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Abstract

We present simulations of QCD using Nf = 2 dynamical Wilson twisted mass
lattice QCD with physical value of the pion mass and at one value of the lattice
spacing. Such simulations at a ≈ 0.09 fm became possible by adding the clover
term to the action. While O(a) improvement is still guaranteed by Wilson twisted
mass fermions at maximal twist, the introduction of the clover term reduces O(a2)
cutoff effects related to isospin symmetry breaking. We give results for a set of
phenomenologically interesting observables like pseudo-scalar masses and decay
constants, quark masses and the anomalous magnetic moments of leptons. We
mostly find remarkably good agreement with phenomenology, even though we
cannot take the continuum and thermodynamic limits.
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1. Introduction

In the last decade the field of lattice QCD has seen significant progress in
controlling systematic uncertainties. Advances in algorithms and lattice formu-
lations have made it possible to study the continuum limit and the quark mass
dependence of many phenomenologically interesting observables. Most recently,
simulations with the physical value of the average up/down quark mass were
performed (an incomplete list of examples for observables related to the results
presented in this paper can be found in Refs. [1, 2, 3, 4]), making extrapolations to
the physical pion mass superfluous and eliminating the associated uncertainties.

The Wilson twisted mass formulation of lattice QCD (tmLQCD) [5] is one of
a number of improved formulations with many advantages. Most importantly,
tuned to maximal twist, leading lattice artifacts are of O(a2) in physical observ-
ables [6]. However, twisted mass Wilson and standard Wilson fermions share a
complicated phase structure [7, 8, 9, 10]: at finite values of the lattice spacing
a remnant of the continuum chiral phase transition can render simulations with
small values of the pion mass difficult. This phenomenon was predicted in Wilson
chiral perturbation theory [11] for Wilson fermions.
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As can also be shown in Wilson chiral perturbation theory [12, 13, 14], the
consequence of this phase structure for tmLQCD is that the neutral pion is lighter
than the charged pion, with the neutral one becoming massless at the endpoint of
the phase transition line. In practice this means there exists a finite value of the
light quark mass µcr ∼ a2 where the neutral pion mass becomes massless. The
value of µcr approaches zero in the continuum limit.

This phenomenon puts a finite lower bound on the values of light quark masses
that can be simulated given a particular value of the lattice spacing. It turns
out that with the choices of actions simulated by the European Twisted Mass
Collaboration (ETMC) so far [15, 16], simulations at the physical point are not
feasible in the range of lattice spacing from 0.05 fm to 0.1 fm, neither with Nf = 2,
nor with Nf = 2 + 1 + 1 dynamical quark flavours.

In this paper we show for the Nf = 2 case that by adding the Sheikholeslami-
Wohlert term [17] to the action, the value of µcr is significantly reduced compared
to simulations without this term. This allows simulations at the physical point
with a value of the lattice spacing around a = 0.09 fm or even larger. A non-
perturbative tuning of the Sheikholeslami-Wohlert coefficient csw is not needed
to obtain O(a) improvement, which is already guaranteed by maximally twisted
mass lattice QCD. Moreover, in the combination of clover term and maximal twist
no operator specific improvement terms need to be computed.

With this new action, we have generated one ensemble at the physical pion
mass at one lattice spacing and one volume in addition to three other ensembles
with heavier than physical pion masses at the same lattice spacing. On these gauge
configurations, we compute a set of phenomenologically interesting observables.
Some of these are being computed for the first time at the physical value of the
pion mass.

The paper is organised as follows: in section 2 we detail the lattice action and
the observables investigated. Section 3 is devoted to the results, followed by a
summary in section 4. Details about the simulation parameters and the analysis
procedure are given in the appendix.

2. Lattice Action and Observables

For the discretised gauge action we use the so-called Iwasaki gauge action [18]
as used for the previous Nf = 2+1+1 ETMC simulations. Compared to previous
simulations performed by ETMC the fermion action has been modified by adding
the so-called clover term [17] to read:

Stm
` =

∑

x

χ̄`

[
DW (U) +m0 + iµ`γ

5τ3 +
i

4
cswσ

µνFµν(U)

]
χ`(x) , (1)

whereDW is the massless Wilson Dirac operator, m0 the bare Wilson mass param-
eter, µ` is the bare twisted mass parameter and csw is the so-called Sheikoleslami-
Wohlert improvement coefficient [17]. τ3 is the third Pauli matrix acting in flavour
space and χ̄`, χ` are the fermionic fields in the twisted basis χ` = (u, d)t. We re-
mark that we will work in the twisted basis throughout this paper unless stated
otherwise.
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ensemble β csw κc aµ` L/a Nτ Nconf τ τint(P )

cA2.09.48 2.10 1.57551 0.13729 0.0009 48 6900 2950 1 15(6)
cA2.30.24 2.10 1.57551 0.13730 0.0030 24 3400 1300 1 3.2(8)
cA2.60.24 2.10 1.57551 0.13730 0.0060 24 9000 4000 1 3.8(6)
cA2.60.32 2.10 1.57551 0.13730 0.0060 32 11840 5350 1 2.9(5)

Table 1: The ensembles used in this investigation, all of which have temporal
extent T = 2L with L/a the spatial lattice extend. In addition we give the total
number of trajectories Nτ , the number of thermalised configurations Nconf and the
HMC trajectory length τ and the integrated autocorrelation time of the plaquette
τint(P ).

The bare Wilson mass m0 is tuned to its critical value mcrit by requiring the
PCAC quark mass

mPCAC =

∑
x〈∂0A

a
0(x, t)P a(0)〉

2
∑

x〈P a(x, t)P a(0)〉
, a = 1, 2 (2)

to vanish for every value of the bare twisted mass µ` separately. Here Aaµ and P a

are the axial vector current and the pseudo scalar density in the twisted basis,
respectively,

Aaµ(x) = χ̄`(x)γµγ5
τa

2
χ`(x) , P a(x) = χ̄`(x)γ5

τa

2
χ`(x) .

In this situation – called maximal twist – physical observables are free of O(a)
lattice artefacts without the need of any improvement coefficients [6].

The clover term is usually implemented in order to obtain on-shell O(a) im-
provement of lattice QCD with Wilson fermions [19] by tuning csw non-perturba-
tively using a suitable condition in the massless theory. Since in our case O(a)
improvement is already guaranteed by Wilson twisted mass at maximal twist, we
can use the clover term to modify artefacts of O(a2) and, possibly, reduce them.

In particular, it was shown in the quenched approximation [20, 21] that com-
bining Wilson twisted mass fermions at maximal twist and the clover term reduces
cut-off effects related to isospin symmetry breaking in twisted mass lattice QCD.
Following Ref. [20], we have set csw to its non-perturbative value csw = 1.57551
using Padé fits to data in Ref. [22]. We stress again that it is not necessary to
use the non-perturbative value and in principle csw can be tuned by requiring
minimal mass splitting between the charged and the neutral pion. In addition, it
must be noted that all the symmetries which ensure automatic O(a)-improvement
at maximal twist persist when a clover term is present.

The gauge configurations have been generated using the Hybrid Monte-Carlo
(HMC) algorithm with mass preconditioning and multiple time scales [23]. The
corresponding code is publicly available in the tmLQCD software suite [24, 25, 26].
The ensemble details are summarised in Table 1 including the number of configura-
tions, the number of trajectories and the HMC trajectory length. Configurations
have been saved every second trajectory after a suitable number of equilibration
trajectories.

For ensemble cA2 .09 .48 , the bare twisted mass has been tuned such that
the ratio Mπ/fπ assumes its physical value. A detailed listing of all simulation

4



parameters for all ensembles and a discussion of molecular dynamics histories is
given in appendix A.

Quantities with strange and charm quark content we probe on our Nf = 2
flavour ensembles by adding valence strange and charm quarks in the so-called
Osterwalder-Seiler (OS) discretisation [27]. The corresponding fermionic action
for a doublet of OS flavours f ∈ {s, c} with bare twisted masses aµs,c reads

SOS
f = χ̄f

[
DW (U) +m0 + iµfγ

5τ3 +
i

4
cswσ

µνFµν(U)

]
χf . (3)

Formally, the action in Eq. 3 is accompanied by a corresponding ghost action to
exactly cancel their sea contribution. For more details we refer to Ref. [27]. When
m0 is set equal to the value of mcrit of the unitary action, O(a) improvement stays
valid for arbitrary values of csw.

2.1. Lattice Scales from Gluonic Observables

We begin by discussing our determinations of various lattice scales from gluonic
observables and hence not specific to twisted mass fermions. We consider two
types of scales, namely one related to the static quark-antiquark potential r0, and
the ones related to the action density renormalised through the gradient flow [28].

The gradient flow Bµ(t, x) of gauge fields is defined in the continuum by the
flow equation

Ḃµ = DνGνµ, Bµ|t=0 = Aµ , (4)

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], Dµ = ∂µ + [Bµ, ·] , (5)

where Aµ is the fundamental gauge field, Gµν the field strength tensor and Dµ

the covariant derivative. At finite lattice spacing Eqs. 4 and 5 become

d

dt
Vt(x, µ) = −g2

0 · ∂x,µSG(Vt) · Vt(x, µ) , (6)

where Vt(x, µ) is the flow of the original gauge field U(x, µ) at flow time t, SG is
an arbitrary lattice discretisation of the gauge action and ∂x,µ denotes the su(3)-
valued differential operator with respect to Vt. For our calculations we use the
Wilson gauge action. One virtue of the gradient flow is that observables evaluated
on gauge fields at flow times t > 0 are renormalised [29]. One can, therefore,
define lattice scales by keeping a suitable renormalised gluonic observable, e.g. the
action density E [28], at constant flow time t0 fixed in physical units, through the
condition

t20〈E(t0)〉 = E0 (7)

and determine the lattice scale from the dimensionless flow time in lattice units,

t̂0 = a2t0. For convenience we will also sometimes use ŝ0 =
√
t̂0. For our

calculation we use both the standard Wilson plaquette

Epl(t) = 2
∑

p∈Px

Re tr{1− Vt(p)} , (8)

and a symmetrised clover-like discretisation for the action density Esym [28]. The
difference between the results from the two definitions can be used to estimate
the size of the effects stemming from the discretisation of the action density.
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An alternative scale w0 has been introduced in Ref. [30] and is defined through
a suitable derivative of the action density,

W (t) = t · ∂t
(
t2〈E(t)〉

)
, (9)

and the condition
W (t = w2

0) = W0 . (10)

In addition to the lattice scales from t0, s0 and w0 we also consider the scale
from the dimensionful combination t0/w0. The combination has been found to
have a very weak dependence on the quark mass [31]. Because the scales from
the gradient flow of the action density are strongly correlated, they should not
be regarded as independent. In particular, the correlation needs to be taken
into account in the combination t0/w0. Moreover, since the action density at
t ∼ t0 ∼ w2

0 usually suffers from large autocorrelation [31], the calculation of the
statistical error needs special care.

An independent scale can be calculated from the static quark-antiquark po-
tential. In this approach, a scale is defined through the force F (r) between a
static quark and antiquark separated by the distance r [32]. The condition

r2
0F (r0) = 1.65 (11)

fixes the scale r̂0 = r0/a. The static force can be determined from the static
quark-antiquark potential V (r) through the calculation of Wilson loops. More
specifically, the potential at distance r is extracted from the asymptotic time
dependence of the r × t-sized Wilson loops W (r, t),

lim
t→∞
〈W (r, t)〉 ∝ e−V (r)·t , (12)

and the force is then determined through the derivative of a suitable parametri-
sation of the potential as a function of r which we choose as

V (r) = V0 +
α

r
+ σr . (13)

In order to optimise the overlap of the Wilson loop with the ground state of the
potential, we employ five different levels of spatial APE-smearing and extract
the ground state energy from the corresponding correlation matrix by solving the
corresponding generalised eigenvalue problem [33]. Finally, we also make use of
the noise reduction proposed in Ref. [34]. Further details on the calculation of the
Wilson loops and the analysis procedure can be found in Ref. [35] and Ref. [33].

2.2. Pseudo-scalar Meson Masses and Decay Constants

We continue with a discussion of the masses and decay constants of pseudo-
scalar mesons like for instance pions, kaons, D- and Ds-mesons. We define the
pseudo-scalar interpolating operator for flavours f, f ′ ∈ {`, s, c} as

P±f,f ′(t) =
∑

x

χ̄f (x, t) iγ5 τ
± χf ′(x, t) , τ± =

τ1 ± iτ2

2
(14)

and the pseudo-scalar correlation function

Cf,f
′

PS (t) = 〈P±f,f ′(t) P
±
f,f ′(0)† 〉 . (15)
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This choice ensures that flavours f and f ′ always come with opposite values of
their corresponding twisted mass parameters. In the light sector this projects
to the charged pion states. In the kaon and D-meson case in principle also the
combinations with equal signs of light and s or c quarks are possible, because
they lead to the same meson mass values and amplitudes in the continuum limit.
However, one can show that in the case of opposite signs leading cutoff effects
in the squared pseudo-scalar meson masses are of O(mfa

2) with mf the relevant
quark mass [36, 13].

The spectral decomposition of Cf,f
′

PS (t) allows one extract the pseudo-scalar

meson mass Mf,f ′

PS from

lim
t→∞

Cf,f
′

PS (t) =
|〈0|P±f,f ′(t)|PS〉|2

2Mf,f ′

PS

(e−M
f,f′
PS t + e−M

f,f′
PS (T−t)) ,

where |PS〉 is the ground state in this channel. M `,`
PS ,M

`,s
PS and M `,c

PS correspond
to the charged pion, the kaon and the D-meson masses, respectively. Let us also
define the effective mass

Meff = − log(C(t)/C(t− 1)) (16)

for general correlation functions C(t), which can also be utilised to determine
hadron masses. The matrix element 〈0|P±f,f ′(t)|PS〉 is at maximal twist directly
related to the pseudo-scalar decay constant via

ff,f
′

PS = (µf + µf ′)
〈0|P±f,f ′(t)|PS〉

(Mf,f ′

PS )2
, (17)

which follows from the PCVC relation in Wilson twisted mass lattice QCD at
maximal twist [6]. The lattice dispersion relation for mesons can be taken into

account by exchanging (Mf,f ′

PS )2 in Eq. 17 for Mf,f ′

PS sinh(Mf,f ′

PS ). In the following,
the former will be referred to as “Continuum Definition” (CD) and the latter as
“Lattice Definition” (LD).

Due to flavour symmetry breaking in Wilson twisted mass lattice QCD, charged
and neutral pions differ in their mass values by O(a2) artifacts. To reduce this
mass splitting – and, therefore, to allow simulations at the physical point – was
one of the main design goals of the action specified in Eq. 1. The mass of the
neutral pion can be determined from the interpolating operator in the twisted
basis

P 0 =
∑

x

χ̄`(x, t)1F χ`(x, t) , (18)

where we denote with 1F the unit matrix in flavour space. The corresponding
correlation function C0

PS(t) has connected and disconnected contributions and
is, therefore, noisy. The neutral pion mass Mπ0 is then again determined from
the large Euclidean time behaviour of C0

PS(t). To be precise, at large Euclidean
times the connected contribution to C0

PS(t) is exponentially suppressed, because
the connected neutral pion is significantly heavier than the full neutral pion.
Therefore, we determine the neutral pion mass from the disconnected correlation
function only. In the following we denote the charged pion mass as Mπ, the
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full neutral one as Mπ0 and the one determined from only the connected part of
C0

PS(t) as Mπ(0,c) .
In order to extract the ground state masses and matrix elements more reliably,

we include also fuzzed [37] interpolators in our analysis. From local and fuzzed
interpolators we build a 2×2 matrix and solve the corresponding GEVP [38, 39, 40]
or use a constrained matrix fit [35]. For further details we refer to Ref. [35].

2.3. Nucleon and Delta masses

The mass of the nucleon is extracted from two-point correlators using the
standard interpolating fields, which are given for the proton by

Jp = εabc
(
uTaCγ5db

)
uc , (19)

where C = γ4γ2 denotes the charge conjugation matrix and spinor indices are
suppressed. For the ∆++ and ∆+, we use the interpolating fields

Jµ∆++ = εabc
(
uTaCγ

µub
)
uc, (20)

Jµ∆+ =
1√
3
εabc

[
2
(
uTaCγ

µdb
)
uc +

(
uTaCγ

µub
)
dc

]
. (21)

In order to improve the overlap with the ground state we employ gauge in-
variant smearing that has been demonstrated to effectively suppress excited state
contributions. Gaussian smearing [41, 42] is applied to each quark field, q(x, t)
yielding a smeared quark field, qsmear(x, t) =

∑
y F (x,y;U(t))q(y, t). The gauge

invariant smearing function is given by

F (x,y;U(t)) = (1 + αH)n(x,y;U(t)), (22)

constructed from the hopping matrix understood as a matrix in coordinate, color
and spin space,

H(x,y;U(t)) =

3∑

i=1

(
Ui(x, t)δx,y−aı̂ + U†i (x− aı̂, t)δx,y+aı̂

)
. (23)

The parameters α and n are varied so that the root mean square (r.m.s) radius
obtained using the proton interpolating field is in the range of 0.5 fm. We take
α = 4 and n = 50 chosen to produce an early plateau for the effective mass in
Eq. 16, where the appropriate correlation function is the zero-momentum two-
point correlator of the proton

Cp(t) =
1

2
Tr(1± γ4)

∑

x

〈Jp(x, t)J̄p(0, 0)〉 . (24)

In addition, we apply APE smearing [43] to the spatial links that enter the hopping
matrix in the smearing function, setting αAPE = 0.5 and nAPE = 50. APE
smearing is useful to reduce the gauge noise in the correlation functions.

The interpolating field for the ∆ has also overlap to spin-1/2 states. This
overlap can be removed with the incorporation of a spin-3/2 projector in the
definitions of the interpolating fields

J µX3/2
= Pµν3/2J

ν
X . (25)
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For non-zero momentum, Pµν3/2 is defined by [44]

Pµν3/2 = δµν − 1

3
γµγν − 1

3p2
(6 pγµpν + pµγν 6 p) . (26)

The spin-1/2 component J µX1/2
can be obtained by acting with the spin-1/2 pro-

jector Pµν1/2 = δµν − Pµν3/2 on J µX . Elements with Lorentz indices µ, ν = 0 will not

contribute. Since we are interested in the mass we take p = 0 in which case the
last term of Eq. 26 will contain δ0µ and vanish. When the spin-3/2 and spin-1/2
projectors are applied to the interpolating field operators, the resulting two-point
correlators for the spin-3/2 and 1/2 baryons acquire the form

C 3
2
(t) =

1

3
Tr[C(t)] +

1

6

3∑

i 6=j

γiγjCij(t) ,

C 1
2
(t) =

1

3
Tr[C(t)]− 1

3

3∑

i 6=j

γiγjCij(t) , (27)

where Tr[C] =
∑
i Cii [45]. When no projector is taken into account, the resulting

two-point correlator would be equal to 1
3Tr[C]. Although for the ∆ the contribu-

tion from the spin-1/2 component is suppressed [46], we nevertheless include the
spin-3/2 projector.

2.4. Anomalous Magnetic Moments

The leading-order hadronic contribution to the lepton anomalous magnetic
moments in Euclidean space-time is given by [47]

ahvp
l = α2

∫ ∞

0

dQ2

Q2
w

(
Q2

m2
l

)
ΠR(Q2) , (28)

where α is the fine structure constant, Q2 the squared Euclidean momentum
and ml the corresponding lepton mass. ΠR(Q2) is the renormalised hadronic
vacuum polarisation function, ΠR(Q2) = Π(Q2)−Π(0), obtained from the vacuum
polarisation tensor

Πµν(Q) =

∫
d4x eiQ·(x−y)〈Jem

µ (x)Jem
ν (y)〉 = (QµQν −Q2δµν)Π(Q2) , (29)

with the electromagnetic vector current Jem
µ (x). For the lattice computation

of the quark-connected diagrams contributing to ahvp
l we employ the conserved

point-split vector current for a single flavour q,

Jµ(x) =
1

2

(
q(x+ µ̂)(1 + γµ)U†µ(x)q(x)− q(x)(1− γµ)Uµ(x)q(x+ µ̂)

)
. (30)

The hadronic vacuum polarisation function defined as in Ref. [48] is fitted by
dividing the momentum range between 0 and 100 GeV2 in a low-momentum region
0 ≤ Q2 ≤ Q2

match and a high-momentum one Q2
match < Q2 ≤ Q2

max = 100 GeV2

according to

Π(Q2) = (1−Θ(Q2 −Q2
match))Πlow(Q2) + Θ(Q2 −Q2

match)Πhigh(Q2) , (31)
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where the low-momentum fit function is given by

Πlow(Q2) =

M∑

i=1

f2
i

M2
i +Q2

+

N−1∑

j=0

aj(Q
2)j , (32)

and the form of the high-momentum part is inspired by perturbation theory

Πhigh(Q2) = log(Q2)

B−1∑

k=0

bk(Q2)k +

C−1∑

l=0

cl(Q
2)l . (33)

This defines our so-called MNBC fit function, e.g. M1N2B4C1 means M = 1,
N = 2, B = 4, and C = 1 in Eqs. 32 and 33 above. Mi and fi represent the
energy levels and decay constants in the vector channel, respectively, which are
determined from corresponding two point functions, see Ref. [48]. ai, bi and ci
are free parameters to be fitted to the data. As value of Q2

match in the Heaviside
functions in Eq. 31 we have chosen 2 GeV2. Varying the value of Q2

match between
1 GeV2 and 3 GeV2 does not lead to observable differences as long as the transition
between the low- and the high-momentum part of the fit is smooth.

Since the momentum, where the weight function appearing in the definition
of ahvp

l in Eq. 28 attains its maximum, is proportional to the squared lepton mass
and the lepton masses vary over four orders of magnitude, the different lepton
anomalous magnetic moments are sensitive to very different momentum regions.
Thus, the different lepton moments provide a very valuable cross-check of the
interpolation method we used.

3. Results

In this section we present results for a number of observables determined on
the ensembles used in this study. We remark that we currently have only one value
of the lattice spacing and one volume at the physical point available. Therefore,
we cannot control the associated systematic errors, which will be addressed in the
future.

3.1. Lattice Scales from Gluonic Observables

In Table 2 we compile our results for the various gluonic scales discussed in

section 2.1. The integrated autocorrelation times τ
E(t0)
int refer to the action density

evaluated at flow time t0 and our estimates should be understood as lower bounds
for the true values.

The results for the scales from the gradient flow are based on the symmetrised
action density Esym. All errors take into account the autocorrelation times either

by blocking or by including explicitly τ
E(t0)
int which is given in units of HMC

trajectories. The error on the combination t0/w0 takes the strong correlation
between t0 and w0 into account by a correlated bootstrap analysis. The correlation
reflects itself in a very small relative statistical error of 0.3h which is less than
half the relative error of

√
t0/a2 or w0/a. What makes the scale t0/w0 even

more compelling is the fact that its quark mass dependence is very weak and in
fact negligible within the statistical errors. This has already been observed for our
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ensemble τ
E(t0)
int t0/a

2 (t0/w0)/a w0/a r0/a

cA2.09.48 37(16) 2.8037(23) 1.50964(50) 1.8572(14) 5.317(48)
cA2.30.24 15(6) 2.8022(85) 1.5134(11) 1.8517(55) 5.322(114)
cA2.60.24 12(5) 2.7404(73) 1.5105(15) 1.8142(41) 5.162(53)
cA2.60.32 23(5) 2.7367(28) 1.5111(03) 1.8110(17) 5.191(63)

Table 2: Results for the gluonic scales r0/a, t0/a
2 and w0/a as well as the inte-

grated autocorrelation time of the action density at flow time t0.

Nf = 2 twisted mass ensembles using the twisted mass Dirac operator at maximal
twist without the clover term [31] and it would be interesting to investigate this
independence in view of the χPT expressions provided in Ref. [49]. For the other
two scales t0 and w0 we observe a shift of about 2.5% from the result at aµ = 0.006
compared to the one at the physical point. From the last two rows in Table 2 we
can further draw the conclusion that finite volume effects in the gluonic lattice
scales from the gradient flow are also negligible for the volumes considered here.
Finally, an estimate of the intrinsic lattice artefacts in the scales can be obtained
by comparing the results above with the corresponding ones based on the action
density calculated from the plaquette. The difference between the two definitions
is about 10% for t0/a

2 and (t0/w0)/a while it is only about 1.5% for w0/a, but
of course these numbers do not say much about the true lattice artefacts in the
scales provided in Table 2.

The total error on r0/a results from the statistical and systematic errors added
in quadrature. The estimates of the systematic errors in r0/a due to neglected
excited state contributions, interpolating F (r) to r0 and lattice artefacts are ob-
tained as follows. The excited state contributions are estimated from the shift
in r0/a when repeating the whole analysis with all temporal fit ranges shifted by
one unit. The interpolation error is estimated from the variation of r0/a under
a change of the interpolation range. The lattice artefacts are estimated from the
shift in r0/a when the analysis is repeated using Iwasaki improved distances for
the potential instead of the naive ones. The separate statistical, excited state,
interpolation and lattice artefact errors can be read off in that order from

r0/a(cA2.09.48 ) = 5.317(08)(01)(25)(40) ,

r0/a(cA2.30.24 ) = 5.322(52)(89)(38)(32) ,

r0/a(cA2.60.24 ) = 5.162(24)(31)(08)(34) ,

r0/a(cA2.60.32 ) = 5.191(13)(22)(38)(43) .

From the comparison of the values for the two volumes available for cA2.60 we
conclude that the finite volume effects in r0/a are well within the statistical error.
However, we do observe a quark mass dependence for r0 yielding a difference of
about 2.5% between the result at aµ = 0.006 and the one at the physical point –
this is of the same size as the shift in t0 and w0.

3.2. Simulation Stability and Twisted Mass Isospin Breaking

Before moving on to present our results for masses and decay constants, we
discuss the stability of the simulations with the new action and the effects of the

11



explicit isospin symmetry breaking with twisted mass fermions. The biggest (and
almost only, see also Ref. [50]) effect of this isospin breaking in past simulations
has always been observed in the charged to neutral pion mass splitting. This
splitting is responsible for the lower bound on the charged pion mass value which
can be simulated at given value of the lattice spacing [11, 12, 13, 14]. In fact,
meta-stabilities were observed in simulations with µ < µcrit [7, 9, 10].

We do not observe signs of meta-stability with the modified action presented
in this paper for any of the simulations we performed. Moreover, in contrast to
the past, mPCAC is remarkably linear as a function of m0 around m0 −mcrit (see
Figure 6). Using this fact and the Wilson χPT analysis in Ref. [51] (see in partic-
ular Eqs. (26) and (31), leading to Figure 3 in Ref. [51]) we can actually estimate
an upper bound on the pion mass splitting implying Mπ0 > 60 MeV, with the
most likely value of Mπ0 being around 95 MeV. In addition, the splitting between
the charged and the connected neutral pion – as shown in panel 1a – is seen to
be about a factor of three smaller than measured on previous ensembles [52]. We
take this as strong indications that the insertion of the clover term has signif-
icantly reduced the isospin breaking compared to previous simulations, even at
the rather coarse lattice spacing employed here. This is in line with quenched
studies [20] which were the main motivations for proceeding with twisted mass
clover fermions at maximal twist.

A direct measurement of the full neutral pion mass is difficult, in particular
for the physical ensemble cA2.09.48, due to the noise in the disconnected con-
tributions. Therefore, we quote the values only for ensembles with µ` ≥ 0.0030
in Table 3 with the remark that the real error on aMπ0 might be larger. The
corresponding difference between the connected neutral and full neutral pion is
shown in panel 1a and this too is significantly smaller than it was in the past for
both, Nf = 2 and Nf = 2 + 1 + 1 simulations, see Ref. [52]. Finally, combining
the information from the two panels in Figure 1 extrapolated to the physical pion
point one obtains an estimate of the neutral pion mass in line with the one quoted
above, though in this case the resulting quadratic pion mass splitting value is af-
fected by an 100% relative uncertainty. A more accurate measurement of the full
neutral pion mass at the physical point is deferred to a future publication.

Let us now discuss the baryon sector. There is still an exact lattice symmetry,
namely parity combined with an interchange of u- with a d-quark, which means
for example that the proton and the neutron are degenerate as are the ∆++ and
the ∆− as well as the ∆+ and ∆0. However, a mass splitting could be seen
between the ∆++ and the ∆+. Thus, we average the mass of the ∆++ and ∆− as
well as that of the ∆+ and ∆0 and take the difference between the two averages
as the isospin breaking. We show in the left panel of Figure 2 the dimensionless
ratio

∆M =
M∆++,− −M∆+,0

M∆++,−

versus (a/r0)2 for our Nf = 2+1+1 ensembles as well as for the physical ensemble
cA2.09.48. As can be seen, the splitting is consistent with zero, indicating that
isospin breaking effects are small for the ∆ baryons.
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observable cA2.09.48 cA2.30.24 cA2.60.24 cA2.60.32

aMπ± 0.06196(09)(+12
−05) 0.1147(7)(+4

−7) 0.15941(38)(+15
−21) 0.15769(26)(+15

−14)

aMπ(0,c) 0.1191(05)(+07
−10) 0.1541(13)(+05

−05) 0.18981(61)(+21
−25) 0.18840(44)(+46

−29)

aMπ0 –† 0.09(1)? 0.11(2)? 0.13(2)?

af
(CD)

π±
0.06042(11)(+07

−03) 0.06104(43)(+15
−14) 0.06946(22)(+03

−05) 0.07043(19)(+06
−05)

af
(LD)

π±
0.06038(11)(+07

−03) 0.06090(43)(+16
−14) 0.06917(22)(+03

−05) 0.07013(19)(+06
−05)

Mπ±/f
(CD)

π±
1.0254(31)(+26

−12) 1.879(22)(+08
−17) 2.30(11)(+02

−03) 2.2395(76)(+39
−24)

Mπ±/f
(LD)

π±
1.0260(31)(+26

−12) 1.884(22)(+09
−17) 2.31(11)(+02

−03) 2.2489(77)(+38
−23)

af
(CD)
K 0.07235(9)(+2

−2) 0.07265(31)(+06
−06) 0.07774(19)(+07

−07) 0.07816(16)(+09
−07)

af
(LD
K ) 0.07173(9)(+2

−2) 0.07197(32)(+06
−05) 0.07692(19)(+07

−06) 0.07734(16)(+09
−07)

af
(CD)
D 0.1022(9)(+3

−7) 0.1087(14)(+09
−13) 0.1127(7)(+5

−7) 0.1110(10)(+05
−06)

af
(LD)
D 0.0906(8)(+2

−6) 0.0960(12)(+07
−11) 0.0994(6)(+4

−6) 0.0980(8)(+4
−5)

af
(CD)
Ds

0.1207(2)(+1
−1) 0.1220(7)(+1

−1) 0.1237(5)(+1
−2) 0.1219(5)(+1

−1)

af
(LD)
Ds

0.1058(2)(+1
−1) 0.1068(5)(+1

−1) 0.1082(4)(+1
−1) 0.1067(5)(+1

−1)

aMDs 0.9022(27)(+06
−07) 0.905(3)(+1

−1) 0.9062(27)(+02
−02) 0.9034(26)(+01

−01)

Nmeas 1457 728 1351 670

Table 3: Charged, neutral connected and full neutral pion masses as well as
charged pion decay constants in lattice units and their ratios determined on the
ensembles in this analysis. In addition, values in lattice units for a number of
mesonic quantities. The first error is statistical and the second is an estimate
of the systematic error due to the choice of fit range. †: For cA2.09.48, discon-
nected diagrams have not been computed yet. ?: For the full neutral pion, a
study of systematic effects from excited states was not possible due to the poor
signal. Nmeas represents the number of measurements for meson quantities on the
corresponding ensemble.
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Figure 1: Charged and neutral pion mass splittings (a): (M2
π± −M

2
π(0,c))/a

2 and
(b): (M2

π(0,c) −M2
π±)/2a2 as a function of M2

π± . The data is presented in units
of r0 and can be compared directly to Ref. [52].

13



0.00 0.01 0.02 0.03 0.04

-0.04

-0.02

0.00

0.02

0.04

(a/r0)2

∆
M

(a)

0 10 20 30 40

0.0

0.1

0.2

0.3

0.4

0.5

t/a

a
M

e
ff

MN

MK

Mπ

(b)

Figure 2: (a) Mass differences ∆M for the ∆ baryons as a function of (a/r0)2 for
Nf = 2 + 1 + 1 ensembles (open circles for β = 1.90, squares for β = 1.95 and
diamonds for β = 2.10) as well as for the ensemble at the physical value of the
pion mass (filled red triangle). Red symbols represent the lightest pion mass, then
blue, green and violet for increasing pion mass values for each lattice spacing. The
data points have been slightly displaced horizontally for legibility. (b) Effective
masses as a function of t/a for nucleon, kaon and pion for the physical ensemble
cA2.09.48.

3.3. Hadron Masses and Decay Constants

In this section we give results for pseudo-scalar meson masses, their decay
constants and the nucleon mass. The analysis procedure for the mesons is de-
scribed in detail in appendix B, with particular emphasis on the estimate of the
asymmetric systematic errors quoted in Tables 4 and 5. The main focus of this
analysis is on ratios of masses, ratios of decay constants and ratios of masses and
decay constants. For the nucleon mass the error is currently still too large for a
sensible analysis of systematic uncertainties.

As an example for the mass determinations, we show in the right panel of
Figure 2 the effective masses for the nucleon, the pion and the kaon, the latter with
aµs = 0.0245. In this figure, for the nucleon the effective masses are computed
from a smeared-smeared correlation function, while for the pion and kaon the
local-local correlation functions were used.

For the nucleon we clearly observe the expected exponential error growth.
This is why we do not include effective masses for t/a > 21 in the analysis. The
fit result, error and range are indicated by the solid line and shaded region. For
the pion and kaon the plateau is visible up to t = T/2, as expected. For the
two pseudo-scalar particles the indicated fit range is only an example, because we
perform a weighted average over many fit ranges, as explained in appendix B.1.
Errors on Mπ and MK are too small to be visible on this scale, but details can
be found in the appendix, Figure 9, page 31.

In the left panel of Figure 3 we show the ratio r0M
2
π/fπ – which seems to

cancel some of the lattice artefacts – as a function of (r0Mπ)2. In this plot we
compare the new Nf = 2 results presented in this paper with the Nf = 2 results
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Figure 3: (a) r0M
2
π/fπ as a function of (r0Mπ)2 comparing Nf = 2 results w/o

clover term [15] with the new results presented in this paper. The line is a NLO
χPT fit to the data as explained in the text. (b) Ratio of the nucleon mass to the
pion mass as a function of the pion mass squared in units of r0. We show data
for Nf = 2 w/o clover term, Nf = 2 + 1 + 1 and the new physical point result.

from ETMC without clover term [15]. We show the bare data with only Gasser-
Leutwyler finite size corrections [53] applied, accompanied by the experimental
value. In addition we show a fit of the NLO χPT expression [54, 55, 56]

M2
π

fπ
=

M2
π

f0

(
1 + 2

M2
π

(4πf0)2
log

M2
π

Λ2
4

)

as a function of M2
π to the data (excluding the experimental one) in units of r0,

neglecting lattice artefacts. Restricting the fit range to Mπ < 300 MeV (indicated
by the solid line), we obtain f0 = 0.122(4) GeV and ¯̀

4 ≡ logM2
π±/Λ

2
4 = 3.3(4).

The p-value of this fit is 0.49, and the inclusion of a chiral log is clearly favoured
over a linear fit. If one fits Mπ/fπ instead, the results do not change, only
the p-value gets significantly worse, indicating residual finite volume and lattice
artefacts. These fit results are completely in line with the results of Ref. [57].

We remark that due to the smaller pion mass splitting with clover term in the
action we expect also the finite size corrections to be smaller than for the ensembles
without clover term. Moreover, at the physical point finite size corrections are
expected to be small, because they are proportional to M2

π . Hence, corrections
discussed in Refs. [58, 59] are likely to give only tiny contributions.

The mass ratio of the nucleon to the pion for our Nf = 2 and Nf = 2 + 1 + 1
ensembles is shown in the right panel of Figure 3 as a function of the pion mass
squared in units of r0. The nucleon mass for the physical point has been measured
on 96 independent configurations with 16 sources per configuration. The masses
for the Nf = 2 ensembles without clover term have been taken from Ref. [60], the
ones for the Nf = 2 + 1 + 1 ensembles from Ref. [45]. The values for r0/a where
taken from Ref. [61] for Nf = 2 + 1 + 1 and from Ref. [62] for Nf = 2 w/o clover
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term. As can be seen, the lattice results follow a universal curve indicating that
cut-off effects are small on this ratio. Moreover, differences between Nf = 2 and
Nf = 2 + 1 + 1 are smaller than the statistical uncertainties.

For quantities involving strange and charm quarks the valence quark mass
needs to be tuned. This tuning was performed by matching the phenomenologi-
cal values of the pseudo-scalar meson mass ratios MK/Mπ and MD/Mπ through
linear interpolations of the lattice data, resulting in the bare quark masses and
their ratios given in Table 4. The details of this procedure are discussed in ap-
pendix B.2.

aµl aµs aµc

0.0009 0.02485(7)(+4
−3) 0.3075(15)(+14

−14)

µs/µl µc/µl µc/µs

27.61(8)(+4
−4) 342.1(1.8)(+1.6

−1.6) 12.39(8)(+6
−9)

Table 4: Bare quark masses in lattice units and their ratios as determined by
matching MK/Mπ and MD/Mπ to their phenomenological values. For µc/µs,
the asymmetric error is derived from considering the maximum spread of the
asymmetric errors on the dividend and divisor while for µs/µl and µc/µl it comes
from MK/Mπ and MD/Mπ directly.

Ratios of meson masses and decay constants resulting from this analysis are
given in Table 5. It is clear from Mπ/fπ that the ensemble cA2.09.48 is at the
physical pion mass within errors. For the other quantities agreement with phe-
nomenological determinations and continuum limit lattice averages is quite good.
As an estimate of the residual O(a2) artefacts, one can compare the difference
between the two definitions (see Eq. 17 and below) of the decay constant in quan-
tities involving fD and fDs

. It seems that these effects should be no larger than
about 15%, indicating that a well-behaved continuum limit should certainly be
achievable. Finally, one can compare to ETM determinations from Ref. [63] for
Nf = 2 twisted mass fermions in the infinite volume and continuum limit which
gave fK/fπ = 1.210(18) and fDs/fD = 1.24(3), in excellent agreement with the
present analysis.

3.4. Estimate of the Lattice Spacing

In this section we provide estimates of the lattice spacing in physical units. In
order to simplify the discussion we concentrate on the results at the physical point.
From the discussion in section 3.1 it is clear that the finite volume corrections in
the gluonic scales are negligible, as well as the effects from possibly being slightly
off the physical point. The lattice values we use for

√
t0/a2, (t0/w0)/a, w0/a and

r0/a are the ones given in the first row of table 2.
First we determine the lattice spacing from the gluonic scales

√
t0/a2, w0/a

and r0/a. For the latter we refer to the summary of values given in Ref. [66] for
Nf = 2 QCD. There are three determinations by the CLS collaboration [67, 68]
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observable CD LD PDG [64] FLAG [65]

Mπ/fπ 1.0254(31)(+26
−12)† 1.0262(30)(+33

−18)† 1.0337(28)? 1.035(11)?

MK/fK 3.1404(55)(+13
−11)† 3.1675(56)(+13

−11)† 3.164(14)? 3.162(18)?

MD/fD 8.395(64)(+41
−16)† 9.466(71)(+41

−17)† 9.11(22) –

MDs/fDs 7.474(21)(+03
−03) 8.531(28)(+04

−03) 7.64(14) –

MDs
/Mπ 14.564(54)(+03

−03)† – 14.603(33)? –

fK/fπ 1.1976(21)(+06
−07) 1.1881(21)(+06

−07) 1.1979(57) 1.200(15)

fD/fπ 1.694(14)(+04
−10) 1.503(12)(+04

−07) 1.569(38) 1.61(3)

fDs
/fπ 1.998(6)(+1

−1) 1.751(5)(+1
−1) 1.975(35) 1.91(3)

fD/fK 1.413(12)(+02
−03) 1.264(10)(+02

−02) 1.309(33) 1.34(2)

fDs/fD 1.206(23)(+04
−04) 1.190(22)(+04

−04) 1.258(38) 1.19(2)

Table 5: Ratios of pseudo-scalar meson observables calculated on the gauge en-
semble cA2.09.48 at the physical pion mass interpolated to the strange and charm
valence quark masses from the matching procedure described in appendix B.2. We
give results with CD and LD definitions (see Eq. 17) of the decay constants sep-
arately, where applicable. All starred reference ratios involving Mπ or MK use
the isospin symmetric values of these quantities taken from Ref. [65]. Daggered
quantities are not independent and given for reference only. “FLAG” refers to
Nf = 2 + 1 averages.

which yield rCLS
0 = 0.4877(77) fm from a weighted average assuming 100% cor-

relation between the determinations. The correlations are taken into account
by following the procedure by Schmelling [69]. Combined with the values from
the ALPHA collaboration [70] and the QCDSF collaboration [71] we obtain the
weighted average r0 = 0.4945(57) fm. In addition there are also three determina-
tions from our earlier Nf = 2 simulations using the tree-level Symanzik improved
gauge action and twisted mass fermions without the clover term [63, 15, 60]. A
weighted average assuming 100% correlation yields rETMC

0 = 0.443(20) fm which
exposes a sizable tension between the ETMC determinations and the ones by
other collaborations. Nevertheless, we can also average the results from all col-
laborations and obtain the weighted average r0 = 0.4907(86) fm where the error
is stretched by

√
χ2/dof = 1.6 in order to account for the incompatibility of the

results. This is the value we use for our determination of the lattice spacing
from r0. For the physical values of

√
t0, w0 we refer to Ref. [72] which so far

provides the only Nf = 2 determinations. The values are
√
t0 = 0.1535(12) fm

and w0 = 0.1757(13) fm.
In Table 6 we collect the physical values for the gluonic scales as discussed

above together with the resulting lattice spacings calculated from our determi-
nations at the physical point. In the last line we provide the weighted average
of the lattice spacings together with the statistical error. For the final error we
also need to take correlations between our gluonic lattice data for

√
t0/a and

w0/a into account and include an estimate of the systematic error due to lattice
artefacts and finite size effects. Our procedure to do so is explained in the fol-
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[fm] a [fm]√
t0 0.1535(12) 0.0917(07)
w0 0.1757(13) 0.0946(07)
r0 0.4907(86) 0.0923(18)

avg. 0.0931(10)

Table 6: Lattice spacing in physical units determined from gluonic quantities at
the physical point using the input from Ref. [72] given in the second row. The
last line contains the weighted average of the three determinations.

a [fm]
√
t0 [fm] (t0/w0) [fm] w0 [fm] r0 [fm]

MN 0.0925(8) 0.1547(14) 0.1395(13) 0.1716(16) 0.4913(63)
Mπ 0.0906(2) 0.1517(04) 0.1367(03) 0.1682(04) 0.4816(45)
fπ 0.0914(2) 0.1531(03) 0.1380(03) 0.1698(04) 0.4861(45)
fK 0.0914(1) 0.1530(02) 0.1380(02) 0.1697(02) 0.4860(44)

avg. 0.0913(2) 0.1528(03) 0.1378(03) 0.1695(04) 0.4856(40)

Table 7: Lattice spacing and gluonic lattice scales in physical units determined
from hadronic quantities at the physical point. The last line contains the weighted
average of the four determinations. As input we have used Mπ = 134.98 MeV,
fπ = 130.4(2) MeV, fK = 156.2(7) MeV and the average proton-neutron mass
MN = 938.9 MeV, .

lowing. The weighted average of the lattice spacings yields a = 0.0931(05) fm
with a χ2/dof = 4.7. We assign the large value of χ2/dof to lattice artefacts,
since for the gluonic quantities this is the only systematic error which we do not
control in our simulation at the physical point. In order to account for this in the
error estimate, we stretch the error by the scaling factor

√
χ2/dof increasing the

error from 0.0005 to 0.0010 fm. Finally, in order to account for the uncertainty
due to lattice artefacts we quote a systematic error covering the spread of the
determinations. In this way we obtain

agluonic = 0.0931(10)(15) fm . (34)

In addition to the gluonic scales in Table 2 we can make use of hadronic
quantities, namely the nucleon mass MN , the pion mass Mπ and the pion and kaon

decay constants fπ and fK , respectively. The lattice values afπ = af
(CD)
π± , aMπ =

aMπ± and afK = af
(CD)
K can be found in Table 3 on page 13. For the nucleon

mass we use the value aMN = 0.440(4). The physical values we use are taken
from the 2014 edition of the PDG [64]. Fixing in turn each one of the hadronic
quantities to their physical value yields a physical value for the lattice spacing
and for the gluonic scales. The results are tabulated in Table 7. In the last line
we provide the weighted average together with the statistical error for the lattice
spacing and the gluonic lattice scales determined from the hadronic quantities.
For the final error we also need to take correlations between our hadronic lattice
data into account and include an estimate of the systematic error due to lattice
artefacts and finite size effects. Our procedure to do so is the same as above
leading to Eq. 34.
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fK fD fDs MDs

ETM’09 [MeV] 158.1(2.4) 197(9) 244(8) –
ETM’15 [MeV] 155.0(1.9) 207.4(3.8) 247.2(4.1) –

PDG [MeV] 156.2(7) 204.6(5.0) 257.5(4.6) 1968.50(32)
FLAG [MeV] 156.3(9) 209.2(3.3) 248.6(2.7) –

Table 8: Reference values for the dimensional quantities calcuated in this study.
FLAG refers to Nf = 2 + 1 averages from Ref. [65], ETM’09 refers to Ref. [63]
(Nf = 2) and ETM’15 to Ref. [73] (Nf = 2 + 1 + 1).

A weighted average of the lattice spacings yields a = 0.0913(1) fm with
χ2/dof = 4.6. The large value of χ2/dof could simply be a lattice artefact or
due to the fact that our lattice data are not corrected for finite volume effects.
This is again accounted for by stretching the error by the scaling factor

√
χ2/dof,

which increases the error from 0.0001 to 0.0002 fm. Finally, in order to account
for the uncertainty due to lattice artefacts and finite volume effects we quote a
systematic error covering the spread of the determinations. In this way we obtain

ahadronic = 0.0913(2)(11) fm . (35)

This lattice spacing is nicely consistent with the one determined from the gluonic
quantities in Eq. 34 if the systematic error is taken into account. The weighted
average of the two lattice spacings gives

a = 0.0914(3)(15) fm , (36)

where we stretched the statistical error by
√
χ2/dof = 1.77 and use the larger of

the two estimates for the systematic error.

3.5. Physical Scales

In order to determine estimates of the gluonic scales
√
t0, t0/w0, w0 and r0

at the physical point in physical units we proceed the same way as above. The
weighted averages for

√
t0, t0/w0, w0 have a χ2/dof ∼ 4.5 and their errors are

hence stretched by the scaling factor
√
χ2/dof. In contrast, the weighted average

for r0 has χ2/dof = 0.6 and no scaling factor needs to be applied to the error. On
the other hand, our determinations of aMπ, afπ and afK are certainly correlated
and we do not expect a reduction of the error when averaging the three results.
Assuming the data to be 100% correlated, the error increases from 0.0024 to
0.0040. In addition to the statistical error we again also quote a systematic error
covering the spread of the determinations in order to account for the uncertainty
due to lattice artefacts and/or finite volume effects. Eventually we obtain using
ahadronic

√
t0 = 0.1528(03)(19) fm ,

t0/w0 = 0.1378(03)(17) fm ,

w0 = 0.1695(04)(19) fm ,

r0 = 0.4856(40)(57) fm .
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Finally, using the estimate of the lattice spacing from gluonic scales, hadronic
quantities can be determined in physical units from their values listed in Table 3.
fK , fD, fDs

and MDs
take the values,

f
(CD)
K = 153.35(0.18)(+0.04

−0.04)(2.96) MeV ,

f
(CD)
D = 216.71(1.99)(+0.59

−1.47)(4.19) MeV ,

f
(CD)
Ds

= 255.85(0.49)(+0.10
−0.14)(4.95) MeV ,

MDs
= 1912.3(5.73)(+0.13

−0.15)(37.0) MeV ,

where the first error is statistical, the second is from the fit range ambiguity (see
appendix) and the last one comes from the estimate of the lattice spacing. They
can be compared to pheomenological and lattice continuum limit results listed in
Table 8. The agreement to both FLAG and PDG is good when systematic errors
are taken into account. Likewise, the agreement to previous ETM continuum and
chirally extrapolated results for Nf = 2 [63] and Nf = 2 + 1 + 1 [73] is good. We
observe clearly that systematic errors are significantly bigger than the statistical
ones. Similarly, again using the estimate of the lattice spacing from gluonic scales,
the nucleon mass can be given in physical units

MN = 933(8)(18) MeV,

where the first error is statistical and the second stems from the estimate of the
lattice spacing. The agreement to the physical value of MN is excellent.

As an interesting experiment (assuming the absence of strange and charm
quark effects and lattice artefacts in MN ), we can combine the Nf = 2 + 1 + 1
data for MN at heavier than physical light quark masses with the new data at the
physical point. This procedure will allow to correct for the small missmatch in
the physical pion mass value appearing when MN is used to set the scale. To this
end we consider SU(2) chiral perturbation theory (χPT) and the well-established
O(p3) result of the nucleon mass dependence on the pion mass [74, 75], given by

MN = M0
N − 4c1M

2
π −

3g2
A

32πf2
π

M3
π , (37)

where M0
N (the nucleon mass in the chiral limit) and c1 are in general treated

as fit parameters. In our fits, we fix the value of c1 by constraining the fit to go
through the physical point. The lattice spacings aβ=1.90, aβ=1.95 and aβ=2.10 for
the Nf = 2 + 1 + 1 ensembles as well as the lattice spacing aphys of our physical
ensemble are considered as additional independent fit parameters. For the fit we
find χ2/dof = 1.578 with dof = 12, corresponding to a p-value of 0.09. This
procedure yields aphys = 0.093(1) fm, which is in agreement with the estimate
of the lattice spacing in Eq. 36, but shows some tension with the lattice spacing
determined from other hadronic quantities as discussed above. We remark that
the lattice spacing determined from the nucleon mass is in very good agreement
with the gluonic one, Eq. 34. In general, the discrepancy between the lattice
spacing values determined from MN and fπ is significantly reduced with the new
action compared to the previous ETM Nf = 2 and Nf = 2 + 1 + 1 simulations.
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3.6. Quark Masses

One advantage of having an ensemble with physical pion mass value available
is the fact that the bare twisted mass can directly be related to the renormalised
average up/down quark mass using appropriate renormalisation factors. The rele-
vant renormalisation factor in twisted mass lattice QCD is ZP , since mR

q = µ`/ZP .
We have determined ZP using the RI’-MOM scheme employing the momentum
source technique [76]. Details are discussed in Refs. [77, 78]. The value of ZP at
2 GeV in the MS scheme reads

ZP = 0.501(8)(26)(12) .

The first error is statistical, the second systematic stemming from the extrap-
olation to (ap)2 = 0 and the perturbative subtraction of leading lattice arte-
facts [79, 80] and the third from the conversion of RI’ to MS at 2 GeV.

With aµ` = 0.0009, the ZP -value given above and the lattice spacing value
from Eq. 36 we obtain a value for the average up/down quark mass as follows

mMS
ud (2 GeV) = 3.88(6)(21)(10) MeV , (38)

where the first error is statistical, the second from the combined systematic errors
of the lattice scale and ZP , and the third from the conversion of RI’-MOM to MS
at 2 GeV.

Using the ratios µs/µ` and µc/µ` from Table 4 we can then directly compute
also estimates for the strange and charm quark masses

mMS
s (2 GeV) = 107(2)(6)(3) MeV ,

mMS
c (2 GeV) = 1.33(3)(7)(3) GeV .

(39)

Both, mud and ms compare well to the quark mass values determined on the
Nf = 2 ETMC ensembles without clover term [81]. We can also compare mud

and ms to the Nf = 2 determinations from Refs. [62, 82, 83, 1, 84] averaged by
FLAG [85] to

mud = 3.6(2) MeV , ms = 101(3) MeV ,

which are both in agreement to our determinations. The values presented above
should be taken with some care, because we did not take the continuum and
thermodynamic limits. An alternative determination of ZP [86, 87] might shed
light on the fact that all three quark masses determined here have consistently
larger values than what can be found in the literature, while the quark mass ratios
show good agreement.

3.7. Lepton Anomalous Magnetic Moments

In this section, we discuss the leading-order light quark hadronic contribution
to the anomalous magnetic moments of the electron, the muon and the τ leptons,
aud
e , aud

µ and aud
τ , respectively. For this we have performed exactly the same

analysis as described in Ref. [88] for the anomalous magnetic moment of the
muon, only changing the lepton masses in the numerical integration to the ones
of the electron and τ lepton. We will compare the results obtained at the physical
point with the ones that were obtained from ensembles at unphysically large pion
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Figure 4: Comparison of the chiral extrapolation of the light quark contributions
to the three lepton anomalous magnetic moments obtained from Nf = 2 + 1 + 1
simulations to the values obtained with the standard definition Eq. 28 at the phys-
ical value of the pion mass (black square). The dark green diamonds correspond
to a = 0.086fm and L = 2.8fm and the circles to a = 0.078fm, the violet one
stands for L = 1.9fm, the blue ones for L = 2.5fm, and the pink for L = 3.7fm.
The orange triangle shows the value obtained for a = 0.061fm and L = 1.9fm and
the light green triangle denotes a = 0.061fm and L = 2.9fm.

masses and which were then extrapolated to the physical point. In Figure 4 we
show the data for the three aud as a function of M2

π comparing the results of
Refs. [88, 89] with the new result at the physical point.

For our results at unphysically large pion masses we have used the same re-
definition of the vacuum polarisation function as in Refs. [90, 91, 88, 89]

ahvp

l
= α2

∫ ∞

0

dQ2

Q2
w

(
Q2

H2

H2
phys

m2
l

)
ΠR(Q2) , (40)

with the hadronic scale H = MV , the lowest lying vector meson state, and ml

the lepton mass. H = Hphys = 1 corresponds to the standard definition given in
Eq. 28.

When determining the lepton anomalous magnetic moments the chiral ex-
trapolation to the physical pion mass can lead to a severe systematic error. This
uncertainty is avoided when using ensembles at the physical point [92]. We have
computed the light quark contributions to the lepton anomalous magnetic mo-
ments with the standard definition Eq. 28 on 800 configurations of the new physi-
cal ensemble. We find full agreement with our previous results for the light quark
contribution originating from a chiral extrapolation of our Nf = 2 as well as
Nf = 2+1+1 results. The extrapolations of the Nf = 2+1+1 data are depicted
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in Figure 4 as dashed lines with shaded error band, whereas the extrapolated
values – also including the previous Nf = 2 values from Ref. [90] – are given in
Table 9.

physical point extr. Nf = 2 extr. Nf = 2 + 1 + 1

ahvp
e · 1012 1.45(11) 1.51(04) 1.50(03)
ahvp
µ · 108 5.52(39) 5.72(16) 5.67(11)
ahvp
τ · 106 2.65(07) 2.65(02) 2.66(02)

Table 9: Comparison of the values for ahvp
e , ahvp

µ , and ahvp
τ obtained at the

physical point using the standard definition Eq. 28 with the results of the linear
extrapolations from our improved definition Eq. 40 on the Nf = 2 and Nf =
2 + 1 + 1 ETMC ensembles without clover term.

We made a particular effort to quantify the systematic uncertainties which
arise in our calculation for the lepton anomalous magnetic moments for the data
not at the physical point. These systematic effects originate from the chiral ex-
trapolation, the continuum limit, the fit range for the vector meson mass and the
form of the fit function. These investigations are described in detail in Ref. [89].
We also compared the approach of using Padé fits as proposed in Ref. [93] with
our MNBC fits. As discussed in Ref. [94] we could not find a clear advantage
of using the Padé approach which led us therefore to stay with our standard fit
function.

4. Summary and Discussion

In this paper we have presented results from a first simulation with two flavours
of Wilson twisted mass fermions at maximal twist directly at the physical value
of the pion mass. Such simulations were obstructed by the large neutral to charge
pion mass splittign with the action we used in the past. However, by introducing
the clover term in the action, this splitting could be significantly reduced allowing,
thus, calculations at or close to physical quark mass values. As we have demon-
strated in this paper, with the clover parameter close to its non-perturbative
value, simulations at the physical point are stable even at a lattice spacing value
of 0.09 fm with no signs of meta-stabilities. Thus, the action discussed here can
be used also for smaller values of the lattice spacing such that eventually a con-
tinuum limit extrapolation of lattice results can be performed and we consider
the present work as a first step in this direction.

It must be noted that with the addition of the clover term the arguments
for automatic O(a) improvement at maximal twist for twisted mass lattice QCD
hold at any value of the clover parameter. Therefore, as in the past, only a single
parameter, the Wilson quark mass, needs to be tuned to achieve the automatic
O(a) improvement. As a consequence, with the action used here all physical
quantities considered in the broad research program of our collaboration scale
with a rate of O(a2) to the continuum limit and no additional operator specific
improvement coefficients are needed. We regard this fact as a major advantage of
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Figure 5: Ratios of lattice results and phenomenological values of the quantities
in the legend with lattice decay constants computed via the continuum definition.
For dimensional quantities, the inner error bar combines the statistical and sys-
tematic errors in quadrature while the outer error bar stems from the estimate of
the lattice spacing from gluonic scales. The red bands show the phenomenological
uncertainty on Qphys separately (the respective experimental errors on MN and
MDs

are too small to be visible). The dotted and dashed lines indicate per-mille
and per-cent deviations from 1.0 respectively.
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the maximally twisted mass approach to compute physical quantities from lattice
QCD.

On the ensemble at the physical pion mass we have computed phenomeno-
logically interesting observables including fK , fD, fDs

, quark masses and ratios
thereof, the nucleon mass and anomalous magnetic moments of leptons. Where
possible, we compare to previous results obtained with twisted mass fermions
at unphysically large pion mass values with Nf = 2 and Nf = 2 + 1 + 1 dy-
namical quark flavours without clover term. The physical ensemble with clover
term largely confirms the chiral extrapolations performed with ETMC ensembles
without clover term and, thus, increases the confidence in these results. Note,
however, that we currently have only one value of the lattice spacing available
with the new action and only one volume at the physical point. This means that
we cannot (directly) control finite volume and finite lattice spacing effects and,
hence, the systematic errors might be larger than our current estimates. For the
lattice artefacts we have an indirect way to estimate them using ensembles gener-
ated with the new action but with larger than physical pion mass values. These
can be compared to ETMC’s Nf = 2 simulations without clover term indicating
that with the clover term in the action O(a2) lattice artefacts are small. How-
ever, not unexpectedly, lattice artefacts become visible for quantities in the heavy
quark sector.

We have determined the lattice spacing using gluonic and hadronic observ-
ables. We found remarkably good agreement between gluonic and hadronic de-
terminations of the lattice spacing after averaging over different scale setting quan-
tities. When comparing the single scale setting quantities like e.g. fπ or Mπ, the
corresponding differences are not covered by the statistical errors. It is likely that
lattice artefacts are mainly responsible for these differences and we account for
them through the quoted systematic error.

With the lattice spacing value available, we can predict other, independent
quantities. Figure 5 shows a comparison between the values of various quantitiesQ
determined in the present analysis and their phenomenological counterparts in the
form Qlat/Qphys. It is notable that for most quantities the current analysis gives
error estimates that are of the same order or smaller than their phenomenological
ones. We observe – with the exception of a few D and Ds meson related quantities
– agreement within errors between lattice and phenomenological determinations.
Lattice artefacts are probably responsible for the few deviations, and in the case
of D-meson quantities cut-off effects below 10% can be considered as tolerably
small.

A number of conclusions can be drawn with regards to the effect of simulations
at the physical point on systematic errors. The most striking feature is certainly
the potential precision that quark mass ratios can be determined with, as indicated
by the rather small errors given in Table 4. Together with the lattice spacing
estimates and the computation of the renormalisation constant this allows us to
determine the average up/down quark mass and the strange and charm quark
masses without any chiral extrapolation. The agreement with other Nf = 2
determinations is good.

In the baryon sector, there is little guidance available from effective theories
for the quark mass extrapolation of quantities like gA of the nucleon. Here the cal-
culations directly at the physical point are, therefore, very helpful to give insights
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on the source of the discrepancies of specific observables between lattice QCD and
phenomenological results, see Ref. [78]. For lepton anomalous magnetic moments,
simulations at the physical value of the light quark mass confirm the correctness of
the lattice redefinition of the Q2 dependence of the weight function within errors.
Here, an open problem is the allowed strong decay of the ρ meson, which has to
be taken into account in the computations of the light quark contribution to the
hadronic vacuum polarisation and thus the lepton moments al, l ∈ {e, µ, τ} and
the electroweak couplings.

Currently we are generating an ensemble with the new action and physical
pion mass value at the same lattice spacing value but with L/a = 64. This
ensemble, once completed, will allow us to address finite volume effects for the
quantities discussed here and the nucleon observables presented in [78] in the near
future. Finally, the strange and charm quark quenching effects will be elucidated
by currently ongoing simulations using Nf = 2 + 1 + 1 flavours of quarks at the
physical point.
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Appendix A Simulation Details

A.1 Tuning to Maximal Twist
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Figure 6: amPCAC as a function of 1/2κ for the tuning of ensembles cA2.09.48
with κ = (2am0 + 8)−1.

For the purpose of automatic O(a)-improvement an estimate of the critical
value of the hopping parameter can be determined from Ref. [22] with a rela-
tively large error. This value was refined through two simulations and a linear
interpolation in 1/2κ as shown in Figure 6. In past simulations employing twisted
mass fermions without a clover term, it was seen that the linear behaviour shown
in Figure 6 breaks down around the critical κ value, making interpolations dif-
ficult. In addition, a much steeper slope than shown here induced the necessity
of very fine adjustments to the hopping parameter, which in turn required long
tuning runs to control the statistical error on the individual measurements. As
was discussed in Ref. [35] and shown in subsequent simulation results, it is suf-
ficient to tune the renormalised PCAC quark mass to be no larger than 10%
of the renormalised twisted quark mass to ensure O(a) improvement in prac-
tice. For the cA2.09.48 ensemble, the bare PCAC quark mass takes a value of
amPCAC ≈ 8(1) · 10−5, thus fulfilling the condition.

A.2 Molecular Dynamics Histories

As discussed in section 1, in past simulations, lattice artefacts rendered simu-
lations without a clover term meta-stable as the pion mass was lowered towards its
physical value. As can be seen in Figure 7, the twisted mass clover action results in
very stable molecular dynamics histories at the physical average up/down quark
mass without any signs of meta-stability in the plaquette or the PCAC quark
mass despite the relatively coarse lattice spacing of > 0.09 fm. As expected, the
topological charge in the Wilson flow definition and the energy density at flow
time t0 as defined in section 2.1 are sampled well and show integrated autocorre-
lation times well below one hundredth of the total simulation time. A complete
listing of various algorithmic observables from the different ensembles is provided
in Table 10 together with their autocorrelation times. For ensemble cA2.30.24, it
is notable that there are significant fluctuations in the number of CG iterations,
probably an indication of an insufficient volume for the simulated pion mass.

A feature of the simulation which deserves a special mention is the behaviour
of the energy violation which we denote δH. It seems that compared to twisted
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observable cA2.09.48 cA2.30.24 cA2.60.24 cA2.60.32

Pacc 0.726(6) 0.910(7) 0.771(5) 0.874(4)
〈P 〉 0.603526(4) 0.603562(9) 0.603535(5) 0.603533(2)

〈mPCAC〉 0.00008(1) -0.00037(7) -0.00026(3) -0.00021(1)
〈δH〉 0.37(3) 0.047(12) 0.177(8) 0.044(3)

〈exp(−δH)〉 1.00(1) 1.01(1) 1.003(7) 1.003(3)

〈N (CG)
iter 〉 33235(3) 10720(67) 5288(2) 5674(1)

τint{P} 15(5) 3.2(8) 3.8(7) 2.9(5)
τint{mPCAC} 15(5) 1.6(4) 1.4(2) 1.2(1)

τint{δH} 0.50(4) 0.50(2) 0.53(3) 0.50(1)
τint{exp(−δH)} 0.49(2) 0.48(2) 0.49(1) 0.50(1)

τint{N (CG)
iter } 0.83(9) 17(9) 1.8(2) 4.2(8)

Table 10: Expectation values and autocorrelation times of various observables

for ensembles used in this study. N
(CG)
iter refers to the number of CG iterations

in the heat-bath and acceptance steps of the mass preconditioning determinant
ratio which has the target light quark mass in the numerator. Pacc refers to the
acceptance rate which should be used to scale the autocorrelation times which are
given in units of trajectories.

mass simulations without the clover term, large deviations from 0 occur quite
frequently but they do not seem to affect the stability of the algorithm, do not
seem to affect any observables and are in line with what has been observed by
other collaborations [84, 97]. In addition, as can be seen in the bottom-most
panels of Figure 7, both the energy density E(t0) and the topological charge are
well sampled.

A.3 Simulation Parameters

The simulation parameters for the ensembles used in this work are listed in
Table 11, including the mass preconditioning and the number of integration steps
on the various timescales. In order to determine the origin of the sizeable δH
fluctuations observed in the molecular dynamics history of cA2.09.48, short sim-
ulations cA2x.09.48, cA2y.09.48 and cA2z.09.48 with more integration steps and
more timescales were performed. As shown in Figure 8 it was found that this
significantly reduces the frequency of large energy violations at the price of in-
creased simulation cost. It should be noted that none of the observables that we
determined on ensemble cA2z.09.48 showed any deviation within errors compared
to those on ensemble cA2.09.48.

Appendix B Pseudo-scalar Meson Analysis Details

In this section we discuss the methods adopted for the analysis of pseudo-scalar
meson correlators to produce the results of section 3.3. First we introduce a some-
what novel technique for quantifying the uncertainty due to the choice of fit range
for correlation functions. Then we discuss different methods for choosing the bare
valence strange and charm quark masses and how this choice affects the central
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Figure 7: Molecular dynamics histories of various quantities on ensemble
cA2.09.48.
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ensemble Nt aρHB
t log10

(
r2a
r2
f

)
cA2.60.24 {1, 2, 2, 7} {−, 0.060, 0.01100.0600,

0.0000
0.0110} {−,−22

−14,
−22
−14,

−22
−14}

cA2.60.32 {1, 1, 1, 1, 14} {−, 0.800, 0.08000.8000,
0.0080
0.0800,

0.0000
0.0080} {−,−22

−14,
−22
−14,

−22
−14,

−22
−14}

cA2.30.24 {1, 2, 2, 10} {−, 0.040, 0.00800.0400,
0.0000
0.0080} {−,−22

−14,
−22
−14,

−22
−14}

cA2.09.48 {1, 1, 2, 13} {−, 0.030, 0.00500.0300,
[
0.0013
0.0050,

0.0000
0.0013

]
} {−,−22

−14,
−22
−14,

[
−22
−14,

−22
−14

]
}

cA2x.09.48 {1, 1, 2, 17} {−, 0.030, 0.00500.0300,
[
0.0013
0.0050,

0.0000
0.0013

]
} {−,−22

−14,
−22
−14,

[
−22
−14,

−22
−14

]
}

cA2y.09.48 {1, 1, 1, 1, 13} {−, 0.250, 0.02500.2500,
0.0025
0.0250,

0.0000
0.0025} {−,−22

−14,
−22
−14,

−22
−14,

−22
−14}

cA2z.09.48 {1, 1, 1, 1, 17} {−, 0.250, 0.02500.2500,
0.0025
0.0250,

0.0000
0.0025} {−,−22

−14,
−22
−14,

−22
−14,

−22
−14}

Table 11: Simulation parameters for the ensembles used in this work and three
additional test ensembles. Nt: number of integration steps of second order min-
imal norm integrator on the various time-scales. aρHB

t : Hasenbusch mass pre-
conditioning parameters as in Ref. [98] but with multiple determinant ratios.
r2
a(r2

f ): squared relative residual stopping criterion in the acceptance step (force
calculation) in the conjugate gradients solver. Square brackets indicate that more
than one monomial is placed on the same timescale.

values and uncertainties on the physical quantities extracted from the analysis.
Finally we show some examples of linear interpolations of the various quantities
presented in this analysis and discuss remaining uncertainties such as discretisa-
tion artefacts and finite-volume corrections which have not been accounted for
yet.

For each gauge configuration, the quark propagators for all masses were com-
puted from the same stochastic (Z/2) time-slice sources and the correlation func-
tions were constructed using the one-end trick. A single time-slice source, chosen
at random, with full spin-dilution was used for each gauge configuration and
local-local, fuzzed-local and fuzzed-fuzzed correlation functions were computed to
improve the extraction of the ground state mass in a constrained 2× 2 matrix fit.
To profit from correlations in the data, the complete analysis was carried out in a
stationary blocked bootstrap [99] framework with block lengths tuned to accom-
modate the short autocorrelations in the data as determined from the Gamma
method. All observables were bootstrapped with the same bootstrap samples,
preserving all correlations.

Firstly, positive correlation reduces the statistical error in many expressions
built from data, in particular in ratios. Secondly, preserving correlation at all
levels in the analysis allows one to provide realistic error estimates on our final
results.

B.1 Fit Range Dependence and Reliable Central Values

The choice of fit range for a correlation function is quite ambiguous as excited
state contamination as well as random oscillations in the data can move the ap-
parent onset of the plateau in effective masses by multiple time-slices. In addition,
correlations between the time-slices can cause data at several successive source
sink separations to rise and fall together, delaying or expediting the onset of an
apparent plateau. This kind of correlation can be seen in the effective masses of
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Figure 9: Effective masses from the pion (left) and kaon (right) correlation func-
tions for local-local (black), local-fuzzed (red) and fuzzed-fuzzed (cyan) quark
propagator contractions. Oscillations and correlations between time-slices can
clearly be seen here, affecting the apparent locations of the onset of the respective
plateaus. The three lines indicate one possible choice of fit range and the resulting
effective mass and statistical errors from a constant fit taking into account the
full variance-covariance matrix.

the pion and kaon shown in Figure 9, for example. Both of these effects have been
studied to a limited extent as early as in Ref. [100], but even modern analyses
often only take into account variations of the fit ranges by a few time-slices in
either direction, concluding that the resulting effect is covered by the statistical
error. Although this is true in most cases, we see that for certain quantities the
spread is the level of the statistical error and we believe it should be quoted as
an additional source of uncertainty.

We observe further, especially with the twisted mass clover action, that round-
ing errors in the computation of heavy quark propagators can induce unwanted
systematic effects in the extracted masses and amplitudes. We observe this in the
case of the D and Ds mesons, for which the effective masses show a deviation
from the plateau for large source-sink separations which significantly exceeds the
statistical error. In addition, statistical errors for large source sink separations
can bias the fit result. When fits make use of the full inverse variance-covariance
matrix, enhanced decorrelation at large source sink separations can increase the
relative contribution of these data to the correlated χ2 function.

In order to quantify the ensuing arbitrariness, we have attempted a somewhat
novel analysis technique which takes into account all possible (reasonable) fit
ranges, also used already in Ref. [101]. We make a somewhat arbitrary choice of
about 0.5 fm for the minimum length of a fit range corresponding to 6 successive
time-slices ((∆t)min) and define “reasonable” to mean that all fits are required to
converge on all fit ranges on all bootstrap samples in the analysis. A full listing
of the minimum and maximum source-sink separations for the various quantities
in this analysis is given in Table 13 on page 39. In the case of the kaon on the
cA2.09.48 ensemble at the physical pion mass, for example, this results in 561
fits with a distribution of fitted masses as shown in the left panel of Figure 10.
Subsequently the fits are weighted according to their p-values and statistical errors
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Figure 10: (left) Distribution of masses extracted from constrained matrix fit
to kaon correlation function at aµs = 0.0245 on the set of all “reasonable” fit
ranges as described in the body of the text. (right) The same distribution after
weighting according to Eq. 41 with the weighted median indicated by the thick
vertical line and 34.27 percentiles around the median shown by the shaded area.

∆ by the weight

w =

(
1

∆
(1− 2 · |p− 0.5|)

)2

, (41)

resulting in the distribution in the right panel of Figure 10.
The same approach is taken for ratios, with the difference that only those fit

ranges are considered which have been analysed for both the dividend and the
divisor and the weight is taken to be

w =

(
1

∆12

)2

(1− 2 · |p1 − 0.5|) (1− 2 · |p2 − 0.5|) . (42)

The median of this weighted distribution is taken as the central value and
its statistical error is computed on the bootstrap samples. The estimate of the
systematic error is given by the 34.27 percentiles around the median. As an
example, the median and systematic error in the determination of aMK at aµs =
0.0245 are shown in Figure 10 and can be taken as an indication of what can be
expected on the final results.

B.2 Tuning the Strange and Charm Valence Quark Masses

In Ref. [92], the bare strange and charm valence quark masses were fixed using
the Nf = 2 light-strange quark mass ratio from Ref. [85] and the strange-charm
quark mass ratio given in Ref. [102], which we will call the FLAG and HPQCD
quark mass ratios respectively. Although this is valid because we are working
at the physical point, the quark mass ratios in the literature have significant
uncertainties and simply using the central values to set the valence masses does
not propagate the resulting uncertainty to observables.

In order to obtain a reliable error estimate and to allow comparison with
an analysis performed using quark mass ratios, the method in the present work
consists of computing all quantities at four values each of the bare strange and
charm quark masses on the ensemble with the physical light quark mass, resulting
in up to 16 different combinations for observables depending on both as listed in
Table 13 on page 39. At heavier than physical light quark mass, we use a total

32



0.022 0.024 0.026 0.028

3.
60

3.
65

3.
70

3.
75

aµs

M
K
/M

π

Data
µs from FLAG ratio
µs from MK/fK
µs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

13
.0

13
.5

14
.0

14
.5

15
.0

aµc

M
D
/M

π

Data
µc from FLAG·HPQCD ratios
µc = HPQCD ratio ·µs from MK/fK
µc = HPQCD ratio ·µs from MK/Mπ

µc from MD/Mπ

Figure 11: Linear interpolation in the strange and charm quark masses and match-
ing with the phenomenological values of the ratios MK/Mπ and MD/Mπ. The
other points are given for reference and the strange quark mass from MK/fK is
determined using the “continuum definition” of afK with the phenomenological
value indicated by the green band.

of 36 combinations of strange and charm masses in order to cover a larger range
and to make more reliable interpolations.

We then perform a linear fit in the valence quark mass dependence and can
subsequently interpolate to match the bare quark masses determined from the
quark mass ratios above with the error properly propagated. Alternatively, we
can fix the strange and charm quark masses by interpolating to match the phe-
nomenological values of some ratios of mesonic quantities. Here, we do this for
MK/Mπ and MD/Mπ as shown in Figure 11, resulting in much smaller errors on
the strange and charm quark masses for the rest of the analysis than by using
quark mass ratios and propagating their uncertainties or by matching MK/fK .
The bare quark masses determined from the different methods are given in the
Table 12, where the first error is statistical the second error stems from the anal-
ysis described above in appendix B.1. All the final results are quoted for aµs and
aµc as determined from the matching to the phenomenological values of MK/Mπ

and MD/Mπ with the other values given for comparison only.
It is interesting to note that for the strange quark mass the usage of the lattice

definition of the decay constant in the ratio MK/fK results in good agreement
with the value of aµs as given by the Nf = 2 FLAG strange to light quark mass
ratio and the one determined from MK/Mπ. In the charm sector, usage of the
lattice definition in MD/fD results in a charm quark mass which agrees with
those determined via the HPQCD charm to strange quark mass ratio and the
three strange quark masses discussed above. The statistical and systematic errors
on aµc derived from the lattice definition of MD/fD are quite small because in
this definition the charm quark mass dependence of afD is suppressed, giving
MD/fD a substantial slope. The large value of aµc and the associated uncertain-
ties derived from the continuum definition of MD/fD is just a reflection of how
flat the behaviour of this ratio becomes as a function of aµc, which can be seen as
an indication for discretisation errors. The charm quark mass determined from
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aµs aµc

FLAG/HPQCD 0.0247(4) 0.293(6)?

MK/f
(CD)
K 0.02536(10)(+05

−05) 0.3005(42)(+06
−06)

?

MK/f
(LD)
K 0.02480(10)(+04

−04) 0.2938(41)(+04
−05)

?

MK/Mπ 0.02485(7)(+4
−3) 0.2940(40)(+04

−04)
?

MD/f
(CD)
D – 0.3629(66)(+70

−96)

MD/f
(LD)
D – 0.2902(26)(+09

−17)

MD/Mπ – 0.3075(15)(+14
−14)

Table 12: Bare quark masses resulting from matching the the quantity in the
leftmost column. The labels (LD) and (CD) correspond to fK (fD) extracted
according to the two definitions given in Eq. (17). The starred aµc are derived
from the corresponding aµs and the HPQCD charm to strange ratio. The bold
values are the strange and charm quark masses used for the final results of the
analysis.

MD/Mπ has a statistical uncertainty lower by a factor of two or three compared
to the other estimates but disagrees with the other values. In addition to the
possibly sizeable lattice artefacts in MD, finite size corrections on Mπ are likely
to be at the few percent level which means that without the necessary corrections,
the current uncertainties are likely to be strongly underestimated.

In principle, at the cost of losing predictivity for fK and fD, estimates for the
physical strange and charm quark masses could be derived from weighted averages
of some or all of the lattice determinations given in Table 12. The spread of the
different values could then be taken as a first estimate of systematic uncertainties
due to discretisation and finite volume artefacts. In addition, similar to what was
done in section 3.4 for the lattice spacing, determinations from the baryon sector
could be used to increase confidence in the quark mass estimates.

B.3 Interpolations

After reliable central values and statistical errors have been determined for
the data as described above, we perform independent linear interpolations in
all quantities under study towards the values of the strange and charm quark
masses listed in Table 12. In principle other approaches could be used for the
interpolations, such as using the squares of the quantities or forms inspired by
chiral perturbation theory, but for reasons of simplicity and consistency all the
data is interpolated linearly. This seems to be very well justified by the shortness
of the interpolations and the shape of the quark mass dependences. Here, only
the statistical error is used as a weight for the linear fits because of the difficulties
involved in defining a sum of squared residuals with asymmetric weights. The
statistical uncertainties in the values of the quark masses are propagated by Taylor
expansion, contributing to the total statistical error of the interpolation results in
quadrature. Illustrations of a representative set of these interpolations are shown
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Figure 12: Quark mass interpolation of the ratio fDs/fD on the physical pion
mass ensemble cA2.09.48 with the phenomenological value indicated by the green
band.

in Figure 13 with the continuum definition of the decay constant shown in the
left panels and the lattice counterpart in the right panels.

A number of features seen in Figure 13 deserve discussion. The first one we
would like to mention is the fact that for many of the quantities that were analysed,
the quark mass dependence is so weak that compatible values are obtained over
the whole range of strange and charm quark masses. Consequently the error is
also largely independent of which set of strange and charm quark masses is used,
as exemplified by the quark mass interpolation of the ratio fDs/fD in Figure 12.
This is of course not unexpected for decay constants and it shows that for many
quantities, slight mis-tuning of the valence strange and charm quark masses does
not lead to significant biases when working at the physical light quark mass.
On the other hand, for a quantity like MDs

/fDs
which has a noticeable slope

in both the strange and charm mass, which interpolation point is chosen has a
strong effect on the central value as well as the errors, which differ by up to a
factor of 4 as shown in the bottom-most panels of Figure 13. The next notable
feature concerns the (unsurprisingly) rather large effect of the definition of the
decay constant on ratios involving fD and fDs

, except when both are involved
simultaneously. Clearly, the two definitions agree in the continuum limit and
these differences show that discretisation effects could be at the level of 15% to
20% for quantities involving charm quarks. Finally, quantities involving Mπ and
fπ are expected to be subject to finite volume corrections at the few-percent level
which will be accounted for in a future study with finer lattice spacings and larger
volumes.

To propagate the systematic error to the quark mass estimates and the results
of interpolations, we generate 5000 random samples of the data points involved
in a given interpolation by randomly drawing from the various fit ranges for each
combination of quark masses. In order to obtain a reliable estimate of the resulting
error, rather than sampling uniformly, we use the weights from Eqs. 41 and 42
as relative sampling probabilities, such that data with large weights occurs more
frequently in the set. The effect of this choice can be rather profound as we show

35



0.022 0.024 0.026 0.028

1.
18

1.
19

1.
20

1.
21

1.
22

aµs

f K
/f
π

Data
µs from FLAG ratio
µs from MK/fK
µs from MK/Mπ

0.022 0.024 0.026 0.028

1.
18

1.
19

1.
20

1.
21

1.
22

aµs

f K
/f
π

Data
µs from FLAG ratio
µs from MK/fK
µs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

1.
5

1.
6

1.
7

1.
8

aµc

f D
/f
π

Data
µc from FLAG·HPQCD ratios
µc = HPQCD ratio ·µs from MK/fK
µc = HPQCD ratio ·µs from MK/Mπ

µc from MD/Mπ

0.26 0.28 0.30 0.32 0.34

1.
5

1.
6

1.
7

1.
8

aµc

f D
/f
π

Data
µc from FLAG·HPQCD ratios
µc = HPQCD ratio ·µs from MK/fK
µc = HPQCD ratio ·µs from MK/Mπ

µc from MD/Mπ

0.26 0.28 0.30 0.32 0.34

7.
0

7.
5

8.
0

8
.5

9.
0

9.
5

aµc

M
D

s
/f
D

s

Data
µs and µc from FLAG/HPQCD ratios
µc = HPQCD ratio ·µs from MK/fK
µc = HPQCD ratio ·µs from MK/Mπ

µc from MD/Mπ, µs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

7.
0

7.
5

8.
0

8
.5

9.
0

9.
5

aµc

M
D

s
/f
D

s

Data
µs and µc from FLAG/HPQCD ratios
µc = HPQCD ratio ·µs from MK/fK
µc = HPQCD ratio ·µs from MK/Mπ

µc from MD/Mπ, µs from MK/Mπ

Figure 13: Representative choice of interpolations of various quantities involving
decay constants using the continuum definition (left) and the lattice definition
(right) with the phenomenological value indicated by the green band.
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Figure 14: Propagation of the systematic error due to fit range ambiguity to the
interpolation of afD. (left): Distribution resulting from uniform sampling of data
from different fit ranges. (right): Distribution resulting from sampling which
accounts for the weights of different data points as relative sampling probabilities.
The median and the 34.27 percentiles around the median, our estimate of the
systematic error, are indicated by the thick vertical line and the grey rectangle.

in Figure 14 for afD, where the left panel corresponds to the distribution when
the data from different fit ranges is sampled uniformly and the right panel shows
the distribution when the weights are taken into account. It must be noted that
the weighted distribution corresponds to what is observed for afD at the four
charm quark masses, justifying the approach.

A summary of the statistical and systematic errors is given in Figure 15 for
the 24 quantities from this analysis, normalised by their respective central values
and including those that are technically not independent. It is clear that for most
quantities the choice of fit range has a very limited effect on the total uncertainty
and past analyses were probably well-justified in using only one or a few fit ranges,
despite what appears to be a significant ambiguity involved in the choice of fit
range. For the pion mass and decay constant, however, the systematic error is on
the order of the statistical error and must be taken into account.

Quantities involving the D meson show significant spread which might increase
even further as the volume is enlarged and more fit ranges become available.
On the one hand this is caused by the lightness of the pions which limit the
signal to noise ratio for large source-sink separations. On the other hand, we
observe deviations in the effective mass from a plateau which exceed the statistical
error and these are likely due to increased round-off errors in the computation
of heavy quark propagators at coarse lattice spacings and with the clover term
present. Because this limits the maximum source-sink separations that can be
taken into account, we would like to perform future studies with more robust
solvers, possibly with a number of iterations in quadruple precision, in order to
significantly extend the source-sink separation for which a reasonable plateau can
be observed as suggested in Ref. [103]. Finally we would like to note that for many
quantities, per-mille level uncertainties are not reachable in this kind of analysis
and a procedure involving (heavy meson) Wilson chiral perturbation theory may
be necessary, similar to the ones used in Refs. [104] and [105].
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Figure 15: Error budget for various mesonic observables on ensemble cA2.09.48
relative to their central values. Those involving strange and charm quarks have
been interpolated to physical strange and charm quark masses as described in
appendix B.3. The inner error bar is statistical and includes contributions from
the fitting procedure as well as the error propagated from the uncertainty in the
quark mass estimates. The outer error bar indicates the systematic error due
to the ambiguity in the choice of fit range. The dotted and dashed lines show
the per-mille and percent error boundaries respectively. The errors are shown
cumulatively and would add in quadrature if combined.
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L/a bare valence quark masses

24, 32
aµl 0.003 0.006
aµs 0.0224 0.0231 0.0238 0.0245 0.0252 0.0259
aµc 0.2586 0.2704 0.2822 0.294 0.3058 0.3176

48
aµl 0.0009
aµs 0.0231 0.0238 0.0245 0.0252
aµc 0.2704 0.2822 0.294 0.3058

L/a fit range minimum and maximum time-slices

π± π(0,c)? π0 K D Ds (∆t)min

24 [9, 23] [9, 23] [7, 15] [9, 23] [12, 23] [18, 23] 6
32 [9, 28] [9, 28] [7, 15] [9, 28] [13, 27] [15, 27] 6
48 [9, 47] [11, 45] –† [9, 47] [11, 35] [11, 35] 6

Table 13: Bare valence quark mass parameters and fit range restrictions for the
computation of pseudo-scalar meson correlators used in this analysis. ? : (0, c)
refers to the connected part of the neutral pion; †: disconnected contributions
have not yet been computed on the physical point ensemble
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