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Abstract

Previous studies have shown that the Hidden Local Symmeéths) Model, sup-
plied with appropriate symmetry breaking mechanisms, igassan Effective Lagrangian
(BHLS) which encompasses a large number of processes véthinified framework; a
global fit procedure has been derived herefrom which all@wa Eimultaneous description
of theete™ annihilation into 6 final states = 7 —, 7%, ny, nt7 7%, Kt K—, K[ Kg —
and includes the dipion spectrum in thelecay and some more light meson decay partial
widths. The contribution to the muon anomalous magnetic munLh of these annihila-
tion channels over the range of validity of the HLS model @g.05 GeV) is found much
improved compared to its partner derived from integratimg measured spectra directly.
However, because most spectra for the annihilation pracess — =+7~ undergo over-
all scale uncertainties which dominate the other sourgesptay suspect some bias in the
dipion contribution tcn}}l and this may address the relevance of global fits methods- How
ever, an iterated global fit algorithm, shown to lead to usidaresults by a Monte Carlo
study, is defined and applied succesfully to¢he~ — 77~ data samples from CMD2,
SND, KLOE (including the latest sample) and BaBar. The ttdit solution is shown
to be further improved and leads to a value dgrdifferent from its experimental partner
above theio level. The contribution of ther™ 7~ intermediate state up to 1.05 GeV to
a,, derived from the iterated fit benefits from an uncertaintyutl3times smaller than the
corresponding usual estimate. Therefore, global fit tephes are shown to work and lead
to improved unbiased results. The main issue raised in tbgept study and the kind of
solution proposed may be of concern for other data drivemmaust when the data samples
undergo dominant global normalization uncertainties. @resent results supersede our
former results.
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1 Introduction

As well known, the Standard Model is the gauge theory whicrecothe realm of weak,
electromagnetic and strong interactions among quark&nspand the various gauge bosons
(gluons, photondy/+, Z°). In energy regions where perturbative methods apply, thedard
Model (SM) allows to yield precise estimates for severalgitsl effects, sometimes with
accuracies of the order a few 16. In contrast, in energy regions where the non—perturbative
regime of QCD is involved, getting similar precision may tee challenging. This is the case
for the low energy part of the photon hadronic vacuum poddian (HVP); this HVP plays a
crucial role in determining the theoretical value for theananomalous momei},, one of
the best measured particle property.

Fortunately, getting precise estimates in the low energydraSM sector is not completely
out of reach as exemplified by the Chiral Perturbation ThéGhPT)[1/ 2] which is rigorously
the low energy limit of QCD, valid up to 408 500 MeV but lets the resonance region outside
its scope. Lattice QCD (LQCD) is also a promising method umdpid development which
already allows to perform precise computations at low (aemg low) energies [3]. Interesting
LQCD estimates for the HVP’s of the three leptons have airdmesbn produced [4, 5] which
clearly show that LQCD reaches results in accord with exgiexts; this is especially striking
for a,, with, however, still unsatisfactory uncertainties [4].

So, much progress remains to be done before LQCD evaluatem&ompete with the
accuracy of the experimental measurements already alea[Bid/] or, a fortiori, with those
expected in a near future at Fermilab [8, 9] or, slightly lateé J-PARCI[10]. Since lattice
QCD isintrinsically an Euclidean approach, it is intrirelg unable to account for the existing
rich amount of low energy hadronic data in the non-pertuvbatme-like region,i.e. from
thresholds to 2- 3 GeV. Therefore, other methods, able to encompass largeoina of the
physics from this important energy region, are valuable.

A natural approach to this issue is provided by Effectiverbagians which cover the reso-
nance region. Such Effective Lagrangians should be cartetiiso as to preserve the symmetry
properties of QCD as already done by standard ChPT, howe\gwalid up to they mass re-
gion. As it includes meson resonances, the Resonance @eittairbation Theory (RPT) [11]
is an appropriate framework to studye~ annihilations from their respective thresholds up to
the intermediate energy region.

It has been proven [12] that the coupling constants occuatrayderp* in ChPT are sat-
urated by low lying meson resonances of various kinds as asdhey can contribute. This
emphasizes the role of the fundamental vector meson nopen@ confirms the relevance of
the Vector Meson Dominance (VMD) concept in low energy pbysi

On the other hand, as it has been proven [11] that the HiddealL®ymmetry (HLS)
Model [13] and R PT are equivalent provided consistency with the QCD asytigatehavior
is incorporated. It thus follows that the HLS model is also@tiwated and constraining QCD
rooted framework. As the original HLS Model only deals wille towest mass resonances, it
provides a framework for the"e~ annihilations naturally bounded by tikemass region +e.
up to~ 1.05 GeV.

The non—anomalous [14] and anomalous [15] sectors of theMa&el open a wide scope
and can deal with a large corpus of physics processes in a&dmifay. However, as such,
HLS cannot precisely reach the numerical precision regdesy the wide ensemble of high



statistics data samples collected by several sophistiGatperiments on several annihilation
channels. In order to achieve such a program, the HLS Lagmangust be supplied with
appropriate symmetry breaking mechanisms not presert ariginal formulation[[183].

This was soon recognized by the HLS Model authors who firgpgsed the mechanism
to break SU(3) symmetry [16] named BKY according to its authames. Its success was
illustrated by several phenomenological studies based@®BKY breaking scheme [17, 118,
19]. It was also soon extended to SU(2)/Isospin symmetrgking [20]. However, in order
to account simultaneously for all the radiative decays eflight flavor mesons, the additional
step of breaking the nonet symmetry for light pseudoscatsans was required; based on the
heuristic formulation of th& P~ couplings by O’'Donnell[21] which includes nonet symmetry
breaking in the pseudoscald?) sector in a specific way, a global and successfull account of
all V P~ and P~ couplings has been reachéd|[22]. The BKY SU(3) breaking hisdnonet
symmetry breaking included within the HLS Model was show8] [ meet the requirements of
Extended Chiral Perturbation Theofy [24] 25]. Finallyraatucing the physical vector meson
fields as the eigenstates of the loop modified vector mesos masrix provided a mixing
scheme of the" — w — ¢ system which together with thié — ~ loop transitions implied by
the HLS model at one Io@peads to a satisfactory solution [27] of the long—standirgete™
puzzle [28| 29, 30, 31].

Therefore, the approach just sketched ig@al framework aiming at accounting for the
largest possible ensemble of data spectra collected iatgedt possible number of low energy
physics channels. As thigobal model is an Effective Lagrangian constructed from tke (
andV) fields relevant in the low energy regime of QCD and becausedbnsistent with the
symmetries of QCD, one naturally expects their low energylte to be consistent with the
Standard Model.

It was then shown, that the Effective Lagrangian constaufitam the original HLS Model
supplemented with the breaking schemes listed above wasaptovide a satisfactory simul-
taneous description of the e~ annihilations into ther ™7 —, 7%, ny, 777" final states and
of the dipion spectrum in the decay of thdepton [32) 33]. This tended to indicate that the
7 — ete” puzzle just referred to should be an artefact related wighathy isospin symmetry
breaking is implemented within models.

Slightly extending these breaking schemes, one is led t&tbken HLS (BHLS) Model
[34] which provides a fully consistent picture of all examite " ¢~ annihilation cross sectiofis
the 7 dipion spectrum and, additionally, some light meson decfyrmation with a limited
number of free parameters to be extracted from data. Anestielg outcome of the BHLS
based fit framework is an evaluation of the low energy compboéthe HVP leading to an
estimate of the muon anomalous magnetic moment at morelth&nom its measured valle
[6,[7].

Introducing the dipion spectra collected in the ISR modeficmed that the muor — 2
departs from expectation by more thémn [35] . One should note that the high statistics ISR

1See also[26] where the role of th& — v mixing is especially emphasized.

2gpecifically the 6Te~ annihilation channels tot7—, 7%y, ny, 7t7~ 7%, KTK—, K°KO, each from its
threshold up to 1.05 GeVe. including the¢ signal region.

30ne may find a little bit funny that the BHLS evaluation for theon HVP is the closest to the central value
preferred by the Lattice QCD studyi [4].



dipion spectra recently published by the KLOEI[36,37, 38] BaBar [39| 40] Collaborations
have the peculiarity to be strongly dominated by overalles¢a. normalization) uncertainties,
additionally energy dependent. However, sizeable ovecale uncertainties raise an important
issue related with possible biased values for physics giemextracted from these spectra.
This issue has been identified in the reference work of G. D®ni [41] where a very simple
case is proposed which illustrates that biasing effectsbeadramatid. Of course, for a key
guantity like the muorm — 2, the problem should be explored and possible biases idshéfid
corrected. The way out is already mentioned.in [41] and &rrémphasized in other studies
[44,145,/43]; the exact solution exhibits a delicate issu¢hasremoval of the bias on some
guantity supposes to know its exact value. Neverthelessresdy suggested in [41], iterative
methods can be defined and are expected to be bias free; shiba applied successfully to
the derivation of parton density functions in [46].

The present work mostly aims at reexamining the resultsigeavin [34, 35] concerning
the muon HVP using an appropriately defined iterative fit mdtadapted to the dealing with
form factors or cross sections in such a way that fit resultiscimived quantities — like HVP,
but not only — could be ascertained to be bias free. In this wag can answer positively
the question raised in the title of this study at the methogickl level. The real issue of the
physics model dependence can only be answered by havingisdil results derived from
several independent model frameworks, all successfutlg@atted for a large corpus of data.

The paper is organized as follows. In Secfidon 2, one brieflyimds the concern of using
Effective Lagrangian global frameworks in order to strémegtthe constraints on the parameters
to be derived from global fits. As our HLS Lagrangian framewoas a range limited upward
to 1.05 GeV, the brief Sectidd 3 reminds how the full HVP isikt from fit results and from
additional information.

Sectiorl 4 is, actually, the center piece of the present papis purpose is to define the fit
method when one should deal with samples affected by strea@lbscale uncertainties. This
firstly turns out to precisely define thé functions to be minimized, depending on the specific
properties of the spectra considered and, secondly, tqosatdi justify the iterative procedure
we propoﬁ Subsection 4]2 puts special emphasis on the speagifienction associated with
samples affected by overall scale uncertainties besides@usual experimental error matrix.
The iterative fit procedure to deal with biases is formuldhemtein.

All the ISR data samples exhibit-dependent overall scale uncertainties, which are cer-
tainly a novel feature in our field; Subsectionl4.3 defines@arapriatex? function suitable
for such a case. Finally, Subsection]4.4 reports on the neaitufes of the iterative global fit
method when fitting sets of data samples containing samptésowerall scale uncertainties
of various magnitudes compared to statistical errors. Tmelasions reported here rely on a
Monte Carlo study outlined and illustrated in the Appendix.

Section[b reminds the data samples used within the BHLS guweeand reports for a
(minor) correction affecting the amplitudes for the angition channels’y andry. Sectiori 6
reports on the updated results of the fits performed usingtbel scan data and discarding all

4The issue raised by G. D’Agostini in this paper has also beenimthe context of Nuclear Physics where it
is referred to as the "Peelle’s Pertinent Puzzle” (PPP) {#th is examined thoroughly in [43].

SAfter completion of this work, we found thdt [47] applies atimed similar to ours to derive unbiased parton
density functions from various kinds of measured spectra.



ISR data samples; the effects of the iterative method istilated here and it is shown that the
needed number of iterations in the global fit procedure do¢exceed 1. The more general
running is the subject of Sectidh 7 where updated resultgigen to correct for coding bugs
affecting some of the numbers given in aur![34, 35]. The eatadun of the muory — 2 based on
the iterated fits of various combinations of data sampldsastibject of Sectidn 8; in addition
to the samples used in[34,/35], one takes into account tleatiggublished KLOE12 sample
[38]. Finally, Sectioh B is devoted to conclusions and réksar

2 Effective Lagrangian Frameworks And Global Fits

As reminded in the Introduction, it is a common approach tg om the Effective La-
grangian (EL) method to cover the low energy region where @&libits its non—perturbative
regime and where the quark and gluon degrees of freedom@exeel by hadron fields. Each
EL of practical use generally depends on parameters otiggntom the starting Lagrangians
(like the pion decay constarft. or the universal vector coupling) and on parameters gen-
erated by the unavoidable symmetry breaking effects (likarkjmass differences); all such
parameters are determined from data with various precision

Needless to say that any (broken) Effective Lagrangianigesvamplitudes expected to
account simultaneously for several different processéss fias a trivial consequence which,
nevertheless, deserves to be stresgdtthe Effective Lagrangians predict physics correlason
among the different physical processes they can encomgass {H;,i = 1,--- p}.

Therefore, having plugged from start the physics cormetetinside the (broken) Lagrangian,
the amplitudes derived herefrom should allow for a globah(gtaneous) fit of all available
data samples covering all the channelg4in Provided the global fit is clearly successful, the
parameter central values and uncertainties returned caoisdered as the optimal values
accounting for all the processes#fisimultaneously. Therefore, one can consider that the fit
information — parameter central values and error covaeamatrix — exhausts the experimental
information contained in the data samples covering all toegsses ifH.

From now on, one specializes to the Broken HLS (BHLS) modealefsned and used in
[34]. All data samples used in the global fit procedure defimethis paper have already
been listed and analyzed in this Reference; this will notdmeated here. As for thet 7~
annihilation final state, which is a central piece of HVP stgdthis Reference dealt with only
the available scan data which are dominated by the sammes @MD2 [48,[49] and SND
[50]. The samples collected in the ISR mode by Babar [51] dsasehe former KLOE data
samples (KLOE08[36] and KLOE10 [37]) have been considend@%]. Preliminary results
including also the most recent KLOE sample (KLOE12) [38]dnaeen given in [52, 53].

3 Estimating the Muon Non—Perturbative HVP

The issue raised in this paper is whether Effective Lagamgiethods really improve the
evaluation of the non—perturbative fraction of the HVP [38] compared to a direct integration
of experimental data (see [26,!54,] 55] for instance). As veeveorking within the original
HLS framework [13], what is discussed is the HVP fractionoassted with ther ™ 7—, 70,
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ny, mtr 70, KTK~, K°KO intermediate states — covered by BHLS — up:td .05 GeV, this
represents more than 80% of the total LO-HVP .

Basically, the leading order (LO) non—perturbative QCDtdbution to the muon HVP is
estimated separately for each intermediate hadronic Blaté :

1 Scut
al(t) =1 | . KGou( (1)
and the total non—pertubative HVP component is the sum othallpossibles, (H;). The
function K'(s) in Eg. (1) is a known kernel [31] enhancing the thresholdarsi(s;,) for any
channelH; andoy,(s) is the undressed cross sectfofor the ete~ — H, annhilation;s..;

is an energy limit above which perturbative expansions appgsed to become valid. BHLS
permits to evaluate the 6 integrdls,(H;),: = 1,--- 6} up tos, ~ 1.05 GeV. As the energy
interval s, s.;] contribution toa,(H;) is beyond the BHLS energy range of validity, it is
estimated using customary methods (like those defined in35456], for instance), as also
the full contributions of the channels outside the presétit8 scope. As already stated, these
pieces represent altogether about 20% of the muon LO-HV®Ribation toa,,.

As can be checked by looking at the cross section formulaengiv[34], most parameters
to be fitted appear simultaneously in the 6 different crosti@es{oy,(s),i = 1,--- 6} and
each annihilation channél; comes in with several experimental data sanﬂal@berefore, for
instance, the data samples covering any ofithe ny, 7t7— 7%, K*K~, K°KO annihilation
channels play as additional constraints on#ttie~ cross section and are treated on the same
footing than ther* 7~ annihilation data themselves. On the other hand, the @inttrcarried
by the dipionT decay spectrum data [57,158,/59] influence the fit and allowetiuce the
BHLS parameter uncertainties in a consistent@.vamis explains why the global fit method is
expected to improve eaat),(H;) contribution compared to more traditional methods — those
from [26,/54/55] for instance — as these ignore the intemuobbcorrelations revealed by the
BHLS Effective Lagrangian and validated by satisfactogbgll fits.

As any method, the BHLS based global fit method carries spesyiitematics which have
been examined in great details in [35]. It is worth remarkittgavoid ambiguities, that the
isospin breaking effects specific of thedipion spectra are introduced in the dipion spectrum
[35] as commonly done in the literature [61, 62] 63, (64, 65,6/6/68] (see alsa [26]); they
are totally independent of the isospin breaking schemesvad in the BHLS Lagrangian and,
actually, come supplementing thesel[35].

4 Can One Trust Global Fit Results ?

The global fit method previously used In [34, 35] defines a atbed VMD strategy which
can be phrased in the following way :

SFinal state radiation (FSR) effects also contribute andkatienated as il [31].

’An experimental data sample is defined as the measuredspeatand all the uncertainties which affect it.

8S0 also do the decay partial widths of the foftn— vy andV — Py (orf’ — w~) extracted from the
Review of Particle Properties (RPP) [60] and implementatiwiBHLS.



e 1/1If the physics correlations predicted by a given Effectiagtangian Model are sup-
ported by the experimental data they encompass, they caorsédered as exaet the
accuracy level reported for the data

e 2/ Whenever the description — global fit — provided by a givereé&ff/e Lagrangian is
satisfactory, the model cross sections, the fit parametaesand the parameter error
covariance matrix exhaust reliably the physics informatontained in the fitted data
samples.

In the present case where the BHLS model is concerned, andifgcon the muon LO—
HVP, Statement 2 means that the improvements for the 6 accessibJes;) derived from Eq.
(@) by integrating froms, to 1.05 GeV/c are legitimately valid and conceptually supguh

On the other hand, Statement #loes not mean that the importance of the word "Effective”
is forgotten, as clear from the italic sentence it carrigs validity might have to be revised if
the experimental context evolves towards a degraded atobtire daté.

Obviously, a VMD strategy heavily relies on the statisticedthods used to analyze and fit
the data; thus, one should ascertain that all aspects o&taddndling are taken into account as
they should. In particular, all features of the experimbemtaertainties should be implemented
canonically within the minimized global? and in the fitting procedure. Indeed, as remarked
in [44,/69], incorrect fit results are more frequently duenidrecorrect dealing with the exper-
imental errors — then to an incorrect error covariance matrather than to the minimization
procedure itself. Therefore, special care is requestedatirtty with experimental uncertainties
and with they? definition.

It is the purpose of this Section to address this issue andkciwaether the procedure
defined in[34] 35] fulfills this statement; this will lead wsdomplement the fitting procedure
by an iterative method.

4.1 The Basicy?/Least Square Method

Usually, performing a fit — global or not — requires to minimiy> functiontd relating the
differences between the measurements<{ {m;,i = 1,--- n}) and the corresponding model
(theoretical) expections\{ (@) = {M;,i = 1,--- n}) weighted by the error covariance matrix
V provided together with the data spectrum. Leaving asidedor possiblejlobal (additive
or mutiplicative) systematic uncertainties, the errornmat” provided by experimental groups
gathers the statistical and systematic errors and thug iseoessarily diagonal. The vecior
denoting the unknown internal model parameter list, miring :

X* = [m = M(@)]" V™ [m — M(@)] )

%However, if an ensemble of dataiisternally conflicting within a given Effective Lagrangian framework,
as the fit results can be affected in an unpredictable waygesaction has to be taken. The simplest solution
is certainly to discard the faulty data samples; howevesuagested by [45], a down—weighting of the outlier
contributions to the minimizeg? might also be considered. This could be a way to reconcil@teservation of
the fit information quality with the use of all available sde®

0This is a truey? if the errors are gaussian.



with respect t@ allows to derive its optimum valu&. When several independent data samples
are to be treated simultaneously, the minimizéds a sum of terms like Eg[12), one for each
data sample.

As reminded in[[44], if the mode) (a) is linear in the parametdfsand if the error co-
variance matrix is correct, the estimated parameter vegtdras unbiased components and
this estimatora, has the smallest variance. As illustration, in the case dfaght line fit
(M = g+ px), V. Blobel [44] produced the residual plots for the modetgmaeters using
several kinds of error distributions for the generated gaiats (each with the same standard
deviation) and showed that these plots are always gaussiiibdtions, as expected from the
Central Limit Theorem. Of course, the probability disttilon is flat only if the error distribu-
tions are gaussiang. if the effectivey? function is actually a rea\?.

When analyzing (a collection of) actual spectra obtainegidious groups, nothing better
can be done and the derived fit solution faithfully reflectswtnole data information on which
it relies : It corresponds, at worst, to the least squaretismand, at best, to the minimug?
solution, depending on the functional nature of the truesexrpental error distributions.

4.2 lterative Treatment of Global Scale Uncertainties

In the Subsection above we have briefly summarized the imaditmethod which applies
when the handled spectra are not significantly affected byrétated) global uncertainties.
These can be of either kinds : additive (offset error) or iplitiative (scale/normalization
error). As no offset error issue is reported for the speceaanalyze within BHLS[[34, 35],
we skip this case and let the interested readers refer tabdaiteferences [41, 44, 145]. In
contrast, multiplicative (global scale) uncertainties sgported for most experimental spectra;
when they are non—negligible compared with the other (mtanedard) kinds of errors, they
should be specifically accounted for within the global fitqggdure. This is of special concern
for the importane™e~ — 77~ data samples collected in scan made [48,49, 50], and even
more for those collected using the Initial State Radiati®R]) mode by KLOE([36, 37, 38] or
BaBar [39/ 40]; furthermore, the normalization uncert@steported for the ISR data samples
have all a peculiar structure which deserves a speciahtiezatt— which is the subject of the
next Subsection.

A constant global scale uncertainty, as those affectingltte samples from CMD2 and
SND, can be writterf = 1 + \, where\ is a random variable with range ¢r- 1, +-00[. As
E(\) = 0andE(\?) = % with ¢ << 1, the gaussian approximation faris safe [44/ 45]. A
data sample subject to such a global scale uncertaintygeswn individual contribution to an
effective globalyZ,,, which shoulda priori be written :

X2 = [m— M(@) — MAJ'V " m — M(a@) — \A] + = (3)

wherem, M, V anda carry the same definitions as in Subsection 4.1 whitmdo have just
been defined. As fo, even if intuitively one may prefed = m, the choiceA = M(a@) has

LActually, fitting is generally performed in the neighborldoaf some given solution; this makes the linearity
condition less constraining.



been shown to drop out any biasing i@iél, 44]69].

Assuming that the unknown scale factbris solely of experimental origin — and, then,
independent of the model paramet@rsthe solution t@x? /0A = 0 provides its most probable
value )\, [34]. After substitution, Eq.[(3) becomes :

X2 =[m—M@)"Wm—M(@)] with W=V +s2AAT (4)

which exhibits a modified error covariance matiixand only depends on the (physics) model
parameters. More precisely, the single recollection ofsttede uncertainty is the occurence
of its variances? in the modified covariance matri¥’.

However, Eq.[(4) clearly points toward a difficulty if the mads not numerically known
beforehand as the modified covariance matrix becarrdgpendent when setting the unbias-
ing choiceA = M. In this case, the parameter error covariance matrix peavioy they?
minimization might be uneasy to interpret.

The way out is to define iterative procedures; this is alkelsigtated inl[41], but explicitly
considered in([43] as solution to the so—called "Peelleifent Puzzl [42], provided a
good starting approximate solution is known beforehaneydwer, defining such a tool might
be a delicate task if the underlying model is non—linear,.ateqisual in particle physics. Such
a procedure has already been followed and successfullyedaslat in [46] in order to derive
through a minimization procedure the parton density fumgifrom several measured spectra.
When dealing with samples of form factor and/or cross sealaia, other appropriate iterative
methods should be defined.

The starting step of the iteration implies choosing somiginvalue for A, say A = Aj.
Without further information, the best approximation ona caoose is obviouslyl, = m, the
experimental spectrum itself. Quite interestingly, thins out to start iterating with = 0
(c =0in Eq. (4)),i.e. 8 = 1, a unit scale factor; this makes the connexion with the fiteza
method followed in[[45].

Then, the minimization of the? in Eq. (4) withA = A, = m is performed using the
MINUIT procedure [70] which yields the (step # 0) solu@)Mo via the fitted parameter vector
valued,. The next step (# 1) consists in minimizing Elq. (4) usihg- M, = M (d,) which is
easily implemented in the procedure and, at convergemee)IT provides the step # 1 solution
M (). This stepwise procedure is followed until some convergemiterium is met. Asin the
iterative procedure the covariance matrix is constantjritegpretation of the parameter error
matrix is canonical.

The convergence speed of the iterative procedure cannaldssgdb initio but may be
expected fast, referring to the fit of the parton density fioms where the convergence is
essentially reached at the first iteration|[46]. This is coméid by our Monte Carlo studies and
reported in the Appendix.

Nevertheless, one may infer that the number of iteratigmsstesmaller for a starting guess
for A close to the actual model than for an arbitrary choice; tleas the choiced = m (the
experimental spectrum) should be the closest to the actodéhnone may think that it should

12This does not mean that the choiée= m necessarily leads to a significantly biased solution as sHmiow.

3peelle’s reference is no longer of common access, but its mantent — which closely resembles the
D’Agostini issue raised i [41] — is reproducedin[43].

14The analysis method in [34, B5] actually stops there; thegareanalysis aims at going beyond.
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minimize the number of interations needed to reach conwverye Additionally, this choice
does not imply any priori assumption on the parameter vector to be fitted.

Among the data samples one deals within the BHLS based gftbrakthod, most have
been collected in scan mode, essentially at Novosibirskcarry a constant scale uncertainty
merging several effects. This is especially the case foethe — 7*7~ data samples col-
lected by the CMD2[48, 49] and SND [50] detectors.

In order to simplify and unify the notations in the followimtjscussion, it is suitable to
perform the change of random variable- ox.. Then, the statistical properties fdipropagate
to E(u) = 0 andE(1?) = 1 and, defining in additioB = o A, Eq. [3) above becomes :

\2 = [m — M(@) — pBI"V =" [m — M(@) — pB] + 4 5)
The conditiondy?/0u = 0 provides the most probable vale for.
_ BTVl m — M(a)]

H= T BIv-1B+1 ©
and, substituting this into EJ.](5), one gets :
2 =[m—M@)"Wm—M(@)] with W =V+BBT (7)

Stated otherwise, from the point of view of the physics mptie minimization procedure
keeps track of the scale dependence by a modified covariagicexnvhich, in turn, influences
the fit. A faithful graphical comparison of data and modelke lthe usual fit residual plots —
should take into account the fitted scale, as illustrate@% for instance.

4.3 Global Scale Uncertainties Effects in ISR Experiments

With the advent of the@ factory in Frascati and of th8 factories at SLAC and KEK the
possibility opened to get large data samples for the vardus annihilation channels in the
region of interest of the BHLS model, namely, from the thoddh to thep meson mass energy
region (/s < 1.05 GeV). The production mechanism involved is the emissioniadral photon
in the initial state[[71], the so—called Initial State Raiia (ISR) phenomenon. This ISR
production mode has been used to collect high statistics stahples for thete™ — 777~
channel covering the low energies by the KLOE! [36/37, 38]BaBar [39] 40] Collaborations.

However, it is a common feature of these KLOE and BaBar ISR dainples to carry
complicated error structures. Beside a non—diagonalssitati error covariance matrix/),
they exhibit a large number of (statistically independdam)-to—bin correlated uncertainties,
most of these being additionally-dependent. As far as we know, this seems to be a premiere
in particle physics and how this is dealt with inside miniatian procedures deserves to be
clarified and explicitely stated (see also0/[35]).

Let us consider a given experimental data sanipla spectrumn function of s, for which
the (given) statistical error covariance matriXisthe information provided for the bin—to—bin
correlated uncertainties defines several independerg soakrtainties\, (o« = 1, - - ngeqae)
and should be understood as follows : each of the scale amtigrd,, is a random variable of
zero mean and carryings-dependent standard deviatiof(s) as tabulated by each experi-
ment. It is clearer to make the change of (random) variakles o, (s)ua (@ = 1, - - ngeqre)
and assume that all the random variablgdulfill E(,) = 0 andE(uapz) = dups-
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Then, the other notations being identical to those preWodsfined, they? in Eq. (8)
generalizes to :

X* = [m = M(@) — poBa] "V [m — M(a@) — 115 B5] + iaftadas (8)

where implicit sum over repeated greek indices is undedst@me has define®, = o,(s)A,

A being thes—dependent vector already definedis iteratively redefined as emphasized in the
previous Subsection. Using the minimuyyh conditionsdy?/du, = 0 and the independence
conditions of the various sources of scale uncertaity/0us = d.p, the most probable
values for theu,’'s can be derived [35]. A recursion can be defined and alloveetive from

Eq. (8):

{ X* = [m — M(@)]" W [m — M(a)
(9)

Wij = Vij + [Eazi oalsi)oa(s;)] A4y (V[i, j])

in close correspondence with EQl (7).

A specific feature of Eq.[{9) deserves to be noted. As eachriexpetal group reports
separately on each identifiedndependent source of (scale) uncertainty, these should indeed
be fittedseparately as stated just above to go from EQl (8) to Eg. (9). More prégifm the
experimentF, we are not using the quadratic sumg(s))? = 3. [0.(s)]? for its partial \?,
which would have givemr s (s;)og(s;)A;A; inside the full error covariance matrix instead of
what is shown in Eq.[{9). Stated otherwise, the various smuo€ normalization uncertainties
are not summed in quadrature but really treated as staligtindependent.

4.4 Numerical Tests of the Global Fit Iterative Method

As stated in the header of the present Section, if the phgsigglations predicted by the
Effective Lagrangian (here BHLS) are fulfilled by the datee estimate of the model parame-
ters and the parameter error covariance matrix are legeinals to serve evaluating related
physics quantities.

As in the previous studies relying on the HLS model, at théyestages([32, 33] or more
recently [34] 35, 52, 53], the method is to minimize a glopaéxpression taking into account
the largest possible number of data samples and using apgisdp all information provided
by the experimentalists concerning all kinds of uncertagthich affect their data samples.
The aim of Subsectioris 4.1[=#4.3 was to detail how theiece associated with each data
sample should be constructed, depending on its reportedsdructure.

In contrast with previous references (including ours), fthprocedure will be adapted in
the present study in order to examine and cure possibledymeduced by having stopped the
fit procedure at thel = m step instead of iterating further on as suggested in [44li@ly
proposed in[43] and performed in [46].

In order to check whether estimates based on global fit sesait be trusted as, for instance,
the muon HVP central value and its uncertainty derived framftt information returned by
MINUIT, some additional checks on the fitting method and its itesatispect deserve to be
performed, at least to control that :

e The fit parameter residuals; = a/" — af"¢ are unbiased gaussians,
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e The parameter pulls are centered gaussians of unit staddeations.

One should also check that the fit probabilities distribngiare uniformly distributed of), 1]
when the measurements are indeed true unbiased gaussréutns.

This condition list can be supplemented with some exanonaif the effects due to non—
linear dependences upon the parameters to be fitted.

However, checking this list of properties obviously implinat the true parameter values
are known, that the measurements are indeed sampled ondargered gaussian distributions
and that their errors are indeed the true standard devgtibthe measured spectrum. Stated
otherwise, this exercise goes beyond using actual measypedimental data samples as, then,
truth is unknown : The global fit method —as any other methotcull be evaluated using
data samples generated by Monte Carlo techniques; in thés tlee true parameter values and
their uncertainties are known at the sample generation &k can reliably be compared to
fit results. The detailed study is transferred to the Appentlie most involved results are
summarized right now :

e The effects of non—linear parameter dependence within leaged to fit data spectra
(see Subsectian A.2.1) are likely to be marginal for the kihelxperimental distributions
we are dealing with. This should be related with the localimum finding structure of
the algorithms gathered within thaNnuIT package.

e When scale uncertainties dominate the sets of spectraltylcddmitted to fit, usin
A = mg gives a solution which can exhibit strong biases, but thilstsm is the start of
an iterative procedure which leads rapidly to the unbiasdation to the minimization
problem. The biases occuring at start of the procedure caretyelarge, but they are
observed to practically vanish already at the first iterasitep (the previously calleti/;
solution).

e When performing a global fit of some data samples dominatedchie uncertainties
together with others where the statistical errors domirtateiterative method obviously
works as well as just stated. In this case, however, the pcesef some samples free
from scale errors exhibits an unexpected consequence : iEtte® data samples free
from scale uncertainties are affected by enlarged stzistirors, they strongly reduce
the biases generated by the= m choice. Stated otherwise, the effects of data samples
where the normalization errors are dominated by the stalserrors is to favor the
smearing out of the biases in the parameter value estingation

The properties just listed concerning the unbiasing of thpdiameters extend to the es-
timates of physics quantitites derived from using the fiulemformation (parameter values
and error covariance matrix). Additionally, as the paraneulls are observed centered and
correctly normalized, the calculated uncertainties regyon Monte Carlo sampling of the fit
parameter distributions should also be reliable. This ispafcial relevance for the evaluation
of the various contributions to the muon LO-HVP discusse8entior 8.

The last item in the list just above has an interesting camsece while working with real
(and so, not really perfect) experimental data. If the faacbf data samples free from scale

15 m g being the experimental spectrum in the expression foxthgsee Eqgs.[{3) of{4)).
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uncertaintiedd is large enough, it is nevertheless cautious to ascertairtlie fit solution is
unbiased by performing one or two iterations. Indeed, thdiss reported in the Appendix
tells that, anyway, the iterated fit solution is always usbt

Therefore, one may conclude from this Section and from tmeilsition studies reported in
the Appendix that global fit methods can indeed be trusted.sligle proviso is that iterating
the fit procedure as explained above is mandatory or, at leastious.

The issue is now to examine how the results given in [34] abji§8e modified when iter-
ating beyond the approximatiofiz = my for all data samples significantly affected by scale
uncertainties, constant (as, mostly, the spectra reporfa8, 49,/50] ) ors—dependent (as all
the ISR spectra reported in [36,/37 38| 39]). Observing thkilizing effect of the data sam-
ples dominated by statistical errors (like the’ and~n final states) is also methodologically
relevant.

5 BHLS Global Fit Method : Present Status and Corrigen-
dum

As stated several times above, the Effective Lagrangiand\ieé use is the broken HLS
(BHLS) model developped in [34]. In this Reference, the BHh8del is also applied to all
data samples collected in scan mode, by the various Col#ibos which have run on the
successive Novosibirsk e~ colliders. These™*e™ annihilation samples cover the 7 —, 70,
ny, tr 70, K+ K-, KKV final states and have been discussed in detail in severabpeev
studies|[32, 33, 34]; for the sake of conciseness, we willrapeat this exercise here. As the
BHLS model also covers thedecays from the early steps of its formulation![27], the pres
studies include the dipion spectra collected in thie — 7*7°v, decay mode by ALEPH
[57,(72], Belle [59] and CLEOL[58]. Also included within theHBS fit procedure are some
light meson decay partial widths not connected with the latation channels already listed,
like K*0 — K%, K** — K*v, 7 — wyor¢ — n'y.

A second step has been to extend the study in [34] to treatigiedtatistics ISR data
samples foeTe™ — 777 ; this has been the purpose of the study in [35] where the KL®OEO
[36] and KLOE10[37] data samples collected by the KLOE Cmdia@ation and the data sample
produced by BaBar [39] have been examined. Preliminanyjiesudcluding also the recently
published KLOE12[[38] data sample have been presented roeatly at the Photon 2013
Conference in Pari$ [52] and at the PhiPsi1l3 Conference maR63].

Except otherwise stated, all the fit results presented shghper have been obtained using
the Configuration Bi(e. dropping out from the fit procedure the three pion data sasnple
collected in thep mass region).

The studies covered by [34,135,/152] 53] rely on minimizingabal * function summing
up partialx?*'s, each associated with a given data sample. For each afthe < 50 data
samples, the partial?> was (canonically) constructed following the rules dethile Sectio 4.
However, as the fit was not iterated in the studies$|[34, 31§,wiorth checking to which extent
the value of the muon HVP derived herefrom is changed by #ratibn procedure.

For the present study, a few coding bug fixes have been pegtband a piece missing in

16 or when the overall scale uncertainties are dominated bygtther kinds of errors.
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the expression for thete~ — 7%y andete™ — 1y cross sections has been included. So,
when different, the results in the present paper supersede in[34, 35].

As for the missing piece just mentioned : In the amplitugles— vF, (Eqg. (65) in [34])
and the cross section formulage~ — vP;, (Eq. (68) in [34]), the non—resonant piece should
be modified as follows :

(1—cs)Lp, = (1 _ Lo er 04]) Lp, . (10)

This implies that the single process which depeswgarately on the FKTUY [15] parameters
cs andey istheete™ — 7~ 7Y annihilation. In this case both + ¢, andc; — ¢, combinations
come in, while all others quantities only involve the+ ¢, combinatioBi. We apologize for
the inconvenience.

6 BHLS Global Fit Method : Iterating with NSK Data Only

In this Section, we report on global fits using the data remihith the preceding Section
and discussed in [34]; as for the pion form factor data, weigdor the present exercise on
using only the most recent scan data collected by CMD2 and [FI8[M8,/49[ 50], excluding
the older data samples from OLYA and CMD [74].

The CMD2 data samples are reported to carry constant bibit@errelated uncertainties
of 0.6% ([73]), 0.8% ([48]) and 0.7%! ([49]), while SND repsid 1.3% constant scale uncer-
tainty [50] — except for their first 2 data points where it i2%. For these data samples, the
partial y?'s are essentially given by expressions like Hd. (4). Forather data samples, we
performed as in[34].

The first data column in Table 1 displays the results of thedfifggmed by settingl = m
in the y? associated with each experimental data spectrum gergrieahedn. The form
factor returned by this{ = m) global fit is named\/, and is used to perform the first iterated
(A = M,) global fit; the results of this fit are shown in the data colu#®) this iteration
#1 global fit returns the solution naméd,. The iterated #2 fit is then performed by setting
A = M, in the x? expressions of the pion form factor data samples, leadiramptsher (/5)
solution; the fit results are displayed in the third data ooiun Table 1.

One clearly observes a quite tiny change in the first itenati®.2 unit in they? value of the
ntn~ data samples; also the globd@ changes by only 0.7 unit. When going from the first to
the second iteration, the changes are almost invisibles ddviresponds for experimental data
to the effect reported in Subsection AJ2.3 for our Monte @ddta. As derived quantity, let us
report on the leading order (LO) contributiap(w7) derived by integrating Eql{1) between
0.63 GeV/c and 0.958 GeV/c; using obvious notations, theipusly reported fits yield :

A=m : ay(mm,[0.63,0.958]) = 358.95 + 1.63
A= M, : a,(mm,[0.63,0.958]) = 360.00 + 1.78 (11)
A= M : ay(mm,[0.63,0.958]) = 359.99 + 1.79

"The studies[[34, 35] have been performed fixing= c,. The BHLS fit recovers a good fit quality by
modifying the value for; — ¢ as will be seen below.
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X}/N A=m Iteration Method A = M varying
[34] A= My A=M | Astare = My || Astarr = M,
Decays 8.16/10 8.01/10 8.03/10 8.01/10 8.02/10
New Timeliker ™7~ || 121.54/127| 121.75/127 121.75/127| 121.74/127| 121.75/127
70y 63.84/86 63.98/86 | 63.96/86 63.98/86 63.96/86
Ny 120.87/182| 120.84/182 120.84/182| 120.84/182| 120.83/182
atr—n0 101.82/99| 102.49/99| 102.43/99| 102.49/99 102.43/99
KK~ 29.87/36 29.77/36 | 29.78/36 29.78/36 29.78/36
KK’ 119.21/119| 119.21/119 119.18/119| 119.20/119| 119.19/119
ALEPH 19.67/37 19.73/37 | 19.71/37 19.72/37 19.70/37
Belle 28.24/19 28.27/19 | 28.29/19 28.27/19 28.29/19
CLEO 34.96/26 34.82/29 | 34.82/29 34.84/29 34.84/29
x2/dof 648.16/719| 648.85/719 648.78/719| 648.85/719| 648.78/719
Global Fit Probability|| 97.2% 97.1% 97.1% 97.1% 97.1%

Table 1: Global fity? results derived by using only the data fram|[48, (49, 50] far¢he~ —
77~ annihilation. See the discussion and comments in Selction 6.
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in units of 1071°. So, one observes a tiny effect while iterating once (0.3%ile central
value) and no effect when iterating twice. In the presenecasere the former data from
[74] have been dropped out from the fit, the "experimentatiheste isa, (7, [0.63,0.958]) =
361.26 4+ 2.66 (see Table 7 in[34]).

Another way to account for the scale uncertainty is to4et M (@) (which depends on
the parameters under fit) and perform the fit. A starting vétwmed must be chosen (denoted
Agiare) DUt its value changes at each iteration step. In this chsdittconvergence time is much
larger than previously but the results are almost identatiose already obtained by iterating.
The last 2 columns in Tablé 1 display the fit resulterting with A, = M; and also those
starting from the fit solution derived herefrom (denoféd). As for a, (7, [0.63,0.958]), the
values derived in these last fits numerically coincide whth iterated cases displayed above.

Therefore, one may indeed conclude, as can be inferred fr@enMonte Carlo studies
reported in the Appendix, that the HVP value reached withitauating is very close to the
HVP derived from the once iterated solution. One also oleseras expected, that iterating
only once already leads to the final result; indeed, fronatten #1 to iteration #2, the changes
for a,(77) are at the level of a few0~'2.

As for the fit quality reflected by thg? values at minimum and the corresponding fit prob-
abilities, the last line in Tablg 1 indicates that, whatese¢he way one treats the vectdr they
are all alike. This, once more corresponds to expectatemsan be checked with the discus-
sion in Subsection A.2.3 and expecially the properties giiFe[7. Nevertheless, it is useful to
check that the twice iterated solution does not modify seedy the result derived from the
once iterated solution.

7 BHLS Global Fit Method : Iterating Scan and ISR Data

It remains to introduce the other" 7~ data samples collected ate~ colliders using the
ISR mechanism. Reference [35] has already done this wotktivé data samples then avail-
able using the method described in Subsedtioh 4.3 withawteker, iterating the procedure.
The conclusion reached was that the KLOEQSE [36] and BaBdrd&& samples have difficul-
ties to accomodate — within the BHLS framework — the wholeo$elata samples covering the
channels already reminded in Sectidn 5. In contrast, the KL@[37] data sample behaves
in good consistency with expectations from the BHLS modaglifinary works[52| 53] also
indicated that KLOE10 [37], the recent KLOE12 [38] and the B®4and SND pion form fac-
tor data are perfectly consistent with each other and wiltréist of the physics covered by the
BHLS model.

7.1 The Ilterative Method : Global Fit Properties

The issue is now to report on the behavior of the global fit$goered using the iterated
method when the "7~ ISRand scan data are considered simultaneously; this will comefgm
the work already presented in Section 6 when using the sdarodly. Except otherwise stated,
the 7 data samples will always be included in the fit procedure. K@ndther hand, as the
behavior of the global fit for data/channels other tham— does not differ sentively from the
information already displayed in Talile 1, this will not bpeated.
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Fit Configuration Iteration Method
X2+ — /Nptr-] KLOEOS8 || KLOE10 | KLOE12 NSK BaBar
| — (60) (75) (60) (127/[209]))|| (270)
Fits in Isolation 1.64 0.96 1.02 0.96[0.83] 1.25
Global fit prob. 59% 97% 97% 97%[99%] 40%
Fit Combination 1 1.02 1.48 1.18[0.96] | 1.35(*)
X4 ,— /Nyt r— & Gl. fit prob: 1.28 & 11%
Fit Combination 2 1.02 1.05 1.10[0.89]
X2+, [Nat+n— & GL. fit prob: 1.06 & 97%
Fit Combination 3 0.97 1.00
X2+~ /Np+o— & Gl. fit prob: 0.98 & 96%

Table 2: Global fit results as function of thge~ — 77~ data sample content. Each entry
displays thex2, _/N,+,-] value returned by the global fit. The data samples involvedea
tracked from the column titles, the following line givingetisorresponding data point numbers
[N.+--] in the range up to 1 GeV. The value flagged by * has been obtaisied) a BaBar
sample truncated from the energy regjor6, 0.80] GeV (250 data points).

Table[2 displays our main results using the scan andef'SR — 77~ annihilation data.
They correspond to the iteration # 1 fit (denoted ahédve M), however the previously called
A =m or A = M, solutions gives almost identical fit quality reshits

The first data line displays the global fit properties with ithgicatede e~ — 777~ data
samples used each in isolation within the global BHLS cdntgether with all other data
samples covering the rest of the encompassed physics (stéerff&). One observes that the
average (partialy? per data poink?, _/N,+.- is of the order 1 and the probability high when
running with any of the KLOE10, KLOE12 and NSK data sar‘r@;eas in [35], the picture is
not as good for KLOEO8 and BaBar.

Performing a global BHLS fit using the data samples from KLOEKHLOE12, NSK and
BaBar (amputated from the energy regiofi).76, 0.80] GeV) leads to results given at the entry

8As regard to the fit parameter values and uncertainties :ArkeM, andA = M, solutions differ unsignifi-
cantly; theA = m exhibits some small departure commented below.

19NSK denotes the collection of data samples from CMD2 [73448, SND [50] (127 data points in total) as
well as the former (82 data points) samples collected by ObWil CMD [74]. The numbers in Tahlé 2 given
within square brackets include the contributions from ¢hflesmer samples.

20This removal is motivated by a possible mismatch in the gneadjbration in thep® — w interference region
between BaBar and the other 7~ data samples submitted to the same global framework. Irrastniwhen
running with ther ™7~ BaBar sample in isolation, its full spectrum is considered.
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Figure 1: The pion form factor data and fit corresponding toitération # 1 BHLS global fit.
Theete™ — ntn~ data samples are those shown in the entry "Fit Combinatian Zable[2.
The inset in the top panel magnifies thfe— w peak region. The dowmost panels magnify the
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lines flagged by "Fit Combination 1”; as the correlationswesn the KLOEO08 and KLOE12
data samples are strong and their content not explicitalye, it is more cautious to avoid
dealing with the KLOEO8 and KLOE12 samples simultaneouBlgspite the removal of the
drop off region in the BaBat "7~ spectrum, the global fit quality looks poorer.

The results obtained when using the KLOE10, KLOE12, NSK daswithin the fit pro-
cedure are displayed at the Entry "Fit Combination 2” anddéa and fit are shown in Figure
. This fit is clearly satisfactory, as much as the fit usinguiameously only the KLOE10 and
KLOE12 samples as™ 7~ data (Entry "Fit Combination 3", Figure not shown).

Therefore, this proves that the scan data from CMD2 and SNDcansistent with the
KLOE10 and KLOE12 data samples and that all these are fuligistent with the other data
spectra introduced in the global fit procedure as indicatethb global fit probability. One
should also remark that the systematic uncertainties geoMior KLOE12 lead to a satisfactory
global fit, in contrast with KLOEOS; so, despite the strongelations existing between these
two data samples, the systematics in the former sample laairbetter understood than in
the latter.

Except otherwise stated, the fit parameter values preséwotadhow on are derived using
theete™ — 7mF7~ data samples corresponding to the "Fit Combination 2" (se#€el2); the
fit results are those derived after the first iteration ang thenot differ significantly from the
corresponding results at iteration # 2. The fit quality fa tlon-="7~ data samples are almost
undistinguishable from the numbers already given in thersgédata column from Tablé 1; they
are not repeated for the sake of brevity.

7.2 The Iterative Method : Updating The Model Parameter Values

Beside improving the fits by mean of the iterative method pitesent work accounts for an
error and a couple of bugs affecting our|[34) 35]. Moreoves,fgresent work includes the new
KLOE12 data sample within the fit procedure; this is not hasalas KLOE12 constrains the
fit conditions more severely than the KLOE10 sample. Theegfthe present results update
and supersede the corresponding ones previously gived|jiBEj.

7.2.1 The HLS-FKTUY Parameters

The non—anomalous HLS Lagrangian (broken or not) can béanrit
Lurs = La+anrsly (12)

The unbroken expression fdly ;s can be found in[[13] and its broken expression (BHLS) is
given in [34]. The covariant derivative which allows to ctrast both pieces of ;¢ intro-
duces the fundamental paramejeknown as universal vector coupling. The coefficiept. s
is a specific feature of the HLS model, expected close to Zaimdstrd VMD approaches; how-
ever, phenomenology rather favarg,s ~ 2.5 since the early applications of the HLS model
to pion form factor studies [76, V17, 78,/123].

On the other hand, the anomalous (FKTUY) sector [15] of theSHhodel [13] consists
of 5 pieces (see also Appendix D in [34]), each weighted byeifip numerical parameter

21Some work in this field seems ongoing [75].
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not fixed by the theory. Using common notations [13, 34] amdofiang out, for convenience,

the W%hting factors, the FKTUY Lagrangian collecting thik anomalous couplings can be

writtercs :

Lrrruy = csLyvp+(ca—cs)Lavp+(1—cy)Laap+(c1—ca—c3)Lyppp+(ci—catcs)Larpp
(13)

whereP andV indicate the basic pseudoscalar and vector meson nonet$ dnecelectromag-

netic field. AsLy s, Lrrruy depends on the universal vector coupling

At iteration # 1, the global BHLS fit returns :

cy = @ —  0.966 + 0.005
o= =) 01914002
2 (14)
C1 — Co = 0.961 £ 0.053
g — 55034 0.001
aLs —  2.426 4 0.001

with correlation coefficients never larger than the perdewntl, except for< dg dayrs >=
—0.317 and < d0[c; — c2] S[(ca — ¢3)/2] >= +0.852. The sign of thg(g, axrs) correlation
term is easy to understand as the vector meson coupling tmneopikaon pair rather depends
on the producy’ = ayrsg. The large value of thélc; — ¢,|, [c4s — ¢3]) correlation is also not
surprising (see footnofe P2). The numerical valuessfanday s are in the usual ball park
and do not call for more comments than(inl[34, 35].

Our value forc, agrees with the estimates derived inl[13] from tHe~*) form factor
(c4 = 1.06 £ 0.13) and from thew — =%y partial width ¢, = 0.99 & 0.16) with a much
smaller uncertainty due to the large amount of data influenthe (global) fit. After the bug
fixing, c_ is found small but non—zero with aboutalOos significance andc; — ¢;) becomes
very close to 1. Using the fulk5 x 25 parameter error covariance matrix returned by the
global fit, we have computed separatelyand c; by a Monte—Carlo sampling. This gives
c3 = 1.158 £ 0.023 ande, = 0.774 £ 0.022.

Among the numbers displayed in EG. {14), some are appealiihg nearness of the fitted
c1—co andce, parameters to 1, their customary guessed value [13] sheuldted and deserves
confirmation with more precise data on the anomalous amibiis and light meson radiative
decays than those presently available.

7.2.2 The Iterative Method : PS Meson Mixing and Decay Paranters

The BHLS symmetry breaking of the Lagrangian piete leads to PS physical fields
constructed as linear combinations of their bare partidre.mechanism involved is the BKY

22pctually, the erratum involved in Eq.[IL0) comes from havimgssed the contribution of thé:; — c3)
term displayed in Eq.[(13) which actually turned out to impes = c;. As already stated, after correction,
all the anomalous decay couplings and the amplitudes fer — (7°/n)~ anihilations only depend on the
combination(cs + c3)/2 and the single place where the differeriee — c3) occurs is theete™ — 707 t7~
annihilation amplitude. 1M [34, 35] wheffe, — c3) was absent, its physical effect was absorbeddyy- ¢») to
recover good fit qualities; s@4 — ¢3) and(c; — ¢2) should carry an important correlation.
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mechanism extended so as to account for both Isospin and Si{8netry breakings [34]; it
can be complemented by the pseudoscalar nonet symmetkirgeztheme generated by the
t'Hooft determinant terms [79]. The main effect of theseedetinant terms is to provide the
bare Lagrangian with a correction to the PS singlet kinetergy term governed by a parameter

A expected small (see Eq. (7) In]34]).

General Fit Constrained Fit
6o 2.54° 4+ 0.44° 0
O —26.23° +0.37° —25.71° 4 0.22°
Op —15.29° + 0.34° —14.01° 4 0.15°
A (1.21 4£3.21) 1072 | (3.66 & 3.03) 102
£o (5.1740.33) 1072 | (4.83 4+ 0.34) 102
£(n) (7.38 4+ 0.47) 1072 | (6.70 4 0.44) 102
£' (1) (1.8440.13) 1072 | (1.64 4 0.12) 102
X?/Nuoy 852.1/935 856.6/936
Probability 97.5% 97.0%

Table 3: Some parameter values derived when leavingdfseand \ (first data column) or
when relating them by imposirgg = 0 to the fit (second data column).

The BHLS model connects to (Extended) ChPT [25, 24], espedisitwo anglef, anddg
mixing scheme; in particular, it relates these angles tsihglet—octet mixing angle tradition-
ally denotedp, together with the BKY breaking parametergs A 4 and to) [34].

The upper part of Tabld 3 displays in its first data column due§ults in the general case.
The fit value fordg is in good agreement with other expectations [24] as wehasford,. The
smallness of this has led us to impage= 0 within fits which leads to the results shown in
the second data column. The value foundergoes a severe correction compared with [34, 35]
and, presently, because of its large uncertainty, coulcehéented without any real degradation
in fit qualities.

BHLS also allows for some additional contribution to tHe- 1 —»’ mixing based on some
possible aspects of Isospin breaking not already accodotdny the extended BKY scheme
developped in[34]. This turns out to redefine the physidaséovable) fields (right—hand side)
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in terms of the (BHLS) renormalized (left—hand side) fielg§&0] :
mh=m—en—¢n
n% = cosfp(n + e 7°) +sinfp(n' + & 7°) (15)

n% = —sinfp(n + e 7°) + cosOp(n + &' 7°)
Inspired by [80], one can lessen the number of free parasmbtestating :

V2 cosfp — sinbp
V2 cosfp +sinfp

, . V2 cosfp + sin fp
g = —2¢sinfp -
V2 cosfp —sinfp

and fitey. Then, using the fit results (parameter central values aral eovariance matrix),
one can reconstruct the value foands’. The updated values are given in Tdble 3 still indicate
a7’ — n mixing much larger than the — 1’ mixing (a factor of 4).

Before closing this Subsection, we mention that the MontéoGampling method allows
to reconstruct the decay constant rafig/ f, = 1.268 4+ 0.009 which becomesfy/f, =
1.295 + 0.002 when constraining the fit with, = 0.

€= ¢pcosfp

(16)

8 The Muon LO-HVP : Evaluations From lterated Fits

The main aim of the present study is to produce improved eséisnof the muon LO—
HVP [34,[35] by means of théterated global fit method expected to cancel out possible
biasing effects which could affect thé = m (i.e. non—iterated¥olution. The validity of the
iterated method is supported by the Monte Carlo study cedlin the Appendix, which clearly
indicates that the iterated method cancels out possibgesiand returns correctly estimated
fit parameter uncertainties. Therefore, building on thectmions collected in Subsectibn 4.4
one can produce bias free evaluations of the muon LO-HVP.€efiieets of iteratin from
M, to M, — the solution derived using = M, within the fit procedure — will be especially
emphasized. To be complete, this update also takes intauactioe new KLOE12r 7~
data sample [38] — which happens to be very constraining -aéswcorrects for some bugs.
Therefore the present numerical results supersede thespomding ones in [34, 35].

8.1 Various Evaluations Ofa, (7, [0.63,0.958] GeV)

The point at top of Figuriel 2 is the so—calletPDG [35] value fow, (7, [0.63, 0.958] GeV)
derived by switching off the contributions of the variotise= — 7+t7~ data samples from
the minimizedy?, replacing them by decay information extracted from thei®ewf Particle
Properties (RPP) [60] which carries information on isogpiaking in the vector meson sector;
these are essentially th8 — e*e~ partial width decay, the productyV — ete™)I'(V —

23, is the solution to the fit performed under the approximatioesaly named in shorl = m (i.e. each of
the variousr* 7~ experimental spectra is used for its individual contribatio the globaj?).
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9 —— 7 (A+B+C)+ PDG (o+w+¢)

356.10+3.36
8l . o BoBar Amp. (0.28—1.00)

[ L L TK 361.8140.35(exp:365.2+2.7)
70 o KLOE 08

. I S 352.28+2.31(exp:356.70+3.13)
6 o KLOE 10

[ X 353.2242.35 (exp’353.30+3.26)
5F o KLOE 12

[ R oull 353.8240.94 (exp:354.38+2.88)
4l e CMD2+SND

! - 360.00+1.78 (exp:361.26+2.66)
3k o KLOE (KLOE10 +KLOE12)

i 354.6540.81 (exp:353.91+2.16)

2F Dol NSK(all)+KLOE(10,/12)

i L X 355.1720.75 (exp:356.67+1.69)
1F Lo NSK+KLOE +BabBar Amp.

[ I 358.3740.39 (exp’359.07+1.43)
07““\‘-‘:‘5\‘“‘\““\““\““
340 350 360 370 380 390 400

10" g (n7,vs [ 0.63 —0.958 1)
Figure 2: Values for, (7, [0.63,0.958]) in units of 10°'° derived from global fits using the
indicatedete™ — 77~ data samples or combinations; thelipion spectra are always used.
The full green circles are the results obtained fromhe- m fit (no iteration) and the black
empty squares are the results obtained fromAhe M, fit (first iteration). The values de-
rived by integrating the experimental spectra are inditatered stars. See Subsection 8.1 for
comments.

ntn) for thew and¢ mesons and the partial widthi§w — 7#"7~) and['(¢p — n"7~) as
tabulated in the RPP [60]. Actually, the prodiigty — ete™)I'(w — 777~ ) can be replaced
by the so—called Orsay phase; we choosed for this pHasg® + 4.1°.

In order to get the other points displayed in Figlle 2, oneagbwses all the channels
covered by BHLS, including the spectra from ALEPH, CLEO and Belle. As for thee™ —
77~ data samples, one uses each of the BaBar, KLOE08, KLOE10 b@EK2 samples in
isolation as indicated within the Figure (see also Table2Qubsectioh 7]1). The point flagged
by CMD2+SND is obtained from a fit to the so—called|[34] newelike data from CMD2 and
SND [73,48[ 49, 50], leaving aside the older data from OLYA &MD collected in[[74] (see
Table[2 and Sectidn 6 above). As for the BaBar spectrum, &isaes already stated, it is used
within the fits amputated from the drop off regioy’{ € [0.76,0.80] GeV).

As a general statement, Figure 2 clearly illustrates thatitibrated {/,) and the non—
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iterated (V/,) solutions provide quite similar fit estimates @y (7, [0.63,0.958] GeV). One
should nevertheless remark that the agreement betweerfibsthutions and the numerical
integral of the experimental data is less satisfactory tierdata samples which exhibit poor
fit qualities within the global framework (KLOEO8 and BaB#npan for the others (KLOE10,
KLOE12, CMD2+SND) as can be inferred from the "fit in isolatiqoroperties displayed in
Table[2. Finally, the weighted averages of the experimenatallts for KLOE10 and KLOE12
alone or together with all NSK data (the so—called new tikeetiata and the former samples
[74]) are always well reproduced by the global fit and are sugol by quite good probabilities
(see Tablel2).

As also clear from Tabl€ 2, the BHLS favored solution is aigdiusing NSK+KLOE(10/12)
for the #t7— channel. In the corresponding sample configuration, thatiéd BHLS global
fit gives a slightly smaller central value (ly 1.5 10~1°) while the uncertainty is improved by
a factor~ 2. It is also worth pointing out the role of the spectra within the BHLS global
fit framework. The following numbers illustrate how the ctsasts involved by the spectra
allow BHLS to yield a more precise fit estimate fg(r, [0.63,0.958] GeV). Comparing the
direct integration result to the values derived from fitse omdeed gets at iteration # 1 :

Direct Integration : au(mm,[0.63,0.958]) = 356.67 £ 1.69
A = My(fit excl.7) : ayu(mm,[0.63,0.958]) = 355.07 £ 0.96 (17)
A = My(fit incl.7) : au(mm,[0.63,0.958]) = 355.17 £ 0.75

in units of 10719,

Finally, the downmost point in Figufeé 2 displays the reselticed using all data samples
(except for KLOEO8 as there is not enough published infolmnato account for its strong
correlation with KLOE12); this estimate fat, (7, [0.63,0.958]) which benefits from a very
small uncertainty has, however, a poor fit probability ($eeline flagged by "Fit Combination
1" in Table[2).

8.2 Contributions To The Muon LO-HVP Up To 1.05 GeV

The LO-HVP’s integrated from their respective thresholdda1.05 GeV are displayed
in Table[4; the central value far,(77) includes final state radiation (FSR) effects. The first
data column shows the results from the fit solutidp derived from fitting withA = m; the
second data column displays the results corresponding sollation)/; derived by fitting with
A = M,. The third data column reports on the results derived frainditwith A = M (a), i.e.
letting the covariance matrix depend on the parametersriimd€hese first three data columns
report on the fits performed using all annhilation channatenpassed by BHLSnd the v
dipion spectra. Finally, the rightmost data column prositlee direct numerical integration
of the experimental spectra — actually those feeding the 8t procedure, including the
KLOE10 and KLOE12 data samples besides the scan data samples

Forther’y, ny, 7’7t 7—, KT K~, K; K4 channels, the various fits provide results marginally
different from each other. Compared with our previous estén (see Table 8 in [34]), the
largest difference is the central value fo 777 ~) found now smaller by1.5 =+ 2) x 10~17;
this could be related with the above mentioned bug fix (Seé@dB) which play some role
in ther’7 7~ annihilation channel. In contrast, the uncertainties drguite similar to those
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Channel A=m A= M, A = M(a) (variable)| Exp. Value

mrr | 494.57 £1.48 | 494.01 £ 1.11 493.80 £ 1.00 496.38 &= 3.13

70y 4.53 +£0.04 4.54 £0.04 4.54 £0.04 3.67+0.11
ny 0.64 £ 0.01 0.64 £ 0.01 0.64 £ 0.01 0.56 +0.02
atr—a® || 40.83 £0.58 | 40.85 4 0.58 40.87 £ 0.57 43.54 +£1.29
K Kg 11.56 =0.08 | 11.56 £ 0.08 11.56 = 0.08 12.21 £0.33
KTK~ | 16.78+0.20 | 16.77+0.21 16.77 £ 0.20 17.72 £0.52

Total | 569.19 + 1.60 | 568.37 £ 1.27 568.17 £ 1.17 574.08 £ 3.45

Table 4: The contributions to the muon LO-HVP from the vasiohannels covered by BHLS
from their respective thresholds to 1.05 GeV in unitd @f'* at start and after iteration. The
last column displays the direct numerical integration efvarious spectra used within BHLS.
Thert7~ data samples considered are those flagged by "CombinationTzible[2.

in Table 8 of [34] and smaller by a factor Bf=- 2.5 than the errors estimated using the direct
numerical integration of the data.

As for ther ™7~ channel, all these fits — which include thespectra — provide values in
agreement with the direct estimate within the quoted ewone could however note that the —
possibly — "biased” estimate (namely, tHe= m result) is the closest to the “experimental”
valu&d. If the 4 = m solution were (inherently) exhibiting a bias, comparing fthist three
numbers in the first line of Tablg 4 indicates that this doesexaeed~ 0.5 x 10~ —e.qg.
half a standard deviation. Therefore, real experimenta samples confirm the gain provided
by a global fit procedure when samples with normalizatiorersmall compared to their
statistical accuracies are included; exploring this éffethe purpose of Subsectibn A.R.3 in
the Appendix.

One should also remark that the unbiasing iterative praeeldssens significantly the un-
certainty oru, (7*7~) compared with thel = m solution and, over the whole range of validity
of BHLS (up to 1.05 GeV), one ends up with a factor of 3 reductd the uncertainty com-
pared to the direct numerical integration. The same kindfe€tis reported in[46] concerning
the spread of the parton density functighs

Therefore, relying on the iterative procedure, one obsetivat the global fit does not pro-

24 As for the central value of the experimental estimate whéghé present concern, one can legitimately expect
that it should be affected by some biagfiori, of unknown magnitude) of the same nature thanthe m result.
Indeed, roughly speaking, the experimental cross seetipf(s) is related with the underlying theoretical cross
sectionoy (s) by a relation of the fornv.,,(s) = ow(s) + do(s) and thedo(s) correction depends on the
normalization uncertainties which just motivate the itsemethod! Actually, thisio(s) is exactly the scale
dependent term in Eq$.](5) arid (8). Obviously it cannot hieneséd without some fitting procedure.

29| particular, Figure 5 in this Reference, is quite inforiv@about the variety of correction kinds revealed by
unbiasing procedures.
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duce significant shifts of the central values of the HVP dbations which could be attributed
to the normalization (scale) uncertainties strongly difecsome data samples. Relying on the
Monte Carlo studies outlined in the Appendix, this can bahatted to the large number of
data samples where the statistical uncertainties dommagethe normalization uncertainty.
Moreover, the uncertainty on the part of the LO—HVP deriveahf the BHLS fit (more than
80% of the total LO—HVP) is very small and even marginal.

8.3 The Muong — 2 From BHLS Global Fit Procedure

Contribution from|  Energy Range LO-HVP (2014) LO-HVP (2011)
missing channelg threshold— 1.05 | 1.34(0.03)(0.11)[0.11] | 1.44(0.40)(0.40)[0.57]
J /v 8.94(0.42)(0.41)[0.59] || 8.51(0.40)(0.38)[0.55]
T 0.11(0.00)(0.01)[0.01] | 0.10(0.00)(0.01)[0.01]
hadronic (1.05,2.00) || 60.45(0.21)(2.80)[2.80] || 60.76(0.22)(3.93)[3.94]
hadronic (2.00,3.10) | 21.63(0.12)(0.92)[0.93] || 21.63(0.12)(0.92)[0.93]
hadronic (3.10, 3.60) 3.77(0.03)(0.10)[0.10] | 3.77(0.03)(0.10)[0.10]
hadronic (3.60, 5.20) 7.50(0.04)(0.05)[0.06] || 7.64(0.04)(0.05)[0.06]
pQCD (5.20, 9.46) 6.27(0.00)(0.01)[0.01] | 6.19(0.00)(0.00)[0.00]
hadronic (9.46,13.00) | 1.28(0.01)(0.07)[0.07] || 1.28(0.01)(0.07)[0.07]
pQCD (13.0000) 1.53(0.00)(0.00)[0.00] | 1.53(0.00)(0.00)[0.00]

Total 1.05— o0 112.82 £ 3.0144¢ 112.96 £ 4.13;,¢
+ missing channels

Table 5: LO-HVP contributions td0'°a,, with FSR corrections included. The statistical and
systematic errors are givn within brackets; the total uladety is given within square brackets.

Column "LO-HVP (2011)” displays the contributions estitusing only the data samples
available in 2011; Column "LO-HVP (2014)” displays the @sponding values updated with

the data samples published up to the end of 2014.

In order to evaluate the muon LO-HVP from the fit results dmtiby means of the
BHLS global fit procedure, the numbers given in Tdble 4 shbeldupplied with several addi-
tional contributions which cannot be derived from withie tBHLS framework but should be
estimated by other means. This covers the channels opelwd h@5 GeV but remaining out-
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side the present BHLS sc@eand, more importantly, all hadronic contributions covgrihe
non—perturbative QCD region above 1.05 GeV should be etttnda the direct integration
method.

Table[5 summarizes these additional contributions to bebawed with the BHLS results
to derive the muon LO-HVP; in this Table, one reminds the nmfation available by end
of 2011 and used in our previous [34, 35]. The data column 8ddgy "LO-HVP (2014)”
is the update derived by taking into account the data samptee recently collected (and
published up to the end of 2014); these aredhe- — 3(nt7~) data from CMD-3[[81],
theete™ — wr® — 7%7% from SND [82] and several data samples collected by BaBar in
the ISR mod#l [83,84,85, 86]. These data samples highly increase théahlaistatistics
for the annihilation channels opened above 1.05 GeV andtleagynificant improvements.
One thus should note the important improvement these pedeidthe LO-HVP contribution
from the[1.05, 2.0] GeV region : its uncertainty is reduced by 25 %, while its cantalue is
almost unchanged. Despite this improvement, the energgnép05, 2.0] GeV still remains
the dominant uncertainty on the muon LO-HVP and this strphglits the effect of gaining
further in precision on the part of the LO—HVP covered by BHLS

Deriving the full HVP value also requires to account for thgher order effets. This
includes the next-to—leading order contribution (NLOgtakrom [26] (—9.974-0.09] x 10~19)
and the recently estimated next—to—next—to—leading ¢t O) effects which happen to be
non—negligible (.24 + 0.01] x 10~'%) [87].

To compute the muon — 2, one should also include the light—by—light (LBL) contriiaun
(here taken from [88]), the QED contributidn [89,/ 90] and éhectroweak contribution (EW)
[31]. The next—to—leading order contribution to the LBL ditygle (NLO-LBL) has also been
computed recently [91] but is clearly negligib[6.¢ 4-0.2] x 10719). Altogether, the numerical
values we use (see Talhle 6) are rather conserisual [92].

The first data column in Tabl€ 6 reproduces (after our metloglcal update) the muon
anomalous moment estimate coming from the correspondingBdgflobal fit where only the
scan data for the™ 7~ channel are considered while all ISR data are excluded.slipersedes
the corresponding information in [B4]. The sample combarapreferred by the BHLS global
fit gives the results displayed in the second data columrxhibis a5.10 significance for a
non-zeroAa, = ag’* — afﬁ. The evaluation derived by direct integration of the speased
within the global fits are given in the third data column. ThieQ€ data clearly increase the
discrepancy for\a, which is always found above ther level; effects of additional and not
still accounted for systematics will be examined in the r&axbsection.

Figure[3 displays the results faxa,, derived using or not the data and various combi-
nations of the available™ 7~ data samples introduced with in the BHLS global fit procedure
at first iteration. For comparison, one also displays in Ejgire the evaluations produced by
other authors and flagged by Dhea09 [29], DHMZ10 [54], J58] §4d HLMNT11 [56] cor-
rected however by the recently identified NNLO-HVP and NLBklcontributions. Actually,
(see Tablél6) A priori, the Dhea09 estimate compares exactly to our evaluatiang gsan
data only; the other results are derived using the BaBar, KQ®and KLOE10 samples. These
rather compare to the last couple of lines in Figure 3.

Some comments are worth being expressed :

26For instance the 4, 5 of 6 pion annihilation channels, owth final state.
2These cover thpp, K*K~, K1 Kg, K Kgntn—, KgKgntn~, KsKgK* K~ annihilation final states.
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10'%,, Values (incl.7) Direct Integration
scan only scan® KLOE scan® KLOE
LO-HVP * 683.57 + 3.82 681.20 &+ 3.28 684.44 4+ 4.76
HO (NLO) HVP —9.97 +£0.09 [26]
NNLO HVP 1.24 +£0.01 [87]
LBL 10.5+2.6 [88]
NLO-LBL 0.3+£0.2 [91]
QED 11 658 471.8851 + 0.0036 [89,/90]
EW 15.40 = 0.10haq % 0.03Higgs top3—toop 1311
Total Theor. 11659 172.93 £4.63 | 11659 170.56 £4.19 || 11 659 173.80 £ 5.43
Exper. Aver. 11 659 208.9 £6.3
Aay, 35.97 £ 7.82 38.34 £ 7.57 35.11 £ 8.32
Significance fo) 4.600 5.070 4.220

Table 6:The various contributions t60'a,,. Aa, = a’*? — a!l" is given in units ofl0~'%. For the measured
valuea;?, we have adopted the value reported in the RPP which usepttaed value fon = p,, /1, recom-
mended by the CODATA group [93]. By KLOE, one means that théJ&10 and KLOE12r™ =~ data samples
are introduced in the BHLS fit proceduted in the directly integrated spectra.

e 1/ The difference between our estimates and those of otheosutimainly deals with the
estimated central value fdxa,,.

When using only the scan data, this should reflect the biafiegt certainly present in
the experimental data (see footnote # 24) and correctedriafproach by the iterated
fit method. When the ISR*7~ samples are also involved, the issue just reminded is
amplified because the influence of samples with large ovecalk uncertainties is much
increasefl. Indeed, if one discards the BaBar sample (relying on theditlts collected

in Table[2), the effect is= (10 = 15) x 107!°; however, taking the BaBar sample into
account does not solve the discrepancy as the effect issstillx 10~1°. All this can

be inferred from Figurél3 by comparing the lines for "NSK+KEOwith the lines for
"Global (ISR+scan)” which also include the BaBar sample.

e 2/ When a comparison between’a,, estimate derived using thedata and the corre-

28 A1l ISR data samples are strongly dominated by overall scalertaioties, additionallg—dependent.
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sponding one excluding these is possible, ours exhibitsrtiadlest difference({ = 2) x
10710 for NSK+KLOE, —0.1 x 10~'° for the Global fit including all ther* =~ data sam-
ples). This is certainly due to the vector meson mixing whdefines the BHLS model.
It is interesting to note that the JS11[26] value, which isdzhon they — p° mixing by
loop transitiorg@, is the closest to ours.

¢ 3/ Relative to the values fofq,, derived from fitting with scan data only, the effect of
the KLOE samples is to increase its value while the BaBar $anepluces it.

e 4/ Relying on the global fit properties, the BHLS model favore tNNSK + KLOE10
+ KLOE12 + 7" as the largest consistent set of data samples. This leadsito—=
(38.34 £ 4.19) x 10~'° which exhibits a5.1c significancBl. Our estimate is expected
to be free of biases generated by the overall scale unceesinhich dominate the ISR
77~ data samples.

8.4 Additional Systematics On The BHLS Estimate For The Muory — 2

A detailed study of additional systematics possibly affegthe BHLS evaluation ofAa,,
has been already performed|in[35]. It concluded to an uaiteytof the LO—HVP central value
for Aa, = a™ — a!}' in the rangg—1.3 ~ 0.60] x 10~'° coming fromz =~ contribution in
the ¢ mass region, where BHLS is weakly constrained. An uncdgtaioming from using
the spectra has also been considered; it was argued that thenbgated evaluation of this
is the difference between fitting with thespectra and without them in the most constrained
configuration. Presently, this means that the BHLS prefievedue (\a,, = (38.58 & 5.04) X
1071%) could be underestimated by 0.9 x 10~1°.

Another mean to detect systematics is to compare with theratec ChPT predictions on
the P-wavern ™7~ phase—shift([94] and also with the available experimengahdrom the
Cern—Munich[[95] and Fermilab [96] groups. These are shawkFigure[4. Included also are
the predictions derived from the Roy Equations and from theesp of the pion form factor fit
performed in[[26] (JS11).

As for the BHLS predictions corresponding to using NSK+KL@&12), we display in
this Figure the phase of the full amplitude and those comedimg to dropping out the isospin
breaking (IB) effects due to the vector meson mi@ng’heT spectra are included within the
fit procedure.

The standard BHLS phase shift predictions are displayetienléft—hand side panel of
Figure[4. One clearly observes a very good prediction of trese—shift up to about 1.2 GeV,
i.e. much beyond our fitting range (from threshold to 1.0 GeV fa thr data). Indeed the
Cern—Munich data are very well accounted for and the BHLS$liptions are in accord with
the other predictions. The inset, however, exhibits a (mirssue for the full amplitude phase,

29Within the BHLS model, they — p° mixing is mimicked by loops.

30)f using the data from 2011 in Tablé 5, as in our previous ssidthis significance is "only4.8¢. This
compares more directly to the results from other authorslaljed in Figure[(3). The increased significance is
a pure consequence of having improved the uncertainty ohaddeonic contribution from thél.05, 2.0] GeV
region.

31This is obtained by cancelling out the "angleg(’s), 3(s) and~(s) from the full amplitude expression.
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----------------- 4l =- 7 Data+ [p+w+¢] (PDG) -—————---1
7(A+B+C) j——i  [39.89+6.23] [45 o]
Individual 77 Data Sets + 7

NSK (CMD2+SND) e [35.97£4.63] [4.6 o] [\*/N., 0.96] [99.5%]
KLOE 08 e [38.78£5.16] [4.8 0] [\*/Nr 1.64] [58.9%]
KLOE 10 =t [39.21£5.15] [4.8 0] [\*/Nyr 0.96] [96.6%]
KLOE 12 deH D [3833£4.33] [5.0 o] [\2/N,, 1.02] [96.9%]
BaBar (Trunc.) m o [29.15£4.07] [3.9 o] [x?/N.r 1.15] [73.8%)]
BaBar (Full) = : © [27.40 £4.03] [3.7 0] [x?/N 1.25] [40.1%]

scan 7 Data
© [35.97 +4.63] [4.6 0] [x%/N.r 0.96] [99.5%]
e [37.94+4.95] [4.7 o] [\* \,, 0.97] [99.8%]
——i ©[2856+5.8] [3.4d]
scan +ISR 7 Data ———
[38.34 £ 4.19] [5.1 o] [\*/N,, 1.06] [97.0%]
et [39.13+4.31] [5.1 o] [X*/Ny 1.06] [98.5%]
——— © O [17.96+5.4] [2.2 0]

NSK (CMD2+SND)+7
NSK
DHea09 (ete)

NSK+KLOE (10&12)&7
NSK-+KLOE(10&12)
DHMZ10 (efe™ +7)

B R S R I | e L [ B

DHMZ10 (e*e) I——1 D [27.16+£4.9] [3.3 0]

HLMNT11(ete™) ——l ©[24.56+£4.9] [3.1 0]

JS11(ete +7) ——i D [27.66 £6.0] [3.2 0]

Global (ISR & scan&r) (el [33.72£4.08] [4.5 0] [x2/N,, 1.28] [11.3%]
Global (ISR & scan) Jeeil 0 [33.63+£4.03] [45 o] [*/Ner 1.59] [15.4%)

: - experiment
BNL-E821(avrg) [0+6.3]
T w0 o o

a&Lp th) X 1010

Figure 3: The deviatiol\a,, = a$™ — a!]" in units of 10''%. The varloumfjl have been derived
from the global fit using the indicat&dhe — wt7~ data samples and including/excluding
the 7 dipion spectra as also indicated. In red one displays corresponding to the iterated
solution and in green those corresponding toAhe m (non—iterated) solution. In blue results
from other studies are given corrected from the recentlyuewad next—to—next—to—leading
order contribution[87]. See Sectibn B.3 for comments.

a small bump of about® close to threshold, absent from the 1B amputed amplitudeis Th
can be tracked back to a peculiarity of the broken HLS modetkvkdoes not split up the
HK (Lagrangian) masses for the and p° mesons and, consequently, the mixing ang(e)
does not exactly vanish at = 0 (see Figure 6 in[[32]); in contrast the other angles fulfill
£(0) =~(0) = 0. Indeed, one has :

B e1(s)
) = TR = R+ T (5) (49

where [34]¢, (s) is the difference of the charged and neutral kaon loopdBnds) is the pion
loop which both vanish at = 0. This assumption has been checked with fits by imposing
[mf*]?> = (1 4+ n)[m/I*]* and choosing various fixed values fgrthe right-hand side panel

in Figure[4 dlsplays the phase shift fopr= 5% and, quite satisfactorily, its inset does not
reveal a bump any longer. A non-zero (HK) mass differem¢e.’’*]* cannot be generated
by the breaking mechanisms already implemented within BHii&vever, a breaking of the
nonet symmetry in the vector meson sector (VNSB) enables anceffect; this turns out to
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modify the customary vector field matrix — actually U(3) syetnt — within the covariant
derivatives of the HLS model [13] by a perturbation term mndipnal to the singlet vector
field combination. The effect of VNSB has been derived fromcsc fit studies and indicates
thatAa, might have to be lessened by abaut x 10~1°.

Therefore, in total, the BHLS favored result can be exprsseunits of 10~ as :

Aa, = 3834 + [0S, + [T00] + [0 vvse £4.19 & 6.3y (19)

where the three additional contributions play as shiftsrendentral value. Adding them up
linearly, the maximum shift{2.7 x 10~'°) may reduce the central values.9 x 10~° which
has still a4.70 significance. The effect of these additional systematits reduce potentially
by ~ 0.30 all the significances displayed in Figure 3. These are nottdusverall scale
uncertainties already accounted for by the iterative nusthioey might be reduced by new
annihilation data samples covering the region up to 1.05 e\ the physics channels in the
realm of BHLS.

9 Concluding Remarks

The present study was motivated by the question which gigdsle to this paper. More
precisely, the issue is whether the D’Agostini bias [41, g&vents to derive unbiased physical
res:éts from global fits to experimental spectra affectedibsinant overall scale uncertain-
tie

Actually, several issues are merged together. First, tfestéfe global x* functions to
be used in the minimization procedure should be appropyidefined. For the data samples
where the statistical errors dominate the overall scaledainties, the construction of the
associatecpartial y?'s is quite standard. The real issue starts when the datalsarape
dominated by overall scale uncertainties. For each of tisaipstantially, the canonical partial
x? has been reminded in Sectidn 2 and writes [41| 44, 45] :

X2 = [m — M(@) — MA]"V = m — M(a@) — \A],

leaving aside the so—called "penalty term”[45] proporéibto \2. The (partial)x? being
appropriately defined, another issue is the choice of theovec

In our former studies [34, 35], beside the40 data samples dominated by statistical errors
which follow the traditional treatment, the data samplegetimg theete™ — 77~ annihi-
lation channel are all, sometime very strongly, dominatgaWerall scale uncertainties; this
especially refers to the samples collected by the KLOE arBlaB&ollaborations using the
ISR production mode. Here, for each sample, we choosed fttre experimental spectrum
itself; this choice has been referred tos&s- m all along the paper. The guess behind was that
all scale uncertainties affecting the different experitabgpectra independently of each other
should smear out possible biases in the central values ¢ttimemon) theoretical form factor
function parameters [35].

32\We gratefully acknowledge G. Colangelo to have pointed betissue for estimating the muon HVP using
global fit methods. However, the bias issue is more generallblse argued shortly.
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It happens that the results one can derive in this way fronBHHES global fit undergo
very small biases (compared to the errors derived from thgditedure); this is shown in the
present stuc@. However, the guess just reminded was incorrect and thelagason which
explains the almost bias free results is following : As shawthe Monte Carlo study presented
in the Appendix, there is no smearing out of biasegifthe spectra submitted to fit undergo
comparable strong scale uncertainties; however, thiystlstd shows that, if some of the fitted
spectra are dominated by statistical rather than globd¢ scecertainties, the fit results can be
strongly unbiased.

Nevertheless, a high level of unbiasing cannot be taken astept as the real weight of
the samples dominated by statistical errors within thedlabal fit procedure cannot be ascer-
tained. Basically, the choicd = m potentially leads to biases of unknown magnitude; this
has been shown by G. D’Agostini [41] with a simple example armile generally argued by V.
Blobel [45]. These authors also showed that all biases kahimstead ofA = m, one makes
the choiced = M, the "true” spectrum. But this is just not possible withimbexts like ours,
where fits are performed just in order to derive the "true”ctpan from data. Fortunately,
iterative methods allow to circumvent this difficulty by tag the path opened in [46] in order
to derive the parton density function from data and correctiases. The iterative method
we propose has been tested with the Monte Carlo study repwortthe Appendix and shown
to produce unbiased results with a quite fast convergeneedspndeed, only one iteration is
sufficient.

So, our main conclusion is indeed that global fit methodsuticlg a fast iterative procedure
are expected to produce reliable pieces of information ashadologically, the central values
are unbiased and the estimate for the uncertainties rejiths especially applies to the part of
the muon leading order HVP derived frame~ annihilation cross sections.

Having shown that appropriate global fit methods should lkeadesults which can be
trusted, a related remark is worth being expressed. Kergfiobal fits allow to supply the
BHLS Effective Lagrangian cross sections with reliable antliased numerical central values
for the fit parameters and a good estimate of their error ¢cavee matrix. Then, using these
cross sections and the fit information, EQL (1) is expectqutdwide an unbiased estimate for
a,(mm) as the ingredients are unbiased.

On the other hand, when computing(7) by directly integrating a dipion spectrum in
order to derive its so—called experimental value, one hphipinto Eq. [[1) the experimentally
measured cross section,, (s). However, as already noted in footnoté # 24, or as can be
inferred from the canonical?® expression reminded just above, the experimental and model
cross sections are related by :

Texp.(S) = Otheor.(8) + 00(5)

where the best estimate of the second term v@t&s(s) = AOuneor.(S). As Obvious from Eq.
(@), the best estimate of the scale fackoequally depends on the measured spectrum and on

33which also corrects for some coding bugs affecting our mevstudies.

34n the case of a constant scale uncertainty, as for the CMBIZSH&D data, there is only one scale factor
For the ISR data samples, the expression is slightly moreptioated but easy to derive (see also the Appendix
to [35]) and the conclusions are likewise.
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the "true” spectrum, which can be identified with its (item) fit solution. So, using again
self-explanatory notations, Eql (1) leads to :

a,(rm, exp.) = a,(mm, theor.) + da, (mm)

and thusy, (7, exp.) looks intrinsically biased for any sample subject to strengugh overall
scale uncertainties. This issue is also reflected by thduabkplots which are improved when
plotting the corrected residudls—(1+X) M (a@)] instead of the raw onés.— A/ (a)], as can be
seen in Figure 13 of [35]; this allows to infer that, (77) is small but non—zero. Nevertheless,
as shown with the case NSK+KLOE10+KLOEX2favored by the BHLS model, the observed
bias amounts téa, (77) ~ 3.4 x 1071%; this is indeed smallfa, (77) ~ 5 x 10~ 2a, (7)),
but not really negligible.

As for the physics conclusions, the present paper updatks@mnects the results derived
by the global BHLS fit method which, following the considegijust summarized, has been
completed with an iteration procedure in order to canceposstible biases. One thus confirms
that almost all of the existing data samples covering théhation channels with the®y, 1,
atr—n%, KT K-, K'KO final states and the dipion spectra in thiie — 7*7% decay acco-
modate perfectly the BHLS framework. In the line of our poais works, one also finds that
among the data samples covering the~ — x+7~ annihilation, the data samples provided
by CMD2 and SND, the KLOE10 and now also the KLOE12 samplesehonsistently with
each other and with the other considered data covering ti@ugechannels entering the BHLS
scope.

The present update, which also includes the recently phdisK LOE127 "7~ sample,
supersedes our previous results; they are mostly givenbief&and in Egs.[(14). From a
theoretical point of view, it is interesting to note the @mted values for the’s coefficients of
the anomalous (FKTUY) terms of the HLS model[[15] 13]: The bamtionsc, = (c4+c3)/2
andc; — ¢, are found very close to the usually assumed valee/l; in contraste. = (¢4 —
c3)/2 = —0.19 £ 0.02 is non—zero with d0c significance.

Figure[2 displays the values far, (77, [0.63,0.958]) GeV derived from iterating the fits
with the various available data samples. One observes agstemluction of the uncertainty
compared to the corresponding experimental value (aboattarfof 2.5) and there is a close
agreement between central values for all samples (or catbirs of samples) which yield a
good fit probability. The difference between the centraliealfor the starting fit and the iterated
one tends to indicate that biases are limited; this shoulal t@nsequence of also dealing with
a large number of samples where the overall scale unceesiate dominated by statistical
errors, as argued in the Appendix.

Figure[3 exhibits the values for the mud,, = " — a!' when various combinations of
ete” — ntn~ andr* — 77% samples are used in the iterated global fit procedure. The
present study confirms that, within BHLS and because of igifip isospin breaking mech-
anisms, one does not observe any serious mismatch betweevitfitonly e*e~ annihilation
data and fits where these are supplemented withr tthpion spectra. The central val@iésor
a,(ete”) anda,(ete” 4 7) only differ by 2 units (NKS), 1 unit (NSK+KLOE#) or coincide
(see the last couple of lines in Figlre 3), while the unceties are slightly improved (as they
should).

%the values for,, are given from now on in units afd ~° for convenience.
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Figure[3 displays the value faka, derived using:ll data samples except for KLOEOS,
which can be written :

Aa, = 33.72+ [0S + [F00] + [V ]vvss & 4.084, & 6.3,

where an estimate of the magnitude of possible uncertainbening from outside the BHLS
framework is proposed. This exhibitsi&o significance (which may reduce #0020 — in the
least favorable case — if the additional systematics arechtidearly and assumed to play as a
shift).

However, the most probable value for the mubdm, is obtained by using the CMD2, SND,
KLOE10 and KLOE12 samples — and thepectra; this leads to :

Aa, = 3834+ [M05]s + [F00] + [0 3]vvss & 419 £ 6304,

This BHLS preferred estimate exhibitsbalo significance for a non-zerda,, which may
reduce to4.50 if one takes into account, as just above, the possible additisystematics.
This solution is associated with a 97% fit probability.

As a summary, even complemented with an iterative proceshue/n in the Appendix to
remove biases, the BHLS approach favors a significancéfgrabove the~ 40, this value
is a lower bound obtained by including possible additiorystesmatics added linearly. New
data expected soon may further clarify the picture. The dacgies now become sharply
dominated by the region above 1.05 Ge¥, outside the BHLS scope.
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Figure 4: P-waver ™7~ phase—shift data and predictions from|[94] (CGL) and [26]1() to-
gether with the BHLS phase—shift. The insets magnify theuarbehaviors close to threshold.
See Subsectidn 8.4 for more explanations.
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A Appendix : Monte Carlo Tests of the Iterative Procedure

A.1 The Test Method

In order to test the iterative method, one has developpedhamazation code which deals
with spectra generated from a given underlying functidp,.(s) where the parametefs:; }
(which, of course, are known at the generation level) aredfitvithin the code. The "experi-
mental” spectra feeding this code are generated usingubelistribution smeared by introduc-
ing gaussian uncertainty distributions. Indeed, for the purpose ofibgsbur analysis method,
it is certainly the most appropriate to rely on "perfect” al@amples, with perfectly known
properties.

For sake of simplicity, at the generation level, any "expental” spectrum?’ is chosen
to carry 100 "measurements’”, performed at 100 equally spaced energy squayegubints
(s; € [0, 1] GeV?), the same sequence for all spectra. The "measurementsieaired by
smearing the theoretical valuédg,,...(s;) in the following way : For each spectrudi, one
assumes the "measurements” are sampled out from gaussidahwutions in the following way :

mE = Mye(si)[1 + 0eE,1,(0,1) + nebiny(0,1)] , i=1,---,100 (20)

scale

wheree’”,(0, 1) indicates the' sampling on a gaussian distribution(fnean and unit stan-
dard deviation generating the statistical error; it vaimekependently from "measurement” to
"measurement” and from spectrum to spectrum/,,...(s;) denotes the statistical error com-
mon to allm,;, n being some fixed fraction of the order of a few percents, ahtise same for
all the "measurements” in the spectruin

On the other hand\r = oe , (0,1) is the scale uncertainty affecting specifically the
spectrum¥; as indicated by its definition, it is sampled out from a garsdistribution of zero
mean andr standard deviation. The overall scale uncertainty affigcki is obtained viane
sampling of=¥ , (0, 1) which, thus, carries the same value for all the "measuresfient in
the spectrumi. Of course, when going from a spectruinto anotherE’, another sampling
of ¢£_,.(0,1) should be performed. For specific tests, the overall scatentminty can be
switched off ¢ = 0).

One definesV,., replicas (generally 1000) d¥..,, (generally 5) experimental spectra con-
structed as shown in Eq[_(20) and submitted to a global fit e/tlee parameters entering
M,,..(s) are just the parameters to be derived from fit. The "true’istiaal error covariance
matrix V;; = [nMy...(s:)]?d;; is practically approximated by,; = [ym¥]24;;; we have avoided
the unessential complication of non—diagonal covariana&im The fit results derived for
each replica are stored and then used to construct theisttgots — true residuals and pulls
—with the help of the known parameter "true” values.

Therefore, we are just in the conditions described in Sulsed.2. One should note
that themINUIT code we have built performs the minimization of tNg,, samplesind runs
sequentially to treat th&,.,, replicas within the same job.

So, for each replica, the glob&af minimized by our Monte CarloiNuIT procedure is

simply a sum ofV.,,, terms like Eq.[(#):

E:Nezp

X’= Y X (21)
FE=1
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When initializing the iteration procedure, one uggs= mp, i.e. the spectrun¥’ serves to
construct itsy%; so A, differs from some other ;/ by statistical fluctuations. When iterating,
at first or higher order, they become identicallas = Ap: = My ~ M (dgi).

Obviously, each such run provides simultaneously all th@mation allowing to examine
the statistical properties of the iterative method coroesiing to a given theoretical choice
M,,¢(s). The computer code also allows an easy change of the fuatfiom of M/, (s) in
order to examine the behavior of various kinds of non—lireaameter dependences.

The behavior of the fit parameters compared to truth is, ofssyuhe subject of the analysis;
however, those of "physics quantities” derived from them as important. For this purpose,
we choosed to examine the rafibs

_ fol Mjyi(s)ds
fol Miye(8)ds
which has properties similar to those of thg#;)'s, as the weighting factaK (s) in Eq. (1)

is an unessential complication while looking for possibktinodological biases of the iterative
method.

(22)

A.2 The Test Results

The aim of the present Appendix is to report on numericalys®as performed in various
configurations in order to examine how overall (global) naligation uncertainties and biases
are related and whether non-linearities in the model patenneo be fitted lead to significant
incorrect estimates of errors. As Reference [46] which éedawith the same kinds of issues
as the present work, we do not plan to establish rigorousheige theorems on these topics
— assuming the scope of the issues would permit it. Neve&sgkebne can think that studying
methods by relying on Monte Carlo technics is an acceptabletey check its (practical) va-
lidity under common conditions. After all, the fact that E@) with A = M (the theoretical
function) is considered free from biases is not weakenedbydct that the general (formal)
proof of this property — if established — is not commonly redd to.

A.2.1 Analytical Shape of the True Distributions

In order to use confidently fit results derived using the tteeanethod, one should examine
the effects of non-linear dependences upon the fit parasnetdrin contexts similar to our
physics distributions. The lineshape of the pion form fa@se a function ofs on a given
interval can be qualitatively reproduced using polynosjiedtios of polynomials, exponential
of polynomials, sums of a Breit—-Wigner function with polynials etc ...with appropriate
numerical parameter values.

We have applied the method outlined in Subsedtion A.1 tooperfits relying on an inten-
sive use of the tools provided byiNuIT taking various kinds of functiond/,,.(s), resem-
bling — sometimes weakly — the pion form factor. Running iqusncemMIGRAD/HESSEand
MINOS, we did not observe significant departures (beyond steaidtuctuations) from equality
between parabolic andiNOs errors; as the issue was to examine effects of non—lineanpar
ter dependences this exercise was performed assumirgjisatiincertainties only. Therefore,

36Remind thaD and1 Ge\? are the energy squared limits of the generated spectra.
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this led us to conclude that, for the kind of experimentatihations one deals with, non-linear
effects are not generally significant. For instance, using :

g 2
stctds+es | (23)

Mipue(s) = [CEEENE

n = 3% and no scale uncertainty (to discard any need for iteratthg)probability distribution
was observed flat and the parameter pulls consistent withalayaussian&(m = 0,0 = 1);
the distribution of the rati@ for the 1000 replicas was also found well centered at 1 (dgtua
its mean is 1.0001 and its standard deviafidg2 x 10~ from a gaussian fit wit? / Nppints =
8.9/11). So, except for pathological cases which may always oecmur-linear dependences
do not look practically an issue.

From now on, we limit ourselves to reporting on usiig,..(s) as given by Eq. [(23).
Moreover, for sake of succintness, we may only mention thpaiitmeter residual and pull
distribution properties qualitatively and concentrated@tussing the distribution of the ratios
7 which, in fine carries — summarized — the relevant information. Each vafug entering
this distribution is computed fromminuiT fit of N.,, = 5 data samples and this is done for
N,, = 1000 replicas to construct numerically its distribution.

A.2.2 Normalization Uncertainty and Iterative Method

We first examined the results derived by fit of spectra witlagetints generated as in Eq.
(20) with a statistical uncertainty = 3% and generating the scale uncertaintyith o = 5%;
son is smaller tharr. In this case, the interesting plots are gathered in Figure 5

As one knowsM,,...(s), one can construct thd.,, partial xy*'s with A = M,,...(s) (see
Eq.(3)) and minimize their sum usingiINUIT. In this case, no bias is expected|[41] 44, 45]
and this is indeed confirmed by the top left panel in Figure &netithe distribution of thev,.,,
values forZ is displayed.

When, instead, one usels= m (the data spectrum), the results are shown in the top right
panel of Figurés, where one observes a shift of the centhag\ay as large as 20% ! Denoting
the result of the corresponding fit By, one restarts fitting the same data by setting: M,
this — first — iteration leads to the distribution shown in biwétom left panel of Figurel5 which
looks identical to having used = M,,,.. Denoting the fit solution of this first iteration by
M, one restarts fitting the same data by setting: M, and get the step 2 solutiavl; which
correponds to the bottom right panel of Figlte 5, which ¢jemdicates no change for tHe
distribution.

So, one may conclude that the iterative procedure has glesayerged at the first iteration
and so, we havé/; = M,,... This fortunate high convergence speed has also been edserv
by [46] and it is quite remarkable that this has allowed tovec fron1 a 20% bias!

Fit residuals are observed unbiased and pulls consistémtaimal centered gaussians for
A = Myye, A = Myand A = M,. As for they? probability distributions, forA = m, it
exhibits a huge spike at 1, while it is consistent with flagn@sean~ 0.5 and r.m.s~ 1//12)
for all the other cases.

3The numerical importance of this bias is intimately relatéth the ratioo/n = 5/3; if instead one works
with o /n = 1, the bias coming out from fitting witll = m would only be 4%.
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This already indicates that starting with= m (the measured data spectrum) and iterating
only once allows to give up knowing the theoretical functishbeforehand to drop out bi-
ases in physics quantity estimates. Moreover, as the pteamdls are centered gaussians of
unit standard deviations, the uncertainties derived frammfthe fit parameter error covariance
matrix are reliable.
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Figure 5: Distributions of the ratidg derived by varying the functior in the x? expression
as indicated in each panel. The choite= m” (i.e. the "measured” data sample) exhibits a
20% bias while the other choices are unbiased. For more cotspsee Subsection A2.2.

A.2.3 Effects of Subsamples Free from Normalization Uncedinties

In the specific problem of globally fitting a large number opexmental data samples, one
is faced with as many as 40 to 50 spectra to be treated [34,33%2%. Within this ensemble
of data samples, one observes several configurations congamcertainties : some samples
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have statistical errors dominated by scale uncertairtiesiSR collected data samples), while,
in contrast, some others are reported with scale uncdadaintarginal compared to statistical
errors (theete~ — ~P data, for instance); sometimes, no specific informatioreorted
concerning scale uncertainties, as for the#tlt#pion spectra [57, 58, 59].
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Figure 6: Effect of having 1 (top panels) or 2 (downmost pghdhta sample(s) among the
fitted V.., = 5 samples simultaneously fitted. Left plots report on fittinghwd = M (the
truth), right plots on fitting withA = m” (the measured spectra); in the former case no bias is
observed, in the latter case, the bias happens to be mudkdin8ee text for more details.

This makes interesting to examine configurations mixingamof both kinds. In this
paragraph, one summarizes the results obtained by runviipgreplicas of ensembles of 4
data sets where, as before, the scale errer4s5% and the statistical errof = 3%, together
with 1 data set withv = 0% (no scale uncertainty) ang = 6% (twice worse statistical
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precision). This (4,1) combination will be supplementedhva (3,2) combination with the
same characteristics. The main results are shown in Higie® we do not report on iterating
the fit procedure, as obviously the results will follow thétpen shown in Figurg]5.
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Figure 7: Probability distributions when fitting with = M,,...;, (left panels) orA = mg (right
panels). The top panel plots correspond to the case whengthetv,,, = 5 fitted spectra,
one is systematically free from normalization uncertgimtythe downmost panels 2 of the 5
fitted spectra are free from normalization uncertainty.

The top panels in Figurig 6 display distributions of the fian the (4,1) configuration.
The left plot shows the case when thg,, replicas are fitted usingl = Mj,...;, in the x?
expressions. In this case, the absence of any bias is codflognthe gaussian fit result shown
within this plot. While usingd = mF, the top right panel exhibits a 1.3% bias. Therefore, the
effect of a single spectrum free from scale uncertainty 66tis enough to lessen dramatically
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the observed bias : It reduces from 20% to 1.3%.

The downmost panels in Figuré 6 display the correspondisgteewhen fittingV,.,, repli-
cas of (3,2) combinations. In this case, usitig= m” in the minimizedy? expression, leads
to an even smaller bias (0.5%).

So, even if they carry a poor statistical precision, havioge spectra free from a (signif-
icant) scale uncertainty is quite helpfull to strongly lirtiie real magnitude of a possible bias
for a derived quantity. It is a quite interesting propertyotuserve that some spectra with de-
graded statistical quality supplementing other spectraidated by scale uncertainties might
be enough to avoid the need of an iteration procedure to smibigsics pieces of information.

As for the probability distributions, comparing of the agsponding left and right panels in
FigurelT clearly shows that the departures from uniformigy; Gverage=0.5 and r.m.s.=0.289)
due to usingd = m* are quite limited.

Nevertheless, when dealing with true experimental data {ams unknown truth), one can-
not take as granted that the number of samples with neghigitdle uncertainties compared to
statistical errors is sufficient to ascertain that biasesnagligible. Therefore, in the practical
case of the global fit of real experimental data performediwiBHLS, secure results can only
be ascertained by iterating until the change gfH;) is small enough.
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