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Abstract

We compute the leading four physical terms in the low-energy expansions of
heavy-light quark current correlators at four-loop order. As a by-product we re-
produce the corresponding top-induced non-singlet correction to the electroweak
ρ parameter.

Keywords: Perturbative calculations, Quantum Chromodynamics, Heavy
Quarks
PACS: 12.38.Bx, 14.65.-q

1. Introduction

Two-point correlation functions of heavy-light quark currents have found
use in a number of phenomenological applications. One example is the predic-
tion of corrections to the electroweak ρ parameter [1, 2, 3], where the flavour
non-diagonal correlator of vector currents is required for vanishing external mo-
mentum. Another important class of applications is the sum-rule determination
of meson decay constants (see e.g. [4, 5]). Here, the absorptive part of the
respective correlators above the production threshold is needed. Progress in
lattice simulation may allow precise determinations of even more QCD param-
eters. The strong coupling as well as the charm and the bottom quark mass
have been determined with high accuracy comparing perturbative moments of
diagonal correlators to lattice measurements [6, 7]. With the results presented
in this work, an analogous analysis for the non-diagonal correlators [8] would
be expected to achieve a comparably small perturbative uncertainty.
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Given their usefulness, perturbative corrections to heavy-light correlators
have been studied quite intensively and analytic results up to two loops have
been known for many years [9, 10]. While the three-loop correction is not
known analytically, many terms in expansions in both the low-energy and the
high-energy limit have been calculated in [11, 12, 13]. Combining these with
the behaviour near threshold, accurate approximations for arbitrary kinematics
have been constructed [11, 12]. In the low-energy region also corrections due to
a non-vanishing light quark mass are known [14, 15].

The four-loop corrections remain mostly unknown. In the high-energy region
the leading term is equal to the non-singlet part of the corresponding diagonal
correlator, which has been computed for both scalar and vector currents [16, 17,
18]. In the low-energy region, conversely, there is no such simple correspondence
between diagonal and non-diagonal correlators. The vector correlator in the
limit of vanishing external momentum constitutes a central ingredient in the
determination of non-singlet four-loop corrections to the ρ parameter, which
have been calculated in [2, 3].

In this work we present the four-loop corrections to the low-energy expan-
sions of both scalar and vector heavy-light quark current correlators up to the
eighth power of the external momentum. After introducing our conventions in
section 2, we briefly describe the calculational setup and present our results in
section 3. Section 4 describes the re-calculation of the top-induced contributions
to the electroweak ρ parameter, which constitutes an important consistency
check. We conclude in section 5.

2. Conventions

The correlators of heavy-light vector and scalar currents are defined as

Πµν(q) = i

∫

dx eiqx〈0|jµ(x)jν(0)|0〉 , (1)

Π(q) = i

∫

dx eiqx〈0|j(x)j(0)|0〉 (2)

with the vector current jµ(x) = ψ̄(x)γµχ(0) and the scalar current j(x) =
ψ̄(x)χ(0). We consider a heavy quark ψ with the pole mass m and a massless
light quark χ. It should be noted that in the limit of a vanishing light-quark
mass the correlators of two axial-vector or pseudo-scalar currents coincide with
the vector and scalar correlators, respectively.

It is convenient to introduce polarisation functions

Πµν(q) = (−q2gµν + qµqν)Π
v(q2) + qµqνΠ

v
L(q

2) , (3)

Π(q) = q2Πs(q2) . (4)

In the following we will not consider the longitudinal polarisation Πv
L(q

2). The
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perturbative expansions of Πδ(q2) with δ = v, s up to four loops read

Πδ(q2) = Πδ,(0)(q2)+
αs

π
CFΠ

δ,(1)(q2)+

(

αs

π

)2

Πδ,(2)(q2)+

(

αs

π

)3

Πδ,(3)(q2)+. . . .

(5)
Being interested in the limit q2 → 0, we can expand the coefficients in the above
series as

Πδ,(i)(q2) =
3

16π2

∞
∑

n=−1

Cδ,(i)
n zn =

3

16π2

∞
∑

n=−1

C̄δ,(i)
n z̄n , (6)

where we have used the abbreviations z = q2/m2, z̄ = q2/m̄2 with m̄ denot-
ing the mass of the heavy quark in the MS scheme. Note that the coefficients
with n = −1, 0 still contain poles in the limit ǫ = (4 − d)/2 → 0. In physical
observables these have to be cancelled by the wave-function and mass renormal-
isations of the particles (e.g. W bosons) coupling to the respective current. In

the following we will describe the calculation of the coefficients C
δ,(3)
n , C̄

δ,(3)
n for

n ≤ 4.

3. Calculation and results

First, the four-loop diagrams contributing to the polarisation functions are
generated with QGRAF [19]. In the next step we perform partial fractioning of
denominators that differ only by their mass and the external momentum q, i.e.
we use

1

p2
1

(p± q)2 −m2
=

1

q2 ± 2pq −m2

(

1

p2
− 1

(p± q)2 −m2

)

. (7)

Since we will perform an expansion in q the prefactor on the right-hand side
has no influence on the tadpole topology of the considered diagram. Performing
partial fractioning before the identification of the diagram topologies greatly
reduces both the number and the complexity of the topologies that have to be
considered. Using the algorithm described in Appendix A we map the resulting
diagrams onto 28 topologies.

Next, colour factors are calculated using the FORM [20] package color [21].
We choose a routing for the external momentum q which minimizes the number
of propagators depending on q. After this we evaluate the traces over gamma
matrices and perform a Taylor expansion in q. The scalar integrals we ob-
tain after tensor reduction and the elimination of reducible scalar products are
reduced to master integrals using a private implementation [22] of Laporta’s
algorithm [23]. All required master integrals are known analytically or numeri-
cally [24, 25, 26].

For the presentation of our results we impose the overall renormalisation con-
dition Πv(0) = Πs(0) = 0. The corresponding divergent subtraction terms are
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listed in Appendix B. For the remaining coefficients according to equation (6)
we obtain1

C
v,(3)
1 = + 14.5508C2

ACF + 8.4892CAC
2
F + 0.3509C3

F

− 0.2294CACFTFnh − 0.6242C2
FTFnh

− 12.5683CACFTFnl − 3.0752C2
FTFnl

+ 0.1069CFT
2
Fn

2
h + 0.1399CFT

2
Fnhnl + 1.9192CFT

2
Fn

2
l , (8)

C
v,(3)
2 = + 7.3912C2

ACF + 5.6594CAC
2
F + 0.8050C3

F

+ 0.0683CACFTFnh − 0.3114C2
FTFnh

− 6.0806CACFTFnl − 2.2303C2
FTFnl

+ 0.0080CFT
2
Fn

2
h − 0.0052CFT

2
Fnhnl + 0.9442CFT

2
Fn

2
l , (9)

C
v,(3)
3 = + 4.4256C2

ACF + 3.8667CAC
2
F + 0.7311C3

F

+ 0.0448CACFTFnh − 0.1713C2
FTFnh

− 3.5704CACFTFnl − 1.5461C2
FTFnl

+ 0.0017CFT
2
Fn

2
h − 0.0050CFT

2
Fnhnl + 0.5640CFT

2
Fn

2
l , (10)

C
v,(3)
4 = + 2.9051C2

ACF + 2.7515CAC
2
F + 0.5965C3

F

+ 0.0278CACFTFnh − 0.1041C2
FTFnh

− 2.3187CACFTFnl − 1.1050C2
FTFnl

+ 0.0006CFT
2
Fn

2
h − 0.0029CFT

2
Fnhnl + 0.3708CFT

2
Fn

2
l , (11)

C
s,(3)
1 = + 1.6424C2

ACF + 1.6532CAC
2
F + 1.4104C3

F

− 1.3992CACFTFnh + 0.5551C2
FTFnh

− 3.1297CACFTFnl + 0.5568C2
FTFnl

+ 0.3759CFT
2
Fn

2
h + 0.6531CFT

2
Fnhnl + 0.4415CFT

2
Fn

2
l , (12)

C
s,(3)
2 = + 5.6692C2

ACF + 5.3700CAC
2
F + 2.1099C3

F

− 0.0476CACFTFnh + 0.1338C2
FTFnh

− 5.0072CACFTFnl − 1.6046C2
FTFnl

+ 0.0371CFT
2
Fn

2
h + 0.0314CFT

2
Fnhnl + 0.7113CFT

2
Fn

2
l , (13)

C
s,(3)
3 = + 4.1869C2

ACF + 4.9201CAC
2
F + 2.0783C3

F

+ 0.0196CACFTFnh − 0.0103C2
FTFnh

− 3.5077CACFTFnl − 1.7089C2
FTFnl

+ 0.0091CFT
2
Fn

2
h + 0.0006CFT

2
Fnhnl + 0.5215CFT

2
Fn

2
l , (14)

1All results are attached in electronic form as ancillary files to this preprint.
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C
s,(3)
4 = + 2.9451C2

ACF + 3.8178CAC
2
F + 1.6905C3

F

+ 0.0199CACFTFnh − 0.0347C2
FTFnh

− 2.4173CACFTFnl − 1.3927TFC
2
Fnl

+ 0.0034CFT
2
Fn

2
h − 0.0016CFT

2
Fnhnl + 0.3698CFT

2
Fn

2
l , (15)

where we have set the renormalisation scale µ to the on-shell massm. We follow
the usual convention for the colour factors with CA = 3, CF = 4/3, Tf = 1/2 for
QCD. The number of light (massless) quark flavours is denoted by nl, whereas
nh stands for the number of heavy flavours.

If we choose to express the polarisation functions in terms of the MS mass
m̄ at the scale µ = m̄ and αs(m̄), we arrive at

C̄
v,(3)
1 = − 1.2995C2

ACF + 1.2096CAC
2
F + 0.5371C3

F

− 1.7512CACFTFnh + 1.2920C2
FTFnh

+ 0.5306CACFTFnl − 0.0193C2
FTFnl

− 0.0853CFT
2
Fn

2
h + 0.0732CFT

2
Fnhnl − 0.0389CFT

2
Fn

2
l , (16)

C̄
v,(3)
2 = − 1.0623C2

ACF + 1.0355CAC
2
F + 0.1608C3

F

− 0.7434CACFTFnh + 0.7266C2
FTFnh

+ 0.9055CACFTFnl − 0.4619C2
FTFnl

− 0.0945CFT
2
Fn

2
h − 0.0408CFT

2
Fnhnl − 0.1001CFT

2
Fn

2
l , (17)

C̄
v,(3)
3 = − 0.8578C2

ACF + 1.1608CAC
2
F − 0.1497C3

F

− 0.4625CACFTFnh + 0.5202C2
FTFnh

+ 0.7960CACFTFnl − 0.6316C2
FTFnl

− 0.0624CFT
2
Fn

2
h − 0.0272CFT

2
Fnhnl − 0.0887CFT

2
Fn

2
l , (18)

C̄
v,(3)
4 = − 0.7178C2

ACF + 1.2862CAC
2
F − 0.4049C3

F

− 0.3200CACFTFnh + 0.4107C2
FTFnh

+ 0.6754CACFTFnl − 0.7212C2
FTFnl

− 0.0434CFT
2
Fn

2
h − 0.0182CFT

2
Fnhnl − 0.0768CFT

2
Fn

2
l , (19)

C̄
s,(3)
1 = + 1.6424C2

ACF − 0.5101CAC
2
F + 1.4104C3

F

− 1.3992CACFTFnh + 1.3418C2
FTFnh

− 3.1297CACFTFnl + 1.3435C2
FTFnl

+ 0.3759CFT
2
Fn

2
h + 0.6531CFT

2
Fnhnl + 0.4415CFT

2
Fn

2
l , (20)

C̄
s,(3)
2 = + 0.3858C2

ACF + 0.3173CAC
2
F + 0.9168C3

F

− 0.5549CACFTFnh + 0.8000C2
FTFnh

− 0.6408CACFTFnl + 0.4494C2
FTFnl

− 0.0270CFT
2
Fn

2
h + 0.0092CFT

2
Fnhnl + 0.0586CFT

2
Fn

2
l , (21)
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C̄
s,(3)
3 = − 0.0398C2

ACF + 0.4867CAC
2
F + 0.4018C3

F

− 0.3862CACFTFnh + 0.4631C2
FTFnh

− 0.0147CACFTFnl + 0.0424C2
FTFnl

− 0.0422CFT
2
Fn

2
h − 0.0172CFT

2
Fnhnl − 0.0007CFT

2
Fn

2
l , (22)

C̄
s,(3)
4 = − 0.2249C2

ACF + 0.5658CAC
2
F + 0.0674C3

F

− 0.2844CACFTFnh + 0.3319C2
FTFnh

+ 0.2025CACFTFnl − 0.1624C2
FTFnl

− 0.0351CFT
2
Fn

2
h − 0.0149CFT

2
Fnhnl − 0.0219CFT

2
Fn

2
l . (23)

4. The ρ parameter

To verify the correctness of our calculation we have performed a number
of cross checks. Obviously, our results are UV-finite. We have also performed
an expansion up to linear order in the gauge parameter and verified that the

gauge dependence cancels in the coefficients C̄
v,(3)
1 , C̄

s,(3)
1 . The strongest check,

however, is the comparison to the known four-loop non-singlet corrections to
the ρ parameter [2, 3].

The electroweak ρ parameter has been introduced in Ref. [27]. Considering
only QCD corrections it can be written as

ρ = 1 + δρ (24)

with

δρ =
ΠZZ(0)

M2
Z

− ΠWW (0)

M2
W

, (25)

where ΠZZ(0) and ΠWW (0) denote the self energies of Z and W boson, respec-
tively.

In order to calculate the contribution from the Z-boson self energy to the ρ
parameter we also need the leading moment of the flavour diagonal correlator.
To this end we introduce Πa

diag(q
2) similar to Eq. (1) but with the heavy-heavy

axial current
j̃µa = ψ̄γ5γ

µψ , (26)

and the moments

Π
a,(3)
diag (q

2) =
3

16π2

∞
∑

n=−1

Ca,(3)
n

(

q2

4m2

)n

. (27)

In what follows we will only consider the top-induced four-loop correction to ρ,
corresponding to ρ3 in the expansion

δρ = 3xt

∞
∑

i=0

(

αs

π

)i

ρi , xt =

√
2GFm

2
t

16π2
. (28)
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The corresponding corrections to the Z and W self energies then read

Π
(3)
ZZ(0)

M2
Z

= 3xt

[(

1− 1

d

)

C
a,(3)
−1,diag −

1

d
C

a,(3)
L,−1,diag

]

+ singlet terms , (29)

and
Π

(3)
WW (0)

M2
W

= 3xt

[(

1− 1

d

)

C
v,(3)
−1 − 1

d
C

v,(3)
L,−1

]

, (30)

where the higher-order corrections Π
(3)
ZZ ,Π

(3)
WW are defined in analogy to equa-

tion (5). C
v,(3)
L,−1 and C

a,(3)
L,−1,diag denote the moments with n = −1 of the respective

longitudinal polarisation functions; from an explicit calculation we obtain

C
v,(3)
L,−1 = −Cv,(3)

−1 , C
a,(3)
L,−1,diag = −Ca,(3)

−1,diag . (31)

Note that in the non-diagonal case the vector and axial-vector correlators con-
incide and that the (−1)-th moment of the diagonal vector correlator vanishes.
The contributions from W- and Z-boson self energies are divergent on their
own and only their sum is finite. The singlet terms calculated in Ref. [1] are
finite on their own and we do not repeat them here. Using the results given
in Appendix B we obtain in the MS scheme

ρ̄3,non-singlet = C̄
a,(3)
−1,diag − C̄

v,(3)
−1 = 1.60667 , (32)

and after converting to the on-shell scheme

ρ3,non-singlet = −101.083 , (33)

in full agreement with the results in the literature [2, 3].

5. Conclusion

We have calculated the four-loop QCD corrections to the low-energy mo-
ments of flavour non-diagonal current correlators up to n = 4. Our results are
valid for (axial-)vector and (pseudo-)scalar currents in the limit of a vanish-
ing light-quark mass. As a by-product we have confirmed the results for the
non-singlet correction to the electroweak ρ parameter first obtained in [2, 3].
In combination with lattice simulations, our results can be used for the pre-
cision determination of heavy-quark masses. Furthermore, they can serve as
an ingredient in the approximate reconstruction of the four-loop corrections for
arbitrary external momenta. For the latter application, however, more input
from other kinematic regions is still required.
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Appendix A. Symmetrisation

The closely related problems of symmetrisation and mapping diagrams to
topologies are ubiquitous in multiloop calculations. Commonly used algorithms
employ either the diagrams’ parametric representations [28] or representations
as graphs. To avoid cumbersome transformations, we choose to work with the
original algebraic form obtained directly from the Feynman rules.

A general L-loop scalar diagram I with P propagators has the form

I =

∫

[dl1] . . . [dlL]
1

Da1

1 . . . DaP

P

(A.1)

with (not necessarily positive) integers a1, . . . aP . The [dli] are suitable d-
dimensional integral measures, e.g. as in equation (B.1), and the propagatorsDi

are functions of the loop momenta l1, . . . , lL, any number of external momenta,
and a mass mi. Obviously, I is invariant under a change of variables

M : li 7→ l′i =Mij lj + qi (A.2)

with | det(M)| = 1 and constant vectors qi.
Consider now a diagram Ĩ with propagators D̃1, . . . , D̃P and the diagram I

as defined by eq. (A.1). Let us denote the propagators we obtain by changing
the loop momenta in I according to eq. (A.2) as D′

1, . . . , D
′

P . We say that
I and Ĩ belong to the same topology iff there is a transformation M such
that {D′

1, . . . , D
′

P } = {D̃1, . . . , D̃P }. Likewise, I belongs to a subtopology of
Ĩ iff for some M we have {D′

1, . . . , D
′

P } ⊆ {D̃1, . . . , D̃P }. The problem of
mapping a diagram to a topology thus reduces to finding out whether a suitable
transformation M exists.

The basic idea behind our algorithm is to first look for L propagatorsDi that
depend on all loop momenta l1, . . . , lL. Then we select L appropriate mutually
different target propagators D̃ji and define M such that D′

i = D̃ji . If the sets of
the remaining propagators are also equal after applying M, the two topologies
are the same.

To be more concrete, let us now consider a diagram I defined as in equa-
tion (A.1) with propagators of the form Di = p2i ±m2

i , where the pi are linear
combinations of loop momenta and external momenta. The generalisation to
other forms of the propagators should be straightforward. In practice, we can
choose the first L propagators to be of the form Di = l2i ±m2

i . The algorithm
then works as follows.

1. Select a new target topology and choose a representative with propagators
{D̃1, . . . , D̃P } of the form D̃i = p̃2i ± m̃2

i from it.

2. Choose a tuple (D̃i1 , . . . , D̃iL) (that was not chosen before) of L distinct
propagators with compatible masses, i.e. m̃i1 = m1, . . . , m̃iL = mL. If
this is not possible go back to step 1.

3. Consider the next among the 2L transformations that map the propagators
(D1, . . . , DL) onto (D̃i1 , . . . , D̃iL), i.e. lj 7→ ±pij j = 1, . . . , L. If no
transformation is left go back to step 2.

8



4. Apply the current transformation to the propagators D1, . . . , DP . I then
belongs to the current target topology if {D′

1, . . . , D
′

P } = {D̃1, . . . , D̃P }.
Else go back to step 3.

As far as identifying the topology of an integral is concerned the algorithm
terminates as soon as step 4 is completed successfully. For symmetrisation we
would skip step 1 and always go back from step 4 to step 3 in order to find all
automorphisms.

Appendix B. Subtraction terms

Since the leading coefficients with n = −1, 0 in equation (6) still depend on
the dimensional regulator ǫ = (4− d)/2, we first have to specify our renormali-
sation prescriptions in d dimensions in order to give meaningful expressions.

Our d-dimensional integration measure is given by

[dli] =
ddli
iπd/2

eǫγE , (B.1)

where γE ≈ 0.5772157 is the Euler-Mascheroni constant. The counterterms in
the MS scheme are now defined such that they exactly cancel the poles in ǫ.
For the sake of simplicity, we refrain from defining on-shell renormalisation and
present the divergent coefficients in terms of the MS quark mass. Writing

C̄δ,(3)
n =

3−n
∑

i=0

c̄
δ,(3)
n,i

ǫi
(B.2)

we obtain for µ = m̄

c̄
v,(3)
−1,0 = + 1.740C2

ACF − 9.555CAC
2
F + 15.433C3

F

− 7.803CACFTFnh + 7.355C2
FTFnh

− 0.228CACFTFnl − 1.897C2
FTFnl

− 0.935CFT
2
Fn

2
h + 0.735CFT

2
Fnhnl + 1.024CFT

2
Fn

2
l , (B.3)

c̄
v,(3)
−1,1 = − 1.196C2

ACF + 0.592CAC
2
F − 1.377C3

F

+ 1.130CACFTFnf + 0.015C2
FTFnf + 0.009CFT

2
Fn

2
f , (B.4)

c̄
v,(3)
−1,2 = + 2.195C2

ACF + 0.649CAC
2
F + 1.278C3

F

− 1.623CACFTFnf − 0.244C2
FTFnf − 0.025CFT

2
Fn

2
f , (B.5)

c̄
v,(3)
−1,3 = − 1.058C2

ACF − 1.750CAC
2
F − 0.352C3

F

+ 0.635CACFTFnf + 0.531C2
FTFnf − 0.069CFT

2
Fn

2
f , (B.6)

c̄
v,(3)
−1,4 = + 0.210C2

ACF + 0.516CAC
2
F + 0.281C3

F

− 0.153CACFTFnf − 0.188C2
FTFnf + 0.028CFT

2
Fn

2
f , (B.7)
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c̄
v,(3)
0,0 = − 0.832C2

ACF − 3.606CAC
2
F + 2.628C3

F

− 1.432CACFTFnh + 2.335C2
FTFnh

+ 2.239CACFTFnl + 0.666C2
FTFnl

− 0.425CFT
2
Fn

2
h − 0.479CFT

2
Fnhnl − 0.330CFT

2
Fn

2
l , (B.8)

c̄
v,(3)
0,1 = + 0.277C2

ACF + 0.065CAC
2
F − 0.180C3

F

− 0.417CACFTFnf + 0.172C2
FTFnf − 0.020CFT

2
Fn

2
f , (B.9)

c̄
v,(3)
0,2 = − 0.230C2

ACF + 0.019CAC
2
F

+ 0.150CACFTFnf + 0.024C2
FTFnf − 0.017CFT

2
Fn

2
f , (B.10)

c̄
v,(3)
0,3 = + 0.070C2

ACF − 0.051CACFTFnf + 0.009CFT
2
Fn

2
f , (B.11)

c̄
s,(3)
−1,0 = − 72.707C2

ACF − 114.585CAC
2
F + 20.766C3

F

+ 14.819CACFTFnh + 101.776C2
FTFnh

+ 62.816CACFTFnl + 19.095C2
FTFnl

− 17.829CFT
2
Fn

2
h − 24.041CFT

2
Fnhnl − 3.175CFT

2
Fn

2
l , (B.12)

c̄
s,(3)
−1,1 = − 5.959C2

ACF + 10.188CAC
2
F − 6.959C3

F

+ 16.536CACFTFnh − 0.578C2
FTFnh

+ 2.295CACFTFnl + 0.422C2
FTFnl

− 0.544CFT
2
Fn

2
h − 0.644CFT

2
Fnhnl − 0.100CFT

2
Fn

2
l , (B.13)

c̄
s,(3)
−1,2 = + 7.939C2

ACF + 1.310CAC
2
F + 3.731C3

F

− 7.673CACFTFnh − 3.327C2
FTFnh

− 5.840CACFTFnl − 0.327C2
FTFnl

+ 0.481CFT
2
Fn

2
h + 0.296CFT

2
Fnhnl − 0.185CFT

2
Fn

2
l , (B.14)

c̄
s,(3)
−1,3 = − 3.813C2

ACF − 11.708CAC
2
F − 2.438C3

F

+ 2.236CACFTFnf + 3.042C2
FTFnf − 0.222CFT

2
Fn

2
f , (B.15)

c̄
s,(3)
−1,4 = + 0.840C2

ACF + 4.125CAC
2
F + 4.500C3

F

− 0.611CACFTFnf − 1.500C2
FTFnf + 0.111CFT

2
Fn

2
f , (B.16)

c̄
s,(3)
0,0 = − 1.740C2

ACF + 9.555CAC
2
F − 15.433C3

F

+ 7.803CACFTFnh − 7.355C2
FTFnh

+ 0.228CACFTFnl + 1.897C2
FTFnl

+ 0.935CFT
2
Fn

2
h − 0.735CFT

2
Fnhnl − 1.024CFT

2
Fn

2
l , (B.17)

c̄
s,(3)
0,1 = + 1.196C2

ACF − 0.592CAC
2
F + 1.377C3

F

− 1.130CACFTFnf − 0.015C2
FTFnf − 0.009CFT

2
Fn

2
f , (B.18)
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c̄
s,(3)
0,2 = − 2.195C2

ACF − 0.649CAC
2
F − 1.278C3

F

+ 1.623CACFTFnf + 0.244C2
FTFnf + 0.025CFT

2
Fn

2
f , (B.19)

c̄
s,(3)
0,3 = + 1.058C2

ACF + 1.750CAC
2
F + 0.352C3

F

− 0.635CACFTFnf − 0.531C2
FTFnf + 0.069CFT

2
Fn

2
f , (B.20)

with nf = nh + nl.

In addition to the listed coefficient C̄
v,(3)
−1 we require the corresponding coef-

ficient C̄
a,(3)
−1,diag in the low-energy expansion of the flavour diagonal axial-vector

correlator in order to compute the correction to the ρ parameter. Since the
pole parts of these two coefficients have to cancel, we can decompose the latter
coefficient as

C̄
a,(3)
−1,diag = C̄

a,(3)
−1,diag

∣

∣

∣

∣

fin

−
4

∑

i=1

c̄
v,(3)
−1,i

ǫi
(B.21)

with the coefficients c̄
v,(3)
−1,i as in equations B.4–B.7. The remaining finite part

is given by

C̄
a,(3)
−1,diag

∣

∣

∣

∣

fin

= + 2.484C2
ACF − 8.319CAC

2
F + 16.954C3

F

− 5.300CACFTFnh + 2.759C2
FTFnh

− 1.598CACFTFnl − 4.210C2
FTFnl

− 0.247CFT
2
Fn

2
h + 1.585CFT

2
Fnhnl + 1.492CFT

2
Fn

2
l , (B.22)

References

References
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QCD corrections to the ρ parameter, Phys. Rev. Lett. 97 (2006) 102003.
arXiv:hep-ph/0605201, doi:10.1103/PhysRevLett.97.102003.

[3] R. Boughezal, M. Czakon, Single scale tadpoles and O(GFm
2
tα

3
s)

corrections to the ρ parameter, Nucl. Phys. B755 (2006) 221–238.
arXiv:hep-ph/0606232, doi:10.1016/j.nuclphysb.2006.08.007.

[4] A. Penin, M. Steinhauser, Heavy light meson decay constant from QCD
sum rules in three loop approximation, Phys.Rev. D65 (2002) 054006.
arXiv:hep-ph/0108110, doi:10.1103/PhysRevD.65.054006.

[5] M. Jamin, B. O. Lange, fB and fBs
from QCD sum rules,

Phys.Rev. D65 (2002) 056005. arXiv:hep-ph/0108135,
doi:10.1103/PhysRevD.65.056005.

11

http://arxiv.org/abs/hep-ph/0504055
http://dx.doi.org/10.1016/j.physletb.2005.06.085
http://arxiv.org/abs/hep-ph/0605201
http://dx.doi.org/10.1103/PhysRevLett.97.102003
http://arxiv.org/abs/hep-ph/0606232
http://dx.doi.org/10.1016/j.nuclphysb.2006.08.007
http://arxiv.org/abs/hep-ph/0108110
http://dx.doi.org/10.1103/PhysRevD.65.054006
http://arxiv.org/abs/hep-ph/0108135
http://dx.doi.org/10.1103/PhysRevD.65.056005


[6] I. Allison, et al., High-precision charm-quark mass from current-current
correlators in lattice and continuum QCD, Phys. Rev. D78 (2008) 054513.
arXiv:0805.2999, doi:10.1103/PhysRevD.78.054513.

[7] C. McNeile, C. Davies, E. Follana, K. Hornbostel, G. Lepage, High-
precision c and b masses, and QCD coupling from current-current cor-
relators in lattice and continuum QCD, Phys. Rev. D82 (2010) 034512.
arXiv:1004.4285, doi:10.1103/PhysRevD.82.034512.

[8] J. Koponen, et al., Heavy-light current-current correlators, PoS LAT-
TICE2010 (2010) 231. arXiv:1011.1208.

[9] A. Djouadi, P. Gambino, Electroweak gauge bosons selfenergies:
Complete QCD corrections, Phys. Rev. D49 (1994) 3499–3511.
arXiv:hep-ph/9309298, doi:10.1103/PhysRevD.49.3499. Erratum
Phys. Rev. D53 (1996) 4111, doi:10.1103/PhysRevD.53.4111.

[10] A. Djouadi, P. Gambino, QCD corrections to higgs boson selfener-
gies and fermionic decay widths, Phys. Rev. D51 (1995) 218–228.
arXiv:hep-ph/9406431, doi:10.1103/PhysRevD.51.218. Erratum Phys.
Rev. D53 (1996) 4111, doi:10.1103/PhysRevD.53.4111.2..

[11] K. Chetyrkin, M. Steinhauser, Three loop nondiagonal current cor-
relators in QCD and NLO corrections to single top quark pro-
duction, Phys. Lett. B502 (2001) 104–114. arXiv:hep-ph/0012002,
doi:10.1016/S0370-2693(01)00179-4.

[12] K. Chetyrkin, M. Steinhauser, Heavy - light current correlators at
order α2

s in QCD and HQET, Eur. Phys. J. C21 (2001) 319–338.
arXiv:hep-ph/0108017, doi:10.1007/s100520100744.

[13] A. Maier, P. Marquard, Low- and high-energy expansion of heavy-quark
correlators at next-to-next-to-leading order, Nucl. Phys. B859 (2012) 1–12.
arXiv:1110.5581, doi:10.1016/j.nuclphysb.2012.01.021.

[14] J. Hoff, M. Steinhauser, Moments of heavy-light current correlators up
to three loops, Nucl. Phys. B849 (2011) 610–627. arXiv:1103.1481,
doi:10.1016/j.nuclphysb.2011.04.007.

[15] J. Grigo, J. Hoff, P. Marquard, M. Steinhauser, Moments of heavy
quark correlators with two masses: exact mass dependence to
three loops, Nucl. Phys. B864 (2012) 580–596. arXiv:1206.3418,
doi:10.1016/j.nuclphysb.2012.07.007.

[16] P. Baikov, K. Chetyrkin, J. H. Kühn, Vacuum polarization in pQCD:
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