labeled by networks of the same type as considered
in the previous sections. The construction outlined above associates with each network
an operator acting on the space CB(Cy,,) of conformal blocks for a surface Cq, with n
non-degenerate punctures.

5.7 Relation to skein algebra

The Verlinde network operators generate an algebra Ay realized on the spaces CB(Cy,).
We are going to argue that this algebra is the same as the algebra of quantized functions on
Mé\fn. Recall that the product of two networks is represented in terms of a network with
crossings. It may be assumed that all crossings are located in annuli A¢. In order to describe
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the resulting algebraic relations we may therefore use the isomorphism (5.33) allowing us
to describe the operations representing the crossing in terms of the intertwining maps used
in the Reshetikhin-Turaev construction. All skein relations valid in the framework of the
Reshetikhin-Turaev construction thereby carry over to the Verlinde network operators. In
order to verify this claim it suffices to check that the basic skein relations are preserved
by the twist Jy, ., representing the isomorphism (5.33). Recall that the basic skein
relations (2.41) take the form

‘ J ‘ 1—n J
. o .
(¥ n
\ =q2N Zq_f nA Ait+j—n
n=0 >

JA T R (5.36)

Rz‘j =

with m = min{i, 5, N — i, N — j}. In the framework of Reshetikhin-Turaev one associates
to both sides intertwining maps between the representations M; ® M; and M; ® M; of
the Hopf algebra U,(sly). The intertwining map on the left of (5.36) is represented by
the operator R;; defined in (2.43), the operators on the right of (5.36), in the following
denoted as C (n);JZ, are compositions of Clebsch-Gordan maps, as introduced in Section 2.8.
If the quasitriangular Hopf-algebra U = U,(sly) is replaced by a quasi-triangular Hopf-
algebra U related to U by a Drinfeld twist one may construct the intertwining maps C (”);jz
between representations of ¢/ from the intertwining maps C (n);jl of U in a natural way, as
is explained in Appendix B. The construction is such that we have C (n);ﬂZ = JZ»;lC (n);ﬂZ i
provided that .J;; is the similarity transformation relating R;; and Bij as Bij = JiglRij in.
It follows immediately that C (n);jz and B;; will satisfy a relation of the same form as (5.36).

One may in particular consider Verlinde network operators associated with networks
that are confined to a disc D embedded in an annulus A°. It is easy to see that such network
operators will act on CB(Cy,,) as multiplication by a number. This number represents
one of the link invariants obtained by using the Reshetikhin-Turaev construction. This
construction is thereby recognized as a special case of the definition of the Verlinde network
operators given above.
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6 Spectrum

In the previous section we have found strong hints that the construction of loop and net-
work operators using Fock-Goncharov coordinates defines an algebra isomorphic to the
algebra generated by the Verlinde network operators in the Toda CFT. We had further-
more observed in subsection 2.6 that the resulting algebra shares some features with the
algebra of operators in a quantum integrable model, containing large commutative sub-
algebras. Simultaneously diagonalizing these sub-algebras defines natural representations.
The next natural step in our program is to compare the representations resulting from the
quantization of the Fock-Goncharov coordinates, and from Toda conformal field theory. As
an outlook, we collect here a few observations and conjectures concerning this problem.

6.1 Spectrum in Toda field theory

In order to determine the set of representations of the algebra Wy appearing in the spec-
trum of Toda field theory one may follow the example of Liouville theory. For studying the
spectral problem of Toda field theories it is natural to consider canonical quantization on a
spacetime having the geometry of a two-dimensional cylinder with time coordinate ¢ and a
spatial coordinate o ~ o + 27. At time ¢ = 0 one may decompose the fields ¢(o) = ¢(0, 0)
as ¢(0) = ¢o + x(0), where the zero mode is defined as the average ¢g = 5 OQW do ¢(0).
One may then observe that the interaction term fo% do eP€:#(9)) in the Hamiltonian is
equal to 27 eb(€:%0) up to terms of order b2. This means that zero modes and oscillators
completely decouple in the limit 4> — 0. Canonical quantization of the oscillators yields a
Hamiltonian of the form

_ 1
H = Hy+N+N+0(®b?), with  Ho = - (p.p) + ompe®) - (6.1)

which is defined on the Hilbert space H = L*(RV~!) ® F by choosing the Schrédinger
representation on L*(R™V~1) for the operators p; and ¢} satisfying [¢},p;] = 16;-, and by
realizing two sets of oscillators a! and @i, i=1,..., N — 1, n € Z\ {0}, on the Fock space

F in the usual way. The operator N satisfies [N, a’,] = —nal,, and commutes with a,, and

n
similarly for N.

The problem of determining the spectrum of the Hamiltonian H therefore reduces in
the limit 5> — 0 to the problem of finding the spectrum of the quantum-mechanical system
with Hamiltonian Hy. This system is a well-known quantum integrable model called the
open Toda chain, and its spectrum is known exactly [83-85]. The spectrum is purely
continuous, with generalized eigenstates in one-to-one correspondence with the orbits of
vectors p € RV~! under the Weyl group of SU(N). This suggests that the spectrum of
Toda field theory will be purely continuous.

Observing furthermore that the interaction terms fOQW do eP(€:9(9) are closely related
to the screening charges of the free-field realization of the algebra Wy, it becomes straight-
forward to generalize the arguments used in [86] to determine the spectrum of Liouville
theory to Toda field theories with N > 2, leading to the conclusion that the spectrum has
the form

H = /d,@ Vﬁ@]}ﬁ, (6.2)
S
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where Vg and )75 are representations of the algebra Wy generated by holomorphic currents
W*(2) and their anti-holomorphic counterparts W (%), respectively, S denotes the set of
Weyl-orbits of vectors of the form 8 = Q + ip, with p € R¥"! and Q = p(b+b71). Tt
follows from this form of the spectrum that correlation functions such as

<aoo | Vay (22, 22) Vi, (21, 21) | > , (6.3)
can be represented in the form
<aoo | Vay (22, 22) Vi, (21, 21) | >
= /Sdﬂ/vdsldszdsldsQ Cs,y5, (oo, 2, 8)Csy 5, (Q — B, a1, ap) (6.4)

x F (02 52| Bls101 ] (22, 21) F [22. 52| 815182 ] (22, 71)
where
F[32 so|Bls10] (22, 21) = (Vawe s Vay (fig)(@) Ve (5020)(21) Vay )aoo - (6.5)

In order to arrive at the expansion (6.4) we have inserted a complete set of intermediate
states from H between the two vertex operators Vg, (z2,Z2) and V,, (21, 21), and we have
furthermore assumed that the resulting matrix elements can be expanded as

(Q—a3|Vay(2,2)|an) =

B o N ~ (6.6)
— /Vds ds Css(as, e, aq) (vas ,Vs(ajal)(z) Vo )013(11043 ,Vg(a;ll)(z) Voy )a3 .

The assumption (6.6) will hold for any set of chiral vertex operators Vi(,22,)(2) labeled
by an index s taking values in the set V with measure ds which may be continuous or
discrete allowing us to define a basis for the space CB(Cp3) via (5.14). If the index set V
or measure ds depends nontrivially on the choice of «;, one will have to modify (6.4) in an
obvious way.

It seems likely that the usual consistency conditions of the conformal bootstrap can
only be satisfied if the conformal blocks with g € S form a basis for the space of conformal
blocks CB(Cp4) on the four-punctured sphere P!\ {0, 21, 29,00}, as is known to be the
case for N = 2 (Liouville theory) [25]. It is furthermore easy to show that the Verlinde
loop operators associated with the curve ~4 separating punctures z; and 0 from 25 and
oo act diagonally in this basis, with eigenvalues parameterized in terms of § = @ + ip.
The formulas for the eigenvalues look simplest if one represents the vectors p € RV=1 in
terms of vectors a € RY lying on the plane > i 0r = 0, where a;, are the components of a
with respect to an orthonormal basis for RV, The eigenvalues \,, (a) of the Verlinde loop
operator associated with the curve 75 and the degenerate fields D?, for example, can then

be represented as
N

Aoy (@) = ) e2mibos, (6.7)
i=1
The considerations above motivate us to propose that the Hilbert space of Toda con-
formal blocks has the form

HCB(Cy,) = /S I] 48 & HCB(Cy,) - (6.8)

edges e vertices v
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Here HCB(C6’73) is the Hilbert space of conformal blocks on the three-punctured spheres
Ciss with v = 1,...,29 — 2 + n, that appear in the pants decomposition of Cy,. The
conformal blocks constructed by gluing will diagonalize the Verlinde loop operators for the
cutting curves in the pants decomposition.

It should be noted that our conjecture (6.8) appears to be necessary for having consis-
tency conditions of the conformal bootstrap like crossing symmetry, modular invariance,
or locality realized in the usual way. Let us consider, for example, the condition of mutual
locality of the vertex operators V,(z, Z) within correlation functions such as

(oo | Vay (22, 22) Vay (21, 21) | 0 ) = (oo | Viy (215 21) Vaay (22, Z2) | 0 ) - (6.9)
Such relations would hold if (i) the conformal blocks satisfy braid relations of the form

F[22 s2|Bs18L] (22, 21) =

PR ) (6.10)
/dﬁ /dtzdtl By [0 a0) e, T [art1lBlt263] (21, 22)

and (ii) kernels Bgg [ggogg)}zf;l and structure functions Css(as, a2, 1) appearing in (6.4)
satisfy suitable orthogonality relations. Equations (6.10) may then be interpreted as re-
lations between two different bases for the space of conformal blocks HCB(Cp4). The
spectrum (6.2) thereby gets related to the spectrum (6.8) of Verlinde loop operators on the

space of conformal blocks.

6.2 Spectrum of quantized trace functions

We have explained in section 2.6 that a maximal set of commuting Hamiltonians on the
symplectic moduli space ./\;lgfn (with fixed holonomies around the punctures) consists of the
cutting loops that specify a pants decomposition of C, , together with the corresponding
pants networks. This implies that all these loop and network operators can be simultane-
ously diagonalized.

We are going to argue that the spectrum of the Hamiltonians associated with the
cutting curves coincides with the expected spectrum of the corresponding Verlinde loop
operators. To this aim we are going to observe that some essential features of the spectrum
can be anticipated without solving the eigenvalue problem explicitly.

Example for N = 2: As a warm-up, let us consider the case of SL(2)-connections on
C1,1- In the polarization p = %(B + C’) and q = —%(3 — C‘) with [p,q] = —ih, the A-cycle
operator (4.53) becomes

A =2coshp+e™@, (6.11)

which defines a positive self-adjoint, but unbounded operator on L*(R). A complete set of
eigenfunctions for this difference operator is known [87, 88]. The spectrum is purely con-
tinuous, and supported in the semi-infinite interval (2,00). The (generalized) eigenvalues
are non-degenerate and may therefore be parameterized in terms of a parameter s € RT
as 2 cosh(s).
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Without having solved the spectral problem explicitly one could still note that the
term e~ 9 appearing in the definition of A decays exponentially for g — oo, and that the
term 2 cosh p can be seen as a “deformation” of the usual term p? in Schrédinger operators.
One may therefore expect that the spectral problem for A will in some respects be similar
to the spectral problem for the Liouville quantum mechanics with Hamiltonian Hy (6.1).
The extend to which this is the case was clarified in [88]. In the Schrodinger representation
with q represented on wave-functions ¢ (q) as an operator of multiplication with ¢ one
may construct two linearly independent Jost solutions, eigenfunctions fi(q) of Hy that
behave for ¢ — 0o as fE(q) = eT#% 4 o(1) [88]. The Jost solutions grow exponentially
at the opposite end ¢ — —oo. One may, however, find a function R(s) such that the
linear combination ¥s(q) = fi(¢) + R(s)f; (q) decays rapidly for ¢ — —oo. Only this
linear combination may appear in the spectral decomposition of A. Note that Y_s(q) is
related to 15(q) by a relation of the form ¢_5(q) = R(s)1s(q), analogous to the case of a
Schrédinger operator with repulsive potential.

The fact that the spectrum is bounded from below by 2 follows from the observation
that A is the sum of two positive self-adjoint operators, and its spectrum therefore bounded
from below by the spectrum of 2 cosh p.

Example for N = 3: Although we will not be able to find explicit diagonal representa-
tions for the A-cycle operators for higher rank, we can anticipate features of their spectra
by a similar reasoning. In order to see how the observation above generalize, let us next
consider the quantization of the trace functions associated with SL(3)-connections on Cy .
In order to represent the trace functions associated with A- and B-cycles in a form
that will be convenient for the quantization, let us start by fixing the eigenvalues of the
holonomy M around the puncture in terms of constants v; = ajasbibacica and o = zy:

1 1 1 1
{ a1azb1b201021‘ Yy } { — M ’Yz} . (6-12)
ayasbibacicazy’ Ty’ Y2 Yo

We must then choose a polarization with momenta P; and positions Q; satisfying {P;, Q;} =
0;jP;Q;. The nice Poisson bracket (4.58) between the monomials o; and f3; appearing in
the A- and B-cycle suggests the following choice:

1 2 _1 _2 _1
P =o =biaz, QIZHB' "= a; Py b, thy STy
2 1 2
Py = as = bay Hﬁ i ay a2 by °hy Cw “Sys
P3 =x, Qg = ((IQbQCQ) 1 . (6.13)

The A-cycle trace functions are then expressed as

1 1 2 1

1 2 p3 1 P3P P 1 P?Qs(1 + P

a=pipy B L I i <1+)+1 QU+
PQB P13 PQB 1175 Q1Q2 QQ V2 ,}/1,}/2]:)23 Q%Qg
2 1

2 1 P 1 P Q1Q3 P Q1Q3 1 PP P} Qs

Ay = PPP + -2 2 2 -+ = 17222 14 p).
2 ! * T P3 * V2 * 7172@%@3( +B)

P13 P3P2 P3P3Q2 P3Q2
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If we take the limit @1, Q2 — 0o with Q1/Q2 finite we see that only the first three terms
survive. The quantization of these expressions is straightforward following our discussions
above, allowing us to define operators Ai, i=1,2.

By generalizing the arguments used in the case N = 2 above one finds that the eigen-

values A! of the operators Al can be parameterized in terms of a vector (si,s2) € R? as

follows
1 1 1
Al =& +&+8&, Ay=—+—+—, (6.14)
& &L &
where £, are defined for a = 1,2,3 as
(61752753) = (e%(81+252)7 e%(31782)7 67%(281+S2)) . (615)

The expressions for the eigenvalues A} are manifestly invariant under Weyl symmetry
permuting the &,.

Furthermore, it seems likely that the repulsive nature of the dependence on @1, Q2 will
imply that the spectrum is parameterized by the Weyl-orbits of vectors s = (s1,52) € R2.
In order to see this, let 1s(q), 9 = (q1,42), be a joint eigenfunction of the operators A;,
i = 1,2, in a Schrodinger-type representation where the quantum operators corresponding
to the classical variables log @; are diagonal with eigenvalues ¢;. The wave-function ¥s(q)
will be of the form

Ye(q) = ¥0(q) + O(e 3(@rta)), (6.16)

where 10(q) is an eigenfunction of the operators

. 12 11 1 . 2 1 11 1

A = PPy + PP, 4P IR, A= PPy + PPy 4Py IR, T
where P; = e?a%. A joint eigenfunction of /l? is given by en(s101+5202) = eih(s’q), where (s, q)
denotes the standard scalar product of the vectors s and q in R?. The Weyl-invariance of
the eigenvalues of A? implies that other joint eigenfunctions of fl? are given by the functions
en ()9 where w(s) is the vector obtained by the action of the element w of the Weyl-
group W of SL(3) on s € R2. It follows that the most general joint eigenfunction of the
/l? has the form ‘

V(@) = Y Culs)er@Ea). (6.17)
weW

The exponential growth of the terms in A; depending on ¢; = log Q; will imply that the
wave-functions ¢s(q) have to decay very rapidly when ¢i,¢2 — oco. This will imply that
1s(q) has to satisfy two reflection relations that must be compatible with the structure
(6.17) of the 12(q). The reflection relations must therefore be of the form

wwl(ﬁ)(q) = Rz(s)d}s(q) ) 1=1,2, (6‘18)

with w; two different elements of WW. By composition of the Weyl reflections w;, one may
generate reflection relations corresponding to all elements of the Weyl group W. The re-
sulting relations will determine the coefficients Ci,(s) in (6.17) completely up to an overall
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normalization. We are thereby lead to the conclusion that the spectrum is indeed param-
eterized by the Weyl-orbits of vectors s € R?.

A very similar structure is found for the trace functions B; associated with the B-cycles.
The explicit expressions turn out to be of the form

@, 1 L)
Q2+Q2+Q1+O((P1P2)) b= Qz Q1

suggesting that the eigenvalues can be parameterized in terms of real positive numbers (g,

=

+ Q1+ O((P1P2)%), (6.19)

a=1,2,3, satisfying (1(a(3 = 1, as
1 1 1

By =+ G+, B2—>a+5+g- (6.20)

Our observations above suggest that the spectrum of the trace-functions A; and B; coin-
cides with the spectrum (6.7) of the corresponding Verlinde loop operators.

Higher rank: The remarks above seem to generalize to cases with N > 3. In the case
N = 4, for example, one may note that the trace function As of the A-cycle holonomy in
the second antisymmetric representation (see (4.65)) has a similar structure as observed in
the case N = 3 above, with the following leading term:

1 1 1
Ag = 2cosh §(p1 + p3) + 2 cosh §(p1 — p3) + 2 cosh 5(171 + 2p2 + p3) , (6.21)

where we defined p; = log P;. This further strengthens our confidence that the spectra of
quantized trace functions will coincide with the spectra of the Verlinde loop operators in
Toda CFT.

6.3 Concluding remarks

One of the most important problems is clearly to find useful bases for the space of conformal
blocks CB(Cp3). A natural possibility would be to define such bases by diagonalizing a
maximal set of commuting Verlinde network operators. Natural as it may be, it seems
technically much harder to analyze the spectrum of network operators along similar lines
as described above. As an example let us consider the pants network N; on Cp 3 in the case
N = 3. We may use the coordinates

p1=a, an=y, (6.22)

and denote the eigenvalues of A by a; = al/ 23 and Qg = a}/ 3a2_ 1/ 3, and similarly for

B and C. The pants network function can then be represented as

2
Ny = 2 [1+ ﬁﬂm + a1 (6.23)
1’7172 alpl
1 (313343 ﬂ 7 43 52%% B33
o L2 DL 2 4 LD 2 ) aebiAAS + BEBeiAs + :
p? \ aran &%) aq Bo
04251527172 aﬁ%ﬂémg BBt | PPz | Gabin | GePiie | Y3
e e S + = + + +1
a1p1 a1py a1 py a1p1 P1 P P1
1 327252 5272 G B~ . 327 % 325 % 3327 3 2%
L ~51~ 1~723 " /317{722 n 1510 +a1ﬁ171+ﬁ1~%32 +517172 +51~71’272 _i_ﬁljlw } .
q1 \ a1GoBop; @16 B2p] D1 Qopy Qop1 Bapi Bap1
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We see that there is no limit in which the terms depending on ¢; vanish. This might
indicate that the spectrum of the corresponding quantum operator is discrete rather than
continuous. It would be very interesting if one could describe the spectrum of this operator
more precisely.

One may also note that the free-field construction of chiral vertex operators gave us
families of conformal blocks labeled by a space of parameters which has the same dimension
as Lagrangian subspaces of ./\/lé\[5 This indicates that the conformal blocks that can be
obtained in this way may represent a basis for CB(Cp 3).

Let us finally note that the geometric engineering of gauge theories of class S, combined
with the topological vertex technique has led to a prediction for the structure functions
Css(as, a2, 1) appearing in (6.4), see [89, 90]. The labels s for a basis of CB(Cp3) would
thereby be identified with geometric data of the local Calabi-Yau manifold used in the
geometric engineering of the class S theories associated with Cp 3. It would be very inter-
esting to identify the meaning of this parameter within conformal field theory, or within
the quantum theory obtained by quantizing Mé\g.

Acknowledgments

We would like to thank Mathew Bullimore, Tudor Dimofte, Nadav Drukker, Lotte Hol-
lands, and Bruno Le Floch for useful discussions. The work of MG was supported by the
German Science Foundation (DFG) within the Research Training Group 1670 “Mathemat-
ics Inspired by String Theory and QFT” and by the Swiss National Science Foundation.
The work of IC was supported by the People Programme (Marie Curie Actions) of the
European Union’s Seventh Framework Programme FP7/2007-2013/ under REA Grant
Agreement No. 317089. IC acknowledges her student scholarship from the Dinu Patriciu
Foundation Open Horizons, which supported part of her studies. Support from the DFG
in the framework of the SFB 676 Particles Strings, and the Farly Universe is gratefully
acknowledged.

A Fock-Goncharov coordinates

In [30], Fock and Goncharov constructed coordinates systems on the moduli space of flat
connections over a punctured surface Cy ,. They assume that the surface is hyperbolic, that
is x(Cgn) =2 —2g —n < 0, and has at least one puncture, n > 1. Their approach consists
in “localizing” flat connections on the triangles of an ideal triangulation of C4, (in which
the vertices of the triangles are at punctures). However, since a triangle is contractible,
any flat connection on it is trivial. This difficulty can be overcome by considering framed
flat connections, which means adding on each puncture a flag that is invariant under the
holonomy around the puncture.

A.1 Coordinates associated with N-triangulations

Let us review how to build coordinates on the moduli space of framed flat connections
over a punctured surface Cg,, (We mostly follow section 4 in [67], and appendix A in [23]).
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Figure 42. N-triangulation of a triangle (here for N = 3). The triples of non-negative integers
a,b, ¢ sum to 3 on lattice points pgpe, to 2 on white triangles associated with lines I 5. (black dots),
and to 1 on black triangles associated with planes P (white dots). The internal lattice point is
associated with the 3-space Vjgg. Arrows between dots indicate incidence relations.

Given an SL(N)-vector bundle with a framed flat connection over Cg,, each triangle of
an ideal triangulation of C, ,, gives rise to a (generic) configuration of three flags {A, B, C'}
associated with the vertices. A flag A in an N-dimensional complex vector space Vi is a
collection of nested subspaces

A 0=AgCA L CAyC---CAN=Vn, (Al)

with dim[A4,] = a. An N-triangulation consists in a further decomposition of each triangle

into small triangles, whose vertices are at the (N ;r 2) lattice points pgpe with

a+b+c=N, a,b,c € Z>o . (A.2)

See figure 42 for an example with N = 3. There are N2 small triangles for each ideal
triangle, (N ; 1) of which are “upright” (white) and labeled by the solutions of a + b+ ¢ =
N —1, while (];7 ) are “upside-down” (black) and labeled by the solutions of a+b+c = N —2.
To every white triangle we associate a line 4. in Viy arising as the intersection of the
corresponding subspaces of the flags {A, B,C'}. More explicitly, writing A* = Ay_, with
codim[A?] = a, we have

lape = AN BP N C° a+b+c=N-1. (A.3)

Similarly, we associate to every black triangle a plane P,., and to every internal lattice
point with a + b+ c= N — 3 a 3-space Vyp:

Py = A*NBNCe a+b+c=N-2,
Vabe = AN B NC° a+bt+ec=N-3. (A4)

The plane Py on a black triangle contains all three lines [,y 1)pe; la(b41)er and lgpe41) on
the adjacent white triangles. In turn, the 3-space V. on an internal lattice point contains
all three planes on the surrounding black triangles, and thus all six lines on the surrounding
white triangles.

This collection of subspaces on the N-triangulation allows us to associate coordinates
to every lattice point (excluding the vertices at the punctures). We can define coordinates
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Figure 43. Two 3-triangulated triangles ABC and AC'D glued along the edge AC. The quadruples
of non-negative integers a,b,c,d sum to 3 on lattice points pspeq, and to 2 on white triangles
associated with lines l,4p.4. Lines and planes adjacent across the edge are identical. Each edge point
is surrounded by four lines.

ZTape associated with the internal lattice points pyp. with a+b+c = N — 3 as the triple-ratio
of the six surrounding lines contained in V. (the neighborhood of an internal lattice point
looks like the 3-triangulation shown in figure 42). The 3-space V. contains the three flags

0C l(a+2)bc - P(a+1)bc C Vabe
0C la(b+2)c C Pa(b+1)c C Vabe »
0 Claper2) C Pap(er1) C Vabve - (A.5)

Qo

Fixing the flags to be A= (a1,a1 Nag), with a; vectors in Vgp., we can write the triple-ratio
as

I (al/\az/\b1><b1/\bz/\cl><cl/\02/\a1)
abe = (a1 /\a2/\01><b1/\b2/\a1><01/\C2/\b1> .

(A.6)

Here the notation (vi A vz Avs) means the determinant of the matrix expressing the
vectors vi,va,vg in a unimodular basis for the 3-space containing them (this triple-ratio
is the inverse of the one originally defined by Fock and Goncharov, see appendix A in [23]).
It remains to define coordinates for the lattice points on the edges of the ideal trian-
gulation. Along the common edge of two glued N-triangulated triangles, adjacent white
triangles are associated with the same lines, and adjacent black triangles to the same planes
(see figure 43). A lattice point on an edge is thus surrounded by four lines, which allows us
to define a cross-ratio coordinate. For example, at the point pog19 on figure 43, we choose
four vectors a € lsggg, b € l1100, € € l1010, d € l1001, all contained in the plane Pjggg, which

give the cross-ratio
(aAb)(cAd)

2010 = <

and)(bAc)’ (A7)

An ideal triangulation of the surface C,,, has —2x(Cy,,) triangles and —3x(Cy ) edges.
There are (N N 1) internal lattice points in each triangle and N —1 lattice points on each edge,
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B C

Figure 44. Example of a snake on the (N — 1)-triangulation of a triangle (here for N = 4).

Vi o1 vial

Vo +V v v V2 — Vi
2 13 5 2 22 3

Figure 45. Segment of a snake along an edge of a black triangle in an (N — 1)-triangulation. The
vertices of the triangles correspond to 3 coplanar lines I, ls,l3. Picking a vector vi € [ at the start
of the segment determines vy € [y by the rule that vo +v; € 3 depending on whether the segment
is oriented clockwise or counterclockwise around the triangle.

so the total number of independent coordinates provided by triple-ratios and cross-ratios
is

#{z-coordinates} = —x(Cy,) dim[SL(N,C)] . (A.8)

This agrees with the dimension (2.3) of the moduli space of flat SL(N, C)-connections on
Cyon-

A.2 Snakes and projective bases

Fock and Goncharov showed how to construct projective bases in the N-dimensional vector
space Vi related to three flags A, B, C' at the vertices of a triangle. Each basis is represented
by a snake, that is an oriented path on the edges of the (N — 1)-triangulation from one
vertex to the opposite side (see figure 44 for an example). Notice that in the (N — 1)-
triangulation the vertices correspond to lines, and the upright (black) triangles to planes.
Each segment of the snake goes from a line /1 to a line s, and the plane they define also
contains a third line /3 at the third vertex of the black triangles. Given a vector vy € [y,
a vector vo € [y is determined by the rule that vo + vi € I3 if the segment is oriented
clockwise around the black triangle, and vy — vy € I3 if it is oriented counterclockwise (see
figure 45). To construct the projective basis {vi,va, -, vy} defined by a snake, we can
choose any vector vy at the first vertex of the snake and use this rule to determine all the
subsequent vectors.
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VN-1

VN + VN1 VN

vh ~ V3

Figure 46. Elementary moves for segments of a snake. Left: Move I can only occur on the last
segment of a snake. Right: Move II can occur on any two consecutive segments of a snake.

A projective basis can be transformed into another one by a sequence of simple moves.
The moves I and II shown in figure 46 can be expressed in terms of two types of elementary
GL(N) matrices. Let ¢; : SL(2) — GL(N) be the canonical embedding corresponding to
the i*" root A\j — A\i11. Then the two types of elementary matrices can be written as

11 ———

¢ times

F= o (1 0) , Hi(z) = diag(1,--- ,1,2,--- ) . (A.9)

For example, for N = 3 we have the following elementary matrices:

100 100
h=1110]|, FK=]010]|,
001 011
100 100
Hi(z)=|0xz0]| , H(z)=]010] . (A.10)
00 00«

Note that F; and H;(x) commute unless i = j.
Move I flips the last segment of a snake across a black triangle, which according to the
rule in figure 45 transforms the projective basis as

Vi Vi Vi
— : =Fy_1 : . (All)
VN-1 VN-1 VN-1
VN VN + VN1 VN

Move II takes any two consecutive segments of a snake across a pair of adjacent black and
white triangles, see figure 46. For a choice of vector a at their first common vertex, the
initial and final snakes define two vectors vs and vj spanning the line at the vertex where
the snakes meet again. The proportionality function is precisely the coordinate x4, for the

- 79 —



Figure 47. Elementary matrices F; and H;(x) in an (N — 1)-triangulation (here for N = 4). The
transformation F from the snake along the edge AC to the snake along AB can be decomposed
into a sequence of moves across the black and white triangles, corresponding to matrices F; and

internal lattice point associated with the white triangle
Vh = TapeVs - (A.12)

This can be checked by writing down the triple-ratio (A.6) for the choice of flags A = (a, v1),
B = (b,v3), C = (c,v3) and using the relations provided by the black triangles as in
figure 45 (that is vi = vo+a, b = v4 + vy, ¢ = v3 — v2). The transformation between the
bases associated with the two snakes in figure 46 acts as

a a a
vo | = [ vi | = FiHa(2ape) | v2 | - (A.13)
V3 Vi V3

More generally, we can see that moving the i*" segment of snake across a black triangle
corresponds to acting with a matrix F;, while moving it across a white triangle corresponds
to acting with a matrix H;(x), where z is the face coordinate associated with the white
triangle. An important snake transformation consists in moving a snake from one edge of a
triangle across the entire face to the next edge, rotating clockwise around the initial vertex
(see figure 47). For N = 2 this gives simply F = F;. For N = 3, this gives

1 0 0
F = FQFlHQ(ZL‘OO())FQ = 1 1 0 . (A14)
1 1+ 200 ooo

For N =4 as in figure 47 this gives

F = F3F2H3($010)F3F1H2(xloo)Fgﬂg(l’ogl)Fg . (A.15)
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c ¢

Figure 48. Left: reversal of the orientation of the snake along an edge of a triangle. Right: snake
crossing an edge of a triangle with a cross-ratio coordinate .

Another type of move is the reversal of the orientation of a snake along an edge of a
triangle, see figure 48. This reverses the order of the basis vectors, and changes the sign of
every even-numbered vector, thus multiplying by an anti-diagonal matrix

. 0-10

Finally, we can move a snake from one triangle to another across their common edge. If
the coordinates along the edge followed by the snake are {x1,x2,...,2x_1} (in this order),
this transformation acts as

Hl(aﬁl)HQ(.fL‘g) s HN—1($N—1) = diag(l, T1,T1L2y .., T1L2 """ xN—l) . (A17)

This can again be checked by writing down the cross-ratio (A.7) for the edge coordinate z
in figure 48 and using the relations provided by the black triangles as in figure 45.

B Background on sl/(N) and U, (sly)

B.1 Lie algebra conventions

The vectors e; with i = 1,..., N — 1 are the simple roots of the Lie algebra si(/N) and (-, -)
denotes the scalar product on the Cartan subalgebra of sl(N), with the Cartan matrix
given by ki; = (e;,e;). It is often useful to represent the root/weight subspace of sl(IN)
as a hyperplane in RV, allowing us to represent the simple roots as e; = u; — w41 with
u; a unit vector of RY. The simple roots are dual to the fundamental weights w; in the
sense that (e;,w;) = d;5. In general they can be written as w; = Z;zl uj — + Z/]gv:l Uk

(4]
the Weyl vector p = >, w;. The weights of the fundamental representation of sl/(IN) with

highest weight wy are h; = wy — 23;11 ej, withi=1,...,N and (h;, hj) = 6;; — %

Their inner product is given by the inverse Cartan matrix (w;,w;) = ;' and their sum is

B.2 Basic definitions

We review some basic notions about quantum groups that are relevant here. For a complete
background and set of axioms we refer the reader to some of the standard references [91].
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Abstractly, a Hopf algebra is a collection (U, m,n, A €, S), with unit n : C(q) — U,
product m : U @ U — U, coproduct A : U — U @ U, counit ¢ : U — C(g) and an
algebra antiautomorphism called antipode S : U — U. The triple (U, m,n) is a unital
associative algebra and (U, A, €) is a counital associative coalgebra. A, e are unital algebra
homomorphisms and satisfy the following relations

(A®id)oc A = (id® A)o A (co-associativity)
(e®id)o A = (id®e)oA=id
mo(S®id)oA =noe=mo(id®S)o A (pentagon) . (B.1)

The quantum group U = U,(sly) is an example of a Hopf algebra, generated as an asso-
ciative algebra over C(q) by E;, F;, KijEl fori=1,..., N — 1 satisfying

KK '=1=K'K;, K;E; = ¢"WE;K; , K;Fj = ¢ "FK;, for i,j=1,....N—1,
where (i,7) € {2,—1,0} when |i — j| =0,1 or > 2, and

K, — K; !

[Ei, Fj] = 04 A

, tj=1,...,N—1, [Ei,Ej] =0, [F;,Fj]=0, |i—j]>2.

For |i — j| = 1, the generators satisfy the quantum Serre relations
E?E; — (q+q DWEE;E; + E;E? =0 , F!Fj—(¢+q YFFF,+ F;F? =0.
The Hopf algebra structure is given by €(K;) = 1, €(E;) = 0 = €(F;),
AK)=K®K , AE)=EoK +10FE , A(F)=Fe1+K '0F,
and
S(Ki) =K', S(B)=-EK ', S(F)=-KF.

A quasitriangular Hopf algebra U additionally has an invertible element R € U ® U, the
universal R-matrix of &, which satisfies a set of relations. For example, RA(a) = A'(a)R
for any a € U, where A’(a) = Po A(a) and P is the permutation homomorphism mapping
Pla®b)=(b®a).

With each algebra U, we can associate the category Replf of its finite dimensional
linear representations, with objects V, W,... that are finitely generated left /-modules
and with morphisms that are U-linear homomorphisms. The action of & on an U-module
V induces a representation my : U4 — End V.

The coproduct in a quasitriangular Hopf algebra U/ induces the tensor product in Repl/,
where for Y-modules U, V and Va € U, mygy(a) = (my @ my)(A(a)). The unit object in
Repl is the ground field C(q) equipped with the action of & by means of the counit e.
Furthermore, there exist associativity and left and right action homomorphisms that make
Repld a monoidal category (see for example [53]). Moreover, for any U-modules V, W
there is a mapping called braiding

Ryw =Po(my@mw)(R): VoW WV, (B.2)
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which is a morphism of Repl/ and turns this into a braided monoidal category.

For triples of U-modules U, V, W, where U C V ® W, a Clebsch-Gordan map CgW :
V @ W — U intertwines the actions on V ® W and U,

CUw(my @ mw)A(z) = 7y (2)Cyr, rel. (B.3)

Clebsch-Gordan maps are represented graphically as trivalent vertices in figure 49. We
note that the representations V, W and U may be reducible, in general. We may, in
particular, consider cases that V', W and U can be tensor products of representations such
asV =Vi®---®V,, for example. Such Clebsch-Gordan maps C‘gW can be constructed as
compositions of Clebsch-Gordan maps intertwining the respective representations on the
tensor factors. Avoiding cases where ¢ is a root of unity, one may find any irreducible
finite-dimensional representation in a sufficiently high tensor power of the fundamental
representation.
The conjugate Clebsch-Gordan maps C’I‘J/ WU = V ® W satisfy the property

OV (x) = (my @ mw)A(z)CHW . (B.4)

A special subset of intertwiners are the cap and cup maps intertwining between a tensor
product V ® V and the trivial representation 1 ~ C(q), respectively, where V is the
conjugate representation to V. In the Reshetikhin-Turaev construction, one considers
general morphisms M in Repld between tensor products of modules Vi ® ... ® V,,, and
Wi®...W,.

B.3 Twisted (compositions of) Clebsch-Gordan maps

Two quasitriangular Hopf algebras U and U are related by a Drinfeld twist J € U @ U if
the co-products and R-matrices are related by

A()=T7'A0T, Ria = 51 RiaJhs - (B.5)

Here we are using leg-numbering notation where the subscripts refer to tensor factors. The
twist will preserve co-associativity if

(A®id)(T) - Tz = (id® A)(T) - Jos (B.6)
The action of J may be extended to m-fold tensor products by defining recursively
JED = (1d2ED g A) (TR . ([d2*D g 7) 7@ ._ 7 (B.7)
The condition (B.6) ensures that the operator
Tty = (v, @ - ©mi) (T ™), (B.3)

is independent of the order in which tensor products are taken.
Given a Clebsch-Gordan map C’gW :V ® W — U one may define

Cow = Clw - Jyw Jyw = (ry @ mw )(T) . (B.9)
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U W
A\ w U
v w v

Figure 49. (Left): Clebsch-Gordan maps. (Middle): Gluing of vertices. (Right): Generic network.

It is easy to see that C’gw is a Clebsch-Gordan map intertwining the representation defined
on V@ W using the twisted coproduct A with the representation U. Similarly, by defining
oYW = JiyCEW one can show that CyWry(z) = (v @ mw)A(z)CHW.

Given a general intertwining map C: V1 ® ... @V, = W1 ®...® W, it seems natural
to define

Ci= (I om ) M-I (B.10)

If M is represented as the composition of "more elementary” Clebsch-Gordan maps one
needs to verify the consistency of definition (B.10) with (B.9). This boils down to the
consideration of two cases, as will be discussed in the following.

Twisting composite intertwiners (I): Let CY¥VW : T — U ® V ® W be constructed
as C’gVC%W. This composition may be re-expressed in terms of CN'gVCN'%YW by using

cyvesV =YV Jgy dgn OV = 0§V Jsw CEW (B.11)

Decomposing Jsw = Y, Ts(2x) @ Ty (2¥), one may use the intertwining property satisfied
by Cgv to calculate

CSUV Jsw = CSUV . Z?TS(:L'k) ® Ww(l‘k) =

k
= (rr @ m)(Azr) @ mw (2") - CFV = Jweview C§" .
k

Noting that CSUV = JUVC’gV, we arrive at
sV e = Jwevyew JuvCsY CE (B.12)
In a similar way one may verify that C’gWC’TU 5= JU®(V®W)JVWC~’E/WC~’% s,

Twisted compositions (IT): Clebsch-Gordan maps of the type C'(‘]/ W and C‘(}W can also
be composed in the following ways

oV = cgWely, . oVl =y oV (B.13)

The second type of composition is diagrammatically represented in figure 49.
Recall that the representations 7y, 7y, . .. are not necessarily irreducible. As such, the
blocks in figure 49 should themselves be thought of as networks with a general number of
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incoming and outgoing legs and iterated compositions of Clebsch-Gordan maps inside each
block. Compositions of the first type in equation (B.13) are twisted trough

NV’W’ — égwéglwl - J;‘%VC[‘;WC‘(%W/JV/W/ . (B14)
Compositions of the second type
NV/W’ Cg/wlCV/U = éngng‘}[//JVUé“///U (B15)

also transform by conjugation with the J-factors of equation (B.14). To show that NY, ,W,
is twisted by acting on its free legs as

N\‘;’%’,twist == ‘;%/N“///%/JV/W/ 5 (B16)
we insert the identity in (B.15)
N ’W’ Stwist — JVWCUW/JV(U@W’)Ji(U®W/)J(V®U)W’J(‘}@U)W/C“;’UJV/W/ .

Jvwewr and J(_‘}®U)W/ can be shifted past C(‘}VW, and CE,U to cancel J;év and Jy

Cg/W’JV(U®W’) = CE/W’ Zﬂv(l’k) ® (my @ ) Az ZTFV () @ mw (x )Cglw/ ,
k

where ), Ty (z1) ® WW(J:I"’)Cg/W, JVWC' 7w and similatly for J(V®U)W, So we find

NV’W’ Stwist — CUW’J (U@W/)J(V®U)W’CV’ - CUW"] Jv(lU(g)W/)J(V@U)W’JVUé“;’U

By the cocycle condition (B.6) JUéV,Jf(U@)W,)J(V@U)W/ Jyu reduces to the identity evalu-
ated on the tensor product of modules V @ U ® W’ and

VW AW AVU
NV’W/,tWiSt - CleC ! (Bl?)

as claimed. Therefore general networks N“///%,, constructed as iterated compositions of
Clebsch-Gordan maps, are twisted by J-factors which act on their external free legs.
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