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Abstract

Previous studies have shown that the Hidden Local Symmetry (HLS) Model, sup-
plied with appropriate symmetry breaking mechanisms, provides an Effective Lagrangian
(BHLS) which encompasses a large number of processes withina unified framework; a
global fit procedure has been derived herefrom which allows for a simultaneous description
of thee+e− annihilation into 6 final states –π+π−, π0γ, ηγ, π+π−π0, K+K−, KLKS –
and includes the dipion spectrum in theτ decay and some more light meson decay partial
widths. The contribution to the muon anomalous magnetic momentathµ of these annihila-
tion channels over the range of validity of the HLS model (up to 1.05 GeV) is found much
improved compared to its partner derived from integrating the measured spectra directly.
However, because most spectra for the annihilation processe+e− → π+π− undergo over-
all scale uncertainties which dominate the other sources, one may suspect some bias in the
dipion contribution toathµ and this may address the relevance of global fits methods. How-
ever, an iterated global fit algorithm, shown to lead to unbiased results by a Monte Carlo
study, is defined and applied succesfully to thee+e− → π+π− data samples from CMD2,
SND, KLOE (including the latest sample) and BaBar. The iterated fit solution is shown
to be further improved and leads to a value foraµ different from its experimental partner
above the4σ level. The contribution of theπ+π− intermediate state up to 1.05 GeV to
aµ derived from the iterated fit benefits from an uncertainty about 3 times smaller than the
corresponding usual estimate. Therefore, global fit techniques are shown to work and lead
to improved unbiased results. The main issue raised in the present study and the kind of
solution proposed may be of concern for other data driven methods when the data samples
undergo dominant global normalization uncertainties. Ourpresent results supersede our
former results.
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1 Introduction

As well known, the Standard Model is the gauge theory which covers the realm of weak,
electromagnetic and strong interactions among quarks, leptons and the various gauge bosons
(gluons, photons,W±, Z0). In energy regions where perturbative methods apply, the Standard
Model (SM) allows to yield precise estimates for several physical effects, sometimes with
accuracies of the order a few 10−12. In contrast, in energy regions where the non–perturbative
regime of QCD is involved, getting similar precision may become challenging. This is the case
for the low energy part of the photon hadronic vacuum polarization (HVP); this HVP plays a
crucial role in determining the theoretical value for the muon anomalous momentaµ, one of
the best measured particle property.

Fortunately, getting precise estimates in the low energy hadron SM sector is not completely
out of reach as exemplified by the Chiral Perturbation Theory(ChPT)[1, 2] which is rigorously
the low energy limit of QCD, valid up to 400÷ 500 MeV but lets the resonance region outside
its scope. Lattice QCD (LQCD) is also a promising method under rapid development which
already allows to perform precise computations at low (and very low) energies [3]. Interesting
LQCD estimates for the HVP’s of the three leptons have already been produced [4, 5] which
clearly show that LQCD reaches results in accord with expectations; this is especially striking
for aµ with, however, still unsatisfactory uncertainties [4].

So, much progress remains to be done before LQCD evaluationscan compete with the
accuracy of the experimental measurements already available [6, 7] or, a fortiori, with those
expected in a near future at Fermilab [8, 9] or, slightly later, at J–PARC [10]. Since lattice
QCD is intrinsically an Euclidean approach, it is intrinsically unable to account for the existing
rich amount of low energy hadronic data in the non-perturbative time-like region,i.e. from
thresholds to 2÷ 3 GeV. Therefore, other methods, able to encompass large fractions of the
physics from this important energy region, are valuable.

A natural approach to this issue is provided by Effective Lagrangians which cover the reso-
nance region. Such Effective Lagrangians should be constructed so as to preserve the symmetry
properties of QCD as already done by standard ChPT, however only valid up to theη mass re-
gion. As it includes meson resonances, the Resonance ChiralPerturbation Theory (RχPT) [11]
is an appropriate framework to studye+e− annihilations from their respective thresholds up to
the intermediate energy region.

It has been proven [12] that the coupling constants occuringat orderp4 in ChPT are sat-
urated by low lying meson resonances of various kinds as soonas they can contribute. This
emphasizes the role of the fundamental vector meson nonet (V) and confirms the relevance of
the Vector Meson Dominance (VMD) concept in low energy physics.

On the other hand, as it has been proven [11] that the Hidden Local Symmetry (HLS)
Model [13] and RχPT are equivalent provided consistency with the QCD asymptotic behavior
is incorporated. It thus follows that the HLS model is also a motivated and constraining QCD
rooted framework. As the original HLS Model only deals with the lowest mass resonances, it
provides a framework for thee+e− annihilations naturally bounded by theφ mass region –i.e.
up to≃ 1.05 GeV.

The non–anomalous [14] and anomalous [15] sectors of the HLSModel open a wide scope
and can deal with a large corpus of physics processes in a unified way. However, as such,
HLS cannot precisely reach the numerical precision requested by the wide ensemble of high
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statistics data samples collected by several sophisticated experiments on several annihilation
channels. In order to achieve such a program, the HLS Lagrangian must be supplied with
appropriate symmetry breaking mechanisms not present in its original formulation [13].

This was soon recognized by the HLS Model authors who first proposed the mechanism
to break SU(3) symmetry [16] named BKY according to its author names. Its success was
illustrated by several phenomenological studies based on the BKY breaking scheme [17, 18,
19]. It was also soon extended to SU(2)/Isospin symmetry breaking [20]. However, in order
to account simultaneously for all the radiative decays of the light flavor mesons, the additional
step of breaking the nonet symmetry for light pseudoscalar mesons was required; based on the
heuristic formulation of theV Pγ couplings by O’Donnell [21] which includes nonet symmetry
breaking in the pseudoscalar (P ) sector in a specific way, a global and successfull account of
all V Pγ andPγγ couplings has been reached [22]. The BKY SU(3) breaking and this nonet
symmetry breaking included within the HLS Model was shown [23] to meet the requirements of
Extended Chiral Perturbation Theory [24, 25]. Finally, introducing the physical vector meson
fields as the eigenstates of the loop modified vector meson mass matrix provided a mixing
scheme of theρ0 − ω − φ system which together with theV − γ loop transitions implied by
the HLS model at one loop1 leads to a satisfactory solution [27] of the long–standingτ − e+e−

puzzle [28, 29, 30, 31].
Therefore, the approach just sketched is aglobal framework aiming at accounting for the

largest possible ensemble of data spectra collected in the largest possible number of low energy
physics channels. As thisglobal model is an Effective Lagrangian constructed from the (P
andV ) fields relevant in the low energy regime of QCD and because itis consistent with the
symmetries of QCD, one naturally expects their low energy results to be consistent with the
Standard Model.

It was then shown, that the Effective Lagrangian constructed from the original HLS Model
supplemented with the breaking schemes listed above was able to provide a satisfactory simul-
taneous description of thee+e− annihilations into theπ+π−, π0γ, ηγ, π+π−π0 final states and
of the dipion spectrum in the decay of theτ lepton [32, 33]. This tended to indicate that the
τ − e+e− puzzle just referred to should be an artefact related with the way isospin symmetry
breaking is implemented within models.

Slightly extending these breaking schemes, one is led to theBroken HLS (BHLS) Model
[34] which provides a fully consistent picture of all examinede+e− annihilation cross sections2,
the τ dipion spectrum and, additionally, some light meson decay information with a limited
number of free parameters to be extracted from data. An interesting outcome of the BHLS
based fit framework is an evaluation of the low energy component of the HVP leading to an
estimate of the muon anomalous magnetic moment at more than4σ from its measured value3

[6, 7].

Introducing the dipion spectra collected in the ISR mode confirmed that the muong − 2
departs from expectation by more than4σ [35] . One should note that the high statistics ISR

1See also [26] where the role of theρ0 − γ mixing is especially emphasized.
2Specifically the 6e+e− annihilation channels toπ+π−, π0γ, ηγ, π+π−π0, K+K−, K0K0, each from its

threshold up to 1.05 GeV,i.e. including theφ signal region.
3One may find a little bit funny that the BHLS evaluation for themuon HVP is the closest to the central value

preferred by the Lattice QCD study [4].
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dipion spectra recently published by the KLOE [36, 37, 38] and BaBar [39, 40] Collaborations
have the peculiarity to be strongly dominated by overall scale (i.e. normalization) uncertainties,
additionally energy dependent. However, sizeable overallscale uncertainties raise an important
issue related with possible biased values for physics quantities extracted from these spectra.
This issue has been identified in the reference work of G. D’Agostini [41] where a very simple
case is proposed which illustrates that biasing effects canbe dramatic4. Of course, for a key
quantity like the muong−2, the problem should be explored and possible biases identified and
corrected. The way out is already mentioned in [41] and further emphasized in other studies
[44, 45, 43]; the exact solution exhibits a delicate issue asthe removal of the bias on some
quantity supposes to know its exact value. Nevertheless, asalready suggested in [41], iterative
methods can be defined and are expected to be bias free; this has been applied successfully to
the derivation of parton density functions in [46].

The present work mostly aims at reexamining the results provided in [34, 35] concerning
the muon HVP using an appropriately defined iterative fit method adapted to the dealing with
form factors or cross sections in such a way that fit results and derived quantities – like HVP,
but not only – could be ascertained to be bias free. In this way, one can answer positively
the question raised in the title of this study at the methodological level. The real issue of the
physics model dependence can only be answered by having at disposal results derived from
several independent model frameworks, all successfully accounted for a large corpus of data.

The paper is organized as follows. In Section 2, one briefly reminds the concern of using
Effective Lagrangian global frameworks in order to strengthen the constraints on the parameters
to be derived from global fits. As our HLS Lagrangian framework has a range limited upward
to 1.05 GeV, the brief Section 3 reminds how the full HVP is derived from fit results and from
additional information.

Section 4 is, actually, the center piece of the present paperas its purpose is to define the fit
method when one should deal with samples affected by strong overall scale uncertainties. This
firstly turns out to precisely define theχ2 functions to be minimized, depending on the specific
properties of the spectra considered and, secondly, to set up and justify the iterative procedure
we propose5. Subsection 4.2 puts special emphasis on the specificχ2 function associated with
samples affected by overall scale uncertainties besides a more usual experimental error matrix.
The iterative fit procedure to deal with biases is formulatedtherein.

All the ISR data samples exhibits–dependent overall scale uncertainties, which are cer-
tainly a novel feature in our field; Subsection 4.3 defines an appropriateχ2 function suitable
for such a case. Finally, Subsection 4.4 reports on the main features of the iterative global fit
method when fitting sets of data samples containing samples with overall scale uncertainties
of various magnitudes compared to statistical errors. The conclusions reported here rely on a
Monte Carlo study outlined and illustrated in the Appendix.

Section 5 reminds the data samples used within the BHLS procedure and reports for a
(minor) correction affecting the amplitudes for the annihilation channelsπ0γ andηγ. Section 6
reports on the updated results of the fits performed using only the scan data and discarding all

4The issue raised by G. D’Agostini in this paper has also been met in the context of Nuclear Physics where it
is referred to as the ”Peelle’s Pertinent Puzzle” (PPP) [42]which is examined thoroughly in [43].

5After completion of this work, we found that [47] applies a method similar to ours to derive unbiased parton
density functions from various kinds of measured spectra.
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ISR data samples; the effects of the iterative method is illustrated here and it is shown that the
needed number of iterations in the global fit procedure does not exceed 1. The more general
running is the subject of Section 7 where updated results aregiven to correct for coding bugs
affecting some of the numbers given in our [34, 35]. The evaluation of the muong−2 based on
the iterated fits of various combinations of data samples is the subject of Section 8; in addition
to the samples used in [34, 35], one takes into account the recently published KLOE12 sample
[38]. Finally, Section 9 is devoted to conclusions and remarks.

2 Effective Lagrangian Frameworks And Global Fits

As reminded in the Introduction, it is a common approach to rely on the Effective La-
grangian (EL) method to cover the low energy region where QCDexhibits its non–perturbative
regime and where the quark and gluon degrees of freedom are replaced by hadron fields. Each
EL of practical use generally depends on parameters originating from the starting Lagrangians
(like the pion decay constantfπ or the universal vector couplingg) and on parameters gen-
erated by the unavoidable symmetry breaking effects (like quark mass differences); all such
parameters are determined from data with various precision.

Needless to say that any (broken) Effective Lagrangian provides amplitudes expected to
account simultaneously for several different processes. This has a trivial consequence which,
nevertheless, deserves to be stressed :All the Effective Lagrangians predict physics correlations
among the different physical processes they can encompass :H ≡ {Hi, i = 1, · · · p}.

Therefore, having plugged from start the physics correlations inside the (broken) Lagrangian,
the amplitudes derived herefrom should allow for a global (simultaneous) fit of all available
data samples covering all the channels inH. Provided the global fit is clearly successful, the
parameter central values and uncertainties returned can beconsidered as the optimal values
accounting for all the processes inH simultaneously. Therefore, one can consider that the fit
information – parameter central values and error covariance matrix – exhausts the experimental
information contained in the data samples covering all the processes inH.

From now on, one specializes to the Broken HLS (BHLS) model asdefined and used in
[34]. All data samples used in the global fit procedure definedin this paper have already
been listed and analyzed in this Reference; this will not be repeated here. As for theπ+π−

annihilation final state, which is a central piece of HVP studies, this Reference dealt with only
the available scan data which are dominated by the samples from CMD2 [48, 49] and SND
[50]. The samples collected in the ISR mode by Babar [51] as well as the former KLOE data
samples (KLOE08 [36] and KLOE10 [37]) have been considered in [35]. Preliminary results
including also the most recent KLOE sample (KLOE12) [38] have been given in [52, 53].

3 Estimating the Muon Non–Perturbative HVP

The issue raised in this paper is whether Effective Lagrangian methods really improve the
evaluation of the non–perturbative fraction of the HVP [34,35] compared to a direct integration
of experimental data (see [26, 54, 55] for instance). As we are working within the original
HLS framework [13], what is discussed is the HVP fraction associated with theπ+π−, π0γ,
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ηγ, π+π−π0, K+K−, K0K0 intermediate states – covered by BHLS – up to≃ 1.05 GeV; this
represents more than 80% of the total LO–HVP .

Basically, the leading order (LO) non–perturbative QCD contribution to the muon HVP is
estimated separately for each intermediate hadronic stateHi via :

aµ(Hi) =
1

4π3

∫ scut

sHi

K(s)σHi
(s) (1)

and the total non–pertubative HVP component is the sum of allthe possibleaµ(Hi). The
functionK(s) in Eq. (1) is a known kernel [31] enhancing the threshold regions (sHi

) for any
channelHi andσHi

(s) is the undressed cross section6 for the e+e− → Hi annhilation;scut
is an energy limit above which perturbative expansions are supposed to become valid. BHLS
permits to evaluate the 6 integrals{aµ(Hi), i = 1, · · · 6} up tosφ ≃ 1.05 GeV. As the energy
interval [sφ, scut] contribution toaµ(Hi) is beyond the BHLS energy range of validity, it is
estimated using customary methods (like those defined in [54, 55, 56], for instance), as also
the full contributions of the channels outside the present BHLS scope. As already stated, these
pieces represent altogether about 20% of the muon LO–HVP contribution toaµ.

As can be checked by looking at the cross section formulae given in [34], most parameters
to be fitted appear simultaneously in the 6 different cross sections{σHi

(s), i = 1, · · · 6} and
each annihilation channelHi comes in with several experimental data samples7. Therefore, for
instance, the data samples covering any of theπ0γ, ηγ, π+π−π0, K+K−, K0K0 annihilation
channels play as additional constraints on theπ+π− cross section and are treated on the same
footing than theπ+π− annihilation data themselves. On the other hand, the constraints carried
by the dipionτ decay spectrum data [57, 58, 59] influence the fit and allow to reduce the
BHLS parameter uncertainties in a consistent way8. This explains why the global fit method is
expected to improve eachaµ(Hi) contribution compared to more traditional methods – those
from [26, 54, 55] for instance – as these ignore the inter–channel correlations revealed by the
BHLS Effective Lagrangian and validated by satisfactory global fits.

As any method, the BHLS based global fit method carries specific systematics which have
been examined in great details in [35]. It is worth remarking, to avoid ambiguities, that the
isospin breaking effects specific of theτ dipion spectra are introduced in the dipion spectrum
[35] as commonly done in the literature [61, 62, 63, 64, 65, 66, 67, 68] (see also [26]); they
are totally independent of the isospin breaking schemes involved in the BHLS Lagrangian and,
actually, come supplementing these [35].

4 Can One Trust Global Fit Results ?

The global fit method previously used in [34, 35] defines a so–called VMD strategy which
can be phrased in the following way :

6Final state radiation (FSR) effects also contribute and areestimated as in [31].
7An experimental data sample is defined as the measured spectrumm and all the uncertainties which affect it.
8So also do the decay partial widths of the formP → γγ andV → Pγ (or η′ → ωγ) extracted from the

Review of Particle Properties (RPP) [60] and implemented within BHLS.
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• 1/ If the physics correlations predicted by a given Effective Lagrangian Model are sup-
ported by the experimental data they encompass, they can be considered as exactat the
accuracy level reported for the data.

• 2/ Whenever the description – global fit – provided by a given Effective Lagrangian is
satisfactory, the model cross sections, the fit parameter values and the parameter error
covariance matrix exhaust reliably the physics information contained in the fitted data
samples.

In the present case where the BHLS model is concerned, and focusing on the muon LO–
HVP, Statement #2 means that the improvements for the 6 accessiblesaµ(Hi) derived from Eq.
(1) by integrating fromsHi

to 1.05 GeV/c are legitimately valid and conceptually supported.
On the other hand, Statement #1 does not mean that the importance of the word ”Effective”

is forgotten, as clear from the italic sentence it carries : Its validity might have to be revised if
the experimental context evolves towards a degraded account of the data9.

Obviously, a VMD strategy heavily relies on the statisticalmethods used to analyze and fit
the data; thus, one should ascertain that all aspects of the data handling are taken into account as
they should. In particular, all features of the experimental uncertainties should be implemented
canonically within the minimized globalχ2 and in the fitting procedure. Indeed, as remarked
in [44, 69], incorrect fit results are more frequently due to an incorrect dealing with the exper-
imental errors – then to an incorrect error covariance matrix – rather than to the minimization
procedure itself. Therefore, special care is requested in dealing with experimental uncertainties
and with theχ2 definition.

It is the purpose of this Section to address this issue and check whether the procedure
defined in [34, 35] fulfills this statement; this will lead us to complement the fitting procedure
by an iterative method.

4.1 The Basicχ2/Least Square Method

Usually, performing a fit – global or not – requires to minimize aχ2 function10 relating the
differences between the measurements (m = {mi, i = 1, · · · n}) and the corresponding model
(theoretical) expections (M(~a) = {Mi, i = 1, · · · n}) weighted by the error covariance matrix
V provided together with the data spectrum. Leaving aside fornow possibleglobal (additive
or mutiplicative) systematic uncertainties, the error matrix V provided by experimental groups
gathers the statistical and systematic errors and thus is not necessarily diagonal. The vector~a
denoting the unknown internal model parameter list, minimizing :

χ2 = [m−M(~a)]TV −1[m−M(~a)] (2)

9However, if an ensemble of data isinternally conflicting within a given Effective Lagrangian framework,
as the fit results can be affected in an unpredictable way, some action has to be taken. The simplest solution
is certainly to discard the faulty data samples; however, assuggested by [45], a down–weighting of the outlier
contributions to the minimizedχ2 might also be considered. This could be a way to reconcile thepreservation of
the fit information quality with the use of all available samples.

10This is a trueχ2 if the errors are gaussian.
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with respect to~a allows to derive its optimum value~a0. When several independent data samples
are to be treated simultaneously, the minimizedχ2 is a sum of terms like Eq. (2), one for each
data sample.

As reminded in [44], if the modelM(~a) is linear in the parameters11 and if the error co-
variance matrix is correct, the estimated parameter vector~a0 has unbiased components and
this estimator~a0 has the smallest variance. As illustration, in the case of a straight line fit
(M = q + px), V. Blobel [44] produced the residual plots for the model parameters using
several kinds of error distributions for the generated datapoints (each with the same standard
deviation) and showed that these plots are always gaussian distributions, as expected from the
Central Limit Theorem. Of course, the probability distribution is flat only if the error distribu-
tions are gaussian,i.e. if the effectiveχ2 function is actually a realχ2.

When analyzing (a collection of) actual spectra obtained byvarious groups, nothing better
can be done and the derived fit solution faithfully reflects the whole data information on which
it relies : It corresponds, at worst, to the least square solution and, at best, to the minimumχ2

solution, depending on the functional nature of the true experimental error distributions.

4.2 Iterative Treatment of Global Scale Uncertainties

In the Subsection above we have briefly summarized the traditional method which applies
when the handled spectra are not significantly affected by (correlated) global uncertainties.
These can be of either kinds : additive (offset error) or multiplicative (scale/normalization
error). As no offset error issue is reported for the spectra we analyze within BHLS [34, 35],
we skip this case and let the interested readers refer to suitable references [41, 44, 45]. In
contrast, multiplicative (global scale) uncertainties are reported for most experimental spectra;
when they are non–negligible compared with the other (more standard) kinds of errors, they
should be specifically accounted for within the global fit procedure. This is of special concern
for the importante+e− → π+π− data samples collected in scan mode [48, 49, 50], and even
more for those collected using the Initial State Radiation (ISR) mode by KLOE [36, 37, 38] or
BaBar [39, 40]; furthermore, the normalization uncertainties reported for the ISR data samples
have all a peculiar structure which deserves a special treatment – which is the subject of the
next Subsection.

A constant global scale uncertainty, as those affecting thedata samples from CMD2 and
SND, can be writtenβ = 1 + λ, whereλ is a random variable with range on] − 1,+∞[. As
E(λ) = 0 andE(λ2) = σ2 with σ << 1, the gaussian approximation forλ is safe [44, 45]. A
data sample subject to such a global scale uncertainty provides an individual contribution to an
effective globalχ2

glob. which shoulda priori be written :

χ2 = [m−M(~a)− λA]TV −1[m−M(~a)− λA] +
λ2

σ2
(3)

wherem, M , V and~a carry the same definitions as in Subsection 4.1 whileλ andσ have just
been defined. As forA, even if intuitively one may preferA = m, the choiceA = M(~a) has

11Actually, fitting is generally performed in the neighborhood of some given solution; this makes the linearity
condition less constraining.
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been shown to drop out any biasing issue12 [41, 44, 69].
Assuming that the unknown scale factorλ is solely of experimental origin – and, then,

independent of the model parameters~a – the solution to∂χ2/∂λ = 0 provides its most probable
valueλ0 [34]. After substitution, Eq. (3) becomes :

χ2 = [m−M(~a)]TW−1[m−M(~a)] with W = V + σ2AAT (4)

which exhibits a modified error covariance matrixW and only depends on the (physics) model
parameters. More precisely, the single recollection of thescale uncertaintyλ is the occurence
of its varianceσ2 in the modified covariance matrixW .

However, Eq. (4) clearly points toward a difficulty if the model is not numerically known
beforehand as the modified covariance matrix becomes~a–dependent when setting the unbias-
ing choiceA = M . In this case, the parameter error covariance matrix provided by theχ2

minimization might be uneasy to interpret.

The way out is to define iterative procedures; this is allusively stated in [41], but explicitly
considered in [43] as solution to the so–called ”Peelle’s Pertinent Puzzle”13 [42], provided a
good starting approximate solution is known beforehand; however, defining such a tool might
be a delicate task if the underlying model is non–linear, as quite usual in particle physics. Such
a procedure has already been followed and successfully worked out in [46] in order to derive
through a minimization procedure the parton density functions from several measured spectra.
When dealing with samples of form factor and/or cross section data, other appropriate iterative
methods should be defined.

The starting step of the iteration implies choosing some initial value forA, sayA = A0.
Without further information, the best approximation one can choose is obviouslyA0 ≡ m, the
experimental spectrum itself. Quite interestingly, this turns out to start iterating withλ = 0
(σ = 0 in Eq. (4)), i.e. β = 1, a unit scale factor; this makes the connexion with the iterative
method followed in [46].

Then, the minimization of theχ2 in Eq. (4) withA = A0 ≡ m is performed using the
MINUIT procedure [70] which yields the (step # 0) solution14M0 via the fitted parameter vector
value~a0. The next step (# 1) consists in minimizing Eq. (4) usingA =M0 ≡ M(~a0) which is
easily implemented in the procedure and, at convergence,MINUIT provides the step # 1 solution
M(~a1). This stepwise procedure is followed until some convergence criterium is met. As in the
iterative procedure the covariance matrix is constant, theinterpretation of the parameter error
matrix is canonical.

The convergence speed of the iterative procedure cannot be guessedab initio but may be
expected fast, referring to the fit of the parton density functions where the convergence is
essentially reached at the first iteration [46]. This is confirmed by our Monte Carlo studies and
reported in the Appendix.

Nevertheless, one may infer that the number of iteration steps is smaller for a starting guess
for A close to the actual model than for an arbitrary choice; clearly, as the choiceA = m (the
experimental spectrum) should be the closest to the actual model, one may think that it should

12This does not mean that the choiceA = m necessarily leads to a significantly biased solution as shown below.
13Peelle’s reference is no longer of common access, but its main content – which closely resembles the

D’Agostini issue raised in [41] – is reproduced in [43].
14The analysis method in [34, 35] actually stops there; the present analysis aims at going beyond.
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minimize the number of interations needed to reach convergence. Additionally, this choice
does not imply anya priori assumption on the parameter vector to be fitted.

Among the data samples one deals within the BHLS based globalfit method, most have
been collected in scan mode, essentially at Novosibirsk, and carry a constant scale uncertainty
merging several effects. This is especially the case for thee+e− → π+π− data samples col-
lected by the CMD2 [48, 49] and SND [50] detectors.

In order to simplify and unify the notations in the followingdiscussion, it is suitable to
perform the change of random variableλ = σµ. Then, the statistical properties forλ propagate
toE(µ) = 0 andE(µ2) = 1 and, defining in additionB = σA, Eq. (3) above becomes :

χ2 = [m−M(~a)− µB]TV −1[m−M(~a)− µB] + µ2 (5)

The condition∂χ2/∂µ = 0 provides the most probable vale forµ :

µ =
BTV −1[m−M(~a)]

BTV −1B + 1
(6)

and, substituting this into Eq. (5), one gets :

χ2 = [m−M(~a)]TW−1[m−M(~a)] with W = V +BBT (7)

Stated otherwise, from the point of view of the physics model, the minimization procedure
keeps track of the scale dependence by a modified covariance matrix which, in turn, influences
the fit. A faithful graphical comparison of data and model – like the usual fit residual plots –
should take into account the fitted scale, as illustrated in [35] for instance.

4.3 Global Scale Uncertainties Effects in ISR Experiments

With the advent of theΦ factory in Frascati and of theB factories at SLAC and KEK the
possibility opened to get large data samples for the variouse+e− annihilation channels in the
region of interest of the BHLS model, namely, from the thresholds to theφ meson mass energy
region (

√
s ≤ 1.05 GeV). The production mechanism involved is the emission of ahard photon

in the initial state [71], the so–called Initial State Radiation (ISR) phenomenon. This ISR
production mode has been used to collect high statistics data samples for thee+e− → π+π−

channel covering the low energies by the KLOE [36, 37, 38] andBaBar [39, 40] Collaborations.
However, it is a common feature of these KLOE and BaBar ISR data samples to carry

complicated error structures. Beside a non–diagonal statistical error covariance matrix (V ),
they exhibit a large number of (statistically independent)bin–to–bin correlated uncertainties,
most of these being additionallys–dependent. As far as we know, this seems to be a première
in particle physics and how this is dealt with inside minimization procedures deserves to be
clarified and explicitely stated (see also [35]).

Let us consider a given experimental data sampleE, a spectrumm function ofs, for which
the (given) statistical error covariance matrix isV ; the information provided for the bin–to–bin
correlated uncertainties defines several independent scale uncertaintiesλα (α = 1, · · ·nscale)
and should be understood as follows : each of the scale uncertaintyλα is a random variable of
zero mean and carrying as–dependent standard deviationσα(s) as tabulated by each experi-
ment. It is clearer to make the change of (random) variablesλα = σα(s)µα (α = 1, · · ·nscale)
and assume that all the random variablesµα fulfill E(µα) = 0 andE(µαµβ) = δαβ .
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Then, the other notations being identical to those previously defined, theχ2 in Eq. (5)
generalizes to :

χ2 = [m−M(~a)− µαBα]
TV −1[m−M(~a)− µβBβ] + µαµβδαβ (8)

where implicit sum over repeated greek indices is understood. One has definedBα = σα(s)A,
A being thes–dependent vector already defined.A is iteratively redefined as emphasized in the
previous Subsection. Using the minimumχ2 conditions∂χ2/∂µα = 0 and the independence
conditions of the various sources of scale uncertainty∂µα/∂µβ = δαβ , the most probable
values for theµα’s can be derived [35]. A recursion can be defined and allows toderive from
Eq. (8) :











χ2 = [m−M(~a)]TW−1[m−M(~a)]

Wij = Vij + [
∑nscale

α=1 σα(si)σα(sj)]AiAj , (∀[i, j])
(9)

in close correspondence with Eq. (7).
A specific feature of Eq. (9) deserves to be noted. As each experimental group reports

separately on each identifiedindependent source of (scale) uncertainty, these should indeed
be fittedseparately as stated just above to go from Eq. (8) to Eq. (9). More precisely, for the
experimentE, we are not using the quadratic sum(σE(s))2 =

∑

α[σα(s)]
2 for its partialχ2,

which would have givenσE(si)σE(sj)AiAj inside the full error covariance matrix instead of
what is shown in Eq. (9). Stated otherwise, the various sources of normalization uncertainties
are not summed in quadrature but really treated as statistically independent.

4.4 Numerical Tests of the Global Fit Iterative Method

As stated in the header of the present Section, if the physicscorrelations predicted by the
Effective Lagrangian (here BHLS) are fulfilled by the data, the estimate of the model parame-
ters and the parameter error covariance matrix are legitimate tools to serve evaluating related
physics quantities.

As in the previous studies relying on the HLS model, at the early stages [32, 33] or more
recently [34, 35, 52, 53], the method is to minimize a globalχ2 expression taking into account
the largest possible number of data samples and using appropriately all information provided
by the experimentalists concerning all kinds of uncertainties which affect their data samples.
The aim of Subsections 4.1 – 4.3 was to detail how theχ2 piece associated with each data
sample should be constructed, depending on its reported error structure.

In contrast with previous references (including ours), thefit procedure will be adapted in
the present study in order to examine and cure possible biases produced by having stopped the
fit procedure at theA = m step instead of iterating further on as suggested in [41], explicitly
proposed in [43] and performed in [46].

In order to check whether estimates based on global fit results can be trusted as, for instance,
the muon HVP central value and its uncertainty derived from the fit information returned by
MINUIT , some additional checks on the fitting method and its iterative aspect deserve to be
performed, at least to control that :

• The fit parameter residuals∆i = afiti − atruei are unbiased gaussians,
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• The parameter pulls are centered gaussians of unit standarddeviations.

One should also check that the fit probabilities distributions are uniformly distributed on[0, 1]
when the measurements are indeed true unbiased gaussian distributions.

This condition list can be supplemented with some examination of the effects due to non–
linear dependences upon the parameters to be fitted.

However, checking this list of properties obviously implies that the true parameter values
are known, that the measurements are indeed sampled on truely centered gaussian distributions
and that their errors are indeed the true standard deviations of the measured spectrum. Stated
otherwise, this exercise goes beyond using actual measuredexperimental data samples as, then,
truth is unknown : The global fit method –as any other method – should be evaluated using
data samples generated by Monte Carlo techniques; in this case, the true parameter values and
their uncertainties are known at the sample generation level and can reliably be compared to
fit results. The detailed study is transferred to the Appendix; the most involved results are
summarized right now :

• The effects of non–linear parameter dependence within models used to fit data spectra
(see Subsection A.2.1) are likely to be marginal for the kindof experimental distributions
we are dealing with. This should be related with the local minimum finding structure of
the algorithms gathered within theMINUIT package.

• When scale uncertainties dominate the sets of spectra globally submitted to fit, using15

A = mE gives a solution which can exhibit strong biases, but this solution is the start of
an iterative procedure which leads rapidly to the unbiased solution to the minimization
problem. The biases occuring at start of the procedure can bevery large, but they are
observed to practically vanish already at the first iteration step (the previously calledM1

solution).

• When performing a global fit of some data samples dominated byscale uncertainties
together with others where the statistical errors dominate, the iterative method obviously
works as well as just stated. In this case, however, the presence of some samples free
from scale errors exhibits an unexpected consequence : Evenif the data samples free
from scale uncertainties are affected by enlarged statistical errors, they strongly reduce
the biases generated by theA = mE choice. Stated otherwise, the effects of data samples
where the normalization errors are dominated by the statistical errors is to favor the
smearing out of the biases in the parameter value estimations.

The properties just listed concerning the unbiasing of the fit parameters extend to the es-
timates of physics quantitites derived from using the fit result information (parameter values
and error covariance matrix). Additionally, as the parameter pulls are observed centered and
correctly normalized, the calculated uncertainties relying on Monte Carlo sampling of the fit
parameter distributions should also be reliable. This is ofspecial relevance for the evaluation
of the various contributions to the muon LO–HVP discussed inSection 3.

The last item in the list just above has an interesting consequence while working with real
(and so, not really perfect) experimental data. If the fraction of data samples free from scale

15 mE being the experimental spectrum in the expression for theχ2 (see Eqs. (3) or (4)).
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uncertainties16 is large enough, it is nevertheless cautious to ascertain that the fit solution is
unbiased by performing one or two iterations. Indeed, the studies reported in the Appendix
tells that, anyway, the iterated fit solution is always unbiased.

Therefore, one may conclude from this Section and from the simulation studies reported in
the Appendix that global fit methods can indeed be trusted. The single proviso is that iterating
the fit procedure as explained above is mandatory or, at least, cautious.

The issue is now to examine how the results given in [34] and [35] are modified when iter-
ating beyond the approximationAE = mE for all data samples significantly affected by scale
uncertainties, constant (as, mostly, the spectra reportedin [48, 49, 50] ) ors–dependent (as all
the ISR spectra reported in [36, 37, 38, 39]). Observing the stabilizing effect of the data sam-
ples dominated by statistical errors (like theγπ0 andγη final states) is also methodologically
relevant.

5 BHLS Global Fit Method : Present Status and Corrigen-
dum

As stated several times above, the Effective Lagrangian Model we use is the broken HLS
(BHLS) model developped in [34]. In this Reference, the BHLSmodel is also applied to all
data samples collected in scan mode, by the various Collaborations which have run on the
successive Novosibirske+e− colliders. Thesee+e− annihilation samples cover theπ+π−, π0γ,
ηγ, π+π−π0, K+K−, K0K0 final states and have been discussed in detail in several previous
studies [32, 33, 34]; for the sake of conciseness, we will notrepeat this exercise here. As the
BHLS model also covers theτ decays from the early steps of its formulation [27], the previous
studies include the dipion spectra collected in theτ± → π±π0ντ decay mode by ALEPH
[57, 72], Belle [59] and CLEO [58]. Also included within the BHLS fit procedure are some
light meson decay partial widths not connected with the annihilation channels already listed,
like K∗0 → K0γ,K∗± → K±γ, η′ → ωγ or φ → η′γ.

A second step has been to extend the study in [34] to treat the high statistics ISR data
samples fore+e− → π+π−; this has been the purpose of the study in [35] where the KLOE08
[36] and KLOE10 [37] data samples collected by the KLOE Collaboration and the data sample
produced by BaBar [39] have been examined. Preliminary studies including also the recently
published KLOE12 [38] data sample have been presented more recently at the Photon 2013
Conference in Paris [52] and at the PhiPsi13 Conference in Roma [53].

Except otherwise stated, all the fit results presented in this paper have been obtained using
the Configuration B (i.e. dropping out from the fit procedure the three pion data samples
collected in theφ mass region).

The studies covered by [34, 35, 52, 53] rely on minimizing a globalχ2 function summing
up partialχ2’s, each associated with a given data sample. For each of the≃ 40 ÷ 50 data
samples, the partialχ2 was (canonically) constructed following the rules detailed in Section 4.
However, as the fit was not iterated in the studies [34, 35], itis worth checking to which extent
the value of the muon HVP derived herefrom is changed by the iteration procedure.

For the present study, a few coding bug fixes have been performed and a piece missing in

16 or when the overall scale uncertainties are dominated by theother kinds of errors.
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the expression for thee+e− → π0γ ande+e− → ηγ cross sections has been included. So,
when different, the results in the present paper supersede those in [34, 35].

As for the missing piece just mentioned : In the amplitudesγ∗ → γP0 (Eq. (65) in [34])
and the cross section formulaee+e− → γP0 (Eq. (68) in [34]), the non–resonant piece should
be modified as follows :

(1− c4)LP0
⇒
(

1− [c3 + c4]

2

)

LP0
. (10)

This implies that the single process which dependsseparately on the FKTUY [15] parameters
c3 andc4 is thee+e− → π+π−π0 annihilation. In this case bothc3+c4 andc3−c4 combinations
come in, while all others quantities only involve thec3 + c4 combination17. We apologize for
the inconvenience.

6 BHLS Global Fit Method : Iterating with NSK Data Only

In this Section, we report on global fits using the data reminded in the preceding Section
and discussed in [34]; as for the pion form factor data, we focus for the present exercise on
using only the most recent scan data collected by CMD2 and SND[73, 48, 49, 50], excluding
the older data samples from OLYA and CMD [74].

The CMD2 data samples are reported to carry constant bin–to–bin correlated uncertainties
of 0.6% ([73]), 0.8% ([48]) and 0.7% ([49]), while SND reports a 1.3% constant scale uncer-
tainty [50] – except for their first 2 data points where it is 3.2%. For these data samples, the
partialχ2’s are essentially given by expressions like Eq. (4). For theother data samples, we
performed as in [34].

The first data column in Table 1 displays the results of the fit performed by settingA = m
in theχ2 associated with each experimental data spectrum generically namedm. The form
factor returned by this (A = m) global fit is namedM0 and is used to perform the first iterated
(A = M0) global fit; the results of this fit are shown in the data column#2; this iteration
#1 global fit returns the solution namedM1. The iterated #2 fit is then performed by setting
A = M1 in theχ2 expressions of the pion form factor data samples, leading toanother (M2)
solution; the fit results are displayed in the third data column in Table 1.

One clearly observes a quite tiny change in the first iteration : 0.2 unit in theχ2 value of the
π+π− data samples; also the globalχ2 changes by only 0.7 unit. When going from the first to
the second iteration, the changes are almost invisible. This corresponds for experimental data
to the effect reported in Subsection A.2.3 for our Monte Carlo data. As derived quantity, let us
report on the leading order (LO) contributionaµ(ππ) derived by integrating Eq. (1) between
0.63 GeV/c and 0.958 GeV/c; using obvious notations, the previously reported fits yield :











A = m : aµ(ππ, [0.63, 0.958]) = 358.95± 1.63
A =M0 : aµ(ππ, [0.63, 0.958]) = 360.00± 1.78
A =M1 : aµ(ππ, [0.63, 0.958]) = 359.99± 1.79

(11)

17The studies [34, 35] have been performed fixingc3 = c4. The BHLS fit recovers a good fit quality by
modifying the value forc1 − c2 as will be seen below.
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χ2/N A = m Iteration Method A =M varying

[34] A =M0 A =M1 Astart =M1 Astart =Mx

Decays 8.16/10 8.01/10 8.03/10 8.01/10 8.02/10

New Timelikeπ+π− 121.54/127 121.75/127 121.75/127 121.74/127 121.75/127

π0γ 63.84/86 63.98/86 63.96/86 63.98/86 63.96/86

ηγ 120.87/182 120.84/182 120.84/182 120.84/182 120.83/182

π+π−π0 101.82/99 102.49/99 102.43/99 102.49/99 102.43/99

K+K− 29.87/36 29.77/36 29.78/36 29.78/36 29.78/36

K0K
0

119.21/119 119.21/119 119.18/119 119.20/119 119.19/119

ALEPH 19.67/37 19.73/37 19.71/37 19.72/37 19.70/37

Belle 28.24/19 28.27/19 28.29/19 28.27/19 28.29/19

CLEO 34.96/26 34.82/29 34.82/29 34.84/29 34.84/29

χ2/dof 648.16/719 648.85/719 648.78/719 648.85/719 648.78/719

Global Fit Probability 97.2% 97.1% 97.1% 97.1% 97.1 %

Table 1: Global fitχ2 results derived by using only the data from [48, 49, 50] for the e+e− →
π+π− annihilation. See the discussion and comments in Section 6.
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in units of 10−10. So, one observes a tiny effect while iterating once (0.3% for the central
value) and no effect when iterating twice. In the present case, where the former data from
[74] have been dropped out from the fit, the ”experimental” estimate isaµ(ππ, [0.63, 0.958]) =
361.26± 2.66 (see Table 7 in [34]).

Another way to account for the scale uncertainty is to setA = M(~a) (which depends on
the parameters under fit) and perform the fit. A starting valuefor A must be chosen (denoted
Astart) but its value changes at each iteration step. In this case, the fit convergence time is much
larger than previously but the results are almost identicalto those already obtained by iterating.
The last 2 columns in Table 1 display the fit resultsstarting with Astart = M1 and also those
starting from the fit solution derived herefrom (denotedMx). As for aµ(ππ, [0.63, 0.958]), the
values derived in these last fits numerically coincide with the iterated cases displayed above.

Therefore, one may indeed conclude, as can be inferred from the Monte Carlo studies
reported in the Appendix, that the HVP value reached withoutiterating is very close to the
HVP derived from the once iterated solution. One also observes, as expected, that iterating
only once already leads to the final result; indeed, from iteration #1 to iteration #2, the changes
for aµ(ππ) are at the level of a few10−12.

As for the fit quality reflected by theχ2 values at minimum and the corresponding fit prob-
abilities, the last line in Table 1 indicates that, whateveris the way one treats the vectorA, they
are all alike. This, once more corresponds to expectations,as can be checked with the discus-
sion in Subsection A.2.3 and expecially the properties of Figure 7. Nevertheless, it is useful to
check that the twice iterated solution does not modify sensitively the result derived from the
once iterated solution.

7 BHLS Global Fit Method : Iterating Scan and ISR Data

It remains to introduce the otherπ+π− data samples collected ate+e− colliders using the
ISR mechanism. Reference [35] has already done this work with the data samples then avail-
able using the method described in Subsection 4.3 without, however, iterating the procedure.
The conclusion reached was that the KLOE08 [36] and BaBar [39] data samples have difficul-
ties to accomodate – within the BHLS framework – the whole setof data samples covering the
channels already reminded in Section 5. In contrast, the KLOE10 [37] data sample behaves
in good consistency with expectations from the BHLS model. Preliminary works [52, 53] also
indicated that KLOE10 [37], the recent KLOE12 [38] and the CMD2 and SND pion form fac-
tor data are perfectly consistent with each other and with the rest of the physics covered by the
BHLS model.

7.1 The Iterative Method : Global Fit Properties

The issue is now to report on the behavior of the global fits performed using the iterated
method when theπ+π− ISRand scan data are considered simultaneously; this will complement
the work already presented in Section 6 when using the scan data only. Except otherwise stated,
the τ data samples will always be included in the fit procedure. On the other hand, as the
behavior of the global fit for data/channels other thanπ+π− does not differ sentively from the
information already displayed in Table 1, this will not be repeated.
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Fit Configuration Iteration Method

[χ2
π+π−/Nπ+π−] KLOE08 KLOE10 KLOE12 NSK BaBar

Nπ+π− (60) (75) (60) (127/[209]) (270)

Fits in Isolation 1.64 0.96 1.02 0.96[0.83] 1.25

Global fit prob. 59% 97% 97% 97%[99%] 40%

Fit Combination 1 1.02 1.48 1.18[0.96] 1.35(*)

χ2
π+π−/Nπ+π− & Gl. fit prob: 1.28 & 11%

Fit Combination 2 1.02 1.05 1.10[0.89]

χ2
π+π−/Nπ+π− & Gl. fit prob: 1.06 & 97%

Fit Combination 3 0.97 1.00

χ2
π+π−/Nπ+π− & Gl. fit prob: 0.98 & 96%

Table 2: Global fit results as function of thee+e− → π+π− data sample content. Each entry
displays the[χ2

π+π−/Nπ+π−] value returned by the global fit. The data samples involved can be
tracked from the column titles, the following line giving the corresponding data point numbers
[Nπ+π−] in the range up to 1 GeV. The value flagged by * has been obtainedusing a BaBar
sample truncated from the energy region[0.76, 0.80] GeV (250 data points).

Table 2 displays our main results using the scan and ISRe+e− → π+π− annihilation data.
They correspond to the iteration # 1 fit (denoted aboveA =M0), however the previously called
A = m orA =M1 solutions gives almost identical fit quality results18.

The first data line displays the global fit properties with theindicatede+e− → π+π− data
samples used each in isolation within the global BHLS context, together with all other data
samples covering the rest of the encompassed physics (see Section 5). One observes that the
average (partial)χ2 per data pointχ2

π+π−/Nπ+π− is of the order 1 and the probability high when
running with any of the KLOE10, KLOE12 and NSK data samples19; as in [35], the picture is
not as good for KLOE08 and BaBar.

Performing a global BHLS fit using the data samples from KLOE10, KLOE12, NSK and
BaBar (amputated20 from the energy region[0.76, 0.80] GeV) leads to results given at the entry

18As regard to the fit parameter values and uncertainties : TheA = M0 andA = M1 solutions differ unsignifi-
cantly; theA = m exhibits some small departure commented below.

19NSK denotes the collection of data samples from CMD2 [73, 48,49], SND [50] (127 data points in total) as
well as the former (82 data points) samples collected by OLYAand CMD [74]. The numbers in Table 2 given
within square brackets include the contributions from these former samples.

20This removal is motivated by a possible mismatch in the energy calibration in theρ0 − ω interference region
between BaBar and the otherπ+π− data samples submitted to the same global framework. In contrast, when
running with theπ+π− BaBar sample in isolation, its full spectrum is considered.
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KLOE 10

KLOE 12

CMD2 98

SND  98

CMD 2 98-1
SND 98-1
KLOE 10
KLOE 12

CMD 2 98-1
CMD 2 98-2
SND 98-1
KLOE 10
KLOE 12

Figure 1: The pion form factor data and fit corresponding to the iteration # 1 BHLS global fit.
Thee+e− → π+π− data samples are those shown in the entry ”Fit Combination 2”in Table 2.
The inset in the top panel magnifies theρ0 − ω peak region. The dowmost panels magnify the
behavior in both distribution wings. See Section 7.1 for comments.
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lines flagged by ”Fit Combination 1”; as the correlations between the KLOE08 and KLOE12
data samples are strong and their content not explicitely stated21, it is more cautious to avoid
dealing with the KLOE08 and KLOE12 samples simultaneously.Despite the removal of the
drop off region in the BaBarπ+π− spectrum, the global fit quality looks poorer.

The results obtained when using the KLOE10, KLOE12, NSK samples within the fit pro-
cedure are displayed at the Entry ”Fit Combination 2” and thedata and fit are shown in Figure
1. This fit is clearly satisfactory, as much as the fit using simultaneously only the KLOE10 and
KLOE12 samples asπ+π− data (Entry ”Fit Combination 3”, Figure not shown).

Therefore, this proves that the scan data from CMD2 and SND are consistent with the
KLOE10 and KLOE12 data samples and that all these are fully consistent with the other data
spectra introduced in the global fit procedure as indicated by the global fit probability. One
should also remark that the systematic uncertainties provided for KLOE12 lead to a satisfactory
global fit, in contrast with KLOE08; so, despite the strong correlations existing between these
two data samples, the systematics in the former sample look much better understood than in
the latter.

Except otherwise stated, the fit parameter values presentedfrom now on are derived using
thee+e− → π+π− data samples corresponding to the ”Fit Combination 2” (see Table 2); the
fit results are those derived after the first iteration and they do not differ significantly from the
corresponding results at iteration # 2. The fit quality for the non–π+π− data samples are almost
undistinguishable from the numbers already given in the second data column from Table 1; they
are not repeated for the sake of brevity.

7.2 The Iterative Method : Updating The Model Parameter Values

Beside improving the fits by mean of the iterative method, thepresent work accounts for an
error and a couple of bugs affecting our [34, 35]. Moreover, the present work includes the new
KLOE12 data sample within the fit procedure; this is not harmless as KLOE12 constrains the
fit conditions more severely than the KLOE10 sample. Therefore, the present results update
and supersede the corresponding ones previously given in [34, 35].

7.2.1 The HLS–FKTUY Parameters

The non–anomalous HLS Lagrangian (broken or not) can be written :

LHLS = LA + aHLSLV (12)

The unbroken expression forLHLS can be found in [13] and its broken expression (BHLS) is
given in [34]. The covariant derivative which allows to construct both pieces ofLHLS intro-
duces the fundamental parameterg, known as universal vector coupling. The coefficientaHLS

is a specific feature of the HLS model, expected close to 2 in standard VMD approaches; how-
ever, phenomenology rather favorsaHLS ≃ 2.5 since the early applications of the HLS model
to pion form factor studies [76, 77, 78, 23].

On the other hand, the anomalous (FKTUY) sector [15] of the HLS model [13] consists
of 5 pieces (see also Appendix D in [34]), each weighted by a specific numerical parameter

21Some work in this field seems ongoing [75].
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not fixed by the theory. Using common notations [13, 34] and factoring out, for convenience,
the weighting factors, the FKTUY Lagrangian collecting allthe anomalous couplings can be
written22 :

LFKTUY = c3LV V P+(c4−c3)LAV P+(1−c4)LAAP+(c1−c2−c3)LV PPP+(c1−c2+c4)LAPPP

(13)
whereP andV indicate the basic pseudoscalar and vector meson nonets andA the electromag-
netic field. AsLHLS, LFKTUY depends on the universal vector couplingg.

At iteration # 1, the global BHLS fit returns :






















































c+ ≡ (c4 + c3)

2
= 0.966± 0.005

c− ≡ (c4 − c3)

2
= −0.191± 0.022

c1 − c2 = 0.961± 0.053

g = 5.503± 0.001

aHLS = 2.426± 0.001

(14)

with correlation coefficients never larger than the percentlevel, except for< δg δaHLS >=
−0.317 and< δ[c1 − c2] δ[(c4 − c3)/2] >= +0.852. The sign of the(g, aHLS) correlation
term is easy to understand as the vector meson coupling to a pion or kaon pair rather depends
on the productg′ = aHLSg. The large value of the([c1 − c2], [c4 − c3]) correlation is also not
surprising (see footnote 22). The numerical values forg andaHLS are in the usual ball park
and do not call for more comments than in [34, 35].

Our value forc+ agrees with the estimates derived in [13] from theπ0γγ∗) form factor
(c+ = 1.06 ± 0.13) and from theω → π0γ partial width (c+ = 0.99 ± 0.16) with a much
smaller uncertainty due to the large amount of data influencing the (global) fit. After the bug
fixing, c− is found small but non–zero with about a≃ 10σ significance and(c1 − c2) becomes
very close to 1. Using the full25 × 25 parameter error covariance matrix returned by the
global fit, we have computed separatelyc4 and c3 by a Monte–Carlo sampling. This gives
c3 = 1.158± 0.023 andc4 = 0.774± 0.022.

Among the numbers displayed in Eq. (14), some are appealing :The nearness of the fitted
c1−c2 andc+ parameters to 1, their customary guessed value [13] should be noted and deserves
confirmation with more precise data on the anomalous annihilations and light meson radiative
decays than those presently available.

7.2.2 The Iterative Method : PS Meson Mixing and Decay Parameters

The BHLS symmetry breaking of the Lagrangian pieceLA leads to PS physical fields
constructed as linear combinations of their bare partners.The mechanism involved is the BKY

22Actually, the erratum involved in Eq. (10) comes from havingmissed the contribution of the(c4 − c3)
term displayed in Eq. (13) which actually turned out to impose c4 = c3. As already stated, after correction,
all the anomalous decay couplings and the amplitudes fore+e− → (π0/η)γ anihilations only depend on the
combination(c4 + c3)/2 and the single place where the difference(c4 − c3) occurs is thee+e− → π0π+π−

annihilation amplitude. In [34, 35] where(c4 − c3) was absent, its physical effect was absorbed by(c1 − c2) to
recover good fit qualities; so(c4 − c3) and(c1 − c2) should carry an important correlation.
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mechanism extended so as to account for both Isospin and SU(3) symmetry breakings [34]; it
can be complemented by the pseudoscalar nonet symmetry breaking scheme generated by the
t’Hooft determinant terms [79]. The main effect of these determinant terms is to provide the
bare Lagrangian with a correction to the PS singlet kinetic energy term governed by a parameter
λ expected small (see Eq. (7) in [34]).

General Fit Constrained Fit

θ0 2.54◦ ± 0.44◦ 0

θ8 −26.23◦ ± 0.37◦ −25.71◦ ± 0.22◦

θP −15.29◦ ± 0.34◦ −14.01◦ ± 0.15◦

λ (1.21± 3.21) 10−2 (3.66± 3.03) 10−2

ε0 (5.17± 0.33) 10−2 (4.83± 0.34) 10−2

ε(η) (7.38± 0.47) 10−2 (6.70± 0.44) 10−2

ε′(η′) (1.84± 0.13) 10−2 (1.64± 0.12) 10−2

χ2/Ndof 852.1/935 856.6/936

Probability 97.5% 97.0 %

Table 3: Some parameter values derived when leaving freeθP andλ (first data column) or
when relating them by imposingθ0 = 0 to the fit (second data column).

The BHLS model connects to (Extended) ChPT [25, 24], especially its two angleθ0 andθ8
mixing scheme; in particular, it relates these angles to thesinglet–octet mixing angle tradition-
ally denotedθP , together with the BKY breaking parameterszA, ∆A and toλ [34].

The upper part of Table 3 displays in its first data column our fit results in the general case.
The fit value forθ8 is in good agreement with other expectations [24] as well as that forθ0. The
smallness of this has led us to imposeθ0 = 0 within fits which leads to the results shown in
the second data column. The value forλ undergoes a severe correction compared with [34, 35]
and, presently, because of its large uncertainty, could be neglected without any real degradation
in fit qualities.

BHLS also allows for some additional contribution to theπ0−η−η′ mixing based on some
possible aspects of Isospin breaking not already accountedfor by the extended BKY scheme
developped in [34]. This turns out to redefine the physical (observable) fields (right–hand side)
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in terms of the (BHLS) renormalized (left–hand side) fields by [80] :






























π3
R = π0 − ε η − ε′ η′

η8R = cos θP (η + ε π0) + sin θP (η
′ + ε′ π0)

η0R = − sin θP (η + ε π0) + cos θP (η
′ + ε′ π0)

(15)

Inspired by [80], one can lessen the number of free parameters by stating :


























ε = ǫ0 cos θP

√
2 cos θP − sin θP√
2 cos θP + sin θP

ε′ = −2ǫ0 sin θP

√
2 cos θP + sin θP√
2 cos θP − sin θP

(16)

and fit ǫ0. Then, using the fit results (parameter central values and error covariance matrix),
one can reconstruct the value forε andε′. The updated values are given in Table 3 still indicate
aπ0 − η mixing much larger than theπ0 − η′ mixing (a factor of 4).

Before closing this Subsection, we mention that the Monte Carlo sampling method allows
to reconstruct the decay constant ratiofK/fπ = 1.268 ± 0.009 which becomesfK/fπ =
1.295± 0.002 when constraining the fit withθ0 = 0.

8 The Muon LO–HVP : Evaluations From Iterated Fits

The main aim of the present study is to produce improved estimates of the muon LO–
HVP [34, 35] by means of theiterated global fit method expected to cancel out possible
biasing effects which could affect theA = m (i.e. non–iterated)solution. The validity of the
iterated method is supported by the Monte Carlo study outlined in the Appendix, which clearly
indicates that the iterated method cancels out possible biases and returns correctly estimated
fit parameter uncertainties. Therefore, building on the conclusions collected in Subsection 4.4
one can produce bias free evaluations of the muon LO–HVP. Theeffects of iterating23 from
M0 to M1 – the solution derived usingA = M0 within the fit procedure – will be especially
emphasized. To be complete, this update also takes into account the new KLOE12π+π−

data sample [38] – which happens to be very constraining – andalso corrects for some bugs.
Therefore the present numerical results supersede the corresponding ones in [34, 35].

8.1 Various Evaluations Ofaµ(ππ, [0.63, 0.958] GeV)

The point at top of Figure 2 is the so–calledτ+PDG [35] value foraµ(ππ, [0.63, 0.958]GeV)
derived by switching off the contributions of the variouse+e− → π+π− data samples from
the minimizedχ2, replacing them by decay information extracted from the Review of Particle
Properties (RPP) [60] which carries information on isospinbreaking in the vector meson sector;
these are essentially theρ0 → e+e− partial width decay, the productsΓ(V → e+e−)Γ(V →

23M0 is the solution to the fit performed under the approximation already named in shortA = m (i.e. each of
the variousπ+π− experimental spectra is used for its individual contribution to the globalχ2).
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Figure 2: Values foraµ(ππ, [0.63, 0.958]) in units of 10−10 derived from global fits using the
indicatede+e− → π+π− data samples or combinations; theτ dipion spectra are always used.
The full green circles are the results obtained from theA = m fit (no iteration) and the black
empty squares are the results obtained from theA = M0 fit (first iteration). The values de-
rived by integrating the experimental spectra are indicated by red stars. See Subsection 8.1 for
comments.

π+π−) for theω andφ mesons and the partial widthsΓ(ω → π+π−) andΓ(φ → π+π−) as
tabulated in the RPP [60]. Actually, the productΓ(ω → e+e−)Γ(ω → π+π−) can be replaced
by the so–called Orsay phase; we choosed for this phase104.7◦ ± 4.1◦.

In order to get the other points displayed in Figure 2, one always uses all the channels
covered by BHLS, including theτ spectra from ALEPH, CLEO and Belle. As for thee+e− →
π+π− data samples, one uses each of the BaBar, KLOE08, KLOE10 and KLOE12 samples in
isolation as indicated within the Figure (see also Table 2 and Subsection 7.1). The point flagged
by CMD2+SND is obtained from a fit to the so–called [34] new timelike data from CMD2 and
SND [73, 48, 49, 50], leaving aside the older data from OLYA and CMD collected in [74] (see
Table 2 and Section 6 above). As for the BaBar spectrum, for reasons already stated, it is used
within the fits amputated from the drop off region (

√
s ∈ [0.76, 0.80] GeV).

As a general statement, Figure 2 clearly illustrates that the iterated (M1) and the non–
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iterated (M0) solutions provide quite similar fit estimates foraµ(ππ, [0.63, 0.958] GeV). One
should nevertheless remark that the agreement between bothfit solutions and the numerical
integral of the experimental data is less satisfactory for the data samples which exhibit poor
fit qualities within the global framework (KLOE08 and BaBar)than for the others (KLOE10,
KLOE12, CMD2+SND) as can be inferred from the ”fit in isolation” properties displayed in
Table 2. Finally, the weighted averages of the experimentalresults for KLOE10 and KLOE12
alone or together with all NSK data (the so–called new timelike data and the former samples
[74]) are always well reproduced by the global fit and are supported by quite good probabilities
(see Table 2).

As also clear from Table 2, the BHLS favored solution is obtained using NSK+KLOE(10/12)
for theπ+π− channel. In the corresponding sample configuration, the iterated BHLS global
fit gives a slightly smaller central value (by≃ 1.5 10−10) while the uncertainty is improved by
a factor≃ 2. It is also worth pointing out the role of theτ spectra within the BHLS global
fit framework. The following numbers illustrate how the constraints involved by theτ spectra
allow BHLS to yield a more precise fit estimate foraµ(ππ, [0.63, 0.958] GeV). Comparing the
direct integration result to the values derived from fits, one indeed gets at iteration # 1 :











Direct Integration : aµ(ππ, [0.63, 0.958]) = 356.67± 1.69
A =M0(fit excl.τ) : aµ(ππ, [0.63, 0.958]) = 355.07± 0.96
A =M0(fit incl.τ) : aµ(ππ, [0.63, 0.958]) = 355.17± 0.75

(17)

in units of10−10.
Finally, the downmost point in Figure 2 displays the result derived using all data samples

(except for KLOE08 as there is not enough published information to account for its strong
correlation with KLOE12); this estimate foraµ(ππ, [0.63, 0.958]) which benefits from a very
small uncertainty has, however, a poor fit probability (see the line flagged by ”Fit Combination
1” in Table 2).

8.2 Contributions To The Muon LO–HVP Up To 1.05 GeV

The LO–HVP’s integrated from their respective thresholds up to 1.05 GeV are displayed
in Table 4; the central value foraµ(ππ) includes final state radiation (FSR) effects. The first
data column shows the results from the fit solutionM0 derived from fitting withA = m; the
second data column displays the results corresponding to the solutionM1 derived by fitting with
A =M0. The third data column reports on the results derived from fitting withA =M(~a), i.e.
letting the covariance matrix depend on the parameters under fit. These first three data columns
report on the fits performed using all annhilation channels encompassed by BHLSand the τ
dipion spectra. Finally, the rightmost data column provides the direct numerical integration
of the experimental spectra – actually those feeding the BHLS fit procedure, including the
KLOE10 and KLOE12 data samples besides the scan data samples.

For theπ0γ, ηγ, π0π+π−,K+K−,KLKS channels, the various fits provide results marginally
different from each other. Compared with our previous estimates (see Table 8 in [34]), the
largest difference is the central value foraµ(π0π+π−) found now smaller by(1.5÷ 2)× 10−10;
this could be related with the above mentioned bug fix (See Section 5) which play some role
in theπ0π+π− annihilation channel. In contrast, the uncertainties are all quite similar to those
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Channel A = m A =M0 A =M(~a) (variable) Exp. Value

π+π− 494.57± 1.48 494.01± 1.11 493.80± 1.00 496.38± 3.13

π0γ 4.53± 0.04 4.54± 0.04 4.54± 0.04 3.67± 0.11

ηγ 0.64± 0.01 0.64± 0.01 0.64± 0.01 0.56± 0.02

π+π−π0 40.83± 0.58 40.85± 0.58 40.87± 0.57 43.54± 1.29

KLKS 11.56± 0.08 11.56± 0.08 11.56± 0.08 12.21± 0.33

K+K− 16.78± 0.20 16.77± 0.21 16.77± 0.20 17.72± 0.52

Total 569.19± 1.60 568.37± 1.27 568.17± 1.17 574.08± 3.45

Table 4: The contributions to the muon LO–HVP from the various channels covered by BHLS
from their respective thresholds to 1.05 GeV in units of10−10 at start and after iteration. The
last column displays the direct numerical integration of the various spectra used within BHLS.
Theπ+π− data samples considered are those flagged by ”Combination 2”in Table 2.

in Table 8 of [34] and smaller by a factor of2 ÷ 2.5 than the errors estimated using the direct
numerical integration of the data.

As for theπ+π− channel, all these fits – which include theτ spectra – provide values in
agreement with the direct estimate within the quoted error;one could however note that the –
possibly – ”biased” estimate (namely, theA = m result) is the closest to the “experimental”
value24. If the A = m solution were (inherently) exhibiting a bias, comparing the first three
numbers in the first line of Table 4 indicates that this does not exceed≃ 0.5 × 10−10 – e.g.
half a standard deviation. Therefore, real experimental data samples confirm the gain provided
by a global fit procedure when samples with normalization errors small compared to their
statistical accuracies are included; exploring this effect is the purpose of Subsection A.2.3 in
the Appendix.

One should also remark that the unbiasing iterative procedure lessens significantly the un-
certainty onaµ(π+π−) compared with theA = m solution and, over the whole range of validity
of BHLS (up to 1.05 GeV), one ends up with a factor of 3 reduction of the uncertainty com-
pared to the direct numerical integration. The same kind of effect is reported in [46] concerning
the spread of the parton density functions25.

Therefore, relying on the iterative procedure, one observes that the global fit does not pro-

24 As for the central value of the experimental estimate which is the present concern, one can legitimately expect
that it should be affected by some bias (a priori, of unknown magnitude) of the same nature than theA = m result.
Indeed, roughly speaking, the experimental cross sectionσexp(s) is related with the underlying theoretical cross
sectionσth(s) by a relation of the formσexp(s) = σth(s) + δσ(s) and theδσ(s) correction depends on the
normalization uncertainties which just motivate the iterative method! Actually, thisδσ(s) is exactly the scale
dependent term in Eqs. (5) and (8). Obviously it cannot be estimated without some fitting procedure.

25In particular, Figure 5 in this Reference, is quite informative about the variety of correction kinds revealed by
unbiasing procedures.
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duce significant shifts of the central values of the HVP contributions which could be attributed
to the normalization (scale) uncertainties strongly affecting some data samples. Relying on the
Monte Carlo studies outlined in the Appendix, this can be attributed to the large number of
data samples where the statistical uncertainties dominateover the normalization uncertainty.
Moreover, the uncertainty on the part of the LO–HVP derived from the BHLS fit (more than
80% of the total LO–HVP) is very small and even marginal.

8.3 The Muong − 2 From BHLS Global Fit Procedure

Contribution from Energy Range LO–HVP (2014) LO–HVP (2011)

missing channels threshold→ 1.05 1.34(0.03)(0.11)[0.11] 1.44(0.40)(0.40)[0.57]

J/ψ 8.94(0.42)(0.41)[0.59] 8.51(0.40)(0.38)[0.55]

Υ 0.11(0.00)(0.01)[0.01] 0.10(0.00)(0.01)[0.01]

hadronic (1.05, 2.00) 60.45(0.21)(2.80)[2.80] 60.76(0.22)(3.93)[3.94]

hadronic (2.00, 3.10) 21.63(0.12)(0.92)[0.93] 21.63(0.12)(0.92)[0.93]

hadronic (3.10, 3.60) 3.77(0.03)(0.10)[0.10] 3.77(0.03)(0.10)[0.10]

hadronic (3.60, 5.20) 7.50(0.04)(0.05)[0.06] 7.64(0.04)(0.05)[0.06]

pQCD (5.20, 9.46) 6.27(0.00)(0.01)[0.01] 6.19(0.00)(0.00)[0.00]

hadronic (9.46, 13.00) 1.28(0.01)(0.07)[0.07] 1.28(0.01)(0.07)[0.07]

pQCD (13.00,∞) 1.53(0.00)(0.00)[0.00] 1.53(0.00)(0.00)[0.00]

Total 1.05→ ∞ 112.82± 3.01tot 112.96± 4.13tot

+ missing channels

Table 5: LO–HVP contributions to1010aµ with FSR corrections included. The statistical and
systematic errors are givn within brackets; the total uncertainty is given within square brackets.
Column ”LO–HVP (2011)” displays the contributions estimated using only the data samples
available in 2011; Column ”LO–HVP (2014)” displays the corresponding values updated with
the data samples published up to the end of 2014.

In order to evaluate the muon LO–HVP from the fit results derived by means of the
BHLS global fit procedure, the numbers given in Table 4 shouldbe supplied with several addi-
tional contributions which cannot be derived from within the BHLS framework but should be
estimated by other means. This covers the channels opened below 1.05 GeV but remaining out-
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side the present BHLS scope26 and, more importantly, all hadronic contributions covering the
non–perturbative QCD region above 1.05 GeV should be estimated via the direct integration
method.

Table 5 summarizes these additional contributions to be combined with the BHLS results
to derive the muon LO–HVP; in this Table, one reminds the information available by end
of 2011 and used in our previous [34, 35]. The data column flagged by ”LO–HVP (2014)”
is the update derived by taking into account the data samplesmore recently collected (and
published up to the end of 2014); these are thee+e− → 3(π+π−) data from CMD–3 [81],
the e+e− → ωπ0 → π0π0γ from SND [82] and several data samples collected by BaBar in
the ISR mode27 [83, 84, 85, 86]. These data samples highly increase the available statistics
for the annihilation channels opened above 1.05 GeV and leadto significant improvements.
One thus should note the important improvement these provide for the LO–HVP contribution
from the[1.05, 2.0] GeV region : its uncertainty is reduced by 25 %, while its central value is
almost unchanged. Despite this improvement, the energy region [1.05, 2.0] GeV still remains
the dominant uncertainty on the muon LO–HVP and this strongly limits the effect of gaining
further in precision on the part of the LO–HVP covered by BHLS.

Deriving the full HVP value also requires to account for the higher order effets. This
includes the next–to–leading order contribution (NLO) taken from [26] ([−9.97±0.09]×10−10)
and the recently estimated next–to–next–to–leading order(NNLO) effects which happen to be
non–negligible ([1.24± 0.01]× 10−10) [87].

To compute the muong− 2, one should also include the light–by–light (LBL) contribution
(here taken from [88]), the QED contribution [89, 90] and theelectroweak contribution (EW)
[31]. The next–to–leading order contribution to the LBL amplitude (NLO–LBL) has also been
computed recently [91] but is clearly negligible ([0.3±0.2]×10−10). Altogether, the numerical
values we use (see Table 6) are rather consensual [92].

The first data column in Table 6 reproduces (after our methodological update) the muon
anomalous moment estimate coming from the corresponding BHLS global fit where only the
scan data for theπ+π− channel are considered while all ISR data are excluded. Thissupersedes
the corresponding information in [34]. The sample combination preferred by the BHLS global
fit gives the results displayed in the second data column; it exhibits a5.1σ significance for a
non–zero∆aµ = aexpµ − athµ . The evaluation derived by direct integration of the spectra used
within the global fits are given in the third data column. The KLOE data clearly increase the
discrepancy for∆aµ which is always found above the4σ level; effects of additional and not
still accounted for systematics will be examined in the nextSubsection.

Figure 3 displays the results for∆aµ derived using or not theτ data and various combi-
nations of the availableπ+π− data samples introduced with in the BHLS global fit procedure
at first iteration. For comparison, one also displays in thisFigure the evaluations produced by
other authors and flagged by Dhea09 [29], DHMZ10 [54], JS11 [26] and HLMNT11 [56] cor-
rected however by the recently identified NNLO–HVP and NLO–LBL contributions. Actually,
(see Table 6).A priori, the Dhea09 estimate compares exactly to our evaluations using scan
data only; the other results are derived using the BaBar, KLOE08 and KLOE10 samples. These
rather compare to the last couple of lines in Figure 3.

Some comments are worth being expressed :

26For instance the 4, 5 of 6 pion annihilation channels, or theωπ0 final state.
27These cover thepp̄, K+K−, KLKS , KLKSπ

+π−, KSKSπ
+π−,KSKSK

+K− annihilation final states.
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1010aµ Values (incl.τ ) Direct Integration

scan only scan⊕ KLOE scan⊕ KLOE

LO–HVP * 683.57± 3.82 681.20± 3.28 684.44± 4.76

HO (NLO) HVP −9.97± 0.09 [26]

NNLO HVP 1.24± 0.01 [87]

LBL 10.5± 2.6 [88]

NLO–LBL 0.3± 0.2 [91]

QED 11 658 471.8851± 0.0036 [89, 90]

EW 15.40± 0.10had ± 0.03Higgs,top,3−loop [31]

Total Theor. 11 659 172.93± 4.63 11 659 170.56± 4.19 11 659 173.80± 5.43

Exper. Aver. 11 659 208.9± 6.3

∆aµ 35.97± 7.82 38.34± 7.57 35.11± 8.32

Significance (nσ) 4.60σ 5.07σ 4.22σ

Table 6:The various contributions to1010aµ. ∆aµ = aexpµ − athµ is given in units of10−10. For the measured
valueaexpµ , we have adopted the value reported in the RPP which uses the updated value forλ = µµ/µp recom-
mended by the CODATA group [93]. By KLOE, one means that the KLOE10 and KLOE12π+π− data samples
are introduced in the BHLS fit procedureand in the directly integrated spectra.

• 1/ The difference between our estimates and those of other authors mainly deals with the
estimated central value for∆aµ.

When using only the scan data, this should reflect the biasingeffect certainly present in
the experimental data (see footnote # 24) and corrected in our approach by the iterated
fit method. When the ISRπ+π− samples are also involved, the issue just reminded is
amplified because the influence of samples with large overallscale uncertainties is much
increased28. Indeed, if one discards the BaBar sample (relying on the fit results collected
in Table 2), the effect is≃ (10 ÷ 15) × 10−10; however, taking the BaBar sample into
account does not solve the discrepancy as the effect is still≃ 5 × 10−10. All this can
be inferred from Figure 3 by comparing the lines for ”NSK+KLOE” with the lines for
”Global (ISR+scan)” which also include the BaBar sample.

• 2/ When a comparison between a∆aµ estimate derived using theτ data and the corre-

28All ISR data samples are strongly dominated by overall scale uncertainties, additionallys–dependent.
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sponding one excluding these is possible, ours exhibits thesmallest difference ((1÷2)×
10−10 for NSK+KLOE,−0.1×10−10 for the Global fit including all theπ+π− data sam-
ples). This is certainly due to the vector meson mixing whichdefines the BHLS model.
It is interesting to note that the JS11 [26] value, which is based on theγ − ρ0 mixing by
loop transitions29, is the closest to ours.

• 3/ Relative to the values for∆aµ derived from fitting with scan data only, the effect of
the KLOE samples is to increase its value while the BaBar sample reduces it.

• 4/ Relying on the global fit properties, the BHLS model favors the ”NSK + KLOE10
+ KLOE12 + τ ” as the largest consistent set of data samples. This leads to∆aµ =
(38.34 ± 4.19) × 10−10 which exhibits a5.1σ significance30. Our estimate is expected
to be free of biases generated by the overall scale uncertainties which dominate the ISR
π+π− data samples.

8.4 Additional Systematics On The BHLS Estimate For The Muong − 2

A detailed study of additional systematics possibly affecting the BHLS evaluation of∆aµ
has been already performed in [35]. It concluded to an uncertainty of the LO–HVP central value
for ∆aµ = aexpµ − athµ in the range[−1.3 ≃ 0.60]× 10−10 coming fromπ+π− contribution in
the φ mass region, where BHLS is weakly constrained. An uncertainty coming from using
theτ spectra has also been considered; it was argued that the bestmotivated evaluation of this
is the difference between fitting with theτ spectra and without them in the most constrained
configuration. Presently, this means that the BHLS preferred value (∆aµ = (38.58 ± 5.04)×
10−10) could be underestimated by≃ 0.9× 10−10.

Another mean to detect systematics is to compare with the accurate ChPT predictions on
the P–waveπ+π− phase–shift [94] and also with the available experimental data from the
Cern–Munich [95] and Fermilab [96] groups. These are shown in Figure 4. Included also are
the predictions derived from the Roy Equations and from the phase of the pion form factor fit
performed in [26] (JS11).

As for the BHLS predictions corresponding to using NSK+KLOE(10/12), we display in
this Figure the phase of the full amplitude and those corresponding to dropping out the isospin
breaking (IB) effects due to the vector meson mixing31. Theτ spectra are included within the
fit procedure.

The standard BHLS phase shift predictions are displayed in the left–hand side panel of
Figure 4. One clearly observes a very good prediction of the phase–shift up to about 1.2 GeV,
i.e. much beyond our fitting range (from threshold to 1.0 GeV for the ππ data). Indeed the
Cern–Munich data are very well accounted for and the BHLS predictions are in accord with
the other predictions. The inset, however, exhibits a (minor) issue for the full amplitude phase,

29Within the BHLS model, theγ − ρ0 mixing is mimicked by loops.
30If using the data from 2011 in Table 5, as in our previous studies, this significance is ”only”4.8σ. This

compares more directly to the results from other authors displayed in Figure (3). The increased significance is
a pure consequence of having improved the uncertainty on thehadronic contribution from the[1.05, 2.0] GeV
region.

31This is obtained by cancelling out the ”angles”α(s), β(s) andγ(s) from the full amplitude expression.
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−10 40 90 140

τ Data + [ρ + ω + φ] (PDG)

τ(A+B+C) [39.89 ± 6.23] [4.5 σ]

Individual ππ Data Sets + τ
NSK (CMD2+SND) [35.97 ± 4.63] [4.6 σ] [χ2/Nππ 0.96] [99.5%]

KLOE 08 [38.78 ± 5.16] [4.8 σ] [χ2/Nππ 1.64] [58.9%]

KLOE 10 [39.21 ± 5.15] [4.8 σ] [χ2/Nππ 0.96] [96.6%]

KLOE 12 [38.33 ± 4.33] [5.0 σ] [χ2/Nππ 1.02] [96.9%]

BaBar (Trunc.) [29.15 ± 4.07] [3.9 σ] [χ2/Nππ 1.15] [73.8%]

BaBar (Full) [27.40 ± 4.03] [3.7 σ] [χ2/Nππ 1.25] [40.1%]

scan ππ Data
NSK (CMD2+SND)+τ [35.97 ± 4.63] [4.6 σ] [χ2/Nππ 0.96] [99.5%]

NSK [37.94 ± 4.95] [4.7 σ] [χ2/Nππ 0.97] [99.8%]

DHea09 (e+e−) [28.56 ± 5.8] [3.4 σ]
scan +ISR ππ Data

NSK+KLOE (10&12)&τ [38.34 ± 4.19] [5.1 σ] [χ2/Nππ 1.06] [97.0%]

NSK+KLOE(10&12) [39.13 ± 4.31] [5.1 σ] [χ2/Nππ 1.06] [98.5%]

DHMZ10 (e+e− + τ) [17.96 ± 5.4] [2.2 σ]

DHMZ10 (e+e−) [27.16 ± 4.9] [3.3 σ]

HLMNT11(e+e−) [24.56 ± 4.9] [3.1 σ]

JS11(e+e− + τ) [27.66 ± 6.0] [3.2 σ]

Global (ISR & scan&τ) [33.72 ± 4.08] [4.5 σ] [χ2/Nππ 1.28] [11.3%]

Global (ISR & scan) [33.63 ± 4.03] [4.5 σ] [χ2/Nππ 1.59] [15.4%]
experiment

BNL-E821(avrg) [0 ± 6.3]

(aexp
µ − ath

µ )×1010

Figure 3: The deviation∆aµ = aexpµ − athµ in units of 10−10. The variousathµ have been derived
from the global fit using the indicatede+e− → π+π− data samples and including/excluding
the τ dipion spectra as also indicated. In red one displays∆aµ corresponding to the iterated
solution and in green those corresponding to theA = m (non–iterated) solution. In blue results
from other studies are given corrected from the recently evaluated next–to–next–to–leading
order contribution [87]. See Section 8.3 for comments.

a small bump of about1◦ close to threshold, absent from the IB amputed amplitude. This
can be tracked back to a peculiarity of the broken HLS model which does not split up the
HK (Lagrangian) masses for theω andρ0 mesons and, consequently, the mixing angleα(s)
does not exactly vanish ats = 0 (see Figure 6 in [32]); in contrast the other angles fulfill
β(0) = γ(0) = 0. Indeed, one has :

α(s) =
ǫ1(s)

[mHK
ρ ]2 − [mHK

ω ]2 +Πππ(s)
(18)

where [34]ǫ1(s) is the difference of the charged and neutral kaon loops andΠππ(s) is the pion
loop which both vanish ats = 0. This assumption has been checked with fits by imposing
[mHK

ω ]2 = (1 + η)[mHK
ρ ]2 and choosing various fixed values forη; the right–hand side panel

in Figure 4 displays the phase shift forη = 5% and, quite satisfactorily, its inset does not
reveal a bump any longer. A non–zero (HK) mass differenceη [mHK

ρ ]2 cannot be generated
by the breaking mechanisms already implemented within BHLS. However, a breaking of the
nonet symmetry in the vector meson sector (VNSB) enables such an effect; this turns out to
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modify the customary vector field matrix – actually U(3) symmetric – within the covariant
derivatives of the HLS model [13] by a perturbation term proportional to the singlet vector
field combination. The effect of VNSB has been derived from specific fit studies and indicates
that∆aµ might have to be lessened by about1.4× 10−10.

Therefore, in total, the BHLS favored result can be expressed, in units of10−10 as :

∆aµ = 38.34 + [+0.6
−1.3]φ + [+0.9

−0.0]τ + [+0.0
−1.4]V NSB ± 4.19th ± 6.3exp (19)

where the three additional contributions play as shifts on the central value. Adding them up
linearly, the maximum shift (−2.7×10−10) may reduce the central value to35.9×10−10 which
has still a4.7σ significance. The effect of these additional systematics isto reduce potentially
by ≃ 0.3σ all the significances displayed in Figure 3. These are not dueto overall scale
uncertainties already accounted for by the iterative method; they might be reduced by new
annihilation data samples covering the region up to 1.05 GeVin all the physics channels in the
realm of BHLS.

9 Concluding Remarks

The present study was motivated by the question which gives its title to this paper. More
precisely, the issue is whether the D’Agostini bias [41, 45]prevents to derive unbiased physical
results from global fits to experimental spectra affected bydominant overall scale uncertain-
ties32.

Actually, several issues are merged together. First, the effective global χ2 functions to
be used in the minimization procedure should be appropriately defined. For the data samples
where the statistical errors dominate the overall scale uncertainties, the construction of the
associatedpartial χ2’s is quite standard. The real issue starts when the data samples are
dominated by overall scale uncertainties. For each of them,substantially, the canonical partial
χ2 has been reminded in Section 2 and writes [41, 44, 45] :

χ2 = [m−M(~a)− λA]TV −1[m−M(~a)− λA],

leaving aside the so–called ”penalty term” [45] proportional to λ2. The (partial)χ2 being
appropriately defined, another issue is the choice of the vectorA.

In our former studies [34, 35], beside the≃ 40 data samples dominated by statistical errors
which follow the traditional treatment, the data samples covering thee+e− → π+π− annihi-
lation channel are all, sometime very strongly, dominated by overall scale uncertainties; this
especially refers to the samples collected by the KLOE and BaBar Collaborations using the
ISR production mode. Here, for each sample, we choosed forA the experimental spectrum
itself; this choice has been referred to asA = m all along the paper. The guess behind was that
all scale uncertainties affecting the different experimental spectra independently of each other
should smear out possible biases in the central values of the(common) theoretical form factor
function parameters [35].

32We gratefully acknowledge G. Colangelo to have pointed out the issue for estimating the muon HVP using
global fit methods. However, the bias issue is more general aswill be argued shortly.
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It happens that the results one can derive in this way from theBHLS global fit undergo
very small biases (compared to the errors derived from the fitprocedure); this is shown in the
present study33. However, the guess just reminded was incorrect and the actual reason which
explains the almost bias free results is following : As shownin the Monte Carlo study presented
in the Appendix, there is no smearing out of biases ifall the spectra submitted to fit undergo
comparable strong scale uncertainties; however, this study also shows that, if some of the fitted
spectra are dominated by statistical rather than global scale uncertainties, the fit results can be
strongly unbiased.

Nevertheless, a high level of unbiasing cannot be taken as granted as the real weight of
the samples dominated by statistical errors within the fullglobal fit procedure cannot be ascer-
tained. Basically, the choiceA = m potentially leads to biases of unknown magnitude; this
has been shown by G. D’Agostini [41] with a simple example andmore generally argued by V.
Blobel [45]. These authors also showed that all biases vanish if, instead ofA = m, one makes
the choiceA = M , the ”true” spectrum. But this is just not possible within contexts like ours,
where fits are performed just in order to derive the ”true” spectrum from data. Fortunately,
iterative methods allow to circumvent this difficulty by taking the path opened in [46] in order
to derive the parton density function from data and correct for biases. The iterative method
we propose has been tested with the Monte Carlo study reported in the Appendix and shown
to produce unbiased results with a quite fast convergence speed; indeed, only one iteration is
sufficient.

So, our main conclusion is indeed that global fit methods including a fast iterative procedure
are expected to produce reliable pieces of information as, methodologically, the central values
are unbiased and the estimate for the uncertainties reliable; this especially applies to the part of
the muon leading order HVP derived frome+e− annihilation cross sections.

Having shown that appropriate global fit methods should leadto results which can be
trusted, a related remark is worth being expressed. Iterative global fits allow to supply the
BHLS Effective Lagrangian cross sections with reliable andunbiased numerical central values
for the fit parameters and a good estimate of their error covariance matrix. Then, using these
cross sections and the fit information, Eq. (1) is expected toprovide an unbiased estimate for
aµ(ππ) as the ingredients are unbiased.

On the other hand, when computingaµ(ππ) by directly integrating a dipion spectrum in
order to derive its so–called experimental value, one has toplug into Eq. (1) the experimentally
measured cross sectionσexp.(s). However, as already noted in footnote # 24, or as can be
inferred from the canonicalχ2 expression reminded just above, the experimental and model
cross sections are related by :

σexp.(s) = σtheor.(s) + δσ(s)

where the best estimate of the second term writes34 δσ(s) = λσtheor.(s). As obvious from Eq.
(6), the best estimate of the scale factorλ equally depends on the measured spectrum and on

33which also corrects for some coding bugs affecting our previous studies.
34In the case of a constant scale uncertainty, as for the CMD2 and SND data, there is only one scale factorλ.

For the ISR data samples, the expression is slightly more complicated but easy to derive (see also the Appendix
to [35]) and the conclusions are likewise.
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the ”true” spectrum, which can be identified with its (iterated) fit solution. So, using again
self–explanatory notations, Eq. (1) leads to :

aµ(ππ, exp.) = aµ(ππ, theor.) + δaµ(ππ)

and thusaµ(ππ, exp.) looks intrinsically biased for any sample subject to strongenough overall
scale uncertainties. This issue is also reflected by the residual plots which are improved when
plotting the corrected residuals[m−(1+λ)M(~a)] instead of the raw ones[m−M(~a)], as can be
seen in Figure 13 of [35]; this allows to infer thatδaµ(ππ) is small but non–zero. Nevertheless,
as shown with the case NSK+KLOE10+KLOE12+τ favored by the BHLS model, the observed
bias amounts toδaµ(ππ) ≃ 3.4 × 10−10; this is indeed small (δaµ(ππ) ≃ 5 × 10−2aµ(ππ)),
but not really negligible.

As for the physics conclusions, the present paper updates and corrects the results derived
by the global BHLS fit method which, following the considerings just summarized, has been
completed with an iteration procedure in order to cancel outpossible biases. One thus confirms
that almost all of the existing data samples covering the annihilation channels with theπ0γ, ηγ,
π+π−π0, K+K−, K0K0 final states and the dipion spectra in theτ± → π±π0ν decay acco-
modate perfectly the BHLS framework. In the line of our previous works, one also finds that
among the data samples covering thee+e− → π+π− annihilation, the data samples provided
by CMD2 and SND, the KLOE10 and now also the KLOE12 samples behave consistently with
each other and with the other considered data covering the various channels entering the BHLS
scope.

The present update, which also includes the recently published KLOE12π+π− sample,
supersedes our previous results; they are mostly given in Table 3 and in Eqs. (14). From a
theoretical point of view, it is interesting to note the corrected values for theci’s coefficients of
the anomalous (FKTUY) terms of the HLS model [15, 13] : The combinationsc+ = (c4+c3)/2
andc1 − c2 are found very close to the usually assumed value,i.e. 1; in contrast,c− = (c4 −
c3)/2 = −0.19± 0.02 is non–zero with a10σ significance.

Figure 2 displays the values foraµ(ππ, [0.63, 0.958]) GeV derived from iterating the fits
with the various available data samples. One observes a strong reduction of the uncertainty
compared to the corresponding experimental value (about a factor of 2.5) and there is a close
agreement between central values for all samples (or combinations of samples) which yield a
good fit probability. The difference between the central values for the starting fit and the iterated
one tends to indicate that biases are limited; this should bea consequence of also dealing with
a large number of samples where the overall scale uncertainties are dominated by statistical
errors, as argued in the Appendix.

Figure 3 exhibits the values for the muon∆aµ = aexpµ − athµ when various combinations of
e+e− → π+π− andτ± → π±π0ν samples are used in the iterated global fit procedure. The
present study confirms that, within BHLS and because of its specific isospin breaking mech-
anisms, one does not observe any serious mismatch between fits with onlye+e− annihilation
data and fits where these are supplemented with theτ dipion spectra. The central values35 for
aµ(e

+e−) andaµ(e+e− + τ) only differ by 2 units (NKS), 1 unit (NSK+KLOE+τ ) or coincide
(see the last couple of lines in Figure 3), while the uncertainties are slightly improved (as they
should).

35the values foraµ are given from now on in units of10−10 for convenience.
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Figure 3 displays the value for∆aµ derived usingall data samples except for KLOE08,
which can be written :

∆aµ = 33.72 + [+0.6
−1.3]φ + [+0.9

−0.0]τ + [+0.0
−1.4]V NSB ± 4.08th ± 6.3exp,

where an estimate of the magnitude of possible uncertainties coming from outside the BHLS
framework is proposed. This exhibits a4.5σ significance (which may reduce to4.2σ – in the
least favorable case – if the additional systematics are added linearly and assumed to play as a
shift).

However, the most probable value for the muon∆aµ is obtained by using the CMD2, SND,
KLOE10 and KLOE12 samples – and theτ spectra; this leads to :

∆aµ = 38.34 + [+0.6
−1.3]φ + [+0.9

−0.0]τ + [+0.0
−1.4]V NSB ± 4.19th ± 6.3exp.

This BHLS preferred estimate exhibits a5.1σ significance for a non–zero∆aµ, which may
reduce to4.5σ if one takes into account, as just above, the possible additional systematics.
This solution is associated with a 97% fit probability.

As a summary, even complemented with an iterative procedureshown in the Appendix to
remove biases, the BHLS approach favors a significance for∆aµ above the≃ 4σ; this value
is a lower bound obtained by including possible additional systematics added linearly. New
data expected soon may further clarify the picture. The uncertainties now become sharply
dominated by the region above 1.05 GeV,i.e. outside the BHLS scope.
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Figure 4:P–waveπ+π− phase–shift data and predictions from [94] (CGL) and [26] (JS11) to-
gether with the BHLS phase–shift. The insets magnify the various behaviors close to threshold.
See Subsection 8.4 for more explanations.
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A Appendix : Monte Carlo Tests of the Iterative Procedure

A.1 The Test Method

In order to test the iterative method, one has developped a minimization code which deals
with spectra generated from a given underlying functionMtrue(s) where the parameters{ai}
(which, of course, are known at the generation level) are fitted within the code. The ”experi-
mental” spectra feeding this code are generated using the true distribution smeared by introduc-
ing gaussian uncertainty distributions. Indeed, for the purpose of testing our analysis method,
it is certainly the most appropriate to rely on ”perfect” data samples, with perfectly known
properties.

For sake of simplicity, at the generation level, any ”experimental” spectrumE is chosen
to carry 100 ”measurements”mE

i , performed at 100 equally spaced energy squaredsi points
(si ∈ [0, 1] GeV2), the same sequence for all spectra. The ”measurements” arederived by
smearing the theoretical valuesMtrue(si) in the following way : For each spectrumE, one
assumes the ”measurements” are sampled out from gaussian distributions in the following way :

mE
i =Mtrue(si)[1 + σεEscale(0, 1) + ηεi,Estat(0, 1)] , i = 1, · · · , 100 (20)

whereεi,Estat(0, 1) indicates theith sampling on a gaussian distribution of0 mean and unit stan-
dard deviation generating the statistical error; it variesindependently from ”measurement” to
”measurement” and from spectrum to spectrum.ηMtrue(si) denotes the statistical error com-
mon to allmi, η being some fixed fraction of the order of a few percents, chosen the same for
all the ”measurements” in the spectrumE.

On the other hand,λE = σεEscale(0, 1) is the scale uncertainty affecting specifically the
spectrumE; as indicated by its definition, it is sampled out from a gaussian distribution of zero
mean andσ standard deviation. The overall scale uncertainty affectingE is obtained viaone
sampling ofεEscale(0, 1) which, thus, carries the same value for all the ”measurements” mE

i in
the spectrumE. Of course, when going from a spectrumE to anotherE ′, another sampling
of εEscale(0, 1) should be performed. For specific tests, the overall scale uncertainty can be
switched off (σ = 0).

One definesNrep replicas (generally 1000) ofNexp (generally 5) experimental spectra con-
structed as shown in Eq. (20) and submitted to a global fit where the parameters entering
Mtrue(s) are just the parameters to be derived from fit. The ”true” statistical error covariance
matrixVij = [ηMtrue(si)]

2δij is practically approximated byVij = [ηmE
i ]

2δij ; we have avoided
the unessential complication of non–diagonal covariance matrix. The fit results derived for
each replica are stored and then used to construct the statistical plots – true residuals and pulls
–with the help of the known parameter ”true” values.

Therefore, we are just in the conditions described in Subsection 4.2. One should note
that theMINUIT code we have built performs the minimization of theNexp samplesand runs
sequentially to treat theNrep replicas within the same job.

So, for each replica, the globalχ2 minimized by our Monte CarloMINUIT procedure is
simply a sum ofNexp terms like Eq. (4):

χ2 =
E=Nexp
∑

E=1

χ2
E (21)
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When initializing the iteration procedure, one usesAE = mE , i.e. the spectrumE serves to
construct itsχ2

E; soAE differs from some otherAE′ by statistical fluctuations. When iterating,
at first or higher order, they become identical asAE = AE′ =Mfit ≃M(~afit).

Obviously, each such run provides simultaneously all the information allowing to examine
the statistical properties of the iterative method corresponding to a given theoretical choice
Mtrue(s). The computer code also allows an easy change of the functional form ofMtrue(s) in
order to examine the behavior of various kinds of non–linearparameter dependences.

The behavior of the fit parameters compared to truth is, of course, the subject of the analysis;
however, those of ”physics quantities” derived from them are as important. For this purpose,
we choosed to examine the ratios36 :

I =

∫ 1
0 Mfit(s)ds
∫ 1
0 Mtrue(s)ds

(22)

which has properties similar to those of theaµ(Hi)’s, as the weighting factorK(s) in Eq. (1)
is an unessential complication while looking for possible methodological biases of the iterative
method.

A.2 The Test Results

The aim of the present Appendix is to report on numerical analyses performed in various
configurations in order to examine how overall (global) normalization uncertainties and biases
are related and whether non–linearities in the model parameters to be fitted lead to significant
incorrect estimates of errors. As Reference [46] which is faced with the same kinds of issues
as the present work, we do not plan to establish rigorously general theorems on these topics
– assuming the scope of the issues would permit it. Nevertheless, one can think that studying
methods by relying on Monte Carlo technics is an acceptable way to check its (practical) va-
lidity under common conditions. After all, the fact that Eq.(3) with A = M (the theoretical
function) is considered free from biases is not weakened by the fact that the general (formal)
proof of this property – if established – is not commonly referred to.

A.2.1 Analytical Shape of the True Distributions

In order to use confidently fit results derived using the iterative method, one should examine
the effects of non–linear dependences upon the fit parameters within contexts similar to our
physics distributions. The lineshape of the pion form factor as a function ofs on a given
interval can be qualitatively reproduced using polynomials, ratios of polynomials, exponential
of polynomials, sums of a Breit–Wigner function with polynomials etc . . . with appropriate
numerical parameter values.

We have applied the method outlined in Subsection A.1 to perform fits relying on an inten-
sive use of the tools provided byMINUIT taking various kinds of functionsMtrue(s), resem-
bling – sometimes weakly – the pion form factor. Running in sequenceMIGRAD /HESSEand
MINOS, we did not observe significant departures (beyond statistical fluctuations) from equality
between parabolic andMINOS errors; as the issue was to examine effects of non–linear parame-
ter dependences this exercise was performed assuming statistical uncertainties only. Therefore,

36Remind that0 and1 GeV2 are the energy squared limits of the generated spectra.
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this led us to conclude that, for the kind of experimental distributions one deals with, non–linear
effects are not generally significant. For instance, using :

Mtrue(s) =
g

(s− a)2 + b2
+ c+ d s+ e s2 , (23)

η = 3% and no scale uncertainty (to discard any need for iterating), the probability distribution
was observed flat and the parameter pulls consistent with normal gaussiansG(m = 0, σ = 1);
the distribution of the ratioI for the 1000 replicas was also found well centered at 1 (actually
its mean is 1.0001 and its standard deviation1.62×10−3 from a gaussian fit withχ2/Npoints =
8.9/11). So, except for pathological cases which may always occur,non–linear dependences
do not look practically an issue.

From now on, we limit ourselves to reporting on usingMtrue(s) as given by Eq. (23).
Moreover, for sake of succintness, we may only mention the fitparameter residual and pull
distribution properties qualitatively and concentrate ondiscussing the distribution of the ratios
I which, in fine carries – summarized – the relevant information. Each valueof I entering
this distribution is computed from aMINUIT fit of Nexp = 5 data samples and this is done for
Nrep = 1000 replicas to construct numerically its distribution.

A.2.2 Normalization Uncertainty and Iterative Method

We first examined the results derived by fit of spectra with data points generated as in Eq.
(20) with a statistical uncertaintyη = 3% and generating the scale uncertaintyλ with σ = 5%;
soη is smaller thanσ. In this case, the interesting plots are gathered in Figure 5.

As one knowsMtrue(s), one can construct theNexp partialχ2’s with A = Mtrue(s) (see
Eq.(3)) and minimize their sum usingMINUIT . In this case, no bias is expected [41, 44, 45]
and this is indeed confirmed by the top left panel in Figure 5 where the distribution of theNrep

values forI is displayed.
When, instead, one usesA = m (the data spectrum), the results are shown in the top right

panel of Figure 5, where one observes a shift of the central value by as large as 20% ! Denoting
the result of the corresponding fit byM0, one restarts fitting the same data by settingA =M0,
this – first – iteration leads to the distribution shown in thebottom left panel of Figure 5 which
looks identical to having usedA = Mtrue. Denoting the fit solution of this first iteration by
M1, one restarts fitting the same data by settingA =M1, and get the step 2 solutionM2 which
correponds to the bottom right panel of Figure 5, which clearly indicates no change for theI
distribution.

So, one may conclude that the iterative procedure has already converged at the first iteration
and so, we haveM1 = Mtrue. This fortunate high convergence speed has also been observed
by [46] and it is quite remarkable that this has allowed to recover from37 a 20% bias!

Fit residuals are observed unbiased and pulls consistent with normal centered gaussians for
A = Mtrue, A = M0 andA = M1. As for theχ2 probability distributions, forA = m, it
exhibits a huge spike at 1, while it is consistent with flatness (mean≃ 0.5 and r.m.s.≃ 1/

√
12)

for all the other cases.
37The numerical importance of this bias is intimately relatedwith the ratioσ/η = 5/3; if instead one works

with σ/η = 1, the bias coming out from fitting withA = m would only be 4%.
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This already indicates that starting withA = m (the measured data spectrum) and iterating
only once allows to give up knowing the theoretical functionM beforehand to drop out bi-
ases in physics quantity estimates. Moreover, as the parameter pulls are centered gaussians of
unit standard deviations, the uncertainties derived from from the fit parameter error covariance
matrix are reliable.

Figure 5: Distributions of the ratiosI derived by varying the functionA in theχ2 expression
as indicated in each panel. The choiceA = mE (i.e. the ”measured” data sample) exhibits a
20% bias while the other choices are unbiased. For more comments, see Subsection A.2.2.

A.2.3 Effects of Subsamples Free from Normalization Uncertainties

In the specific problem of globally fitting a large number of experimental data samples, one
is faced with as many as 40 to 50 spectra to be treated [34, 35, 53, 52]. Within this ensemble
of data samples, one observes several configurations concerning uncertainties : some samples
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have statistical errors dominated by scale uncertainties (the ISR collected data samples), while,
in contrast, some others are reported with scale uncertainties marginal compared to statistical
errors (thee+e− → γP data, for instance); sometimes, no specific information is reported
concerning scale uncertainties, as for the theτ dipion spectra [57, 58, 59].

Figure 6: Effect of having 1 (top panels) or 2 (downmost panels) data sample(s) among the
fittedNexp = 5 samples simultaneously fitted. Left plots report on fitting with A = M (the
truth), right plots on fitting withA = mE (the measured spectra); in the former case no bias is
observed, in the latter case, the bias happens to be much limited. See text for more details.

This makes interesting to examine configurations mixing samples of both kinds. In this
paragraph, one summarizes the results obtained by runningNrep replicas of ensembles of 4
data sets where, as before, the scale error isσ = 5% and the statistical errorη = 3%, together
with 1 data set withσ = 0% (no scale uncertainty) andη = 6% (twice worse statistical
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precision). This (4,1) combination will be supplemented with a (3,2) combination with the
same characteristics. The main results are shown in Figure 6. Here we do not report on iterating
the fit procedure, as obviously the results will follow the pattern shown in Figure 5.

Figure 7: Probability distributions when fitting withA =Mtruth (left panels) orA = mE (right
panels). The top panel plots correspond to the case when among theNexp = 5 fitted spectra,
one is systematically free from normalization uncertainty; in the downmost panels 2 of the 5
fitted spectra are free from normalization uncertainty.

The top panels in Figure 6 display distributions of the ratios I in the (4,1) configuration.
The left plot shows the case when theNrep replicas are fitted usingA = Mtruth in the χ2

expressions. In this case, the absence of any bias is confirmed by the gaussian fit result shown
within this plot. While usingA = mE, the top right panel exhibits a 1.3% bias. Therefore, the
effect of a single spectrum free from scale uncertainty out of 5 is enough to lessen dramatically

40



the observed bias : It reduces from 20% to 1.3%.
The downmost panels in Figure 6 display the corresponding results when fittingNrep repli-

cas of (3,2) combinations. In this case, usingA = mE in the minimizedχ2 expression, leads
to an even smaller bias (0.5%).

So, even if they carry a poor statistical precision, having some spectra free from a (signif-
icant) scale uncertainty is quite helpfull to strongly limit the real magnitude of a possible bias
for a derived quantity. It is a quite interesting property toobserve that some spectra with de-
graded statistical quality supplementing other spectra dominated by scale uncertainties might
be enough to avoid the need of an iteration procedure to unbias physics pieces of information.

As for the probability distributions, comparing of the corresponding left and right panels in
Figure 7 clearly shows that the departures from uniformity (i.e. average=0.5 and r.m.s.=0.289)
due to usingA = mE are quite limited.

Nevertheless, when dealing with true experimental data (and thus unknown truth), one can-
not take as granted that the number of samples with negligible scale uncertainties compared to
statistical errors is sufficient to ascertain that biases are negligible. Therefore, in the practical
case of the global fit of real experimental data performed within BHLS, secure results can only
be ascertained by iterating until the change ofaµ(Hi) is small enough.
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