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Abstract

The Starobinsky model of inflation, consistent with Planck 2015, has a peculiar form of

the action, which contains the leading Einstein term R, the R2 term with a huge coefficient,

and negligible higher order terms. We propose an explanation of this form based on com-

pactification of extra dimensions. Once tuning of order 10−4 is accepted to suppress the

linear term R, we no more have to suppress higher order terms, which give nontrivial correc-

tions to the Starobinsky model. We show our predictions of the spectral index, its runnings,

and the tensor-to-scalar ratio. Finally, we discuss quantum gravity may appear at the scale

Λ & 5× 1015 GeV.

http://arxiv.org/abs/1507.04344v2


1 Introduction

The precise CMB observations favor the plateau-type inflaton potentials. Although the com-

bined analysis of BICEP–Keck-Array–Planck resulted in a finite value of tensor-to-scalar ratio,

r = 0.048+0.035
−0.032 [1], Planck 2015 itself has not found any evidence of detecting it, r < 0.103

(Planck TT + lowP) [2]. In fact, combining these results in a stringent limit, r < 0.08 (Planck

TT+lowP+BKP) [2]. There are many models, including Starobinsky model [3], Higgs inflation

model [4], and cosmological attractors (see Ref. [5] and references therein), whose predictions are

at the center of the Planck constraint. Among others, the Starobinsky model of inflation has

specific features that it does not require introduction of an inflaton field by hand: the inflaton

degree of freedom emerges from a higher order gravitation term.

The model in the well-known form1 is [7]

S =

∫

d4x
√−g

(

−1

2
M2

PR+
M2

P

12m2
R2

)

, (1)

where MP ≃ 2.4 × 1018 GeV is the reduced Planck mass, R is the Ricci scalar, and m is a

mass-dimensional parameter (actually the inflaton mass). In the IR limit, R ≪ m2, it reduces

to the General Relativity (with the cosmological constant, which should be fine-tuned to be a

small number and hence we ignore here), which is well established in wide scales. On the other

hand, when R becomes comparable with m2, the second term becomes important. Introducing an

auxiliary scalar field and applying Weyl transformation and scalar field redefinition, the model

is recast in the form of Einstein gravity with a canonically normalized scalar field φ with the

following scalar potential [8–10],

VStarobinsky =
3

4
m2M2

P

(

1− e−
√

2/3φ/MP

)2

, (2)

where m is interpreted as the inflaton mass at the vacuum.

If one interprets m2 in eq. (1) as the expansion parameter of the theory, there are no reasons

to expect absence of even higher order terms like R3 and R4 (aside from terms involving Ricci

and Riemann tensors and derivatives, which we neglect because they introduce negative norm

states (ghosts) [12]) with negative powers of m2. That is, eq. (1) should be augmented by the

higher order terms as follows,

S = M2
P

∫

d4x
√−g

(

−1

2
R+

∞
∑

n=2

anm
2

(

R

m2

)n
)

, (3)

where a2 = 1/12, and an’s (n ≥ 3) are naively expected to be of order one. These terms,

however, easily spoil the success of the inflationary model by substantially modifying the inflaton

1 The original formulation involves all quadratic curvature invariants such as RµνRµν and RµνρσRµνρσ. In

conformally flat spacetime, effects of these terms are represented by the scalar curvature term as in eq. (1). Note

also that the de Sitter expansion in f(R) gravity was discussed in Ref. [6].
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potential (2). So in any way, the higher order terms must be sufficiently suppressed to maintain

the predictions of the model.

If the higher order terms involving negative powers of m2 are suppressed by phenomenological

reasons, what is the scale of the suppression? The “next-to-natural” expectation would be that

it is the reduced Planck scale MP, since there are no other scales in the theory. In this case, the

action is expanded by the Planck scale MP with order one coefficients, but then the coefficient

of the second term R2 must be somewhat very large (a2 ≃ 5 × 108). This is the well-known

peculiarity of the Starobinsky model, which we try to partially explain here.

In this letter, we take a view that the large coefficient of the R2 term is actually an overall

coefficient of the action. As we will see, such a large overall factor naturally emerges in theories

with extra spacetime dimensions. Although we have to suppress the coefficient of the linear

term R by tuning of order 10−4, we do not have to additionally suppress the higher order terms.

Moreover, it leads to a Starobinsky-like model with interesting observational consequences. At

the end, we predict inflationary observables, and obtain the lower bound on the fundamental

scale of the underlying higher dimensional theory.

2 Starobinsky-like model from extra dimensions

Suppose that the underlying gravitational theory lives in D spacetime dimensions with a charac-

teristic energy scale Λ. Its effective action is described by

S = ΛD

∫

dDx
√−g

∑

n=0

bn

(

RD

Λ2

)n

, (4)

where bn’s are dimensionless coefficients and RD is the D-dimensional Ricci sacalar. Here we

require the absence of ghosts, and hence assume the f(R)-type theory (see e.g. Ref. [13] for

a review of f(R) gravity). Also, we neglect possible non-minimal couplings with matter fields

for simplicity. Assuming b2 > 0, we may set b2 = 1 by redefinition of the scale Λ. Upon the

compactification to four dimensions, the action becomes

S = c

∫

d4x
√−g

∑

n=0

bnΛ
4

(

R

Λ2

)n

, (5)

where c ≡ VD−4Λ
D−4 is the overall dimensionless factor, VD−4 is the volume of the compactified

extra dimensions, and R is the 4-dimensional Ricci scalar2. For example, if we take D = 10 (c.f.

superstring theory) and the compactification radius L ≡ V
1/6
6 which satisfies L ≃ 30/Λ, we can

naturally obtain the large overall factor c ≃ 5× 108.

2 The above compactification assumes flat extra dimensions so that RD = R. For generic extra dimensions, we

have RD = R+O(1/L2) where L is the typical size of extra dimensions (compactification radius). Thus, coefficients

bn receive only corrections like bn → bn +O
(

(1/L2Λ2)
)

. Since we take LΛ large, these corrections are neglected.
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Basically, all the coefficients bn are expected to be order one, but b0 should be fine-tuned to

suppress the cosmological constant. Furthermore, we require that b1 also happens to be very

small. Otherwise, the situation is similar to eq. (3) with m replaced by Λ. Since the limit b1 → 0

does not enhance symmetries of the theory, it is regarded as tuning. To reproduce the Starobinsky

model, we set

cb1Λ
2 =− M2

P

2
, c =

M2
P

12m2
≃ 5× 108, (6)

with |b1| ≪ 1. The eq. (5) becomes

S =

∫

d4x
√−g

(

−1

2
M2

PR+
M2

P

12m2

(

R2 +

∞
∑

n=3

bn

(

−6m2

b1

)2−n

Rn

))

, (7)

so the suppression scales for n ≥ 3 become larger than the inflation scale m as we tune b1 to be

small. This is the form of the action we advocate.

The extension of the Starobinsky model with an Rn term was studied in Ref. [14], which gives

us a constraint on each coefficient,

∣

∣

∣

∣

∣

nbn

(

b1
2

)n−2
∣

∣

∣

∣

∣

. 10−2n+2.6 (n ≥ 3). (8)

The constraint for n = 3 is |b1| . 10−3.6. With |b1| satisfying this bound, the constraint (8) is

satisfied also for n ≥ 4. Using the results of Planck 2015, ns = 0.9655 ± 0.0062 (Planck TT +

low P) [2], we obtain more stringent 95% CL bounds on b1:

−2.5× 10−4 . b . 1.3 × 10−4 (Ne = 50), (9)

−1.4× 10−4 . b . 2.2 × 10−4 (Ne = 60), (10)

where b = b3b1. Note that b1 < 0, and b3 is expected to be of order one, so the bound on b1 is

roughly |b1| . 2× 10−4.

3 Implications for inflationary observables

For self-completeness and with the latest Planck data, let us discuss effects of the extra terms

in the action to the inflationary observables, namely the scalar spectral index ns, its running αs,

and the tensor-to-scalar ratio r. As we saw above, effects of higher order (n ≥ 4) terms are more

suppressed than the n = 3 term, so we neglect the higher order terms in the following analyses.

The addition of R3 term has been studied since early times [11, 15], and recent discussions

include Refs. [14, 18]. Here, we summarize the properties of the scalar potential in the Einstein

frame and inflationary observables, and compare with the latest observational data. Considering
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observation of the 21 cm line from hydrogen atoms, we obtain the opposite conclusion to that in

the literature [14].

Under the standard procedure, the Jordan frame action (7) up to the third term is transformed

into the Einstein frame action with the following potential for a canonical scalar field φ,

V =
m2

9b2
e−2

√
2/3φ

(

√

1 + 3b
(

e
√

2/3φ − 1
)

− 1

)(

1 + 6b
(

e
√

2/3φ − 1
)

−
√

1 + 3b
(

e
√

2/3φ − 1
)

)

.

(11)

Here and hereafter, we take the reduced Planck unit MP = 2.4 × 1018GeV = 1. When we set

b = 0, it reduces to the Starobinsky potential (2). If b is negative, the potential blows up in the

large field region. If b is positive, the potential has a run-away behavior, and there is a possibility

of topological inflation as discussed in Ref. [16]. If we retain b up to the leading nontrivial order,

the potential is

V = VStarobinsky ×
(

1− b

2
e
√

2/3φ
(

1− e−
√

2/3φ
)

)

+O(b2), (12)

where VStarobinsky is given in eq. (2). Of course, the large field behavior (φ → ∞) depends also

on the higher order terms [17,18], but the leading order is enough for our purpose.

In the leading order of the deformation parameter b, the spectral index ns, the tensor-to-scalar

ratio r, the running of the spectral index αs, and its running βs are obtained as

1− ns ≃
2

N

(

1 +
16

27
bN2

)

=
2

N
+

32

27
bN, (13)

r ≃ 12

N2

(

1− 16

27
bN2

)

=
12

N2
− 64

9
b, (14)

αs ≃− 2

N2

(

1− 16

27
bN2

)

= − 2

N2
+

32

27
b, (15)

βs ≃− 4

N3

(

1 +
4

9
bN

)

= − 4

N3
− 16

9N2
b, (16)

where higher order terms in 1/N are also neglected. The results for ns, r, and αs are consistent

with the n = 3 case in Ref. [14], and we additionally obtain the expression of βs.

Varying the value of the parameter b, we obtain the prediction of the model as curves on

the (ns, r)-plane in Fig. 1. The region of positive b corresponds to the left to the large point

(the Starobinsky model, b = 0), and negative to the right. This is because the positive b makes

the potential flatter (ǫ smaller) and more curved (|η| larger), so both of ns and r smaller. The

constraint on ns gives constraint on b as the inequalities (9) and (10). The correction from the

extra term does not drastically change the value of r to improve the detection prospect of r. The

running in the model (11) with the rising correction (b < 0) was discussed in Ref. [18] in the

context of power suppression in low multipoles.3
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Figure 1: Prediction of the model in the (ns, r)-plane as we vary the parameter b = b3b1. The

blue (top) line and red (bottom) lines correspond to Ne = 50 and Ne = 60, respectively. The

large dots show the prediction of the Starobinsky model (b = 0), and the small dots corre-

spond to the points of b = n × 10−4 with an integer n. The green contours are the Planck

TT+lowP+BKP+lensing+BAO+JLA+H0 constraints (traced from Fig. 21 in Ref. [19]).

Figure 2: Prediction of the model in the (ns, αs)-plane as we vary the parameter b = b3b1. The

blue (bottom) line and red (top) lines correspond to Ne = 50 and Ne = 60, respectively. The

large dots show the prediction of the Starobinsky model (b = 0), and the small dots correspond

to the points of b = n× 10−4 with an integer n. The green contours are the Planck TT, TE, EE

+ low P constraints (traced from Fig. 4 in Ref. [2]).
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The prediction of the model in the (ns, αs)-plane is shown in Fig. 2. As can be seen from the

Figure and eq. (15), the positive b makes the absolute value of the running smaller. The future

prospect of precision of the running αs by 21 cm line and CMB observation will be 3× 10−4 [20],

so it will become possible to distinguish the Starobinsky model (b = 0) and our extension if b is

of order 10−4.

On the other hand, the running of running βs is of order 10
−5 in our case, and it cannot be

measured by the near future observations [20]. In other words, our predictions can be falsified

by detection of the running of running βs.

4 Discussion

In this letter, we proposed a new interpretation of the Starobinsky model as a low-energy effective

theory of a higher dimensional theory whose characteristic energy scale is denoted by Λ. Com-

pactification of extra dimensions naturally introduces the large overall factor. With the tuning

of |b1| . 2× 10−4 (in addition to the one for the cosmological constant), we obtain Starobinsky

model augmented with higher order terms suppressed enough to be consistent with the Planck

2015 results. Compared to taking a large parameter only in front of the R2 term, taking a small

parameter is regarded less unnatural in the sense that it may happen by accidental cancellation of

several contributions. If the deformation is indeed of order 10−4, the model can be distinguished

from the original Starobinsky model (b = 0) by future observations of CMB and 21 cm line.

Predictions on inflationary observables studied in the previous section are consequences of

the action (5), but does not crucially depend on the underlying assumption (4). Here, we briefly

discuss another possibility to obtain the advocated action (5). One of the reasons of the unnatural

expansion of the Starobinsky model action may reside in the fact that we regard the Einstein

term as the fundamental term, and the other terms are “secondary” in the sense that they are

originated by quantum corrections. In contrast, we can take a view that the fundamental or

main term is the second term R2 rather than R (see e.g. Refs. [24–29] in this kind of direction).

The pure R2 theory, S = c
∫

d4x
√−gR2, does not have a dimensionful constant, and it is scale

invariant.4 Inflation in this theory is in the pure de Sitter universe, and it eternally inflates. Note

that the coefficient c of the action cannot be absorbed into R by scale transformation simply

because the action is scale invariant, and it is legitimate to take the coefficient as a huge or

minuscule number. The former eventually corresponds to the Starobinsky model. If the scale

symmetry is spontaneously broken, perhaps after coupling to matter sector, then a scale Λ is

generated. This will lead to the form of the action (5). The fact that b1 should be suppressed is

3 It is interesting to note that such steepening arises also in the (old-minimal) supergravity embedding of
Starobinsky model for some initial conditions [21–23].

4 Aspects of quadratic gravity was recently revisited in Ref. [30], and supergravity embedding of the pure R2

theory was studied in Ref. [31]. See also the inflation scenario based on broken scale invariance in Ref. [32].
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unchanged, and we have the same predictions (13), (14), (15), and (16).

It would also be useful to discuss a possible explanation for the tuning of b1 (the cosmological

constant also). From the effective theory point of view, the first few terms in the low energy

expansion have very small values in our model. Indeed, such a situation sometimes occurs in the

effective action of the order parameter near the phase transition point (e.g. the Lifshitz point

of the Nambu-Jona-Lasinio model [33]) [34]. Based on this analogy, let us think of the metric

as some “order parameter” and explore the “phase structure” of f(R) gravity, using the action

S =
∫

d4x
√−gc(−d0 − d1R+R2) with c > 0. Under the standard procedure, we rewrite this as

a theory of canonical scalar field in Einstein frame. The potential is bounded below as long as

d21−4d0 > 0. The shape of the scalar potential dramatically changes depending on the sign of d1.

(i) For d1 = 0, the potential is constant, and its sign (dS, AdS, or Minkowski) is determined by

the value of d0. (ii) For d1 > 0, just as in the Starobinsky model, the potential has a minimum

as well as the flat region. Inflation is therefore realized. (iii) For d1 < 0, the minimum of the

potential is at φ = ∞ (runaway potential). The inflaton slow-rolls toward φ = ∞ and the eternal

inflation in the approximate dS is realized. It would be interesting if we could interpret inflation

as a consequence of the phase transition from the phase (ii) through (i) to (iii).

Finally, let us estimate the characteristic scale Λ in the higher dimensional theory. Using the

upper bound on |b1|, its lower bound is given by

Λ = m

√

6

|b1|
& 5× 1015GeV. (17)

This scale is close to the Grand Unified Theory scale, so it is tempting to relate the higher di-

mensional theory with Grand Unification. Moreover, the Planck scale MP is not the fundamental

scale in our viewpoint, and quantum gravity effects may appear at this scale. In the context of

superstring theory, we can identify the scale Λ as the string scale ms (see the discussion after

eq. (5)). This implies that we may see the footprints of quantum gravity or string theory in the

sky.
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