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The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing
their production, propagation, and interaction. The IceCube Collaboration has published the first
experimental determination of the ratio of the flux in each flavor to the total. We present, as a
theoretical counterpart, new results for the allowed ranges of flavor ratios at Earth for arbitrary
flavor ratios in the sources. Our results will allow IceCube to more quickly identify when their data
imply standard physics, a general class of new physics with arbitrary (incoherent) combinations
of mass eigenstates, or new physics that goes beyond that, e.g., with terms that dominate the
Hamiltonian at high energy.

Introduction.— The discovery of astrophysical neu-
trinos with energies up to a few PeV by the IceCube
Collaboration [1–4] is tremendously important for multi-
messenger astronomy as well as for new tests of neutrino
properties. While the origin of these neutrinos is still un-
clear, there are important clues in the energy spectrum
and sky distribution, and a component from cosmic dis-
tances (∼ Gpc) is required [5–24]. These are the most
extreme energies and distances for detected neutrinos.

The flavor composition is also expected to be impor-
tant, because the ratio of flux in each flavor to the to-
tal cancels the unknown normalization. The ratios de-
pend on the physical conditions at the source, the effects
of standard flavor mixing, and on potential new physics
[5, 25–36].

The first IceCube results on flavor composition have
been published recently [35], and results with more statis-
tics will soon follow [37]. Accordingly, there has been
intense interest in deducing flavor ratios from IceCube
data [9, 31, 34, 38, 39].

In this Letter, we use ternary plots or “flavor triangles”
to show the flavor composition at Earth. We system-
atically explore which regions of this plot can be pop-
ulated from theoretical perspectives —without or with
new physics— including the uncertainties in source fla-
vor composition and neutrino mixing parameters. We
also note prospects for the proposed volume upgrade,
IceCube-Gen2 [40].

We make no distinction between ν and ν̄, because,
except for yet-unobserved high-energy events, IceCube
cannot distinguish between them. (In addition, their
cross sections agree to better than ' 5% in this energy
range [41, 42].)

All plots shown in the main text are for the normal
neutrino mass hierarchy (NH), in which ν1 is the lightest
mass eigenstate. Corresponding plots for the inverted
hierarchy (IH), in which ν3 is lightest, are given in the
Supplemental Material; the differences are modest.

Flavor identification in IceCube.— IceCube can

discriminate between muon tracks (from νµ, mostly) and
cascades (from charged-current interactions of νe and ντ ,
mainly, and from neutral-current interactions of all fla-
vors). If higher-energy events are observed, it will be
possible to isolate ν̄e cascades via the Glashow reso-
nance [43–45], and ντ and ν̄τ via double-bang and lol-
lipop topologies [46–48]. In their absence, there is an
experimental degeneracy between the electron and tau
neutrino flavor content at Earth [34, 35]. In contrast,
theoretically predicted flavor ratios, even in models with
new physics, have a µ-τ symmetry due to that mixing
angle being near-maximal.

Flavor composition at the source.— The flavor
composition at the source could be quite different de-
pending on the physical conditions. For the pion decay
chain, which is often used as standard (“pion beam”), one
expects a composition (fe,S : fµ,S : fτ,S)=( 1

3 : 2
3 : 0)S,

with fα,S the ratio of να + ν̄α to the total flux, where
fe,S + fµ,S + fτ,S = 1. Synchrotron cooling of secondary
muons in strong magnetic fields leads to a transition to
(0 : 1 : 0)S (“muon damped”) at higher energies, which
depends on the field strength; see, e.g., Refs. [5, 38, 49–
51]. If these muons pile up at lower energies [51], or
if there are contributions from charmed meson decays
[29, 52, 53], then ( 1

2 : 1
2 : 0)S is expected. Neutron de-

cays [5] lead to (1 : 0 : 0)S. Small deviations, . 5% in
the νe/νµ ratio, are expected from effects such as the he-
licity dependence of muon decays [5, 54]. If several of the
above processes in the source compete, arbitrary flavor
compositions (fe,S : 1− fe,S : 0) can be obtained [51]. If,
in addition, ντ are produced, such as by oscillations in a
matter envelope [55–57], even (fe,S : fµ,S : 1−fe,S−fµ,S)
(with 0 ≤ fµ,S ≤ 1 − fe,S) could be possible. Dark mat-
ter annihilation or decay could yield any mixture, but
( 1
3 : 1

3 : 1
3 )S is the most natural.

Flavor composition at Earth.— Here we focus
on a diffuse flux, which is composed of small contribu-
tions from many sources over a wide range of distances,
and detected with energy resolution & 10% (and binned
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FIG. 1. Flavor content of the three active mass eigenstates.
The regions are given by the best-fit values of the mixing pa-
rameters (light yellow), and their 1σ (darker) and 3σ (dark-
est) uncertainty regions [62], assuming a normal mass hierar-
chy (NH). The tilt of the tick marks indicates the orientation
with which to read the flavor content.

more coarsely). In this case, the neutrinos are, at least
effectively, an incoherent mixture of mass eigenstates.
Even for the solar ∆m2

� ≈ 8 · 10−5 eV2 and PeV ener-
gies, the vacuum oscillation length is only ∼ 10−13 Gpc,
much smaller than the complete baseline. (Depending
on the physics in the production region, there can be
also wave packet decoherence in the source [58–60].) As
a consequence, the flavor composition at Earth [58] is
fβ,⊕ =

∑
i,α |Uβi|2 |Uαi|2 fα,S, with U the PMNS matrix

[61], implying
∑
β fβ,⊕ = 1. For a pion beam, the flavor

composition evolves roughly into flavor equipartition at
the detector, ( 1

3 : 1
3 : 1

3 )⊕.
New physics in neutrino propagation might modify

the flavor composition. We categorize classes of new-
physics models below. Their effects have to be discrim-
inated from the energy-dependent flavor composition at
the source [63].

Flavor content of the mass eigenstates.—
Figure 1 shows the flavor content |Uαi|2 of the mass

eigenstates, which is the fundamental input that deter-
mines flavor ratios at Earth without or with new physics.
It also illustrates the underlying three-flavor unitarity of
our analysis, i.e., |Uα1|2 + |Uα2|2 + |Uα3|2 = 1, which
allows the flavor content to be displayed in a ternary
plot [64]. This is appropriate because the mixing angles
to sterile neutrinos must be quite small [65, 66].

The long axis of each region is set by the uncertainty in
θ23 and δCP, while the short axis is set by the uncertainty
in θ12. The effect of the uncertainty in θ13 is tiny. Even if
θ23 were to be precisely determined soon, it is less likely

FIG. 2. Allowed flavor ratios at Earth with no new physics.
The flavor ratios at the source are arbitrary (gray) or contain
no tau flavor (red). The IceCube results are from Ref. [37].

that δCP will be, and the uncertainty in the latter will
still span a large range in |Uτ1|2 and |Uτ2|2.

Standard flavor mixing.— Figure 2 shows the al-
lowed region for the flavor composition at Earth assum-
ing arbitrary flavor composition at the source and stan-
dard neutrino mixing (including parameter uncertain-
ties). The region is quite small: even at 3σ it covers
only about 10% of the available space. There is little
difference between fτ,S = 0 and fτ,S 6= 0.

There is a theoretical symmetry along the line (fe,⊕ :
(1− fe,⊕)/2 : (1− fe,⊕)/2) coming from nearly-maximal
mixing. On the other hand, the experimental degener-
acy pulls towards (fe,⊕ : 1− 2fe,⊕ : fe,⊕), on account of
the difficulty of distinguishing between electromagnetic
and hadronic cascades. Thus, theory and experiment
are complementary, which enhances the discriminating
power of flavor ratios.

The region shown includes the possibility of energy-
dependent flavor composition at the source; see the Sup-
plemental Material for examples. It also includes the
possibility that the diffuse flux has contributions from
sources with different flavor compositions, because of the
linear mapping between those at the source and those at
Earth. The possibility of measuring δCP from the flavor
ratios is explored in the Supplemental Material.

Figure 3 shows that if the flavor composition at the
source could be restricted from astrophysical arguments,
the allowed regions at Earth could become tiny (and will
shrink when the mixing parameters are better known). A
source composition of (1 : 0 : 0)S is already disfavored at
& 2σ. While the current IceCube fit is compatible with
the standard

(
1
3 : 1

3 : 1
3

)
⊕ at 1σ, the best-fit point cannot
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FIG. 3. Allowed flavor ratios at Earth for different choices of
source ratios, assuming standard mixing. Projected 1σ, 2σ,
and 3σ exclusion curves from IceCube-Gen2 are included for
comparison (gray, dotted); see main text.

be reached within the Standard Model.

An upgrade of IceCube would have excellent discrim-
ination power, as indicated by the projected sensitivity
curves we estimate for IceCube-Gen2 and show in Fig. 3.
We reduced the IceCube uncertainties by a factor 5, cor-
responding to an exposure increased by a factor ∼ 25
(∼ 6 times larger effective area [40] and twelve years
instead of three). The true sensitivity might be worse
(due to sparser instrumentation) or better (due to new
techniques or to the discovery of flavor-identifying sig-
nals [43, 44, 46, 48, 51, 67–75]). To be conservative,
we assumed the best fit will correspond to the most-
frequently considered composition, ( 1

3 : 1
3 : 1

3 )⊕, for
which it will be most difficult to test for new physics.

Flavor ratios with new physics.— New physics
can modify the flavor composition at production, during
propagation, or in interaction. In the first two cases, it
will affect the flavor composition that reaches the detec-
tor; this is our focus. In the last case —which includes,
e.g., non-standard interactions [76] and renormalization
group running of the mixing parameters [77]— we as-
sume that new physics can be separated by probing the
interaction length in Earth via the angular dependence
of the neutrino flux [78–81].

In extreme scenarios, there could be only one mass
eigenstate present at detection, and the flavor composi-
tion would correspond to that of one eigenstate. This
could happen if all but one mass eigenstate completely
decays or if matter-affected mixing at the source singles
out a specific one for emission.

Figure 4 shows the allowed region if we restrict our-

FIG. 4. Allowed flavor ratios at Earth in a general class of
new-physics models. These produce linear combinations of
the flavor content of ν3, ν2, and ν1, shown as yellow (dashed)
curves, from left to right. The standard mixing 3σ region
from Fig. 2 is shown as a magenta (dotted) curve.

selves to a general class of new-physics models —those in
which arbitrary combinations of incoherent mass eigen-
states are allowed. The most dramatic examples include
all variants of neutrino decay, both partial and com-
plete [25, 82–85], and secret neutrino interactions [86–
91]. Other examples are pseudo-Dirac neutrinos [92–94]
and decoherence on the Planck-scale structure of space-
time [95–101]. The shape of the blue region comes from
superposing the flavor content of the νi calculated with
the same values of the mixing parameters.

Even with this general class of new-physics models,
only about 25% of the flavor triangle can be accessed.
The current IceCube best fit cannot be reached even by
invoking this class of physics models. IceCube-Gen2 will
be needed to strongly constrain such new-physics models.

Interestingly, there is more than one way in which
the standard

(
1
3 : 1

3 : 1
3

)
⊕ composition can be generated,

such as through the standard mixing of
(
1
3 : 2

3 : 0
)
S
, or

through a fortuitous incoherent mix of mass eigenstates
due to decay.

Already, complete decay in the most often used neu-
trino decay scenario (only ν1 stable) for the NH can be
ruled out at & 2σ (see Ref. [85] for a weaker exclusion at
1σ based on their own analysis of tracks and cascades),
and bounds on the neutrino lifetimes can be set [102].

To access the white region in Fig. 4, a broader class
of new-physics models is required. Possible examples are
models with violation of CPT and/or Lorentz invariance
(which alter the dispersion relations) [25, 100, 103–106],
or the equivalence principle [107–109], and coupling to a
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torsion field [110].
All these have in common that they either invalidate

the concept of decoherence in the astrophysical neutrino
flavor composition or they change the values of the mix-
ing parameters. Ref. [111] adopted a generic effective
theory approach in which the new-physics terms domi-
nate the propagation Hamiltonian at high energies, and
showed that such models are indeed able to populate al-
most the full triangle.

Another possibility is the existence of extra dimen-
sions, which could lead to matter-like resonant mixing
between active and sterile flavors [112]. Boosted dark
matter [19, 113, 114] could generate neutrino-like events,
even mimicking pure-flavor signatures.

Conclusions.— We have demonstrated that the al-
lowed region of neutrino flavor composition at Earth un-
der standard mixing is quite small, in spite of the uncer-
tainties in the mixing parameters and flavor composition
at the sources. The allowed region remains small even
in the presence of a general class of new-physics mod-
els whose effect is to change the incoherent mix of mass
eigenstates during propagation (e.g., neutrino decay and
secret interactions). These results hardly depend on the
mass hierarchy, and they hold for energy-dependent fla-
vor compositions at the source or energy-dependent new
physics; see the Supplemental Material.

In order to access the larger space of possible fla-
vor combinations, a broader class of new physics dur-
ing propagation —flavor-violating or capable of modify-
ing the values of the mixing parameters— or at detec-
tion is required. Interestingly, the current IceCube best-
fit composition lies in this region, though the standard
( 1
3 : 1

3 : 1
3 )⊕ case is not excluded.

The power of IceCube to determine the composition
is enhanced by the complementarity between its experi-
mental νe-ντ degeneracy and the theoretical νµ-ντ sym-
metry coming from nearly-maximal mixing. The current
bounds are not only compatible with most source compo-
sitions, but also with many potential new physics effects.
However, the most favored neutrino decay scenario (only
ν1 stable) can be already ruled out at & 2σ.

The smaller the allowed region with only standard mix-
ing shown in Fig. 2 and Fig. 3, the more sensitive IceCube
is to new physics. Likewise, the smaller the new-physics
region shown in Fig. 4, the more sensitive IceCube is to
the broader class of new physics. The recent successes in
measuring neutrino mixing parameters have been essen-
tial to making these regions small. Our results provide
new perspectives that will sharpen and accelerate tests
of flavor ratios.

Ideally, flavor ratios would be determined using a single
class of point sources at known distances. No high-energy
astrophysical sources have been resolved yet, however.
We have shown that, even using a diffuse flux, flavor
ratios can reveal information about source conditions and
neutrino properties.

Data from a volume upgrade of IceCube in combi-
nation with improved measurements of the mixing pa-

rameters, including δCP, have the potential to nail down
the flavor composition at the source or to identify new
physics in propagation. However, it is not possible to
extract the value of δCP from astrophysical data alone if
the flavor composition at the source is not known; see
the Supplemental Material.

To fully exploit the power of neutrino flavors, advances
in four directions are needed:

1. A volume upgrade of IceCube (IceCube-Gen2 [40])
or a corresponding experiment in seawater (e.g.,
KM3NeT [115]).

2. Reduction of the uncertainties in the values of the
mixing parameters (especially θ23 and δCP).

3. Improvements in experimental techniques to recon-
struct neutrino flavor and energy.

4. More systematic model building to better under-
stand, or constrain, the region of flavor ratios at
Earth that could be accessed by new physics.

Given the wealth of information about neutrino pro-
duction, propagation, and interaction that the flavor
composition provides, its precise determination should
become a high-priority goal of ongoing and near-future
experimental analyses.
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Supplemental Material

Appendix A: Plots for inverted mass hierarchy

We repeat the figures shown in the main text of the
paper, but now for the inverted hierarchy (IH) instead
of the normal hierarchy. The differences are modest and
are vanishing for the 3σ regions.

FIG. 5. Same as Fig. 1, but for an inverted mass hierarchy.

FIG. 6. Same as Fig. 3, but for an inverted mass hierarchy.

FIG. 7. Same as Fig. 2, but for an inverted mass hierarchy.

FIG. 8. Same as Fig. 4, but for an inverted mass hierarchy.
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Appendix B: Energy dependence of the flavor
composition at the source

The energy dependence of the flavor composition at
the source has been considered in, e.g., Refs. [49–52].
At lower energies, a (1 : 2 : 0)S composition is expected,
coming from the full pion decay chain. At higher en-
ergies, where the synchrotron losses of the muons cre-
ated by the pion decays become larger and where addi-
tional neutrino production channels become accessible,
the source flavor composition changes. Non-trivial flavor
compositions are obtained if several processes compete
or the cooled muons pile up at lower energies [51].

If neutrinos in a broad energy interval are considered,
then the inferred flavor composition at Earth will be a
superposition of those at different energies. It will be
challenging for IceCube to pinpoint the exact flavor ratios
unless a large volume of data is available for fine energy
binning to be feasible.

Let us assume that such a binning is in fact feasible.
In that case, by assuming that the energy dependence of
the source flavor composition is the same for all of the
sources contributing to the neutrino diffuse flux, we can
predict the ratios at Earth at different energies.

Figure 9 shows the variation of the flavor ratios at
Earth from a source with emission parameters given by
a “classical” pion beam source evolving into a muon-
damped source at higher energies (test point TP13 from
Ref. [51], a photohadronic model where the target pho-
tons come from synchrotron emission of co-accelerated
electrons). As expected, the trajectory in flavor space
lies within the Standard Model region shown in Fig. 2.

Figure 10 shows the results for a different parameter
set (test point TP3 from Ref. [51], corresponding to AGN
cores, a mixed source at low energies, where muon pile-
ups add to the pion decay chain, evolving into muon
damped source at high energies), this time taking into
account in addition invisible decays of ν2 and ν3, and a
stable ν1, i.e., in the normal hierarchy. The fact that
decays are invisible means that the decay products of ν2
and ν3 do not contribute to the ν1 flux.

In this example, the energy dependence of the fla-
vor composition at the source competes with the energy
dependence of the new physics effect; see discussion in
Ref. [63]. We have fixed the decay damping parameter
to α̂L = 105 GeV, following the notation in Eq. (18) of
Ref. [63]. As expected, the trajectory in flavor space now
leaves the Standard Model region at the lowest energies,
where the suppression from decay is stronger, and reaches
the region corresponding to the flavor content of ν1 (see
Fig. 1). The full trajectory is still completely contained
within the new physics region from Fig. 4.

Figure 11 shows complementary results for test point
TP3 in the inverted hierarchy case, when ν3 is stable
while ν1 and ν2 decay. In this case, the trajectory leaves
the Standard Model region and reaches the region corre-
sponding to the flavor content of ν3. Note that this case
may be disfavored by the observation of neutrinos from
SN 1987A.

If the experimental determination of the flavor ratios
finds no energy dependence, then we could interpret this
as a hint that neutrino production occurs in a narrow
energy window, inside of which the flavor composition at
the sources is approximately constant.
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FIG. 9. Left: Variation with energy of the flavor ratios at Earth, for neutrinos coming from a source with emission parameters
given by test point TP13 from Ref. [51]. The neutrinos were produced in pγ interactions, calculated using NeuCosmA [54, 116].
Right: Ternary plots showing the trajectory of the flavor ratios of the same source, marking the values at different energies.

FIG. 10. Left: Variation with energy of the flavor ratios at Earth, for neutrinos coming from a source with emission parameters
given by test point TP3 from Ref. [51], including decay of ν2 and ν3. The neutrinos were produced in pγ interactions, calculated
using NeuCosmA [54, 116]. Right: Ternary plots showing the trajectory of the flavor ratios of the same source, marking the
values at different energies.
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FIG. 11. Left: Variation with energy of the flavor ratios at Earth, for neutrinos coming from a source with emission parameters
given by test point TP3 from Ref. [51], including decay of ν1 and ν2. The neutrinos were produced in pγ interactions, calculated
using NeuCosmA [54, 116]. Right: Ternary plots showing the trajectory of the flavor ratios of the same source, marking the
values at different energies.



13

FIG. 12. Flavor ratios at Earth with unconstrained source flavor ratios and four particular choices of source flavor ratios. The
mixing angles are kept fixed at their current best-fit values; the CP-violation phase δCP is the only mixing parameter that has
been varied to create the colored regions. The regions corresponding to the flavor content of ν1 and ν3 at the 1σ and 3σ regions
are also shown; note that the flavor content of ν3 has no dependence on δCP.

Appendix C: Measurement of δCP?

There have been proposals to determine δCP using
high-energy astrophysical neutrinos; see, e.g., Refs. [117–
122]. If neutrinos decay, this possibility may even be
more attractive [123]. We therefore show in Fig. 12 the
allowed regions of flavor composition if all of the mixing
parameters except δCP are fixed to their current best-fit
values. This assumption corresponds to future improved
measurements of the mixing angles coming from other
experiments, whereas δCP is to be determined from neu-
trino telescope data. For comparison, we include the out-
lines of the regions generated when the mixing angles are
also allowed to vary within their 1σ and 3σ regions.

The comparison of Figs. 3 & 6 and Fig. 12 shows that,
in the absence of knowledge of the flavor composition
at the source, δCP cannot be extracted. However, if
the source flavor composition were known to be muon-
damped ((0 : 1 : 0)S) or neutron source ((1 : 0 : 0)S),
then, given the statistics of IceCube-Gen2, one would
expect a marginal statistically significant contribution to
the mass hierarchy or CP violation sensitivities of T2K
and NOvA [118]. A new long-baseline experiment, such
as DUNE [124], would be more precise. A special case is
the one of neutrino decay, in which IceCube-Gen2 could
actually measure the leptonic CP phase [123]; see lower
right yellow region, if only ν1 is stable. This case is,
however, disfavored by current IceCube data at & 2σ;
see Fig. 4.
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