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Abstract

We calculate analytically the flavor non-singlet O(a?) massive Wilson coefficients for the
inclusive neutral current non-singlet structure functions ng 7 (z,Q?) and 915 (z, Q?) and
charged current non-singlet structure functions F} (2?)7? (r,Q?), at general virtualities Q2 in
the deep-inelastic region. Numerical results are preéented. We illustrate the transition from
low to large virtualities for these observables, which may be contrasted to basic assumptions
made in the so-called variable flavor number scheme. We also derive the corresponding
results for the Adler sum rule, the unpolarized and polarized Bjorken sum rules and the
Gross-Llewellyn Smith sum rule. There are no logarithmic corrections at large scales Q?
and the effects of the power corrections due to the heavy quark mass are of the size of the
known O(a?) corrections in the case of the sum rules. The complete charm and bottom
corrections are compared to the approach using asymptotic representations in the region
Q?* > mib. We also study the target mass corrections to the above sum rules.
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1 Introduction

Deep-inelastic scattering provides one of the most direct methods to measure the strong coupling
constant from precision data on the scaling violations of the nucleon structure functions [1,2].
The present accuracy of these data also allows to measure the mass of the charm, cf. [3], and
bottom quarks due to the heavy flavor contributions. The Wilson coefficients are known to
2-loop order in semi-analytic form [4-6] in the tagged-flavor case?, i.e. for the subset in which
the hadronic final state contains at least one heavy quark, having been produced in the hard
scattering process. The corresponding reduced cross section does not correspond to the notion
of structure functions, since those are purely inclusive quantities and terms containing massless
final states contribute as well. The heavy flavor contribution to inclusive deep-inelastic structure
functions are described by five Wilson coefficients in the case of pure photon exchange [8-10].
In the asymptotic case Q% > m?, where Q?> = —¢? denotes the virtuality of the exchanged
gauge boson and m the mass of the heavy quark, analytic expressions for the Wilson coefficients
have been calculated. A series of Mellin moments has been computed to 3-loop order in [10].
All logarithmic 3-loop corrections [11] as well as all Ng terms are known [12,13]. Four out of
five Wilson coefficients contributing to the unpolarized deep inelastic structure functions have
been calculated to 3-loop order for general values of Mellin N [12,14,15] in the asymptotic
region Q% > m?. In the flavor non-singlet case also the asymptotic 3-loop contributions to the
combinations of the polarized structure functions gf(%) [16] and the unpolarized charged current

structure function xF3” + 23" have been computed [17].

In the present paper, we calculate the complete 2-loop non-singlet heavy flavor corrections
to the deep inelastic charged current structure functions Fy’% 5 and the neutral current structure
functions Fi% and gi” and a series of sum rules in the deep inelastic region, @Q*2m?. In the
asymptotic case Q% > m? the corresponding Wilson coefficients have been calculated in [11,16—
18] to O(a?) and in [14,16,17] to O(a?). Here the massless Wilson coefficients [19,20] to O(a?)
enter. In the tagged flavor case the corresponding corrections to O(a?) have been calculated
in [8,21] and in the asymptotic charged current case in [22]3.

The associated sum rules are the Adler sum rule [23], the unpolarized Bjorken sum rule [24],
the polarized Bjorken sum rule [25], and the Gross—Llewellyn Smith sum rule [26]. A central
observation in the inclusive case is that there are no logarithmic corrections for the associated
sum rules at large Q?, which are present in the tagged flavor case [27,28], however. The complete
massive O(a?) corrections to the structure functions improves the accuracy towards lower values
of Q2. In the case of the sum rules, the corresponding contributions are found to be of the order
of the known massless 4-loop corrections. We will also consider the target mass corrections to
the sum rules, since they are relevant in the region of low Q2.

The paper is organized as follows. In Section 2 we present a general outline on the massive
Wilson coefficients for the structure functions which will be considered. The O(a?) corrections
to the polarized non-singlet neutral current structure functions g™ and ¢ NS are derived

in detail in Section 3 as an example. In Section 4 we discuss the corrections to the neutral

current structure functions Ff(g;\l 5 and in Section 5 those to the non-singlet charged current
structure functions Fll' (2121’ NS Detailed numerical results are presented for all the seven non-

singlet structure functions for experimental use. The heavy flavor O(a?) corrections and target
mass corrections to the associated sum rules are computed in Section 6, comparing massless and
massive effects and numerical results are presented for the target mass corrections. Section 7

2For a precise implementation in Mellin space, see [7].
3This result has been corrected in Ref. [18].



contains the conclusions. The Appendices contain technical parts of the calculation.

2 The Wilson Coefficients

We consider the heavy flavor corrections to deep-inelastic structure functions, which are inclusive
observables, i.e. the hadronic final state in the corresponding differential scattering cross sections
is summed over completely. Under this condition the Kinoshita-Lee-Nauenberg theorem [29,30]
is valid and no infrared singularities, which have to be eventually cured by arbitrary cuts, are
present [10]. As we consider deep-inelastic scattering, both the scales Q% and W? = Q?*(1 —
x)/x + M? have to be large enough, to probe the interior of the nucleon. Here M denotes the
nucleon mass, * = Q*/(Sy) is the Bjorken variable, with S = (p + )%, and y = p.q/p.l the
inelasticity, and p and [ the incoming nucleon and lepton 4-momenta. One usually demands
W2 Q*z4 GeV?. To fully avoid the region of higher twist terms, a cut W?2212.5 GeV? [31] is
necessary.
The structure functions are then given by

E-(:z:, Q2) — Fvimassless<$’ QQ) 4 Fvimassive(x7 622)7 (21)

where F/massless(z: (92) is the fully massless part of the structure function and Fmessive(y (Q?)
contains contributions due to a heavy quark mass m,. or m,. Both quantities are inclusive.
Fmassive(: (9%) does not correspond to the so-called tagged flavor case, demanding a heavy quark
in the hadronic final state.* In the asymptotic case Q? > m?, the Wilson coefficients contributing
to (2.1) were calculated for the non-singlet neutral current structure functions gi's and F15 and
the non-singlet charged current structure function Fy° [16-18] to O(a3) (NNLO).

The unpolarized and polarized neutral current non-singlet structure functions in the case of
pure photon exchange are given by

NS 2 2 2 NS Q2 NS Q2 m?
FP(z,Q7) = Tizek [CFi,q (%NRF) + L, ($7NF+ LE,F)}

k=1
® [fulw, 12 Ne) + felo s, Ne)] (2.2)
Nr. 2 2 .2
1 Q Q* m
gZNS(ZE’ QQ) - 5 Z 62 [Aogvsq (w’ NF’ F) + ALngq (‘T7 Np + 17 ﬁ: F)]
k=1

®[Afk(xvlﬂvNF)+Afl§(‘raﬂ2aNF)] ) (23)

with ¢ = 1,2. Here Np is the number of active flavors, e, the electric charge of the massless
quarks, and r; = %, ro = I C’?S and AC}I\IS denote the corresponding massless Wilson coefficients
and LqNS and ALqNS the massive ones, fy ) and A fy ) are the unpolarized (polarized) quark and
anti-quark distribution functions, and u? is the factorization scale. Here we follow again the
convention used in [9], (2.26). The notion ‘Np + 1" in (A)L}® means that the Wilson coefficient
is calculated for Ny massless and one massive flavor.®

For the unpolarized charged current structure functions Fj o 3(x, QQ) a second Wilson coeffi-
HZZ+7W_’NS

cient contributes, which in the case of charm describes the flavor excitation

dsin®(6,) + scos?(6.) — ¢ (2.4)

4The request to tag heavy quarks in the final state usually leads to jet-cone definitions and thus to additional
unphysical logarithmic contributions. In the past the idea to rather compute tagged heavy flavor structure
functions up to next-to-leading order (NLO) was motivated by experimental measurements [4,8, 21, 22].

°From 3-loop order onward there are also genuine contributions due to two different heavy quarks [32].



in addition to or without heavy flavor pair production and possible virtual heavy quark correc-
tions. This transition contributes already at tree level. Here 6. denotes the Cabibbo-angle [33].
The complete corrections to O(ay) have been calculated in [34,35]%. At O(a?) the asymptotic
heavy flavor corrections have been calculated in [18] and for 2 F3” + xF3” to O(a?) in Ref. [17].
Beyond the terms of O(a;) we will use the results in the asymptotic case for the numerical
illustrations given below. Note that the latter contributions are Cabibbo suppressed

o [Veal*(d — ). (2.5)

Given the present experimental accuracy, this approximation is justified, leaving the full calcu-
lation for the future.

For the transition (2.4) the momentum fraction of the massless quarks at tree-level changes,
as well known, to

2
z:x<1+%)5§, (2.6)

because the corresponding Wilson coefficient is a d-distribution. This is different at higher orders,
where the Wilson coefficients are given by extended distributions, [34,35]. In the asymptotic

region Q% > m? the following representations hold for the Wilson coefficients LYVTWINS and
WH—W= NS
Z?q :

AB)NS

W+—-W~— NS 2),NS WH—-W— NS
I (Np+1) = [qufQ + @ (NF)}Mg @2

2,9

Af;gSC(l)W+ w- NS(N —|—1)—|—C ), WH—w— NS(NF)] L (2.7)

HY NN £1) = 140,00 (N 1)
2),NS 2),W+—-W~— NS
+a? [qu?Q +0? (Nr + 1)]

2 NS wt—-w-— ,NS
AP L AR, (Np+1)

2,9

3
+a;

+OEWTTIVENS (N g 1) (2.8)

= LTSN+ )+ OV (NR), i=1,2,3, (2.9)

with ay(p?) = as(u®)/(4m), AYro the massive non-singlet operator matrix element (OME) [10,

14] and C?;;_W_’NS(N r) the massless Wilson coefficient up to 3-loop order. Here we use the
convention

f(NF) = f(Nr+1) = f(Nr) . (2.10)

In the following sections we calculate the Wilson coefficients (A)L}> to O(a?) in complete form
in the deep-inelastic region. In Section 3 we present the main details of the calculation, which
allows us to focus on the results in the other cases.

6See also [36] and the discussion in Ref. [35].



3 The polarized non-singlet structure functions

The polarized flavor non-singlet neutral current structure functions glNg receive massless and
massive QCD corrections, where the latter contribute starting at O(a?). In the following we will
give a detailed discussion of the heavy flavor contributions to ¢ as an example. Main aspects
of the calculation are given in Appendices A and B.

3.1 The structure function glNS

To O(a?) the non-singlet contribution for g;(x, Q?) reads

2 2 2
S _ Q S, Q™ m
B = | (o55) <55 (55|

®§ [gAUU($7ﬂ2> + §Adv(ajv :u2) + gAU,(.CE, “2) + g [AJ(.T,,[R) + Ag(x"uz)}] '
(3.1)

Here Au, and Ad, denote the polarized valence quark densities, Aw, Ad and Ad are the polarized
sea quark distributions”, ® denotes the Mellin convolution,

A(r) ® Blz) = /0 iz /0 A0 (x — 2122) A1) B(x2) (3.2)

and the massless Wilson coefficient is given by

Q’ Q°
CQIyQ(?ﬂ)_él_x +Zas glq(7ﬁ>7 (33)

with
Q° @?
o (+ L) = rem (L) + e 3.4
Q° 1
o (2% = 3w e P @) - r) (5
i
L)+ [ © ) ) = duelt o) n (5 ) + el
(3.5)
cf. e.g. [38]. Here P, is the leading order splitting function
1+ 22
Jr

with the +-prescription being defined by

/0 d(f (2)]+g(x) = / dalg(x) — (DS (x) (3.7)

"For a review on polarized deep-inelastic scattering, see [37].



The NLO non-singlet sphttmg functions Py~ “*(2) were calculated in [39]%, the quarkonic one-

loop Wilson coefficient cgl,q for the structure function ¢, [40] is given by

11—z -z

Chg(2) = Q14G%%i2>£—(:3>+—2u+zﬂm1—@—Qa+5ﬂm@+4+22

(1 — 2) [0+ 4C] (3.8)

and cﬁ),q(z) has been calculated in Ref. [41]. The color factors are Cy = N.,Cr = (N? —
1)/(2N.),Tr = 1/2 for SU(N,) and N, = 3 in Quantum Chromodynamics. Here and in the
following we set the factorization and renormalization scales both to pu.

The O(a?) Wilson coefficient ALNS receives contributions from the Feynman diagrams shown
in Figures 1 and 2. The diagrams of the Compton process, Figure 1, describe the real production
of a heavy quark pair in the kinematic range z < Q*/(Q? + 4m?) of the parton momentum
fraction, and contain no singularities, enabling their calculation in d = 4 dimensions.

%/L ,,,,,,,,,,,

Figure 1: The v*q Compton diagrams at O(a2). The dashed (full) lines denote massless (massive) quarks,
respectively.

We obtain

2 2
nsoo(, @ mty o o 41+2_ 2\ 1—2
Al (Z’m2’u2) CFTFHB 1—2 5 22
4z 4z
L+ /1= }ln 1+ =)

+1In —
1= 3 - 1z)§
(1=2) (1+,/1- 12)) \/—4—2
+2| —Liy + Li, -
14+ ,/1— 5 L+ /1— 555
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1—=z
+Lis Sl 7

4z
T+ = a5 Jfet 2 o1
R Z_
1— /1 — 4= 9 9 9 1—2 (1-=2)
T¢

512 128 848 = \’[ 640 1408 2368 |
X|— — —2z+—2 —_— -t —2z— z
9 3 9 (1—2)¢ 9 9 9

8We use the convention p?(9/0u?) for the scale evolution operator in the renormalization group equation.
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where
Q2
§:ﬁ~ (3.10)

In Appendix A the principal steps of the calculation of (3.9) are outlined. For this contribution
to LS, we agree with the result given in [21].
The inclusive scattering cross section, however, receives also contributions from the virtual

corrections shown in Figure 2.

%% ffffffff %% fffffff %% fffffff — 5
(b) (c)

()

Figure 2: The virtual O(a?) heavy flavor corrections. (a) and (b) Bremsstrahlung amplitudes; (c) interfer-
ence term of the Born amplitude and the vertex correction. The graphs of the self-energy terms contributing
to (c) are not shown, but are discussed in Appendix B.

In the Bremsstrahlung corrections (a,b) to these diagrams, the heavy flavor correction is given
by the one-loop polarization function Igg(k* = 0). The polarization insertion ITgg(k?) also
appears in the virtual correction (c). For technical reasons we decompose Ilgq(k?) = oo (k? =
0) + [Mgg(k?*) — o (k* = 0)] and combine the first term with the contributions due to (a,b).
This yields the term

NS 1 m? Q?
ALgqu(Q),mass ess __ _agﬁ&Q In <F> {Pq(g)(z) In (F) -+ Cg?q(Z):| , (311)

with By = —47TF/3. The term (3.11) corresponds to a heavy flavor contribution in the case of
massless final states.

There are also self-energy insertions contributing to (c), which, however, vanish for the term
(3.11) since the corresponding graphs at 1-loop vanish and IIgo(k? = 0) contributes multiplica-
tively. For the insertion Ilgg(k* # 0) this is not the case, cf. Appendix B.

The second term [[Tgg(k?) — oo (k? = 0)] is now used in the interference term calculating
the form factor. The subtraction term allows to perform the calculation in d = 4 dimensions,

2 3355 952 32 16 440 530
ALNS:(2),V Q_ — 92820 T-{ 2222 =2 e i B |
91,9 m2 6LsctF F 31 96 + 52 3 CS + 96 27 n(f)
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- /184 76 (A +1 (X =1
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8 16 (N =1 o x+1

with A = /1 — 4/¢. Details of the calculation are presented in Appendix B.
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Figure 3: The polarized structure function g; due to photon exchange up to O(a?) including the charm

and bottom quark corrections in the on-shell scheme with m, = 1.59 GeV [3] and m;, = 4.78 GeV [42]
using the NLO parton distribution functions [43].

The massive Wilson coeflicient is given by

2 2 2 2
NS, (2) Q* m o NS,(2),C NS,(2),V NS,(2),massless Q= m
e e
(3.13)
In the following we will use the values
m. = 1.59 GeV, my = 4.78 GeV (3.14)

at NNLO in the on-shell scheme [3,42] for all numerical illustrations, both at O(a?) and O(a?),
since we consider the present results as a part of our more general NNLO project, cf. [44], and
would like to compare with numerical results given at O(a?) in [14-17]. The transformation to the
MS scheme for the heavy quark masses is well-known [45]. In fitting the heavy quark masses from
data one would use the corresponding formula. For the illustration given in the following, their
equivalent value in the on-shell scheme has been used for brevity. In the numerical results given
below, we choose for the factorization and renormalization scales p? = Q2. In the calculation we
used the codes HPLOG, CHAPLIN, HPL and HarmonicSums [46-49] at different steps.
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Figure 4: The charm quark contribution to the structure function g; due to photon exchange up to O(a?2) as
a function of = and Q2. The conditions are the same as in Figure 3. Dashed lines: asymptotic representation
in Q? for the heavy flavor corrections; full lines: complete heavy flavor contributions.
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Figure 5: The bottom quark contribution to the structure function g; due to photon exchange up to
O(a?) as a function of = and Q2. The conditions are the same as in Figure 3. Dashed lines: asymptotic

representation in Q? for the heavy flavor corrections; full lines: complete heavy flavor contributions.

In Figure 3 we illustrate the massless and massive contributions to the non-singlet structure
function ¢S to O(a?) as a function of # and Q? using the parton distribution functions [43].
Due to the QCD evolution the peak of the function moves towards smaller values of z, keeping
its valence-like profile. The contributions due to charm and bottom are illustrated in Figures 4
and 5. Here we also compare the asymptotic expressions with the complete results, which show



differences for Q? ~ 10 GeV? and become very close for 2> = 100 and 1000 GeV? for charm and
at higher scales also for bottom.

The ratio of the heavy quark contributions to the complete structure function are illustrated
in Figure 6. In the range of smaller values of x the fraction amounts to < +1.2%, while at
larger values of = the corrections become negative amounting to —3. The asymptotic 3-loop
corrections [16] at Q? = 1000 GeV? are even larger and contribute to O(2%) at lower values of
x and amount to O(—6%) at large .

Here and in the following we often will make the observation that the asymptotic expressions
tend to agree better in the region of small 2 even at lower values of Q?, where this is not expected
a priori. The reason for this is that the relevant effective scale, inside the corresponding integrals,
is the hadronic mass squared W2, rather than Q? itself.
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0.02 f R
0.01 e
o ==
2 001}
S}
~ -0.02 }
>
g 003}
;5 20.04 } asymptotic O(a?), 1000 Ge\/z _— \
= complete, 1000 GeV® —— |
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-0.08 L L L L
1074 1073 1072 101 1

Figure 6: The ratio of the heavy flavor non-singlet contributions to the structure function g; due to photon
exchange to the complete structure function up to O(a?) as a function of x and Q2. The conditions are
the same as in Figure 3. Dashed lines: asymptotic representation in Q? for the heavy flavor corrections; full
lines: complete heavy flavor contributions. The dash-dotted line shows the asymptotic result at O(a?) for
Q? = 1000 GeV?.

3.2 The structure function g2NS

At leading twist, the structure function go(z,@?) is obtained through the Wandzura-Wilczek
relation

Ld
4o, Q) = —gu (2, Q) + / Yort. Q") (3.15)

Here go(z,Q?) denotes the non-singlet distribution, calculated using g¢;(z,Q?) = ¢¥°(x, Q?),
Eq. (3.1). The Wandzura-Wilczek relation has been derived for massless quarks in [50], see
also [51,52], but possesses a much wider validity as has been shown in later years. It also holds
for scattering off massive quarks [53] and for the target mass corrections [53,54], as well as
for non-forward [55-57] and diffractive scattering [58,59] and heavy flavor production in photon-
gluon fusion [60]. At leading twist the structure functions ¢; and go are connected by an operator
relation, cf. [55]. Representations in the covariant parton model were given in Refs. [51,60-62].
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Figure 7: The polarized structure function g, due to photon exchange up to O(a?) including the charm
and bottom quark corrections in the on-shell scheme with m, = 1.59 GeV [3] and m; = 4.78 GeV [42]
using the NLO parton distribution functions [43].
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Figure 8: The charm contribution to the structure function g due to photon exchange up to O(a?) as a
function of 2 and Q2. The conditions are the same as in Figure 7. Dashed lines: asymptotic representation
in Q? for the heavy flavor corrections; full lines: complete heavy flavor contributions.

In Figure 7 we illustrate the flavor non-singlet contribution at twist 2 to the structure function
xgs(x, Q?) for pure photon exchange up to O(a?). It takes values in the range +0.01 to —0.03,
with only mild scaling violations varying @? from 10 GeV? to 1000 GeV2. In Figures 8 and 9
we illustrate the heavy flavor corrections due to charm and bottom, respectively. The effect is of
O(1%) in the case of charm. We also compare the exact results with those using the asymptotic
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Figure 9: The bottom contribution to the structure function go due to photon exchange up to O(a?) as a
function of = and Q2. The conditions are the same as in Figure 7. Dashed lines: asymptotic representation
in Q? for the heavy flavor corrections; full lines: complete heavy flavor contributions.
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Figure 10: The complete heavy flavor contributions to the non-singlet structure function g, due to photon
exchange up to O(a?) as a function of x and Q2. Full lines: O(a?) contributions; dashed lines asymptotic
O(a?) contributions. The dash-dotted line for Q? = 1000 GeV? corresponds to all contributions including
also the asymptotic O(a?) term. The conditions are the same as in Figure 7.

representation, in which the power corrections are disregarded, cf. [16]. The effect is clearly
visible at lower scales, and fully disappears at Q* ~ 100 GeV? in the case of charm.

In Figure 10 we illustrate the combined heavy flavor effect and also show the asymptotic
3-loop corrections, which turn out to be larger than the exact corrections.
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The structure of the Wandzura-Wilczek relation implies that the associated sum rule for the
first moment yields zero. However, this is not a prediction which derives from the light-cone
expansion [52], since the corresponding moment does not contribute to it as a term. Rather the
Wandzura-Wilczek relation, as an analytic continuation, is compatible with the result, which is
also called (flavor non-singlet) Burkhardt-Cottingham sum rule [63]. It results from the fact that
the imaginary part of g»(¢%, qo) obeys a superconvergence relation. Unlike a series of other sum
rules, it cannot be expressed as an expectation value of (axial)vector operators [64].

4 The unpolarized non-singlet structure functions Fll\’gs

In the case of pure photon exchange, the unpolarized neutral current scattering cross section is
parameterized by two deep-inelastic structure functions Fy »(z, @*) which obey

20Fi(2, Q%) = Fy(w, Q%) = Fu(w, Q%), (4.1)
in the absence of target mass corrections [65]. Here Fy(x, Q?) denotes the longitudinal structure

function. In the following we will refer to the structure functions F, and Fp. The calculation
proceeds in a similar way to that outlined in Section 3.

NS
41 F}

In the case of the structure function Fp, the Compton contribution is given by

_ 4z _ 4z
NS0 (z o m—g) - aQOFTF{%Z—g [ln Lyl a VI

- 1 -y
RN S VR ey N
4z 4z
+2 —L12 + L12 1
4z - z
1+, /1- % 1+ /1 -
1 — 1 4z 1 + 1 — 4z
1-z 1-2
i T -5 ]

4z 4z
_§(22Z2 — z2£) b et \/1 a Z>f)

1——1In _
3 4z 4z
: : \/1_?_\/1_(1—z>5
8 4z
—_ 1 - —"[60z — 4782% + 37223
oi—ael T
1+ ,/1— (lfzz)g
—£(6 — 312+ 252%)] +In
L= /1— a5

[ () () o
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and we confirm the result given in [8]. The virtual contribution vanishes and the contribution
corresponding to massless final states reads

2 2 2
NS, (2),massless Q m - 2 m (1)
Lp 'y (z, 2 §> = —a;f,qIn (F) Cr, o(2), (4.3)
with [66]
cgz7q(z) =4Cpz . (4.4)

Expanding Lgi’@) for large values of ¢ leads to C’gg 4+ the corresponding massless 2-loop Wilson
coefficient [67, 68|, as predicted by renormalization in Ref. [10, 11] with no logarithmic term

~ In(&) left, unlike the case where we take just the term Lg{%@),c into account, cf. [8,69],
where [38]
NSy (1) Q? NS, (2) A5
Fr.q (Z) = _BO,QCL@ n E +CFL,q (z), ( . )
and
16 200 16
G (z) = CFTF{? — 5t 52 2m(z) ~In(1 - z)]}. (4.6)

The non-singlet structure function for Fj reads

FNS( QZ) o C Q_2 +LNS»(2) _2 22
L \T = T\ T 12 Frg |\ 2 12
4 2 1 2 8_ 2 25 2 = 2
&g i) + sdulw, i) + gule p) + < [dlw, i) + sl )] | (@7)
0.18 . T r T
0.16 1000 GeV? ——— 1
100 GeV? ——
0.14 10 GeV?
0.12
. 0.1
Z
= 0.8
0.06
0.04 |
0.02
0 L L L L
10—* 103 102 10! 1

x
Figure 11: The structure function F;, due to photon exchange up to O(a?) including the charm and bottom

quark corrections in the on-shell scheme with m. = 1.59 GeV [3] and m; = 4.78 GeV [42] using the NNLO
parton distribution functions [70].
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where u, and d, are the unpolarized valence quark densities and % and d the sea quark densities,
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10—2 101 1

Figure 12: The charm quark contribution to the structure function Fj due to photon exchange up to
O(a?) as a function of  and Q2. The conditions are the same as in Figure 11. Dashed lines: asymptotic
representation in Q? for the heavy flavor corrections; full lines: complete heavy flavor contributions.
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Figure 13: The bottom quark contribution to the structure function Fj, due to photon exchange up to
O(a?) as a function of  and Q2. The conditions are the same as in Figure 11. Dashed lines: asymptotic
representation in Q? for the heavy flavor corrections; full lines: complete heavy flavor contributions.
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and the massless Wilson coefficient is given by

Q? 2 (k) Q?
Cr,.q (x, F) = Za’;CFL,q (:r, F) , (4.8)

k=1

1) Q? 1)
OFqu x’ﬁ = CFL,q(I) (49)

@) Q? ©) o (D) (1) Q* @)
Cila\#m ) = (1B @el) @) = foce) () pin (S5 ) + (o)
(4.10)

In Figure 11 we show the O(a?) corrections to the non-singlet structure function FX°, includ-
ing the complete charm and bottom quark corrections. During evolution this structure function
grows towards small values of x. The absolute charm and bottom quark contributions are il-
lustrated in Figures 12, 13. In the present case, the corrections in the asymptotic limit are
sufficiently close to the complete corrections only for Q2 21000 GeV? in the case of charm. It is
well known that for F7, the asymptotic representation holds at very high scales only, which also
applies to the non-singlet case. For the charm quark corrections the asymptotic representation
holds at Q% ~ 1000 GeV?. Below there are significant differences. The situation is correspond-
ingly worse for the bottom quark corrections shown in Figure 13. In general the asymptotic
corrections give larger negative corrections than found in the complete calculation. The relative
heavy flavor corrections for F¥° are shown in Figure 14. They behave nearly constant in the
small z region, amounting to —0.3 to —4% in the region Q% = 10 to 1000 GeV?, with larger
asymptotic corrections.
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-0.12 L
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Figure 14: The ratio of the heavy flavor contributions to the structure function F, due to photon exchange
to the complete structure function up to O(a?) as a function of z and Q2. The conditions are the same
as in Figure 11. Dashed lines: asymptotic representation in Q? for the heavy flavor corrections; full lines:

complete heavy flavor contributions.
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4.2 F}S

For the structure function Fy, we obtain the following Compton contribution

2 2 162 41
LS (z,Q— ﬂ) - aiCFTFH——Z (1—92+92%) + +Z}

m2’ 2 &(1—2) 31—z
4z 4z
x| [In | —F—— +1n In -
4z z
1— /1% 1— /11— 525
(1—z)<1+ > 1 — _ 4z
+2|-Li, _( ) L, L
1 — 1 — 4z 1+ 1 — 4z
1-z 1—2
N T (-2 ”
4z 4z
14+, /1% 14+,/1- %
TR [262 — 1682% 4 1882" — (8 — 62 + 172%)¢] -2
9(1 — 2)¢ 3
4z
\/1 +\/1——7 5 .

+ 11— ———
\/1 —E -1 27(1 - 2)%¢ (1-2)¢
x [=1702z + 95162* — 14260z° + 6456z

+(223 — 709z + 11082 — 6222%)¢]
4

3= pe

1+ ,/1— 72
x In Ll Y (L —z). (4.11)
1 — 1 — 4z §+4

(1-2)¢

2(—15 + 70z — 902° + 362°) — £*(1 — 32° + 227)]

This expression agrees with a result given in [8]. The virtual correction is the same as in the
case of the structure function ¢\®, Eq. (3.12), and the contribution with massless final states is
given by:

NS,(2),massless Q2 m2 m2 Q2 1
LFM( ) (z, E, F) = —aiBQQ In (F) {Pq(g)(z) In (F + c%z)g(z) , (4.12)

with [71]
cgq(z) = OF{4 (%L — ((1 ix))+ +6+42z—2(1+2)In(1 —2)

-2 (11+ 22) In(z) — (9 +4¢)0(1 — z)} . (4.13)

—Z

Up to O(a?) the non-singlet structure function Fy(x, Q?) reads

NS 02 — Q° s (L QF m
2 (xaQ) = T C1F2,q x>ﬁ +LF2,q $7M ’,UQ
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4 1 8 2 -
X §uv(xnu2) + §dv(x7ﬂ’2) + §a($, MQ) + § [d@alf) + 5(1‘, MQ)}] } 5
(4.14)
and the massless Wilson coefficient is given by
2 2 2
Cryq (x, Q—z) =0(l—a)+ ZangZ),q (x, Q—z) : (4.15)
M P H
with [38]
2 2
o (. jf_) — PO%)n (f_) L (@) (4.16)

o <x Qﬁ) — YP0 @ PO (@) — BP0} ( )
Fs,q ’ 9 qq qq

Q2
i { PONSH () 4 [pq<3> ® c%’,q] () — Bock)  (x )} In ( ) o) (x) .
(4.17)

In Figure 15 we show FIS up to O(a?) with the complete charm and bottom corrections.
It rises for growing values of Q2 for small values of . The absolute charm and bottom quark
corrections are illustrated in Figures 16 and 17, illustrating as well the effect of the asymptotic
results. They get close to the exact ones much earlier than in the case of FNS.

7 T T T T

p 1000 GeV? —— |
100 GeV? ——
10 GeV?

5

FS

T

Figure 15: The structure function F due to photon exchange up to O(a?) including the charm and bottom
quark corrections in the on-shell scheme with m. = 1.59 GeV [3] and my, = 4.78 GeV [42] using the NNLO
parton distribution functions [70].
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Figure 16: The charm quark contribution to the structure function F5 due to photon exchange up to
O(a?) as a function of z and Q2. The conditions are the same as in Figure 15. Dashed lines: asymptotic
representation in Q? for the heavy flavor corrections; full lines: complete heavy flavor contributions.

The bottom quark contributions shown in Figure 17 are about one order of magnitude smaller
than those for charm quarks, still with clear differences between the exact and asymptotic result
at Q% ~ 100 GeV2.

Figure 18 illustrates the relative contribution of the heavy flavor corrections up to O(a?).
The corrections are rather flat in the small x region and amount to —0.1 to —0.6 % for z < 0.1
growing towards —2.5 % at large = from Q? = 10 GeV? to 1000 GeV?2.
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X

Figure 17: The bottom quark contribution to the structure function F5» due to photon exchange up to
O(a?) as a function of x and Q2. The conditions are the same as in Figure 15. Dashed lines: asymptotic

representation in Q? for the heavy flavor corrections; full lines: complete heavy flavor contributions.
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Figure 18: The ratio of the heavy flavor contributions to the structure function F» due to photon exchange
to the complete structure function up to O(a?) as a function of z and Q2. The conditions are the same
as in Figure 15. Dashed lines: asymptotic representation in Q? for the heavy flavor corrections; full lines:
complete heavy flavor contributions.

5 The unpolarized non-singlet charged current structure
functions

In the non-singlet charged current case we have to distinguish transitions between light flavors
accompanied with heavy flavor production and the excitation of charm from massless down-type
quarks. Due to the smallness of the corresponding CKM-matrix element [42] we will not consider
the excitation of bottom quarks from the massless quarks. The current values of the contributing
CKM-matrix elements are

|Via| = 0.97425, [Vaus| = 0.2253 (5.1)
|Vea| = 0.225, V.| = 0.986.
The corresponding flavor non-singlet combinations are given by
@) - @) = |0 (0 ) 2, (5 5] o (v + 17
Xy (2, 41?) — [VauPdo (0, 1%)]
135, (0 ) o W (o), (5:2)

Up 2 vp 2y NS Q* NS Q> m? 2 2
FyP(2,Q7) — F)'(2,Q%) = 2x¢ |Cp), |z, 7 +Lg, |, PERTL ® [(|Vaul® + |[Veul?)
XUU(ZE,MQ) - |Vdu|2dv(x7l'62)}

QQ m2
_ngs,q (ZL’, F? F ® |‘/;d|2dv(xa MQ) ) (53)
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Q2 m2

1% 1% Q2
FP(0, Q%) + FP(2,Q%) = 2{ {cﬁiq ( ), (0 %) | o o)
+ (’Vduyz + |Vsu‘2) uv<x>ﬂ2)]

Q2 m?
+Hg, (“fﬁp ® [Vea|*do(, %) 5. (5.4)

Here, C35 , LY, and HES denote the massless (C) and massive Wilson coefficients (L, H) for
the coupling of the weak bosons to only massless quarks (C, L) and for charm excitation (H).
We assume that the sea quark distributions obey

ug(x, p?) = u(z, Q?), dy(z, 1) = d(z, Q?), s(z, u?) = 5(z, Q%) . (5.5)

The contributions due to the Wilson coefficients H Pl\{_éq,i =1, 2,3 are Cabbibo suppressed.

The combinations (5.2-5.4) are related to the unpolarized Bjorken sum rule [24], the Adler
sum rule [23], and the Gross-Llewellyn Smith sum rule [26], respectively, by their first moments.
First we consider these combinations themselves and turn to the sum rules later. Up to O(as)
the single heavy quark excitations have been calculated in Refs. [34,35] correcting results in [36].

0
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0.1}
|
= -015 }
+\
§—<
& 0.2
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03 F 100 GeV? ——
10 GeV?
-0.35 . . . .
10~4 1073 10~2 101 1

Figure 19: The charged current structure function xF1W+_W7 up to O(a?) including the charm quark
corrections in the on-shell scheme with m, = 1.59 GeV [3] and using the NNLO parton distribution functions
[70].

At two-loop order, only the asymptotic results for Q2 > m? are available [18]°, to which we refer
in the following. We will limit our considerations to the case of the charm contributions.

In Figure 19 we illustrate the non-singlet structure function 2" =" up to O(a?2), showing
its scaling violations in the range Q? = 10 to 1000 GeV?2. Its charm quark corrections up to
O(a?), using the asymptotic corrections for the O(a?) term of the flavor excitation contributions

S

as a first approximation, are illustrated in Figures 2022 for virtualities Q? = 4, 10 and 100 GeV?2.

9A sign error in [22] has been corrected.
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Figure 20: The ratio of the charm quark contributions to the charged current structure function xF1W+_W7
up to O(a?) to the full corrections at Q? = 4 GeV2. The other conditions are the same as in Figure 19.
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Figure 21: The ratio of the charm quark contributions to the charged current structure function xF1W+_W7

up to O(a?) to the full corrections at Q? = 10 GeV?2. The other conditions are the same as in Figure 19.

The higher order results lower the corrections in the small x region and enlarge it at large x.
The asymptotic corrections work well in the whole region Q? € [4,100] GeV? for small values of
x and in the whole region at Q? = 100 GeV?2. The relative corrections amount to values between
0 and —8%.
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Figure 22: The ratio of the charm quark contributions to the charged current structure function xF1W+_W7
up to O(a?) to the full corrections at Q% = 100 GeV?2. The other conditions are the same as in Figure 19.
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Figure 23: The charged current structure function F2W+_W7 up to O(a?) including the charm quark
corrections in the on-shell scheme with m, = 1.59 GeV [3] and using the NNLO parton distribution functions
[70].

In Figure 23 the charged current structure function £," W g shown, including the charm

quark corrections. Again QQCD-evolution moves the profile towards smaller values of . The
relative corrections due to charm are shown in Figures 24-26 for the scales Q? = 4,10 and
100 GeV?2.
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Figure 24: The ratio of the charm quark contributions to the charged current structure function F2W+_W7
up to O(a?) to the full corrections at Q? = 4 GeV2. The other conditions are the same as in Figure 23.

Here we also compare the asymptotic result against the complete ones. The charm contribution
is found in the range of 0 to ~ —12% at Q? = 4 GeV? to 0 to ~ —8%, at Q? = 100 GeV? peaking

around z ~ 0.03.
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Figure 25: The ratio of the charm quark contributions to the charged current structure function F2W+*W_
up to O(a?) to the full corrections at Q? = 10 GeV?2. The other conditions are the same as in Figure 23.
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Figure 26: The ratio of the charm quark contributions to the charged current structure function F2W+_W7
up to O(a?) to the full corrections at Q% = 100 GeV?2. The other conditions are the same as in Figure 23.
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Figure 27: The charged current structure function xF3W++W7 up to O(a?) including the charm quark
corrections in the on-shell scheme with m, = 1.59 GeV [3] and using the NNLO parton distribution functions

[70].

In Figure 27 the charged current structure function xF;V "

+W=

including the charm quark

corrections are shown. In this case also the asymptotic 3-loop corrections have been calculated
[17]. As shown in Figures 28-30, the charm quark corrections vary form ~ +2 % to —2 % from
small to large x. With rising values of Q? the corrections become more pronounced at large

25



values of x. Note that the asymptotic O(a?) corrections yield significant contributions both at
small and large values of x.
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Figure 28: small The ratio of the charm quark contributions to the charged current structure function
YW up to O(a?) to the full corrections at Q2 = 4 GeV2. Dash-dotted line: corrections to
O(a?) in the asymptotic case. The other conditions are the same as in Figure 23.
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Figure 29: The ratio of the charm quark contributions to the charged current structure function xF;‘/++W7
up to O(a?) to the full corrections at Q? = 10 GeV?2. Dash-dotted line: corrections to O(a?) in the

S
asymptotic case. The other conditions are the same as in Figure 23.
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Figure 30: The ratio of the charm quark contributions to the charged current structure function xFJWJFW?
up to O(a?) to the full corrections at @ = 100 GeV?2. Dash-dotted line: corrections to O(a?) in the

asymptotic case. The other conditions are the same as in Figure 23.

6 The Sum Rules

In the following we discuss the corrections to the Adler sum rule [23], which have to vanish, and
calculate the corrections to the polarized Bjorken sum rule [25], the unpolarized Bjorken sum
rule [24], and the Gross-Llewellyn Smith sum rule [26], which are obtained as the first moments
of the massive Wilson coefficients calculated in the previous sections. The combination of the
parton distributions is partly different, as here differences between structure functions in the
neutral current case are considered. But this affects only the normalization factor of the sum
rules, which are known constants. As has been outlined in Refs. [16,17] up to 3-loop order,
in the asymptotic region Q* > m? the sum rules only modify the massless approximation by
replacing the number of massless flavors from Ny — Np + 1. Given the factorization of the
massive Wilson coefficients [8,9], this holds for all orders in the coupling constant, since the first
moment of the massive non-singlet OMEs vanish order by order in the coupling constant due to
fermion number conservation. The 4-loop corrections to these sum rules have been calculated in
Refs. [72-74]. Earlier Padé estimates were given in [75].

We emphasize that in the present paper the inclusive Wilson coefficients are calculated for
deep-inelastic scattering, but not those in the flavor tagged case. The relations obtained do not
smoothly transform into the photo-production limit Q? ~ 0, both for the Wilson coefficients
and the parton distribution functions, setting u?> = Q2. They are valid only up to a lower
scale Q3, which usually should be at least of O(m?) or larger, also to stay outside the region of
higher twist corrections. In the case of the sum rules discussed below, in the limit Q?/m? — 0
logarithmic contributions survive, while this is the not the case in the limit of large virtualities
m?/Q? — 0. The photo-production region for the corresponding structure functions needs a
separate treatment.

In the following we will discuss the complete massive corrections to the four sum rules in
the deep-inelastic region. The power corrections of a single heavy quark ¢ or b will be shown to
basically interpolate between Np and Ny + 1 massless flavors in the limit m?/Q? — 0, while at
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lower scales 2, partly negative virtual corrections are possible. The sum rules are observables
and we represent them choosing the factorization scale u? = @Q%. The scale matching can be
performed analytically in Mellin space up to the respective order in a4 in which the quantity is
calculated, cf. [31].

To get closer to the unitary representation for the CKM matrix elements, we calculate the
functions Hp, 4, (2.8, 2.9), allowing for massive charm quarks to be pair produced also for this
Cabbibo suppressed term, but referring to massless s — ¢ charged current transitions for the
real and virtual corrections.

Finally, we also consider the target mass corrections to the deep-inelastic sum rules, as they
are of relevance in the region of lower values of Q2.

6.1 The Adler sum rule

The Adler sum rule [23] states

/Od; (9 (2, Q%) — FP(3, Q%)) = 2[1 + sin(6,)] (6.1)

for three massless flavors. Here 6. denotes the Cabibbo angle [33]. The integral (6.1) neither
receives QCD nor quark- or target mass corrections, cf. also [64,76].
The Compton contribution yields

z 2426 476 ~ 400 220~
Ns.@.C — 20.T.d 22 =0 i Bt C ) I |
/0 =L () 205 T < 5 N+ 5+ g A ) In(€)

20- 92- 1— ) 1+ A
— N+ N (L | ——= ) =Ly [ ——=
[3 9 le( 1+A> 12( 1—)\>
10 - - 1—) 1+ A
— —+4)\2—2)\4] Lis [ ——= | +Lis [ —= | -2 ,
{3 13 L+ 13 11— (3

which is canceled by the virtual correction fol dzL?i’q@)’V(z), (3.12). The first moment of the
contribution with massless final states

maSSIVB Qz m2 Qz
g (L0 — —atsnon (25) [pgem (L) + o] ©3)

m2 2

also vanishes, cf. (4.13, 3.6).
For the charged current flavor excitation slow rescaling at tree level yields

1+€

/0 . FP(z,Q?) — . FP(x, Q%) _ /OT % [anp(Z, Q?) — F;p(z,QQ)}
- [Lrree-mee). 6

since the support of Fy(z,@Q?%) is z € [0,1]. For the first order massive QCD corrections given
in [34,35] the first moment (6.1) vanishes. The corresponding O(a?) corrections have only been
studied in the asymptotic case [18] and vanish. For massless quarks, the Adler sum rule has been
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checked at O(a?) in [77]. Tt seems that in the case of massless 4-loop corrections, the validity
of the sum rule has not yet been checked perturbatively [78]. The target mass corrections are
studied in Section 6.5.

In contrast, the QCD-, quark mass- and target mass corrections to the first moments of the
structure functions g1, F; and F3 do not vanish.

6.2 The polarized Bjorken sum rule

The polarized Bjorken sum rule [25] refers to the first moment of the flavor non-singlet combi-
nation

1

1
| ol @) @) = 5 |

ga

14

Copi(as), (6.5)

with g4 v the neutron decay constants, ga/gv ~ —1.2767 £ 0.0016 [79] and
s = — . (6.6)

The 1- [40], 2- [80], 3- [81] and 4-loop QCD corrections [74] in the massless case are given by

Copi(as), = 1—a,+a2(—4.58333 + 0.33333Np) + a2(—41.4399 + 7.60729Np — 0.17747N7)
+ a3 (—479.448 4+ 123.391Np — 7.697T4TN} 4 0.10374N} ) | (
Np
+@2(12.2222 — 0.740741Np) | ) ex (6.7)
k=1

choosing the renormalization scale p? = Q?, cf. [41] for SU(3).. Here N denotes the number
of active light flavors and the labels NS and SI refer to the genuine ‘non-singlet’ and ‘singlet’
contributions, respectively. The expression for general color factors was given in Ref. [74,82].1°
The massless corrections for Np = 3 and Ny = 4 are

Cops(Np =3) = 1—a,—3.58334a2 — 20.2153a% — 175.781aF  and 6.8)
Cops(Np=4) = 1—a,—3.25001a% — 13.8503a2 — 98.2889a . (6.9)

For the asymptotic massive corrections (2.7-2.8) only the first moments of the massless Wilson
coefficients C’g(fjg’)’NS(N ) contribute, since the first moments of the massive non-singlet OMEs
vanish due to fermion number conservation, a property holding even at higher order. Therefore,
any new heavy quark changes Eq. (6.7) by a shift in Np — Ng + 1 only, for the asymptotic
corrections.

We turn now to the heavy quark corrections, which are given by

662 427356 + 11724 /€ T4 (3% + 106€? + 1054€ + 4812)
5040& £3/2 5040

Coir? = SOFTF{

xln | Y= | - =2 +
] 212 1 5040
Jr+i-1] ¢ J1+4-1

10 An estimate of the singlet contribution has been made in Ref. [83]. We refer to the the result of the calculation
in Ref. [82].
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Le+bl 15 Vit etl] (32 +112¢ +1260) (5)}
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(6.10)

see Appendix C. In the asymptotic region & > 1, C’g‘};’five’@) behaves like

ve.(2) 15 1 17 In(¢)
Cmessve®) o 3CpTR{ = — — 02(E) — = In(€) + = + O . 6.11
2 F
1.5
1}
T oost e
ga
w0
c-quark contribution - - - - -
205 b-quark contribution - - ---
(c+b) contribution
q b Np — Np +2
-1.5 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
&e
massive,(2)

Figure 31: The O(a3) coefficients C 3

for charm and bottom quarks as a function of &,.

Up to 2-loop order the massless and the massive corrections to the polarized Bjorken sum rule

are given by

Cops(&)=1—a,—a> —— + =

12 3

{

95 1[

Np+C

p

massive, (2)
BJ

(&)

pBJ

+ Omassive,(2)

(2]} oy

(6.12)

accounting for the charm and bottom quark contributions, with & = @Q*/m?. In Figure 31 the

effect of the heavy flavor Wilson coefficients C;E;Sive’@) for charm and bottom are illustrated as

a function of &,.
= 1 1-4.003
Np =3 -3.583
= 5 | -3.569
¢ = 10 | -3.413
¢ = 24 | -3.251
Np =4 -3.250
= 50 | -3.146
€= 100 |-3.071
& = 500 | -2.970
Nrp =5 -2.917

Table 1: The massless and massive 2-loop corrections to the Bjorken sum rule as a function of £&.. We also
indicated the respective purely massless results for Nrp = 3,4 and 5.
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At low scales the corrections are negative and the interpolation to the asymptotic value 2 for
Nr — Np+ 2 in &, proceeds very slowly. In Table 1 we illustrate the mass effects for the 2-loop
terms. The massless prediction is only reached for considerably large values of Q?, namely for
&. ~ 24 in the case of Np =4 and &, > 500 for Np = 5.

Q?/GeV? | O(al) massless | O(a?) massless | Ay 3 | massive O(a?)
30 0.9180 0.9205 | -0.0025 -0.0008

100 0.9321 0.9335 | -0.0014 -0.0011
10000 0.9587 0.9590 | -0.0003 -0.0008

Table 2: Comparison of Cpp; in the massless approximation to O(al), O(a3) for Np = 3 massless flavors,
and the O(a?2) contributions due to charm and bottom.

In Table 2 we compare the values of the polarized Bjorken sum rule for different values of
Q? to illustrate the effect of the heavy flavor contribution. The massive contribution turns out
to be comparable in size to the massless 4-loop contribution. Due to surviving logarithms in &
in the large £ region in the tagged flavor case, different results are obtained [27,28]. However,
the corresponding quantity does not describe the heavy flavor contributions to the structure
functions, which are inclusive quantities.

6.3 The unpolarized Bjorken sum rule

The unpolarized Bjorken sum rule [24] is given by

/0 dz [F7(2,Q%) — F (2, @%)] = Cuny (d). (6.13)

The massless 1- [71,84-86], 2-loop [80], 3-loop [87] and 4-loop [72] QCD corrections have been
calculated

Cups(as), = 1—0.66667a, + a(—3.83333 + 0.29630N )
+a2(—36.1549 + 6.33125 Ny — 0.15947N7)
+a3(—436.768 + 111.873Np — 7.11450N2 + 0.10174N3) | (6.14)

setting u? = Q? for SU(3).. For Ny = 3,4 the massless QCD corrections are given by

Cups(as, Np =3) = 1—0.66667a, — 2.94444a2 — 18.5963a° — 162.436a" (6.15)
Cuy(as, Np =4) = 1—0.66667a, — 2.64815a2 — 13.3813a> — 96.6032a% .  (6.16)

The massive corrections start at O(a?) with the s’ — ¢ transitions [34, 35]

C,Lrln]_;xjsive,((]) (5) _ (617)

&
1+¢
Clrlrgjsive,(l)(g) _ CF1{2 + f - 252 _ 21 ‘|‘€ - 352

AR 0T 1n(1+5)}. (6.18)

Crgjswe’(l) (&) approaches the asymptotic value of —2/3 given in (6.14). Its behaviour as a function

of & is shown in Figure 32.
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massive, (1)
uBj

C
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Figure 32: The O(as) coefficient C?;;Sive’(l) as a function of &., normalized to 1 in the limit £, — co.

The massive 2-loop corrections are given by

4 4

massive,(2) ~9 1 8 . 5 1+Z+1 1+Z+1
C(uBJ 7 (5) = CLSOFTF_ ~— In - — — | +In| +Y—
L & \Jirti-1 Jirio1

344 268 4¢ 262 1
X |—oe = = —= = 14 =
21¢ 105 105 ' 105] V¢

8 262 856 2258  4¢
+(———) ln(§)+ﬁ+§—ﬁ} : (6.19)

In the region £ > 1 one obtains

massive ~ 4 1120 4 IHZ(E)
In Figure 33, C’SE;SN&Q) (€) is shown as a function of &.

To O(a?) the unpolarized Bjorken sum rule reads

charm ~ 2 charm, 2
Cun€) = [1= Wa? [em ) ~1]] - 0 {3 + vt [ im0+ 3]}
23 8 charm ~
+a? [_€ + 5o Ne + Coperm @) (g)] +0@@) . (6.21)

In Table 3 we compare the values of the unpolarized Bjorken sum rule for different values of
Q? to illustrate the effect of the heavy flavor contribution.
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Q?/GeV? | O(a?) massless | O(a?) massless | Ay 3 | massive
30 0.9414 0.9437 | -0.0023 | 0.0032

100 0.9520 0.9533 | -0.0013 | 0.0014
10000 0.9714 0.9717 | -0.0003 | 0.0004

Table 3: Comparison of Cyp; in the massless approximation to O(a?), O(a2) for Np = 3 massless flavors,
and the O(a2) contributions due to charm.

The charm corrections at O(a?) are of the same size as the massless O(a?) corrections.

massive,(2)
uBj

C

c-quark contribution
Ngp -+ Np+1 —-—-

0 10 20 30 40 50 60 70 80 90 100
€e

Figure 33: The O(a?) coefficient CIT;SNG’(Q) as a function of £, normalized to 1 in the limit £, — oo.

6.4 The Gross-Llewellyn Smith sum rule

The Gross-Llewellyn Smith sum rule [26] refers to the first moment of the flavor non-singlet
combination

/ dz [F{(z, Q%) + F5*(z,Q%)] = 6Cqrs(as), (6.22)
0

assuming idealized CKM mixing. The 1-loop [71,84-86], 2-loop [80], 3-loop [81] and 4-loop QCD
corrections [73,74] in the massless case are given by

Caws(as) = 1—a,+a2(—4.58333 4+ 0.33333Np) + a2 (—41.4399 + 8.02047Np — 0.17747N3)
+-a(—479.448 + 129.193Np — 7.93065N2 + 0.10374N3) | (6.23)

choosing the renormalization scale u? = Q2 for SU(3).. The expression for general color factors
was given in Ref. [73,74]. Note that the QCD corrections to the Gross-Llewellyn Smith sum rule
and to the polarized Bjorken sum rule [25] are identical up to O(a?).

The excitation of charm basically interpolates between

Cars(as, Np =3) = 1—a, — 3.58334a% — 18.9757a° — 160.444a’  and
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Cars(@s, Np =4) = 1—a, — 3.25001a% — 12.1975a2 — 82.9270a; . (6.24)

The charm corrections at lowest and first order are given by

Cas™©) = %g (6.25)
charm 3 31In(1
came) = CF{—4(1i£) +3 ni :;)}, (6.26)

while at O(a?) the contributions to Lg, , are given by

charm, 1 charm,
Cars™(&) = GO . (6.27)

The heavy flavor corrections up to O(a?) are given by

Charm A ‘/; 2 Charm
Cars(§) = 1+ [Vl |CE% ’<0><s>—1]+as{—1+' o ’<”<5>+1]}

55 1 charm .
+a? {_E + 3N + Corsm? (5)} +0(@a3). (6.28)

massive, (1)
C(GLS

c-quark contribution

massless contribution —-—-
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Figure 34: The O(as) coefficient C’gﬁssswe’(l) as a function of £, normalized to 1 in the limit £ — oc.

In Table 4 we compare the values of the Gross-Llewellyn Smith sum rule for different values of
Q? to illustrate the effect of the heavy flavor contribution.

Q?/GeV? | O(a3) massless | O(a?) massless | A, 3 | massive
30 0.9185 0.9207 | -0.0022 | 0.0024

100 0.9324 0.9337 | -0.0013 | 0.0013
10000 0.9588 0.9590 | -0.0002 | 0.0004

Table 4: Comparison of Cpp; in the massless approximation to O(al), O(a2) for Np = 3 massless flavors,
and the O(a?) contributions due to charm.
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As in the case of the other sum rules, the charm corrections at O(a?) turn out to be of the same
size as the massless O(a?) corrections.

6.5 The Target Mass Corrections to The Sum Rules

For the target mass corrections it has been shown [65] that the correction factor to the massless
structure function Fy(N,Q?) in Mellin space is given by

oo 7 . N+2j5 (2)
FIM(N, Q%) — Z <%2> <N+]>( N(N —1) Gy " an; (6.29)
=0

Q? J N +2j)(N+2j—-1) 021”%532]
1
a,(f) = / dzat! [wy(z, Q%) — dy(z,Q%)] , with a§2) =1 (6.30)
0
1
Cy = / dra*1Cy(z,Q%), Cy=1, (6.31)
0

with M the nucleon mass, (A)a%)ﬁj the (non-perturbative) moments of the massless PDFs and
C5 the moments of the Wilson coefficient contributing to F». Here we consider the flavor-non
singlet contribution (Fy” — Fy?)/x which is relevant for the Adler-sum rule. Note that the first
moment of Cs, except for the tree-level contribution, vanishes, as has been proven to 3-loop
order for the massless and massive Wilson coefficients (in the asymptotic region) by explicit
calculations [14,71,77,88] and above for the massive contributions to the complete corrections
at 2-loop order. One obtains

lim ) (N, Q%) = 0. (6.32)
N—1

In contrast, the first moments of the structure functions F; and F3 do not vanish at higher
orders in QCD both in the massless and massive cases [1,89]. Moreover, both in the unpolarized
[53,64,89] and in the polarized cases, the target mass corrections are different for different
structure functions, which are usually associated to other ones by current conservation, as in the
case of Fy(x,Q?) and Fx(z, Q?).

In the case of the unpolarized Bjorken sum rule, the target mass correction factor is given

by [1,89]

14+2j | 1 01+g

(M2 . G 1125 1425
FM(N =1,Q%) = Z (-) (1 —0—])[ Cfal . (6.33)
j=0 1

QQ

Here CYC) denotes the kth moment of the Wilson coefficient contributing to the structure function
P — F".
The target mass corrections to the polarized Bjorken sum rule are given by [53,54]

i (M2) 1 —|—j> ACII+2jAG,1+2j

TMAT — 1 O2) —
g (V=107 = (1+25)? ACtAq

(6.34)

01 dr 21 [Auy(w, Q%) — Ady(z, Q%) + 2 (AT(x, Q%) — Ad(z, Q)]

Aak =

OblrAQ

(6.35)
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1
ACY = / dea*TAC (z, Q%), (6.36)
0

where AC is the polarized flavor-non singlet Wilson coefficient corresponding to the structure
function gi* — ¢g¢".

For the target mass corrections to the Gross-Llewellyn Smith sum rule one obtains [1, 89

< MV 1+ C1+25,3)
FIM(N =1,0?) = - 3 142 6.37
TN = 1.QY) Z(Q) oo o (6.37)

1
d® = 2 /0 deat " [u,(z,Q%) + dy(z, Q%) ,with  af’ =6,  (6.38)

and C¥ are the moments of the Wilson coefficient contributing to the flavor non-singlet combi-
nation Fy? + F3”.

In Figure 35 we illustrate the effect of the target mass corrections to the unpolarized and
polarized Bjorken sum rule as well as the Gross-Llewellyn Smith sum rule, as a function of
Q?/M?, accounting only for the operator matrix elements (A)a,(:’g). We refer to the unpolarized
PDFs [70] at NNLO and polarized PDFs [43] at NLO, and a, at NNLO, to allow for a comparison
of the different contributions up to NNLO.

1.025 T
Iy
Fy ———-
. o2 o —
Il
< 1015}
=,
=
= 101}
I
e
5:, 1.005 F
=,
~
= 1L
0.995 L
1 10 100

Figure 35: The target mass corrections, normalized to the massless case, to the unpolarized (F3) and
polarized Bjorken sum rule (g1) and the Gross-Llewellyn Smith sum tule (F3).

The corrections diminish towards large virtualities Q%. At Q* ~ 1 GeV? they amount
+2.3%,0.60 % and 0.33% for the unpolarized Bjorken sum rule, the Gross-Llewellyn Smith
sum rule and the polarized Bjorken sum rule, respectively.

7 Conclusions

We have calculated the complete heavy flavor corrections to the flavor non-singlet deep-inelastic
structure functions F} o and g; 2 in the neutral current case, and to F%+’W7 and Y W for
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charged current reactions. Here we considered the deep-inelastic region, which at least requests
scales Q?Zm? or larger and W? > 4 GeV?2. For the charged current non-singlet combinations
of structure functions also the Cabibbo suppressed Wilson coefficient H;, contributes, which
we have considered in the asymptotic region starting at O(a?) as an approximation. Since
the deep-inelastic structure functions are inclusive observables, the formerly considered tagged
flavor case [8,21] is not sufficient. We have accomplished the calculation for the inclusive case, to
which at O(a?) also virtual corrections and real corrections with massless final states, containing
massive virtual corrections, contribute. We present detailed numerical results for the different
unpolarized and polarized structure functions for the charm and bottom contribution in the
neutral current case and the charm contributions in the charged current case, which are the most
important. We compared in all cases to the formerly calculated asymptotic corrections in the
region Q% > m?, showing that except for the structure function F3>(z, Q?) this approximation
holds only at higher scales, while for F}' C’Ns(a:, Q?) a very good agreement for Q? ~ 25GeV? is
obtained in the case of charm. In those cases in which the asymptotic 3-loops corrections are
available, we have partly compared to these corrections as well. The O(a?) non-singlet heavy
flavor effects are of the order of several per cent of the whole non-singlet structure function and
are of relevance in precision measurements reaching this accuracy. The corrections will become
even more important in the case of planned high-luminosity measurements at facilities like the
EIC [90], future neutrino factories [91] or the LHeC [92].

We also investigated the heavy flavor corrections for deep-inelastic scattering sum rules, such
as the Adler, polarized Bjorken, unpolarized Bjorken and Gross-Llewellyn Smith sum rule. While
the corrections vanish in case of the Adler sum rule, finite corrections are obtained to the other
three sum rules. They turn out to be of the same size as the massless O(a?) corrections which
have been calculated recently and complete the picture from the side of the heavy quarks. Here
it is important to refer to the inclusive rather than to the tagged heavy flavor case, since in the
latter, logarithmic terms in the region of larger Q? would remain, after having already performed
the renormalization completely (e.g. in the MS scheme) [10]. In the inclusive case, on the other
hand, the transition from Np — Np + 1 proceeds smoothly. We also quantified the effect of
target mass corrections to the deep inelastic sum rules. In general it turns out that for the sum
rules the transition Np — Np + 1 proceeds slowly in & = Q?/m?. Therefore assuming scale
matching at Q? = m? is, at least here, not appropriate.
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A Calculation of the Compton Contribution to g )

In this appendix we calculate the contribution of the subprocess

q(p1) +7*(9) — a(p2) + Q(pe) + Qpe) (A1)

to the non-singlet coefficient function Lgle,t}(Q), which is given by Compton scattering diagrams
shown in Figure 1. The structure function ¢;(z) is extracted from the antisymmetric part of the
hadronic tensor W#", given by

TA7 Y m Vo ~ ~ q-s
WX (p7 q, 5) = _T.Oqeu ﬁQa 91,0(27 QQ) S3 + 92,0(27 Q2> (Sﬁ - ﬂpﬁ)‘|7 (AZ)

where z = %Qq and mg, p and s are the mass, momentum and spin of the incoming light quark,
with

p.s =0, s.s = —1. (A.3)

Later on we will consider the limit mg — 0. The term g o(z, @*) can be obtained by [41]

2 1

~ o T p
91,0(27 Qz) = (d — 2)(d — 3)p q e;wpappq W,IA\L (Z,(],S - m_0> . (A4)

The hadronic tensor is given by

d d d
wh = 47ra§CFTF/ (Z:)Zd (Z:)Cd égd@ﬂ)déd(p b= ps—pe—pa)
. V5 - V(P + 4 +mo) Vo (D + mo)V,(p + ¢ + mo)V
{1e ] 228 -t o) RS
V(P + 4+ mo)vo (Bl + mo)y" (P, — 4 + Mo,
[(p+q)2 —m3] [(ps — q)2 — m]
7‘7(?2 — 4+ mO)’Y”(J{% + mo)%(? +4q+ mo)y*
[(p+ q)2 — m3] [(p2 — )2 — m3]
70(}/}2 —q+ mo)’y”(p2 + mo)»yu(% — 4+ mo)’yp)]

[(p2 — q)2 — m2])”

+

+

4
X [ 2]2 [pﬁpi +p3p§ - (pc "Pe+ m2) gpa} }
5
X (2m)*0,(p3 — m)d (p2 — m*)d, (p2 —m?) (A5)

d'py d'p. dpe
= 47TO(§ CFTF / (27T)2d (27T)d (27T)d (27r)d5d(p +q—p2—Dec— pE)

X (2m)*6, (5 — mg)d4 (7 — m?)04 (p2 — m?) T (p2, ¢2) J27 (pe, Do),

where m, (pz) p. are the mass and four momenta of the heavy (anti-)quark, ¢a = p. + pe and po
denotes the momentum of the light quark in the final state. The distribution ¢, is defined by

04 (p® —mi) = 6(p* —m3)O(p°). (A.6)
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The last line of Eq. (A.5) emphasizes that the phase space integral is factorized. The tensors
Thy and J£7 read

7-5: = { |:’75}é <p +m >(’7V(p + g + m0)7 (H/Q + mO)/Yp(p + g + mO)'Y“

[(p+q)2 = m3]’
V(P + g+ mo)ve(ph + mo) v (P, — 4 +m),
[(p+@)* = mi] [(p2 — ¢)* — m]
Yo Py — 4 +mo)V" (P, + mo)v,(p + ¢ + m)y” (A7)
[(p+ )2 — m2][(p2 — q)% — m2]
Vo (P — 4+ m0)y" (P, + 1m0)7" (P, — 4 +110)7%
" [(p2 — q)2 — m3)” )H
JE7 =4 [plp? + pipl — (pe - pe +m?)g")] -

1
[43])°

We consider the incoming quark directed in the 2z axis. The momentum and spin of a longitudi-
nally polarized quark are then given by

2
p:( p2+m(2),070,p>_>p(1,0,0,1)+(%7ﬁ),
v P
1
s=—(p,0,0,\/p? + m2) — L-(1,0,0,1) + (0,0, 0, @) . for mg— 0.
myo mo 2p

Therefore, it is important to retain the linear terms in the mass mg, which is finally canceled by
the normalization of the spin vector.

The integrals are finite in d = 4 dimensions to which we turn from now on. The phase space
integrals can be carried out analytically leading to

5oz Q) = — 9:CrTr /Qz(lf) a2 2 — 4m? 12 + 2m2] Q¥(1 — 2) — 2122
1,0(Z, 1273 J, (2m) 2 9 8Q 1 — )t

(A.8)

2 4.2/4.2 212 3 2
X ptz*(42° — 624 3) + p* Q" 2(—82° + 142° — 92 + 2)
{(1 —2)? (21 — @) { ( ) ( (A.9)
+3Q%(22% — 422 + 32 — 1)]
N 42@4 23— 202Q% 2(222 — 2+ 1) + Q*(1 + 2?) 1 < prz? ) }
n )
(Q2(1 — 2) — p2) (1= 2)(Q? — z2p?)
It is convenient to perform the yp2-integral over
A2
B=y1-—- (A.10)
1

After applying this transformation, the integral becomes

Vittaas _
oz, Q1) = CETE [V g (it

5 (=P —ap (-1
{ [16 (1-5%)&(4(z—1)2" +1) 2> — 64 (42° — 62 + 3) 2°
—3(1=)° - 1220 - D2+ 1) +4(1-82)° (= - 1)
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x (2(42(22 — 5) +15) — 5)z| +2(1 — 2)*(B* — 1 + %)g [32z3

L 4 (A.11)
- 8a(1 - 24 26 - )+ (L4 A - 2 n <f(i4_’—_§z> i
13

This term can finally be integrated analytically to yield (3.9).

B The virtual corrections

The interaction of an on-shell fermion and the electromagnetic current is parameterized in terms
of the Dirac and Pauli form factors Fy(q?), F»(¢?), respectively. In the space-like case one has

Fy(q)
4m0

(o] J*(q*) 1) = (p2) T* u(p1) = U(p2) [v“ Fi(q*) - o™ g | ulpr), (B.1)
where o" = %[fy“, fy”]. The correction can be obtained by the subtracted dispersion relation for
the Dirac form factor.

We will first perform the calculation in the time-like case and obtain then the space-like result
by analytic continuation. One has

Fi(s) — Fy(0) = & /OOO g ) (B.2)

s 2(z — s)

which can be calculated from the diagrams in Figures 36, 37 and applying the Ward identity of
Subsection B.1, with s = (p; + p2)?.

Figure 37: Reducible diagrams with fermion self energy insertion.

Note that the integral (B.2) in the case of the unsubtracted dispersion relation diverges. The
calculation proceeds in a similar way as in Refs. [93,94]. We will initially work in d dimensions
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and use quarks of mass mg for the external particles and m for the heavy quark in the loop.
Later on we take the limit d = 4 and mg = 0.
The Dirac form factor is projected to

A0 =gt ag (7 g 0 ) G |- (39

The contribution of the diagram in Figure 36 to the vertex I'* is given by
0(p2)(igsy?)(—3) (P, + Kk — m)yi(p, — k +m)(igsy”)u(p:)
(oot K2 — 8 + 0] [(p1 — 12 — 3 + 0]

N
—1 dk
T1(K?) (K2g,e — koko) ¢ ——
. (k2+i0) M) (K95 = K, )} (2m)d”

where TI(k?) denotes the vacuum polarization

o(p2)"u(pr) =CrTr / { (B.4)

TI(k?) — T1(0) = _as k(% de (24 2m?) 1— dm? (B.5)

T 3 Jane ¥2 T — k2 x

A= i s g | G L (5 )

X (p, —mo)y* (P, + K — mo)vu(p, — K +mo)y” (p, + mo)] (B.6)

% (K gpo — kpko) TI(K?) }
[k2 0] * [(p1 — k)2 — mZ + i0] [(ps + k)2 — m3 + i0]

leading to

Its imaginary part is found putting the propagators
1
[(p1 — k)2 — m + 0] -
1
[(p2 + k)? — m3 + 0]

—(2mi)0, ((pr — k)* = mg),

(B.7)
—(2mi) 84 ((p2 + k)* — m§),

on shell, cf. [93,94]. Note that when taking the cut a minus sign has to be introduced [95,96]

(o) = 5y {7 (0 + 5 g )

X (p, — mo)V* (P, + F — mo)yu(p, — K +mo)y” (p, + mo)}

(k*gpo — Kpko) (k‘z)}
[k‘Q + ZO}

dk

(2m)®

X (2m)26,((p1 — k)* — mg)o,((p2 + k)* — m)
(B.8)

The longitudinal parts of the photon polarization can be shown to vanish. One finally obtains

a? 1 /s % Qi3 4m?
Im(Fy(s)) = G OrTrz (3 =) 55 / LT )

/w 0(sin Q)d_g cos 0(3 + 4m0(d )+ cosf(s —4dm3) + s(d — 3) |
0 (s - 4m0)(1 — cos 9) —|— 2

(B.9)
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with [97]

2m 2

Qq = (B.10)
r (4
We are now turning to d = 4 and obtain
2 ™
Im(Fi(s)) = —2(213 CrTry/1— fl/ dfsinf [cos® O(1 + 2&) + 2cos (1 — 2&) + 1]
T
. O o (B.11)
[0 F(5 - 3)
o (I—cost)(1—¢&)+ 28— B2(1—&)(1 —cosb)’

with 2

m
o = —. (B.12)

s

Furthermore we consider the limit @ = & — 0. After integrating over 5 we have
o2 [t (1+X)?2[5—-5X —6&
Im ( F: = =—-=—= dX
m(Fi(s,mo = 0)) = —5 - /1 (l—X)Q{ 3
26, 1+ % +1 (B.13)
R R G S |
1-X 1+ 22 1

where X = cosf. Trading the root in (B.13) as a new integration variable one obtains

mﬂ)
VITE =1 gy

a? ) 1
Im(Fi(s,mo =0)) = [— —(53 + 33&%) + 3 14 &(38 +23&) In (

CUr| 9
3¢2 o (VI+E&E+1
i (_“T) 8 <¢1_+§2—1>]'

In order to determine the complete expression of the form factor in the time-like region, we use
again the subtracted relation (B.2)

o? 1213 119 200  110s7 5
Fi(s,mg=0) = —247T2{ ~E 3 st (7 + 5) In(2) — 5(20 +33s7) In(1 — s7)

15 + 2352 1— 1
—35—5 Liy [ — ¢ —Liy [ — RS
3 1—|—S£ 1—85

5 354 1—s 1+s
— (2432 =5) |Lig (—— ) +Lig ([ ———=) =2
(2+ . 2”13( 1+85>+ 13( =) 2L

se =146 . (B.16)

The analytic continuation of (B.15) to the space-like region is obtained by replacing

(B.15)

where

) 4m?

85 — S& = 1 - ?

cf. Eq. (3.12). The real part of Eq. (B.15), if considered in the time-like region, may be compared
with a result in [98], Eq. (A1), for the Drell-Yan process and agrees.

A, (B.17)
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B.1 A Ward identity

In the following we derive the relation of the self-energy insertions to F3(0) through a Ward
identity. The graphs of Figure 37 obey

3@+ O] = (2~ D) (e, ulm), (B.18)

where e denotes the electric charge.

By following the notation of [99], we define —iX(p?) as the proper self energy diagram in
Figure 38 and we find the renormalization constant by taking the residue of the complete quark
propagator on the mass shell. In the case of massless external fermions we have

Ly

S ! —
1Sp = ——— i—,
! pP—E(p) voo P

(B.19)

so that 7o =1+ 0w 7 ZW ot leading order. The next step is to extract the spin structure of the

self energy X (p?) = pE( %), where the latter object is a scalar function, so that we can write the
renormalization constant Z, as

Zy =1+ %(p). (B.20)
By introducing (B.20) into Eq. (B.18), we obtain the contribution of self energy diagrams.

Figure 38: Proper self energy diagram.

We consider the derivative of the self energy

—iE(p2)=—ig§CFTF/(g7TI; (7@ )2) { gaﬁ—kakﬁ} I1(k?), (B.21)

with TI(k?) given in Eq. (B.5). It reads

O _ ety / Tk ) [kZQaB - kakﬁ} {M e }

Opy (27) (p— k)2 [k’ o= k)2 [

_ A Ak oo fa P = B)ulp — k)’

ot [ )i~ { - = )
(B.22)

The vertex function is given by
d
—ie N, (pa, ;1) = —ie Fi(¢*)v, = (—ie) giCrTr / @k IT(K?) [k29a6 - kakﬁ]

(B.23)

X{ v (p, — m%@f%WB}
(s — £)2] [(pr — B)2] [k2]* )
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with (p2 — p1)? = ¢® In the limit of zero momentum transfer, ¢> — 0, the vertex function
becomes A, (0) = F1(0)y,. By comparing (B.23) and (B.22) one gets

. d'k oo [. PPk os?)
AH(O) — gSCFTF / (27T)dH(k )|:/{ Jap k’akg} { [(p B k>2]2 [k2]2 } = 8pﬂ s (B.24)
F(Q*=0)7, = —7.2(p) — p g}i (B.25)

Eq. (B.25) allows to write the function X(p) in terms of the form factor at zero momentum
transfer. Therefore (B.18) can be written as

3[@+ )] = [3200 + 550 700 (ien) wio)
= %U(m) ( f(plm) u(p) + %_E(pz) (— iei(pz)w) u(pr) -
= gt | —ie (= A0 -5, 50 )t
+ 5 () [—ze( Fi(0), ¢Qa§;p2)>] u(p),

where in the last identity we introduced X(p;) in terms of F1(0), according to the relation (B.25).

9%(p)

i vanish because of the Dirac equation,

In the expression above, all the terms proportional to

- 3@+ )] =) (ie Fi01, ) o), (B.27)

In conclusion, the scattering amplitude of a massless quark and an off shell photon with mo-
mentum ¢ is given by the sum of the virtual correction to the proper gg-gauge boson vertex,
depicted in Figure 36, which we computed via dispersion relations up to an offset F;(0), and
the self energies contributions above, which proves that the results of the subtracted dispersive
approach Eqs. (B.15, B.2) give the complete renormalized form factor.

C The first moment

In the following we derive the heavy flavor contributions to the Bjorken sum rule to O(a?). The
Compton contribution is obtained by the integral

_£

A (€) = / G QY. (1)

where §)(z,Q?) is given by the integral (A.11), see also (3.9). To obtain the analytic expression,
it is easier to step back one integral and to use

/§+4 dz/ I(z, 1i?) dpi? —/ du? /QZW (2, %) (C.2)
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where the integrand I(z, u?) is the same (including normalization) as in (A.9). The z-integral

yields

r—1 142z
11526274

A (Q7) ——A2Cb7}l/1 dx {4x§3——1088x3§—%248x2§2

+19222(€ — 42)? In? (}éf) (1280x4+-512x3§-—16x§3—-§4)1n(§)
—322%1n (45 ) |:4OZL‘ + 4026 — 9¢% 4+ 6(€ — 42)*In (4x€_ 5)} (C.3)

4—PQ&M4+5Hx%——w$€——ﬁ]hd§+4@

+1%ﬁ@—4@%b<£3},

where z = p?/(4m?). The result of the last integration can be conveniently expressed in terms

of the variables
4 N 4
= /1+-, A= 4/1—=. C.4
Vite ViTe (C.4)
The z-integral results into

Ay () = dioFTF{ (% — %) |:L13 (%) + Lis (%) _ 2@}
(19 23\ [ . [A+1 (A-1 5 A1
)\(E_Q) [Ll2<5\—1> e <Z\+1>] Ik ( —1> (©5)

+_Ahl(A-H) {_»527 401 53 52:

A—1 2520 4206 2520 1680

Ine) 265 55 5 - ¢? 19591 | € 4207
108 9 1680 ' 1260 ' 840 9072

We have still to add the virtual contribution (3.12) and the contribution due to the term with
massless final states (3.11) which yields

3 2
.@xazagym{_ 512(A+1)_AB§+1%§+UB%+4&®M(A+1>

D 5040¢ 1)
662 + 27356 + 11724 £(3€ +112) 1 '
50408 M O R O
In the asymptotic limit one obtains
1 In?
(O x ety + 0 () )

Note that the pure Compton contribution diverges like ~ In®(¢). Adding the virtual corrections,
the term still diverges ~ In(¢). This behaviour is obtained considering tagged heavy quark
production instead of the inclusive heavy flavor corrections, cf. [27].
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