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Methods for Higgs boson production at N3LO∗
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Abstract

We discuss methods for the calculation of the total partonic Higgs boson production cross section via gluon
fusion and the result for the contribution that stems from two quarks of different flavor in the initial state.
Our calculation is exact in the Higgs boson mass and the partonic center-of-mass energy. The result is
expressed in terms of iterated integrals, some of which are Harmonic Polylogarithms, whereas others are
new iterated integrals. We comment on the methods relevant for the reduction to scalar integrals and new
types of function that appear in the final result.
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1. Introduction

After the Higgs boson discovery [1, 2], the precise
determination of its properties is one of the mayor
goals of run II of the LHC. The expected experi-
mental precision in the upcoming years has to be
matched by theory predictions. Since the dominant
production mechanism for Higgs boson production
at the LHC is gluon fusion, QCD corrections are
the most sizable ones. In fact, the combined next-
to-leading order (NLO) and next-to-next-to-leading
order (NNLO) corrections amount to the same size
as the leading order (LO) cross section. The NNLO
prediction still has to be assigned an uncertainty of
about 15% which is to one part due to the par-
ton densities and to another part due to unknown
higher orders in the perturbation series of the par-
tonic quantity. Therefore, our interest lies in the
computation of the partonic cross section to next-
to-next-to-next-to-leading order (N3LO).

Effective field theory

Gluon fusion is a process induced by quark loops
and that is dominated by the top quark. Hence,
it is reasonable to work within an effective field
theory (EFT) where the top quark has been inte-
grated out. In addition to the ordinary five-flavor
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Figure 1: Contraction of the top quark loop corresponds to
the transition from the full to the effective theory or to the
limit Mt → ∞. Thick straight lines represent the top quark,
dashed lines the Higgs boson, dots its effective coupling and
curly lines gluons. Also, we indicated all relevant scales.

Lagrangian of QCD, one has to consider the inter-
action term

LY,eff = −H

v
C1O1, O1 =

1

4
Ga

µνGa,µν , (1)

where H denotes the Higgs field, v its vacuum ex-
pectation value and C1 the matching coefficient be-
tween full and effective theory. The effective cou-
pling operator O1 is composed of the gluon field
strength tensor Gµν .

The transition from the full to the effective theory
can be depicted diagrammatically, see Fig. 1.

The advantage of working within the EFT setup
is the smaller number of diagrams and their reduced
complexity. There are less loops and less scales that
have to be considered simultaneously, as the depen-
dence on the top quark mass Mt is encoded com-
pletely in C1. EFT diagrams therefore depend only
on a single dimensionless variable x = m2

H/s which
is the squared ratio of the Higgs boson mass mH

and the partonic center-of-mass energy
√

s.
For Higgs boson production to N3LO, the finite
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Figure 2: Illustration of the optical theorem up NNLO, see
the main text for details. Apart from the notation in Fig. 1,
wiggly lines represent cuts.

matching coefficient C1 is needed to four-loop or-
der, see Refs. [3–5]. The renormalization of C1 is
described in Ref. [6] and can be expressed via the
renormalization constant of αs which is also itself
needed to three-loop order, see Refs. [7, 8].

Optical theorem and Cutkosky rules

The computation of higher order corrections to
the cross section of a process requires taking into
account virtual (additional loops) and real (addi-
tional final state particles) contributions. Instead
of considering different phase spaces for the final
states, one can employ the optical theorem which
relates the total cross section to the imaginary part
of the forward scattering amplitude. Symbolically:

σ(i → f) ∼
∑

f

∫

dΠf |M(i → f)|2

∼ Im M(i → i) , (2)

where σ denotes the total cross section for an ini-
tal state i to result in a collection of final states f
and M stands for the matrix element for a transi-
tion between states (which are identical for forward
scattering). The Cutkosky rules in turn relate dif-
ferent contributions to the imaginary part of an am-
plitude to specific sets of propagators which are set
on-shell and thereby “cut”.

Figure 2 exemplifies this technique up to NNLO.
The left-hand side shows the phase space integrals
over squared production amplitudes for the Higgs
boson with up to two additional partons. The right-
hand side shows the corresponding interference di-
agrams where the cut-line is equivalent to a phase
space. Note, the last two diagrams are different
cuts of the same amplitude. This demonstrates the
validity just to consider all relevant cuts of the for-
ward scattering amplitude.

Working in forward scattering kinematics simpli-
fies the calculation. The optical theorem allows for
common treatment of loop and phase space inte-
grals. Thus, the calculation of imaginary parts has
to be performed only for a relatively small set of
“master integrals” (the integrals remaining after ap-
plication of integration-by-parts identities with La-
porta’s algorithm). This approach was first used in
Ref. [9] for the NNLO computation of Higgs pro-
duction. On the other hand, within this method
more diagrams with more loops have to be com-
puted and one has only access to a total inclusive
cross section, at least in its naïve application.

Existing results

Let us give a listing of available results related to
the Higgs boson production cross section. In Fig. 3
we give sample diagrams for the contributions from
different cuts at N3LO.

• The LO cross section (with exact dependence
on Mt) was computed already in the seventies,
see Refs. [10–13].

• NLO corrections (also exact in Mt) are avail-
able for almost twenty years, see Refs. [14, 15].

• NNLO corrections were first calculated within
the EFT in Refs. [9, 16, 17]. Note that in
Ref. [16] the soft expansion x → 1 to high or-
ders was used where already the third order
proofed to be valid within an error of O(1%).

• In Refs. [18–23] the expansion in m2
H/M2

t was
performed to assess the error within the EFT
framework which turned out to be of O(1%).

• Combining three-loop splitting functions [24,
25] with partonic cross sections to NNLO ex-
panded to higher orders in the dimensional reg-
ulator [23, 26], convolution integrals and in-
frared counterterms could be presented in [27–
29]. In Ref. [28] the N3LO scale variation was
constructed and found to be of O(2% − 8%).
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Figure 3: Different types of cut contributions at N3LO. The
notation is as in Fig. 2, “V” stands for virtual and “R” for
real in order to abbreviate contributions.

• The three-loop gluon form factor was com-
puted in Refs. [30, 31] which gives the VV2

and V3 contributions.

• For VRV and V2R contributions (both exact
in x), see Refs. [32, 33] and Refs. [34, 35], re-
spectively.

• For VR2 and R3 contributions (both as expan-
sion in x → 1), see Refs. [36–38] and Ref. [39],
respectively. In Refs. [38] more than thirty
terms in the soft expansion were reached for
the total cross section which is sufficient for
phenomenological applications.

• In Refs. [40, 41] the qq′-channel was considered
and exact results could be obtained for its VR2

and R3 contributions.

2. Calculational techniques

Generally, there is a steep raise in complexity
when going to higher loop orders in a specific pro-
cess. Here, there is only 1 diagram at LO, 50 at
NLO, 2 946 at NNLO and 174 938 at N3LO. The
corresponding integrals are classified in “topolo-
gies” or Feynman integral families which are then
subject to a reduction algorithm resulting in a set of
master integrals. For the real corrections to Higgs
boson production 1 topology is needed at NLO, 11
at NNLO and more than 100 at N3LO. The number
of master integrals is 1 at NLO, 20 at NNLO and
more than 100 at N3LO.

Our computational setup is highly automated.
First, we use QGRAF [43] to generate and a private

filter [44] to select all relevant Feynman diagrams.
We perform two independent calculations, using ei-
ther the program exp [45, 46] or reg to map di-
agrams to topologies. The reduction to scalar in-
tegrals is then performed with FORM [47, 48]. The
reduction to master integrals is done with rows (an
in-house Laporta algorithm) and FIRE [49]. The
reduction tables can reach a size of up to ten giga-
bytes.

The private code TopoID [44, 50] is used to pro-
vide input in an automatic fashion for the afore-
mentioned steps. Based on the appearing diagrams,
we define a topology as set of propagators allow-
ing for permutations or contractions of propaga-
tors and (linear) transformations of loop momenta.
TopoID can also handle topologies with linearly de-
pendent propagators which are needed to map all
appearing diagrams. For the partial fractioning re-
lations and the decomposition into topologies with
linearly independent propagtors FORM code is gener-
ated. Since the momentum space representation of
topologies is ambiguous, we employ the Feynman
representation in a unique form to identify dupli-
cate topologies and also to find a minimal basis
of master integrals in the very end. This form of
the Feynman representation is also used to obtain
all possible symmetries of topologies which is an
enormous aid in the Laporta reduction. Moreover,
TopoID is able to handle cuts of Feynman diagrams
in the sense that all possible ways are detected to
set propagators on-shell giving rise to an imagi-
nary part. For details we refer the interesed reader
to [44].

The master integrals are calculated using
the technique of canonical differential equa-
tions (DEQs), see e.g. Ref. [42]. In general, one
obtains a coupled system of linear first-order DEQs
for the master integrals. This system is generated
by applying the derivative in a kinematic invariant
or mass on the integrand of a master integral and
using the reduction procedure subsequently. We re-
frain from giving details on the computation of the
soft limit x → 1 which is used as boundary condi-
tion and refer instead to Ref. [41].

In the last few years Henn [42], advertised a spe-
cific form of DEQs which can be reached via a basis
transformation of the master integrals and cast in
the form

d

dx
mi(x, ǫ) = ǫ Aij(x) mj(x, ǫ) , (3)

where mi is a vector of master integrals, Aij the fun-
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damental matrix of the DEQs, x a scaleless variable
and d = 4−2 ǫ the number of spacetime dimensions.
The appeal of this form lies in the factorization of
the dependence on the dimensional regulator ǫ and
the kinematics. In this form the system can be
solved order by order in ǫ and one can immediately
read off the so-called “alphabet”, the set of integra-
tion kernels, of the iterated integrals that pose the
solutions.

Up to NNLO all integrals can be represented as
Harmonic Polylogarithms (HPLs), denoted H~w(x),
which are defined as follows:

H~w(x) =

∫ x

0

dx′ fw1
(x′) H~wn−1

(x′) ,

f0(x) =
1

x
, f1(x) =

1

1 − x
, f−1(x) =

1

1 + x
,

(4)

where ~w = (w1, ~wn−1) is the vector of n weights
and the fi are the integration kernels. On N3LO,
as we will see in Section 3, HPLs are not sufficient
anymore and the class of functions needs to be ex-
tended.

3. The qq
′-channel

There are 220 diagrams to be calculated in the
qq′-channel which we chose to classify into 17
topologies, see Fig. 4. Some of the integrals of only
one of these topologies (the third in the first row if
Fig. 4) could not be solved in terms of HPLs only.
In that case the extended alphabet compared to
Eq. (4) yields also the “letters”

f−4 =
1

1 + 4 x
, fs4 =

1

x

(

1√
1 + 4 x

− 1

)

. (5)

Note that all integrals giving solutions of this kind
can be traced back to the common graph in Fig. 5.
We refrain from giving any explicit results here, in-
stead we refer to Refs. [41, 51].

4. Conclusion

We described the computation of a contribution
to the partonic cross section for Higgs boson pro-
duction via gluon fusion to N3LO. That is, the sub-
process initiated by two quarks of different flavour.
We obtained analytic results with exact dependence
on the Higgs boson mass and the partonic center-
of-mass energy. New types of iterated integrals be-
yond Harmonic Polylogarithms appear in the final
expression.

Figure 4: The 17 topologies used for the calculation of the
qq′-channel. Plain lines are massless and double lines mas-
sive. Arrows indicate the planar flow of external momenta
and gray wiggly lines the three- and four-particle cuts.

Figure 5: Common graph of all integrals that give rise to
functions beyond HPLs.

This work represents an important step towards
an exact result for all N3LO contributions to Higgs
boson production. To date only an expansion
around the soft limit is available from the liter-
ature [36–38, 52] which is, however, sufficient for
phenomenology. Performing an expansion of our
result around the threshold, we find for leading log-
arithms agreement with the results from Ref. [52].
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