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ABSTRACT

We study in a bottom-up approach the theoretically consistent description of
additional resonances in the electroweak sector beyond the discovered Higgs
boson as simplified models. We focus on scalar and tensor resonances. Our
formalism is suited for strongly coupled models, but can also be applied to
weakly interacting theories. The spurious degrees of freedom of tensor reso-
nances that would lead to bad high-energy behavior are treated using a gen-
eralization of the Stückelberg formalism. We calculate scattering amplitudes
for vector-boson and Higgs boson pairs. The high-energy region is regulated
by the T-matrix unitarization procedure, leading to amplitudes that are well
behaved on the whole phase space. We present numerical results for com-
plete partonic processes that involve resonant vector-boson scattering, for
the current and upcoming runs of LHC.
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1 Introduction

After the discovery of a 125 GeV Higgs boson, phenomenological high-energy physics has en-
tered a new era. The new particle fits the expectation of the minimal Standard Model (SM).
This model is thus established as an effective field theory (EFT) that correctly describes all
current particle data (except for still missing possible particle signals for dark matter and addi-
tional CP violation). We know about high-energy scales where the effective theory eventually
breaks down — the scale of neutrino mass generation, the Planck scale — but those are far
outside the reach of collider physics. The hierarchy between those scales and the electroweak
symmetry breaking scale, combined with the fact that all known elementary particles are weakly
interacting, puzzles us due to the apparent fine-tuning in perturbative renormalization. How-
ever, the hierarchy puzzle as such has no phenomenological consequences. In principle, the SM
may provide a complete description of all present and future collider data, limited just by our
ability to do calculations.

Nevertheless, the apparent success of the SM does not imply that we have full control
over the spectrum at presently accessible energies, say between 100 GeV as the electroweak
mass scale and a few TeV. First of all, there is the possibility of extra light weakly interacting
particles which escape detection at the LHC. We will not consider this in the present work but
investigate new physics above the mass scale of W , Z, and Higgs.
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The SM is complete as a renormalizable theory and weakly interacting. Hence, it provides
a mechanism for suppressing the impact of new physics on observables. This fact is generally
expressed by the decoupling theorem [1]: All heavy particles (heavy compared to the masses
of W,Z, Higgs) can be integrated out, and their physical effects are suppressed by powers of
m/M or E/M , where E is the effective energy of the measured elementary interaction, and
M is the mass scale associated with new physics. The EFT approach, which has been widely
adopted for precision LHC analyses, encodes this in a Lagrangian which contains operators of
dimension six and, in some cases, eight or even higher [2]. Decoupling of scalar particles in the
case of Two-Higgs doublet models (2HDM) has been considered in [3], as well as in [4,5].

For a new particle with a mass of 1 TeV, the leading corrections to SM particle properties
are at the percent level and below. This is a challenge for LHC analyses. On the other hand, in
scattering processes at the LHC, the partonic energy E can easily enter the TeV range, so direct
detection is favored. Various classes of new-physics models with extended fermion and gauge
sectors can be excluded up to several TeV. However, the current experimental sensitivity on
details of the Higgs/Nambu-Goldstone sector is still marginal. This is due to the fact that the
effective energy available for vector-boson scattering in LHC collisions, for instance, is severely
suppressed by steeply falling quark and W/Z structure functions.

In this paper we study new physics that is coupled to the Higgs/Nambu-Goldstone sector
and manifests itself in scattering processes of W , Z, and Higgs particles. The Higgs particle
does not occur in the initial state and has its own experimental issues, so we restrict the
discussion to Nambu-Goldstone bosons [6,7,8], which the Nambu-Goldstone boson equivalence
theorem [9,10,11,12,13,14,15,16,17] relates to longitudinally polarized W and Z bosons. That
is, we investigate processes of the class V ∗V ∗ → V V (V = W±, Z,H), where the initial vector
bosons are radiated almost on-shell and collinear off initial energetic quarks in the colliding
protons.

1.1 New effects in vector-boson scattering

Vector-boson scattering (VBS) as a physical process in hadronic collisions has been observed
recently by the ATLAS and CMS collaborations [18,19,20]. The SM prediction has been con-
firmed, but the initial limits on extra interactions are still rather weak, probing an energy
scale close to the pair-production threshold of ∼ 200 GeV. With higher energy and better
precision becoming available at the LHC, and at future lepton and hadron colliders, data will
become much more sensitive to new effects in this sector. There is no reason to restrict the
modelling to weak interactions. In fact, the initially limited experimental resolution and energy
reach encourages us to consider new strong interactions, as such deviations from the SM are
experimentally most accessible.

For decades, the theory of VBS processes has been the subject of a vast literature, first
in the disguise of the low-energy theorem [21,22], for questions of unitarity [23,10,24,25] and
as a means of phenomenological studies [26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
44,45]. A review of recent work can be found in [46]. Most of those studies were tailored to
the Higgs-less case, which is by now excluded. In the presence of a light Higgs, in the SM, all
VBS processes are perturbative and respect unitarity at all energies. This situation changes
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drastically once non-SM interactions are present.
Regarding the possible scenarios of new physics affecting VBS, there are no significant

restrictions from low-energy data or from the absence of LHC discoveries. Asymptotically,
the process is determined by the amplitudes of Nambu-Goldstone boson scattering, where
the initial state contains an even number of Nambu-Goldstone bosons and thus no half-integer
representations of SU(2)L. Any bosonic excitation coupling to this state also has integer SU(2)L
quantum numbers and thus cannot couple left-handed with right-handed SM fermions. In the
limit of exact electroweak symmetry, VBS processes and ordinary SM (fermionic) processes
thus probe distinct areas of new physics. Electroweak symmetry breaking mixes those sectors,
but the mixing terms are again suppressed by the electroweak scale (in operators, by additional
factors of the Higgs doublet), and are therefore subleading.

The only important constraint is quantum-mechanical unitarity, which is severely violated
in a perturbative calculation if we naively insert the dimension-eight operators of the EFT. We
have discussed this fact in detail in Ref. [47] and proposed a framework of unitarization which
allows us to augment the SM in an arbitrary way, while maintaining high-energy unitarity and
simultaneously matching the new effects to the low-energy EFT. We will adopt this framework,
the T-matrix scheme, for the concrete models below.

1.2 Outline of the present paper

Extending the work of [47], in the present paper we consider a wider class of scenarios beyond
the SM and beyond the electroweak mass scale. Instead of just extrapolating the EFT, which
generically leads to asymptotic saturation of amplitudes, we add new states. The quantum
numbers of the new states are chosen such that they retain unsuppressed interactions with
the VBS system in the limit of vanishing gauge couplings. As mentioned above, this implies
a certain set of quantum-number assignments and, incidentally, suppresses their couplings to
the SM fermion sector. We may consider strongly coupled states, which we would classify as
resonances in analogy with mesons in QCD, or weakly coupled states which we would call new
elementary particles. There is a continuous transition between these extremes, such that we
can cover all cases on equal footing.

We defer the discussion of vector resonances to a future publication, since those states mix,
after EWSB, with W and Z bosons and thus exhibit a possibly different phenomenology. This
limits the model to four distinct cases, namely scalar and tensor resonances with two different
assignments of electroweak quantum numbers, respectively. We embed these states in an ex-
tended EFT and match this to the low-energy EFT where the resonances are integrated out.
For the high-energy limit, we apply the T-matrix scheme which keeps the model within unitarity
bounds when it eventually becomes strongly interacting at energies above the resonance.

The case of a tensor resonance requires special considerations. While renormalizable weakly
interacting theories cannot include elementary tensor particles, it is nevertheless possible to
set up an effective theory which contains a tensor particle and remains weakly interacting over
a considerable range of energies. This has been observed in the context of gravity in extra
dimensions [48,49,50,51], where massive tensor particles arise in the low-energy effective the-
ory. Massive gravitons provide a very specific pattern of couplings to the Higgs doublet, gauge
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bosons and fermions. We will set up a more generic model where such relations are absent,
and construct a Lagrangian description of Stückelberg type, where we can separate the genuine
tensor resonance with a controlled high-energy behavior from unrelated higher-dimensional op-
erators that become relevant asymptotically. The massive-graviton model emerges as a special
case. (Massive) higher-spin fields have been discussed e.g. in [52,53,54,55].

Given the observation that new resonances cannot necessarily be distinguished from asymp-
totic saturation if the resonance energy is high and event rates are low, we may ask the question
whether the two cases are distinguishable, i.e., whether a resonance model yields a different
prediction from a EFT extrapolation with specific coefficients. We will discuss this issue in
an exemplary way for specific parameter sets. Furthermore, the new model allows for weakly
coupled resonances that do not leave a significant trace in the low-energy EFT, but could
nevertheless lead to a visible signal in collider data.

To obtain numerical results, we take the unitarized model, which is originally formulated in
the gaugeless limit, re-insert gauge couplings and continue the amplitudes off-shell along the
lines of [47]. This allows us to set up a model definition for a Monte-Carlo integrator and event
generator, which we use to generate partonic event samples for the LHC, cross sections and
physical distributions. A more detailed elaboration of the calculations can be found in [56].

2 Extended Effective Field Theory (EFT)

2.1 Low-Energy EFT

We are going to develop models for the high-energy behavior of scattering amplitudes of SM
particles. This cannot be done without precisely stating the assumptions that go into those
models, and to cast them into convenient notation and parameterization.

First of all, we assume that the SM is a reasonable low-energy effective theory. That is,
a weakly interacting (Lagrangian) gauge field theory with spontaneous SU(2)L × U(1)Y →
U(1)EM symmetry breaking mediated by a complex Higgs doublet, supplemented by the stan-
dard sets of quarks and leptons, describes all particle-physics data at and below the electroweak
scale to a good approximation.

Regarding the interactions of fermions and vector bosons, this conclusion can be drawn
from the impressive success in fitting electroweak and flavour data to the SM. We cannot yet
be so sure in the Higgs sector proper. While the Higgs boson was discovered in accordance
with the mass range that the precision analysis of electroweak observables suggests, there is still
room for sizable deviations from the SM predictions for its couplings. In particular, the Higgs
self-couplings have not been measured at all. Nevertheless, we will assume that those couplings
are close to their SM values, such that deviations can be attributed to higher-dimensional
terms in the EFT. Future data from LHC and beyond will tell whether this is true. If not,
we may generalize our findings to a nonlinearly realized Higgs sector. We have set up our
parameterization such that this would cause few modifications in the calculations.

A second assumption regards the low-energy spectrum: we assume that there are no addi-
tional light particles, such as Higgs singlets or extra doublets, below the EW scale. If this was
not true, it would not invalidate the extended-EFT approach, but require the low-energy EFT
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to be revised in order to include extra particles as building blocks. Again, the model extensions
discussed here would remain unchanged, but we could expect a richer phenomenology of final
states that emerge from couplings to the extra light particles.

2.2 Including Resonances

We want to describe massive tensor and scalar resonances as extensions of the SM, coupled
to the scattering channels accessible in VBS. We start from the low-energy EFT, the SM
with higher-dimensional operators included, and add a resonance with appropriate spin and
gauge quantum numbers to the Lagrangian. Requiring the assumed symmetries to be manifest,
uniquely determines the form of the couplings, again in an EFT sense, i.e. as an power series
expansion of operators in some inverse mass scale Λ.

It is tempting to identify Λ with the resonance mass M . This would imply arbitrary strong
interactions at the mass scale of the resonance. The form of couplings would be arbitrary since
for E ≈M = Λ, there is no viable power expansion, and there are no reliable predictions. While
this is a conceivable scenario, we rather consider a more economical setup where the resonance
at mass M can be separated from other effects which are attributed to an even higher scale Λ.
As we will show below, it is possible and consistent to choose Λ�M , both for scalar and tensor
states. Λ is then the appropriate scale for all higher-dimensional operators in the extended EFT.
In the low-energy EFT, integrating out the resonance yields well-defined higher-dimensional
couplings suppressed by powers of M , which combine with the undetermined Λ-suppressed
coefficients inherited from the extended EFT. Depending on their relative magnitude, we may
— or may not — be able to relate the operator coefficients in the low-energy EFT to the
resonance couplings of the extended EFT.

3 Resonances: Spin classification

3.1 Scalar Resonances

A new massive spin-zero state might appear as another Higgs boson. Indeed, a new Higgs singlet
φ can couple to the SM Higgs1 doublet H via the renormalizable operators tr

[
H†H

]
φ and

tr
[
H†H

]
φ2, while a new Higgs doublet H′ can couple via tr

[
H†H′

]2
and tr

[
H†H

]
tr
[
H′†H′

]
.

These terms contribute to Higgs mixing and self-interactions, but not directly to VBS. In the
EFT formalism, the observed Higgs boson is the only light scalar by definition, and in the
renormalizable part of the Lagrangian it saturates the vector-boson couplings. Coupling an
extra scalar to VBS then requires two Higgs-field derivatives DµH and thus introduces an
effective dimension-five operator.

In a renormalizable extension of the SM Higgs sector, after diagonalization new Higgses may
eventually appear in VBS processes. However, we have just noted that in the EFT formalism,
their couplings are higher-dimensional and thus power-suppressed. This is an incarnation of
the Higgs decoupling theorem [57].

1For notational conventions, cf. Appendix A.1.
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Renormalizability corresponds to the existence of special trajectories in parameter space,
where all irrelevant (i. e. higher-dimensional) operators can be removed simultaneously from
the Lagrangian by a nonlinear field redefinition. Without a good reason a priori for allowing
only points on these trajectories, we consider the renormalizable (possibly weakly interacting)
case as a special case that is included in the general framework. This applies, in particular, to
Higgs sector extensions by singlets and doublets, as long as the extra scalars can be considered
heavy in the sense of the EFT formalism.

For our purposes, the phenomenology of generic scalar resonances is then very similar to
tensor resonances (see below), namely breaking the renormalizability of the SM and inducing
higher-dimensional operators both in the low-energy EFT where they are integrated out, and in
the high-energy model where they appear explicitly in the phenomenological Lagrangian. We
will have to apply a unitarization framework in the energy range at and beyond the resonance.

3.2 Tensor Resonances: Fierz-Pauli formalism

We now turn to massive spin-two particles, postponing spin-one for later investigations, as
stated above.

The physical particle corresponds to an irreducible representation of the rotation group in
its own rest frame and thus consists of five component fields, mixing under rotation. Strictly
speaking, there is no reason to develop a relativistic field theory for a generic interacting spin-
two particle. If there is no UV completion of the interacting model, it is not possible to
construct a complete Hilbert space and unitary scattering matrix. However, for convenience of
calculation, it is clearly advantageous to embed the tensor particle in the usual relativistic field-
theory context of the EFT for the SM. We therefore introduce extra fields, coupled to currents
built from SM fields in a Lorentz- and gauge-invariant way, in a Lagrangian formalism.

For the scalar case, this is straightforward since a spin-zero particle is represented by a
Lorentz scalar field that also has a single component. In the tensor case, we have to deal with
the fact that the appropriate Lorentz representation has more than five components. In the rest
frame, the Lorentz symmetry (or its universal cover SL(2,C)) is kinematically broken down
to its SU(2) subgroup, the universal cover of the rotation symmetry. The Lorentz decuplet
decomposes into the irreducible spin states

symmetric tensor→ spin states (2) + (1) + (0) + (0) . (1)

Looking at the symmetric rest-frame polarization tensor εµν , the irreducible parts correspond
to the components εij (traceless), ε0i, ε00, and

∑
εii (trace), respectively. Under the full Lorentz

group, εµν is also reducible and decomposes into the traceless and trace parts. However, in the
presence of interactions it is not straightforward to maintain this decomposition for off-shell
amplitudes [58,59,55].

Our model setup requires that, on-shell, only the pure spin-two state propagates. If we
represent the resonance by a single field, the tensor-field propagator must reduce to the form
[59]

Gµν,ρσ
f (k) =

i
∑

λ ε̄
µν
(λ)(k,m) ερσ(λ)(k,m)

k2 −m2
f + iε

+ non-resonant (2)
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Here, λ sums over a basis of five real-symmetric, mutually orthogonal polarization tensors that
satisfy the constraints

kµε
µν
(λ)(k,m) = 0, ε µ

(λ) µ(k,m) = 0, (3)

as long as k is an on-shell momentum vector, k2 = m2.
The solution to this problem is unique up to the non-resonant part [55],

Gµ1µ2,ν1ν2
f = i

P µ1µ2,ν1ν2(k,m)

k2 −m2 + iε
+ non-resonant, (4)

where the projection operator of spin-two can be written in terms of the spin-one projection
operator,

P µ1µ2,ν1ν2(k,m) =
∑

λ

ε̄µ1µ2(λ) (k,m) εν1ν2(λ) (k,m)

=
1

2

[
P µ1ν1(k,m)P µ2ν2(k,m) + P µ1ν2(k,m)P µ1ν2(k,m)

]

− 1

3
P µ1µ2(k,m)P ν1ν2(k,m), (5)

with

P µν(k,m) =
∑

λ

ε̄µ(λ)(k,m)εν(λ)(k,m) = gµν − kµkν

m2
. (6)

This propagator, with vanishing non-resonant part, can be obtained from the free Fierz-Pauli
Lagrangian [60,53] coupled to a tensor source Jµνf

L =
1

2
∂αfµν∂

αfµν − 1

2
m2fµνf

µν

− ∂αfαµ∂βfβµ − fαα∂µ∂νfµν −
1

2
∂αf

µ
µ∂

αf νν +
1

2
m2fµµf

ν
ν + fµνJ

µν
f . (7)

In the classical theory, the Lagrangian (7) enforces the conditions

∂µf
µν = 0 and fµµ = 0 . (8)

This is, in principle, a valid Lagrangian description of a tensor resonance. However, since we
have to deal with off-shell amplitudes for an effective theory, it will be useful to investigate the
role of various terms in more detail. Returning to the propagator (4), there are momentum
factors kµ in different combinations that project out the proper spin-two part on the pole.
Going to lower energies, these factors vanish more rapidly than the gµν terms and therefore
reduce to operators of higher dimension. Beyond the resonance, they will rise more rapidly and
therefore potentially provide the dominant part that enters the unitarization prescription.
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3.3 Tensor Resonances: Stückelberg formulation

As discussed above, the extra momentum factors in the spin-two propagator represent the
mismatch between the SO(3) little group representation of massive on-shell particles and the
full Lorentz-group off-shell representations in a relativistic description. This is in analogy with
a massive spin-one boson, which in the relativistic case acquires an extra zero component. In
the following, we identify the extra degrees of freedom for a propagating spin-two object and
separate them for the purpose of power-counting in an actual calculation.

To this end, inspired by the spin-one case, we will use the so-called Stückelberg formulation
for tensor resonances. This has been studied in the context of effective field theories for massive
gravity [61,62,63], [64,65] and [66]. The work along these lines has been nicely reviewed in [67].

Given an arbitrary symmetric polarization tensor εµν that is not restricted by auxiliary
conditions, we can subtract terms constructed from momenta, vector and scalar polarizations

ε′ µν = εµν − 1

m
(kµενV + kνεµV )− kµkν

m2
εS − gµνεT , (9)

and demand that (i) the Fierz-Pauli polarization tensor ε′µν satisfies the on-shell constraints (3),
and (ii) the vector polarization is transversal kµε

µ
V = 0. The resulting vector and scalar polar-

izations εV , εS, εT can be expressed as contractions of the original εµν ,

εµV =
1

m

(
kνε

µν − 1

m2
kµkνkρε

νρ

)
, (10a)

εS =
1

3

(
4
kµkν
m2
− gµν

)
εµν , (10b)

εT =
1

3

(
gµν −

kµkν
m2

)
εµν . (10c)

Formally, this subtraction removes the extra representations in the decomposition (1). We note
that this prescription naturally extends to off-shell wave functions.

For the purpose of calculation, we can reproduce the effect of the propagator (4) if we remove
all kµ factors from the tensor-field propagator but add a vector and two scalar fields with their
respective propagators. To enforce the on-shell relations (10) for their polarization (i.e., wave
function) factors, their interactions must be prescribed by the original tensor interactions. In
field theory, such relations can be enforced by demanding a gauge invariance. Since the momenta
have been banished from the numerators of the propagators this way, the power-counting in
the resulting Feynman rules will be explicit, in analogy with the ’t Hooft-Feynman gauge of a
gauge theory.

Stückelberg [68,69,70] originally formulated the algorithm that systematically introduces
the compensating fields together with the extra gauge invariance in the Lagrangian formalism.
Applying the algorithm to the massive tensor case, we start with the Fierz-Pauli Lagrangian
which corresponds to the minimal single-field propagator of the pure spin-two tensor. After
removing any explicit constraints from the tensor field, we introduce first the Stückelberg vector
Aµ that cancels the f 0µ components, by the replacement

fµν → fµν +
1

m
∂µAν +

1

m
∂νAµ, (11)
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and then cancel the extra unwanted A0 components that this field introduces, together with
f 00, by a Stückelberg scalar σ,

Aµ → Aµ +
1

m
∂µσ (12)

Finally, we introduce another Stückelberg scalar φ for cancelling the trace by

fµν → fµν + gµνφ (13)

This scheme guarantees that the interactions of the new fields in the Lagrangian are correctly
related to the original interactions of the tensor field. The resulting Lagrangian exhibits the
gauge invariances that reflect the redundancy of the Stückelberg fields and there is a gauge
(called unitary gauge) in which all Stückelberg fields vanish and the original Fierz-Pauli La-
grangian is recovered. The new Fierz-Pauli Lagrangian with the additional scalar and vector
modes reads

L =
1

2
∂αfµν∂

αfµν − 1

2
m2fµνf

µν − ∂αfαµ∂βfβµ − fαα∂µ∂νfµν

− 1

2
∂αf

µ
µ∂

αf νν +
1

2
m2fµµf

ν
ν − ∂µAν∂µAν + ∂µA

µ∂νA
ν

− 2mfµν∂
µAν + 2mfµµ∂νA

ν + 6mφ∂µA
µ

− 2fµν∂
µ∂νσ + 2fµµ∂

2σ − 2fµν∂
µ∂νφ+ 2fµµ∂

2φ

− 3∂µφ∂
µφ+ 6m2φφ+ 3m2fµµφ

+

(
fµν + gµνφ+

2

m
∂µAν +

2

m2
∂µ∂νσ

)
Jµνf .

(14)

The scheme simplifies slightly since both scalars are related to the original tensor, so their
interactions are not independent. We can choose the gauge

φ = −σ (15)

and arrive at a minimal Stückelberg Lagrangian [71] (adjusted by partial integration and sim-
plified),

L =
1

2
∂αfµν∂

αfµν − 1

2
m2fµνf

µν

−
(
∂αfαµ −

1

2
∂µf

ρ
ρ −mAµ

)2

− 1

4
∂αf

µ
µ∂

αf νν +
1

4
m2fµµf

ν
ν − ∂µAν∂µAν +m2AµA

µ

+

(
∂µA

µ − 3mσ +
1

2
mfµµ

)2

+ 3∂µσ∂
µσ − 3m2σσ

+

(
fµν − gµνσ +

2

m
∂µAν +

2

m2
∂µ∂νσ

)
Jµνf .

(16)
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For perturbative calculations we have to fix the gauge up to residual gauge transformations
λ(x) that decouple on-shell, i.e. satisfy the harmonic condition (∂2 + m2)λ = 0. To this end,
we choose linear gauge conditions,

∂µA
µ − 3mσ +

1

2
mfµµ = 0 (17a)

∂αfαµ −
1

2
∂µf

ρ
ρ −mAµ = 0 (17b)

and end with a diagonalized Lagrangian,

L =
1

2
fµν
(
−∂2 −m2

)
fµν

+
1

2
fµµ

(
−1

2

(
−∂2 −m2

))
f νν

+
1

2
Aµ
(
−2
(
−∂2 −m2

))
Aµ

+
1

2
σ
(
6
(
−∂2 −m2

))
σ

+

(
fµν − gµνσ +

1

m
(∂µAν + ∂νAµ) +

2

m2
∂µ∂νσ

)
Jµνf .

(18)

Next, we normalize the fields canonically

L =
1

2
fµν
(
−∂2 −m2

)
fµν

+
1

2
fµµ

(
−1

2

(
−∂2 −m2

))
f νν

+
1

2
Aµ
(
∂2 +m2

)
Aµ

+
1

2
σ
(
−∂2 −m2

)
σ

+

(
fµν −

1√
6
gµνσ +

1√
2m

(∂µAν + ∂νAµ) +

√
2√

3m2
∂µ∂νσ

)
Jµνf

(19)

and find the canonical propagators

∆µν,ρσ(f) =
i

k2 −m2

(
1

2
gµρgνσ +

1

2
gµσgνρ −

1

2
gµνgρσ

)
(20)

∆µν(A) =
−i

k2 −m2
gµν (21)

∆(σ) =
i

k2 −m2
(22)
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for the resulting unconstrained tensor, vector, and scalar fields, respectively.2 As desired, these
propagators do not contain any momentum factors. This fact turns out to be essential for
a Monte-Carlo calculation for physical processes, where all bosons are off-shell in a generic
momentum configuration.

3.4 Tensor Resonances: Summary

Given this lengthy derivation, we may ask again whether the Stückelberg formulation has any
advantage over the original Fierz-Pauli Lagrangian. Algebraically, both are equivalent and
result in identical on-shell amplitudes.

This should be viewed in analogy with massive vector bosons, for which the Stückelberg
approach reproduces the usual reformulation as a spontaneously broken gauge theory. Again,
this is mathematically equivalent to the original model, as has been pointed out repeatedly [72].
However, once the accessible energy in a process exceeds the resonance mass, there is a con-
ceptual difference. In the gauge-theory version, there is no higher-dimensional operator with a
1/M coefficient. Any additional effects would come with a new cutoff 1/Λ. Scattering ampli-
tudes are bounded beyond the resonance as long as Λ is considered large. By contrast, in the
formulation with massive vector bosons, there are kµ/M terms in the propagator which a priori
require the inclusion of a whole series of operators with 1/M factors. The model is strongly
interacting from the onset and has no predictivity. If actual data show that interactions are
indeed weak, this fact would be interpreted as a fine-tuned cancellation among terms.

Turning this argument around, if a vector boson is observed to interact weakly over a
significant range of scales above its mass, it is natural to describe it as a gauge boson, which
in turn determines the allowed interaction pattern. Analogously, if we assume that a tensor
resonance interacts weakly over a significant range of scales above its mass, it is natural to
describe it by the Stückelberg approach. We will therefore adopt the Stückelberg Lagrangian
as the basis of a tensor-EFT with a minimum set of free parameters.

Clearly, we can always add extra interactions with further free parameters. Those interac-
tions take the form of higher-dimensional operators which do not contribute on the resonance.
They describe unrelated new-physics effects.

4 Lagrangian for the extended EFT

We now combine the findings of the previous section in order to set up a Lagrangian description
of the resonances, as an extension of the low-energy EFT which already (implicitly) includes the
complete set of higher-dimensional operators. Apart from the Lorentz representations as scalar

2For a complete formulation at the quantum level, the gauge-fixed Lagrangian has to be embedded in a BRST
formalism. Introducing appropriate Faddeev-Popov ghosts and auxiliary Nakanishi-Lautrup fields, the classical
action can be rendered BRST invariant. The quantum effective action with resonance exchange is then defined
as the solution to a Slavnov-Taylor equation, to all orders in the EW perturbative expansion. The gauge-fixing
terms become BRST variations which do not contribute to physical amplitudes, and the Stückelberg fields
combine with the ghosts and auxiliary fields to BRST representations that can be consistently eliminated from
the Hilbert space. For free fields, this procedure is detailed in [54].
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or tensor, we have to consider the representation of the internal symmetry group. As we will
argue in detail below, we take this as the Higgs-sector global symmetry SU(2)L×SU(2)R, where
only the SU(2)L × U(1)Y subgroup is gauged. SU(2)R breaking terms can be systematically
included, but we do not consider those in the present work.

4.1 Isospin

In the literature on VBS, resonances have traditionally been categorized in terms of weak
isospin, i.e., custodial SU(2)C multiplets. This is appropriate for a Higgsless scenario, where
the actual scale of EWSB is given by its natural value 4πv ≈ 3 TeV (cf. e.g. [73]). Without a
light Higgs boson, VBS scattering at the LHC would probe the physics at energies below the
true EWSB scale, so the (approximate) low-energy symmetry applies.

However, since the discovery of the Higgs boson, we know that VBS processes probe a scale
above the masses of the physical Higgs and the electroweak gauge bosons. We have to impose
the unbroken high-energy symmetry on the theoretical description. Neglecting hypercharge,
this is SU(2)L×SU(2)R. We therefore describe new resonances coupled to the SM Higgs sector
in terms of SU(2)L × SU(2)R multiplets.

It is not obvious that new physics coupled to the Higgs sector actually has this symmetry.
SU(2)L×SU(2)R is, first of all, an accidental approximate symmetry of the SM EWSB sector.
There are no possible terms in the dimension-four Higgs potential that break SU(2)R, so EWSB
leaves the diagonal custodial SU(2) symmetry untouched. However, hypercharge and top-quark
couplings are not consistent with SU(2)R. Nevertheless, in the gaugeless limit the hypercharge
coupling vanishes, and top quarks are irrelevant for VBS anyway, so SU(2)R remains a good
symmetry of VBS (at high pT ) in the SM. Beyond the SM, new effects in VBS are transmitted
only via the Higgs doublet. In the low-energy EFT, they require higher-dimensional operators.
These would cause power corrections to the ρ parameter and are therefore constrained by
the observed agreement of the measured ρ parameter with the pure SM prediction. For our
purposes, we thus adopt SU(2)R as a symmetry of new physics in the Higgs sector, to keep
things simple. We have to keep in mind that this need not be the case, and leave the discussion
of SU(2)R breaking in this context to future work.

Resonances of even spin with unsuppressed couplings to a pair of Higgs/Nambu-Goldstone
bosons, must reside in the symmetric part of the decomposition of the product representation
of the SU(2)L × SU(2)R symmetry, (1

2
, 1

2
) ⊗ (1

2
, 1

2
). In the effective interaction operator, this

representation appears as a H ⊗H† factor. There are only two possibilities:

1. (0, 0): a neutral singlet (isoscalar).

2. (1, 1): a 3 × 3 matrix, which contains nine components. After EWSB, the multiplet
decomposes into an isotensor (five components), an isovector (three components), and an
isoscalar (one component). In terms of the gauged SU(2)L × U(1)Y subgroup, the nonet
decomposes into a complex SU(2)L triplet with a doubly charged component and a real
SU(2)L triplet, as described in [74]. The relative mass splitting between these states is
of order (mW/M)2, where M is the average resonance mass. For our purposes where we
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assume M � mW , we ignore that splitting and thus deal with a nonet of degenerate
resonance components.

We note that due to the existence of the light Higgs, the close analogy between spin and
isospin is broken at this point: tensor states have just five physical degrees of freedom, but
an isotensor resonance in VBS, given the symmetry assumptions of the present paper, does
not exist in isolation. The distinction comes into play once physical Higgs bosons are involved
in a process. In VBS amplitudes, the symmetry relates, for any given resonance multiplet,
Nambu-Goldstone pairs with Higgs pairs, i.e., V V (V = W,Z) to HH production.

For simplicity of notation, we will continue to denote the (0, 0) case as isoscalar and the (1, 1)
as isotensor, respectively, keeping in mind that the latter case actually is always accompanied
by isovector and isoscalar components.

For a scalar isoscalar resonance σ, we may consider couplings of the form

σ tr
[
H†H

]
(23a)

or
σ tr

[
(DµH)†(DµH)

]
. (23b)

The former operator is of lower dimension and might therefore be considered the dominant
contribution. It is part of the Higgs potential and influences Higgs mixing and production
processes. In the present work, we assume that the scalar state has been broken down in terms
of the SM Higgs doublet and further states, which themselves arrange as multiplets. Since
the SM Higgs couplings in the lowest-order EFT, the pure SM, saturate the Higgs couplings
to SM particles and are fixed by definition, residual mixing and potential terms arrange into
higher-dimensional operators. In particular, a resonance coupled to Nambu-Goldstone bosons
is represented by the term (23b), while the lower-dimensional term (23a) does not enter. We
therefore do not consider (23a) and concentrate on the dimension-five coupling (23b).

This leads to a current for the scalar isoscalar resonance of the form

Jσ = Fσ tr
[
(DµH)†DµH

]
. (24)

4.2 The Isotensor Representation

While the description of an isoscalar is simple, we have to look at the interactions of the isotensor
more carefully. For simplicity, we will first restrict ourselves to a scalar field multiplet.

A resonance with chiral SU(2)L × SU(2)R quantum numbers (1, 1) has nine scalar degrees
of freedoms. In the chiral representation these nine degrees of freedom can be represented as
the tensor Φab with the indices a, b ∈ {1, 2, 3}. Therefore, the Lagrangian describing a isotensor
resonance in the Nambu-Goldstone/Higgs boson sector can be written as

LΦ =
1

2
∂µΦab∂µΦab − m2

Φ

2
ΦabΦab + JabΦ Φab (25)

where the current has a SU(2)L and a SU(2)R index

JabΦ = Fφ tr
[
(DµH)† τaDµHτ b

]
. (26)
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Analogously to the isoscalar case, the coupling Fφ is suppressed by a new physics scale Λ. To
expose the coupling structure to the Nambu-Goldstone/Higgs boson sector, the current can be
expanded in the gaugeless limit

tr
[
(DµH)† τaDνHτ b

]
=

1

2

(
∂µh∂νh− ∂µwi∂νwi

)
δab − 1

2

(
∂µw

i∂νh+ ∂νw
i∂µh

)
εabi

+
1

2

(
∂µw

a∂νw
b + ∂µw

b∂νw
a
) (27)

Here, the decomposition into isotensor, isovector and isoscalar is already manifest. The reso-
nance Φab can be represented in a basis constructed from tensor products of SU(2) generators
by the Clebsch-Gordon decomposition

1⊗ 1 = 2 + 1 + 0 . (28)

Using the basis in the Appendix A.2, the resonance Φab is rewritten into its SU(2)C components

Φab → Φt + Φv + Φs (29)

with

Φt = φ++
t τ++

t + φ+
t τ

+
t + φ0

t τ
0
t + φ−t τ

−
t + φ−−t τ−−t , (30a)

Φv = φ+
v τ

+
v + φ0

vτ
0
v + φ−v τ

−
v , (30b)

Φs = φsτs . (30c)

The Lagrangian (25) can be written in terms of the SU(2)C basis

Lφ =
1

2

∑

i=s,v,t

tr
[
(∂µΦi)

†∂µΦi −m2
ΦΦ2

i

]
+ tr

[(
Φt +

1

2
Φv −

2

5
Φs

)
Jφ

]
(31a)

Jφ =Fφ

(
(DµH)† ⊗DµH +

1

8
tr
[
(DµH)†DµH

])
(τa ⊗ τa) (31b)

In absence of the Higgs boson, the coefficient of the second term is chosen in such a way, that
the trace of the current vanishes. In this scenario, the isovector and isoscalar degree of freedoms
decouple from the model and only the isotensor is needed to describe this resonance. However,
including a Higgs the Lagrangian (31) guarantees the amplitude relation between the Higgs
and Nambu-Goldstone bosons that will be introduced in section 5.1. The crossing relations
are manifest in the scattering amplitudes for the Nambu-Goldstone/Higgs boson, which can be
determined most easily in the gaugeless limit.

One prominent example for such scalar isotensor resonances appears in the context of
composite Higgs models of the type Little Higgs, particularly in the so called Littlest Higgs
model [75]. These resonances predominantly couple to the (electro)weak gauge sector of the
SM.
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4.3 The Tensor Current

We now construct the effective current that is coupled to a tensor resonance multiplet. By
assumption, the resonance should be produced in VBS processes. We have to consider indepen-
dent couplings to the gauge and Higgs/Nambu-Goldstone sectors. The gauge-sector couplings
should vanish in the gaugeless limit, so we are led to consider the Higgs-sector coupling.

For a tensor isoscalar resonance, the lowest-dimensional current consists of two terms,

Jµνf = Ff

(
tr
[
(DµH)†DνH

]
− cf

4
gµν tr

[
(DρH)†DρH

])
. (32)

The second term actually couples to the trace of the tensor field, which vanishes on-shell. It
is therefore part of the non-resonant continuum and can alternatively be replaced by higher-
dimensional operators in the EFT. Nevertheless, it is required if, for instance, we want to
construct a traceless current. For now, we leave the coefficient cf undetermined.

The tensor-field coupling then reads

fµνJ
µν
f (33)

in the Fierz-Pauli formulation (Sec. 3.2), and

fµνJ
µν
f − σJf µµ −

1

m
Aµ∂νJ

µν
f +

2

m2
σ∂µ∂νJ

µν
f (34)

in the Stückelberg formulation (Sec. 3.3). In the second version, the momentum factors in the
propagator have been turned into derivatives that act on the current. There is also a coupling
to the trace of the current.

The formally dominant high-energy (s → ∞) behavior of the amplitude thus is given by
the exchange of Stückelberg vector and scalar. The contribution would vanish if the current
was conserved. Evaluating the divergence of first and second order, using (62) and (65a) in the
appendix),

∂µJ
µν
f =Ff tr

[(
D2H

)†
DνH

]
+
Ff
4

(cf + 2) tr
[
(DµH)† [Dµ,Dν ] H

]

− Ff
4

(cf − 2) tr
[
(DµH)† {Dµ,Dν}H

]

=− Ffλ tr
[
Ĥ†H

]
tr
[
H†DνH

]

− igFf tr
[
(DµH)†WµνH

]
− ig′Ff tr

[
HBµν (DµH)†

]
,

(35)
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∂ν∂µJ
µν
f =Ff tr

[
(DµH)†

(
DνD

µDνH + DµD2H− cf
2

D2DµH
)]

+ Ff tr
[(

D2H
)†

D2H
]

+ Ff tr
[
(DµDνH)†DνDµH

]

− cf
2
Ff tr

[
(DµDνH)†DµDνH

]

=− Ffλ tr
[
Ĥ†H

]
tr
[
DµH

†DµH
]
− Ffλ tr

[
Ĥ†H

]
tr
[
H†D2H

]

− 2Ffλ tr
[
H†DµH

]
tr
[
H†DµH

]

+
g2Ff

2

(
tr
[
(DµH)†H (DµH)†H

]
− tr

[
(DµH)† (DµH) H†H

])

+
g′2Ff

2

(
tr
[
(DµH)†H (DµH)†H

]
− tr

[
(DµH)† (DµH) H†H

])

+
g2Ff

2
tr
[
H†WµνW

µνH
]

+
g′2Ff

2
tr
[
HBµνB

µνH†
]

+ gg′Ff tr
[
H†WµνHBµν

]

− igFf tr
[
(DµH)†WµνDνH

]

− igFf tr
[
(DµH) Bµν (DµH)†

]
,

(36)

we observe that the current is not conserved. However, none of the nonvanishing terms con-
tributes to the V V → V V process at high energy. The Stückelberg fields effectively decouple,
and the high-energy behavior can be calculated from the propagator (20).

If we take EWSB into account, we do get a nonvanishing divergence also at the two-particle
level. New terms arise that are proportional to powers of v, and thus to the W , Z, and Higgs
masses. The Stückelberg vector transmits, via EWSB mixing, a coupling to transversal vector
bosons. In amplitudes, these factors are accompanied by factors of 1/m. In the limit of a heavy
resonance, the Stückelberg terms are thus parametrically suppressed and become relevant only
for energies significantly beyond the resonance mass. Conversely, if the resonance mass is
comparable to the electroweak scale, the Stückelberg terms are significant.

The remainder of the amplitude that corresponds to the genuine tensor propagator (20)
does not contain momentum factors. Nevertheless, the interaction is of dimension five, so we
expect contributions that rise with energy. This occurs for external longitudinally polarized
vector bosons which carry a momentum factor. We obtain a factor s2 in the numerator that
asymptotically cancels with the denominator, so the effective rise is proportional to s/m2.
Qualitatively, this is the same result as for the case of a scalar resonance, or for a Higgs-less
theory.

We conclude that we can unitarize the amplitude uniformly for all spin-isospin channels,
starting from the gaugeless Nambu-Goldstone boson limit, without having to account for
transversal gauge bosons or higher powers of s beyond the resonance. The algorithm can
be taken unchanged from the pure-EFT case [47]. However, we have to restrict the allowed
values of resonance masses and couplings such that the Stückelberg terms discussed above re-
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main numerically small within some finite energy range. Outside this range, we can no longer
separate the Higgs/Nambu-Goldstone sector of the theory but are sensitive to unknown strong
interactions that involve all channels of longitudinal, transversal, and Higgs exchange simulta-
neously. While the unitarization scheme of [47] is also applicable in that situation, it becomes
technically more involved; we defer this case to future work.

4.4 Complete model definition

We now list the effective Lagrangians that we consider in the subsequent calculations. In all
cases, the basic theory is the SM EFT, i.e., the SM with the observed light Higgs boson in linear
representation, extended by higher-dimensional operators. We add four different resonance
multiplets, corresponding to all combinations of spin and isospin 0 and 2, respectively. The
Lagrangians can be combined.

The spin-two Lagrangian is presented in the Stückelberg gauge. Regarding the resonance
fields, we should further select electroweak quantum numbers, as discussed in Sec. 4.1, by
defining the precise form of the covariant derivative acting on the resonance field in the kinetic
operator. However, as long as we are not interested in EW radiative corrections, we may work
with a simple partial derivative and omit the gauge couplings to W , Z, and photon.

The Lagrangian for the isoscalar-scalar σ, the isotensor-scalar φ, the isoscalar-tensor f and
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the isotensor-tensor X are given by

Lσ =
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 + σJσ (37a)

Lφ =
1

2

∑

i=s,v,t

tr
[
∂µΦi∂

µΦi −m2
ΦΦ2

i

]
+ tr

[(
Φt +

1

2
Φv −

2

5
Φs

)
Jφ

]
, (37b)

Lf =
1

2
ffµν

(
−∂2 −m2

f

)
fµνf +

1

2
fµfµ

(
−1

2

(
−∂2 −m2

f

))
f νfν

+
1

2
Afµ

(
−∂2 −m2

f

)
Aµf +

1

2
σf
(
−∂2 −m2

f

)
σf

+

(
ffµν −

1√
6
gµνσ +

1√
2mf

(∂µAν + ∂νAµ) +

√
2√

3m2
f

∂µ∂νσ

)
Jµνf , (37c)

LX =
1

2

∑

i=s,v,t

tr
[
Xiµν

(
−∂2 −m2

X

)
Xµν
i +Xµ

iµ

(
−1

2

(
−∂2 −m2

X

))
Xν
iν

+ Aiµ
(
−∂2 −m2

X

)
Aµi + σi

(
−∂2 −m2

X

)
σi

]

+ tr

[(
Xtµν −

gµν√
6
σt +

∂µAtν + ∂νAtµ√
2mX

+

√
2√

3m2
X

∂µ∂νσt

)
JµνX

+
1

2

(
Xvµν −

gµν√
6
σv +

∂µAvν + ∂νAvµ√
2mX

+

√
2√

3m2
X

∂µ∂νσv

)
JµνX

− 2

5

(
Xsµν −

gµν√
6
σs +

∂µAsν + ∂νAsµ√
2mX

+

√
2√

3m2
X

∂µ∂νσs

)
JµνX

]
, (37d)

respectively, where the tensor resonances are formulated in the Stückelberg formalism with
associated fields σf , Af and ff denoting the scalar, vector and tensor degrees of freedom,
respectively. The corresponding Stückelberg fields for the isotensor-tensor receive extra indices
{s, v, t} which represent the isoscalar, isovector and isotensor fields of the SU(2)C multiplet,
respectively. The couplings to the Nambu-Goldstone boson current in each case is given by

Jσ = Fσ tr
[
(DµH)†DµH

]
, (38a)

Jφ = Fφ

(
(DµH)† ⊗DµH +

1

8
tr
[
(DµH)†DµH

])
τaa , (38b)

Jµνf = Ff

(
tr
[
(DµH)†DνH

]
− cf

4
gµν tr

[
(DρH)†DρH

])
, (38c)

JµνX = FX

[
1

2

(
(DµH)† ⊗DνH + (DνH)† ⊗DµH

)
− cX

4
gµν (DρH)† ⊗DρH

+
1

8

(
tr
[
(DµH)†DνH

]
− cX

4
gµν tr

[
(DρH)†DρH

])]
τaa . (38d)
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5 Unitary amplitudes for VBS at the LHC

5.1 Gaugeless limit

For a first estimate of the impact of generic resonances to vector-boson scattering processes at
the LHC, we study the on-shell Nambu-Goldstone boson scattering amplitudes. When treating
vector-boson scattering as 2→ 2 process of massless scalars at high energies, it is convenient to
describe kinematic dependencies using Mandelstam variables s, t, u. Using custodial symmetry
and crossing symmetries, the different 2→ 2 Nambu-Goldstone boson scattering amplitudes are
determined by the master amplitudes A (w+w− → zz). In the gaugeless limit, the amplitudes
for the resonance multiplets σ, φ, f , and X are calculated in the gaugeless limit via the Feynman
rules given in Appendix B.

5.1.1 Isoscalar-Scalar

Aσ
(
w±w± → w±w±

)
= −1

4
Fσ

2

(
t2

t−m2
σ

+
u2

u−m2
σ

)
, (39a)

Aσ
(
w±z → w±z

)

Aσ
(
hw± → hw±

)

Aσ (hz → hz)





= −1

4
Fσ

2 t2

t−m2
σ

, (39b)

Aσ
(
w±w∓ → w±w∓

)
= −1

4
Fσ

2

(
s2

s−m2
σ

+
t2

t−m2
σ

)
, (39c)

Aσ
(
w±w∓ → zz

)

Aσ
(
hh→ w±w∓

)

Aσ (hh→ zz)





= −1

4
Fσ

2 s2

s−m2
σ

, (39d)

Aσ (zz → zz)

Aσ (hh→ hh)

}
= −1

4
Fσ

2

(
s2

s−m2
σ

+
t2

t−m2
σ

+
u2

u−m2
σ

)
. (39e)

20



5.1.2 Isotensor-Scalar

Aφ
(
w±w± → w±w±

)
= −Fφ

2

8

(
2

s2

s−m2
φ

+
1

2

u2

u−m2
φ

+
1

2

t2

t−m2
φ

)
, (40a)

Aφ
(
w±z → w±z

)

Aφ
(
hw± → hw±

)

Aφ (hz → hz)





=
Fφ

2

8

(
1

2

t2

t−m2
φ

− u2

u−m2
φ

− s2

s−m2
φ

)
, (40b)

Aφ
(
w±w∓ → w±w∓

)
= −Fφ

2

8

(
1

2

s2

s−m2
φ

+ 2
u2

u−m2
φ

+
1

2

t2

t−m2
φ

)
, (40c)

Aφ
(
w±w∓ → zz

)

Aφ
(
hh→ w±w∓

)

Aφ (hh→ zz)





=
Fφ

2

8

(
1

2

s2

s−m2
φ

− u2

u−m2
φ

− t2

t−m2
φ

)
, (40d)

Aφ (zz → zz)

Aφ (hh→ hh)

}
= −3Fφ

2

16

(
s2

s−m2
φ

+
u2

u−m2
φ

+
t2

t−m2
φ

)
. (40e)

5.1.3 Isoscalar-Tensor

Af
(
w±w± → w±w±

)
=− 1

24
Ff

2

(
t2

t−m2
f

P2(t, s, u) +
u2

u−m2
f

P2(u, s, t)

)
, (41a)

Af
(
w±z → w±z

)

Af
(
hw± → hw±

)

Af (hz → hz)





=− 1

24
Ff

2 t2

t−m2
f

P2 (t, s, u) , (41b)

Af
(
w±w∓ → w±w∓

)
=− 1

24
Ff

2

(
s2

s−m2
f

P2(s, t, u) +
t2

t−mf

P2(t, s, u)

)
, (41c)

Af
(
w±w∓ → zz

)

Af
(
hh→ w±w∓

)

Af (hh→ zz)





=− 1

24
Ff

2 s2

s−m2
f

P2 (s, t, u) , (41d)

Af (zz → zz)

Af (hh→ hh)

}
=− 1

24
Ff

2

(
s2

s−m2
f

P2(s, t, u) +
t2

t−m2
f

P2(t, s, u)

+
u2

u−m2
f

P2(u, s, t)

)
. (41e)

Here and in the following, P2(s, t, u) = [3(t2 + u2) − 2s2]/s2 is the second order Legendre
polynomial in terms of the Mandelstam variables.
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5.1.4 Isotensor-Tensor

AX
(
w±w± → w±w±

)
=− FX

2

96

(
4s2

s−m2
X

P2 (s, t, u) +
t2

t−m2
X

P2 (t, s, u)

+
u2

u−m2
X

P2 (u, s, t)

)
, (42a)

AX
(
w±z → w±z

)

AX
(
hw± → hw±

)

AX (hz → hz)





=
FX

2

96

(
− 2s2

s−m2
X

P2 (s, t, u) +
t2

t−m2
X

P2 (t, s, u)

− 2u2

u−m2
X

P2 (u, s, t)

)
, (42b)

AX
(
w±w∓ → w±w∓

)
=− FX

2

96

(
s2

s−m2
X

P2 (s, t, u) +
t2

t−m2
X

P2 (t, s, u)

+
4u2

u−m2
X

P2 (u, s, t)

)
, (42c)

AX
(
w±w∓ → zz

)

AX
(
hh→ w±w∓

)

AX (hh→ zz)





=
FX

2

96

(
s2

s−m2
X

P2 (s, t, u)− 2t2

t−m2
X

P2 (t, s, u)

− 2u2

u−m2
X

P2 (u, s, t)

)
, (42d)

AX (zz → zz)

AX (hh→ hh)

}
=− 1

32
FX

2

(
s2

s−m2
X

P2 (s, t, u) +
t2

t−m2
X

P2 (t, s, u)

+
u2

u−m2
X

P2 (u, s, t)

)
. (42e)

5.2 Decomposition of eigenamplitudes

Since the leading-order amplitudes as listed above are unbounded both at the pole and at high
energy, we use the T-matrix scheme [47] to restore unitarity. In order to implement the scheme
in [47], we decompose the amplitudes into isospin-spin eigenamplitudes (the S-wave, P -wave
and D-wave kinematic functions Si, Pi and Di can be found in Appendix B.3):
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5.2.1 Isoscalar-Scalar

A00 = F 2
σ

(
−3

4

s2

s−m2
σ

− 1

2
S0

)
, (43a)

A02 = −1

2
F 2
σS2, (43b)

A11 = −1

2
F 2
σS1, (43c)

A13 = −1

2
F 2
σS3, (43d)

A20 = −1

2
F 2
σS0, (43e)

A22 = −1

2
F 2
σS2 (43f)

5.2.2 Isotensor-Scalar

A00 = F 2
φ

(
− 1

16

s2

s−m2
φ

− 7

8
S0

)
, (44a)

A02 = −7

8
F 2
φS2, (44b)

A11 =
3

8
F 2
φS1, (44c)

A13 =
3

8
F 2
φS3, (44d)

A20 = F 2
φ

(
−1

4

s2

s−m2
φ

− 1

8
S0

)
, (44e)

A22 = −1

8
F 2
φS2 (44f)
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5.2.3 Isoscalar-Tensor

A00 = − 1

12
F 2
fD0, (45a)

A02 = − 1

40
F 2
f

s2

s−m2
f

− 1

12
F 2
f

(
1 + 6

s

m2
f

+ 6
s2

m4
f

)
S2, (45b)

A11 = − 1

12
F 2
fD1, (45c)

A13 = − 1

12
F 2
f

(
1 + 6

s

m2
f

+ 6
s2

m4
f

)
S3, (45d)

A20 = − 1

12
F 2
fD0, (45e)

A22 = − 1

12
F 2
f

(
1 + 6

s

m2
f

+ 6
s2

m4
f

)
S2 (45f)

5.2.4 Isotensor-Tensor

A00 = − 7

48
F 2
XD0, (46a)

A02 = − 1

480
F 2
X

s2

s−m2
X − imXΓX

− 7

48
F 2
X

(
1 + 6

s

m2
X

+ 6
s2

m4
X

)
S2, (46b)

A11 =
1

16
F 2
XD1, (46c)

A13 =
1

16
F 2
X

(
1 + 6

s

m2
X

+ 6
s2

m4
X

)
S3, (46d)

A20 = − 1

48
F 2
XD0, (46e)

A22 = − 1

120
F 2
X

s2

s−m2
X − imXΓX

− 1

48
F 2
X

(
1 + 6

s

m2
X

+ 6
s2

m4
X

)
S2 . (46f)

5.3 Width

As argued below in Sec. 5.5, for the numerical off-shell calculation of scattering processes we
will need approximate values for the resonance decay widths. If suffices to compute those in the
gaugeless limit. Contributions proportional to the masses of the vector bosons and the Higgs
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boson are assumed to be small at high resonance masses and are therefore neglected.

Γσ =
m3
σ

32π
F 2
σ , (47a)

Γφ =
m3
φ

128π
F 2
φ , (47b)

Γf =
m3
f

960π
F 2
f , (47c)

ΓX =
m3
X

3840π
F 2
X . (47d)

5.4 Matching to the low-energy EFT

For later convenience, we compute the coefficients of the effective dimension-eight operators
LS,0 and LS,1 [47],

LS,0 =FS,0 tr
[
(DµH)†DνH

]
tr
[
(DµH)†DνH

]
, (48a)

LS,1 =FS,1 tr
[
(DµH)†DµH

]
tr
[
(DνH)†DνH

]
. (48b)

which result from integrating out the resonances σ, φ, f,X, one at a time.

FS,1 =
F 2
σ

2m2
σ

, (49)

FS,0 =
F 2
φ

2m2
φ

, FS,1 = −
F 2
φ

8m2
φ

, (50)

FS,0 =
F 2
f

2m2
f

, FS,1 = −
F 2
f

6m2
f

, (51)

FS,0 =
F 2
X

24m2
X

, FS,1 = − 7F 2
X

24m2
X

. (52)

5.5 Tensor exchange in unitary gauge

Beyond the resonance, the Nambu-Goldstone bosons scattering amplitudes rise proportional to
powers of the invariant mass of the scattering system. They eventually violate unitarity at a
certain energy, depending on the resonance coupling.

Computing the w+w− → zz amplitude in the presence of an isoscalar tensor resonance, for
instance,

Af
(
w+w− → zz

)
=−

F 2
f

96
(cf − 2)2 s3

m4
f

−
F 2
f

48
(cf − 2) cf

s2

m2
f

−
F 2
f

24

(
3
(
t2 + u2

)
− 2s2

) 1

s−m2
f

, (53)
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we observe that choosing cf 6= 2 results in a high degree of divergence. This is due to contri-
butions of the vector and scalar degree of freedoms in the Stückelberg parameterization for the
tensor coupled to the derivatives of the current (35) and (36). As discussed above, such terms
can be written in a non-resonant form and should be interpreted as coefficients of undetermined
higher-dimensional local operators. Setting thus cf = 2, we obtain an amplitude Af (s) which
rises proportional to s beyond the resonance.

However, the scalar and vector degree of freedoms provide additional contributions which
are not manifest in the gaugeless limit. A calculation of the tensor scattering amplitude in the
unitary gauge is necessary. The longitudinal on-shell WW → ZZ amplitude for cf = 2 is given
by

Af (WLWL → ZLZL) =− 1

24

F 2
f

s−m2
f

[
(P2 [cos(θ)]− 1) s2 + 12m2

Wm
2
Z

− 12
m2
Wm

2
Z

m2
f

+
(
s− 2m2

W

) (
s− 2m2

Z

)

+ 4
m2
Wm

2
Z

m4
f

s2 + 2
(m2

W +m2
Z) s2 − 4m2

Zm
2
W s

m2
f

]
.

The first line represents the tensor contribution in the Stückelberg parameterization. Due to
its suppression by a power of s, the vector part in the second line can be neglected for the
longitudinal scattering amplitude. Besides the scalar contribution originating from the trace
of the current, additional contributions related to the double derivative of the current and its
mixing with the trace part written in the fourth line will rise with energy. However, they are
suppressed by m2

W/m
2
f or m4

W/m
4
f and can be neglected if the mass of the tensor resonance is

large in comparison to the vector boson masses. In this case, the longitudinal amplitude of the
vector bosons calculated in the unitary gauge coincides with the amplitude in gaugeless limit.

Furthermore, due to the coupling to the derivatives of the scalar and vector degrees of
freedom, also amplitudes in channels with transverse polarization rise with the energy of the
vector-boson scattering system. A full list of these channels in the high-energy limit is displayed
in Table 1. We observe that all channels which include at least one transversally polarized
vector boson are suppressed by m2

W/m
2
f . Therefore, a calculation within the gaugeless limit is

sufficient to estimate the high-energy behavior for high masses of the tensor resonance.
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(
+,+,+,+

)
(
+,+,−,−
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2
Wm

2
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24m2
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F 2
f s
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)
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8m2
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(
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(
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(
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)
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f

F 2
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+,+,0, 0

)
(
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f + 2m2

Z

12m4
f

m2
WF

2
f s

(
0,0,+,+

)
(
0,0,−,−

) m2
f + 2m2

W

12m4
f

m2
ZF

2
f s

(
0,0,0, 0

) F 2
f

24

2s2 − 3t2 − 3u2

s
+
m2
f (m2

W +m2
Z) + 2m2

Wm
2
Z

12m4
f

F 2
f s

Table 1: High energy limit of the W+W− → ZZ amplitude for each polarization channel that
rises with energy due to a isoscalar-tensor resonance (cf = 2).

For the tensor-isotensor amplitude, the analogous result with cX = 2 is

AX
(
W±
LW

∓
L → ZLZL

)
=
FX

2

96

(
s2

s−m2
X

P2 (s, t, u)− 2t2

t−m2
X

P2 (t, s, u)− 2u2

u−m2
X

P2 (u, s, t)
)

+
FX

2

24

m2
whz

m2
X

(
s2

s−m2
X

− 2t2

t−m2
X

− 2u2

u−m2
X

)

− FX
2

48

(m2
W −m2

Z)
2

m4
X

(
t2

t−m2
X

+
u2

u−m2
X

)
+O

(
s0
)
, (55)

containing t-channel and u-channel contributions, as expected.
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5.6 Unitarized amplitudes

The tree-level exchange amplitudes that directly result from evaluating Feynman rules, exhibit
two distinct sources of unitarity violation. Firstly, the amplitude develops a pole at the res-
onance mass, on the real axis. Secondly, terms that rise with energy asymptotically violate
unitarity bounds.

In principle, the T-matrix unitarization scheme would be sufficient to regulate both issues
simultaneously. At the pole, this boils down to standard Dyson resummation, introducing the
particle width as an imaginary part in the denominator. It can easily be verified that this
actually happens for the on-shell scattering amplitudes of external Nambu-Goldstone bosons.
We obtain the correct value for the resonance width in the gaugeless limit.

However, we want to evaluate the amplitudes off-shell for physical W and Z bosons. The
simplified unitarization scheme that we describe above is not exactly accurate as soon as we in-
clude finite corrections due to transversal gauge bosons and finite W/Z mass. As a result, there
are contributions which are not cancelled on the resonance pole, and a narrow but unbounded
peak remains.

To avoid this problem, we simply insert an a priori width in the resonant propagator. We
thus start from a complex model amplitude. Therefore, we take the T-matrix scheme of [47] at
face value, and drop the reference to the usual K-matrix scheme which implies an intermediate
projection onto the real axis. By construction, in the gaugeless limit, the correct result is
invariant with respect to the introduction of this width, if it has the correct on-shell value.
For finite gauge couplings and masses, the result acquires a subleading dependence on this
initial value since the model amplitude is neither on the real axis nor exactly on the Argand
circle. However, the amplitude after unitarization is now bounded near the resonance pole, as
required.

In the asymptotic regime, the simplified T-matrix scheme renders the amplitude unitary at
all energies, if the exchanged resonance is scalar. This enables us to compute cross sections and
generate event samples in this model for complete processes at the LHC (cf. Sec. 6).

For a tensor resonance, in the Stückelberg approach, the genuine tensor exchange terms are
also regulated completely by this (simplified) scheme. The extra Stückelberg vector and scalar
terms, however, generate higher powers of s which enter when trading Nambu-Goldstone bosons
for physical vector bosons in unitary gauge, suppressed by powers of mh,mW ,mZ . Applying
the unitarization framework for those extra terms would require a complete diagonalization of
all vector-boson helicity amplitudes in unitary gauge. In any case, parameter ranges where
these terms play a role correspond to a regime where all degrees of freedom of the SM interact
strongly via these couplings. We therefore stay away from this range and choose parameters
where those terms are subleading within the accessible energy range.

Computing the scale where the Stückelberg vector-scalar terms violate the relevant unitarity
bounds, we obtain the energy limit

√
s .

√
1

5

mf

Γf

m2
f

mwhz

, (56)
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for the model which contains an isoscalar tensor, and

√
s .

√
1

30

mx

Γx

m2
X

mwhz

. (57)

for the isotensor tensor multiplet. Here, mwhz indicates the common mass scale of electroweak
bosons W,H,Z. Inserting the accessible energy for the LHC collider, we can invert those
relations to extract parameter regions where the simplified models with a tensor resonance are
valid. The numerical results in the following sections have been obtained for parameter values
that satisfy the bounds.

6 Scenarios for VBS at the LHC

6.1 Implementation

In the previous section, we have derived the analytic expressions that determine the on-shell
VBS amplitudes in the presence of a resonance. The amplitudes include correction terms that
enforce quantum-mechanical unitarity without altering the physical content of the model.

Ultimately, we are interested in measurable effects in LHC data. For a complete calcula-
tion, the unitarized amplitudes that are originally defined for on-shell VBS processes, have to
be extrapolated off-shell in a practically meaningful way. As long as the kinematical conditions
are approximately met, we can evaluate the interactions in unitary gauge, eliminating all ex-
plicit references to Nambu-Goldstone bosons in favor of physical vector fields, and derive the
Feynman rules in that gauge. The effective Feynman rules for the unitarity corrections become
momentum dependent and involve theta functions that restrict the insertions to the s-channel
of VBS where partial-wave projection and unitarization is defined.

In the physical processes at the LHC,

pp→ qq → qqV V (58)

where q generically denotes a quark and V is either W or Z, the final-state quarks are detected
as jets in the forward direction. With suitable cuts, we can arrange that there is significant
contribution from the subprocess V V → V V where the initial-state vector bosons are spacelike
but approximately on-shell, in the limit of high invariant V V mass. This subprocess, i.e., the
associated off-shell amplitude, obtains contributions from resonance exchange and is affected
by unitarization.

We have implemented this prescription as a model in the Monte-Carlo integration and event
generation package WHIZARD [77,78,80,79]. This is a universal event generator for simulations
at hadron and lepton colliders at leading order and next-to-leading (QCD) [82] order. Though
interfaces to automated tools for beyond the SM models exist [81], they cannot be used for the
implementation of unitarization projections for operators and resonances. The reason is the
global structure of the unitarization projection. Therefore the models described in the current
paper have been manually added to the framework.
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For each resonance type (σ, φ, f,X), we can compute the relation of the resonance width
(Sec. 5.3) to the operator coefficients in the low-energy EFT (Sec. 5.4) which result when the
resonance is integrated out. These relations are listed in Table 2.

σ φ f X

FS,0
1
2

2 15 5

FS,1 – -1
2

-5 -35

Table 2: Relation of resonance width Γ and mass M to the corresponding D = 8 operator
coefficients in the low-energy EFT, for all resonance types considered in this paper. The factors
listed in the table have to be multiplied by 32πΓ/M5.

The analysis of LHC run-I data by the ATLAS experiment ATLAS [18] has been cast into
bounds on the EFT parameters FS,0 and FS,1, namely

|FS,0| < 480 TeV−4 |FS,1| < 480 TeV−4 , (59)

where only one parameter was varied at a time. This analysis covered the same-sign leptonic
decay channel of W+W+ and W−W−. It was based on the T-matrix unitarized version of
the extrapolated EFT as its reference model, with the pure SM as the limit for vanishing
parameters. A CMS analysis can be found in [20]

6.2 On-shell Invariant Mass Distributions

In the following, we will present results both for on-shell W/Z final states and for complete
partonic final states. On-shell vector bosons cannot be detected directly but their distributions
directly reflect the actual features of the physical model. Observable distributions of fermions
in the final state, which may be quarks (jets), charged leptons, or neutrinos, are less directly
linked to the physical process and require detailed analysis along the lines of [18]. This concerns,
in particular, the separation of signal and background based on detector data, which is beyond
the scope of the present paper.

We show results for particular parameter sets where we add one resonance at a time on top of
the SM, namely a scalar-isoscalar, tensor-isoscalar, or scalar-isotensor resonance, respectively.
All extra higher-dimensional operator coefficients are set to zero. By varying the resonance
parameters within reasonable limits, this gives an overview of the expected phenomenology.

For definiteness, we choose to plot the invariant mass of the vector-boson pair system in the
final state, which is the energy scale of the actual VBS process. The initial state is convoluted
with the parton structure functions, so the results hold for the LHC (

√
s = 14 TeV), and we

apply standard VBS cuts to enhance the signal. The final-state vector bosons are taken on-shell.
We show the distribution for the W+W+ and ZZ final states, where the latter case as the golden
channel of VBS is distinguished by the fact that the ZZ invariant mass can be reconstructed
from the leptonic Z decays. This is not possible for W+W+, but the corresponding same-sign
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lepton channel is distinguished by a favorable signal-to-background ratio. Note that in the
on-shell plots, the vector-boson decay branching ratios have not been included.

In all invariant-mass plots, we display the distribution for the unitarized resonance model
(blue curves) together with the pure SM prediction (black). We also plot the unitarity bound
for the appropriate partial wave, extrapolated off-shell by the same algorithm, as a dashed curve
(black). For illustrative purposes, we also display, in each case, the unitarized extrapolation of
the low-energy EFT (red), where we choose the operator coefficients equal to the formal result
of integrating out the resonance. Finally, we also display numerical results for the EFT without
unitarization (red, dashed) and the resonance with correct width but no further unitarization
(blue, dashed).

6.2.1 Isoscalar-Scalar

The simplest case is a scalar-isoscalar resonance. This is a single isolated resonance, as it could
arise, e.g., as the extra scalar particle in a singlet-doublet Higgs model or as a low-energy signal
of a strongly interacting Higgs sector that is neutral under the SM gauge group.

In Fig. 1, we have selected a moderate mass of 800 GeV and a rather narrow width of
80 GeV, which corresponds to a weak coupling. The isolated resonance is clearly visible in the
ZZ channel, while the W+W+ channel is barely affected. For such weak coupling, the operator
coefficient in the EFT is small and more than one order of magnitude below the current LHC
run-I limit. We can draw the conclusion that in this case the resonance should be detectable
for sufficient luminosity, but the EFT approximation is not useful.

Turning to a stronger coupling, we show the corresponding distribution in the ZZ channel
for m = 650 GeV and Γ = 260 GeV in Fig. 1c.

Here, the EFT parameters are within the range that should become accessible at LHC run II
and beyond. The EFT curve (red) appears correctly as the Taylor expansion of the resonance
curve (blue) for low energy. However, the energy region where the deviation from the SM
becomes sizable, already coincides with the resonance peak region, so the EFT considerably
underestimates the event yield. Beyond the resonance, the EFT misses the fact that the
distribution falls down again, approaching the SM prediction (black) from above.

The result also demonstrates that the additional unitarization of the scalar resonance beyond
the Breit-Wigner approximation with constant width is essential, as is seen by comparing the
blue and blue-dashed curves. The naive EFT result without unitarization (red-dashed) grossly
overshoots all conceivable models, which should not cross the unitarity limit (black-dashed).
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(a) pp → W+W+jj, weakly coupled isoscalar scalar
with mσ = 800 GeVand Γσ = 80 GeV.
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(b) pp → ZZjj, weakly coupled isoscalar scalar
with mσ = 800 GeVand Γσ = 80 GeV.
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(c) pp → ZZjj, low lying isoscalar scalar
with mσ = 650 GeVand Γσ = 240 GeV.

Figure 1: Differential cross sections of an isoscalar scalar resonance.
Solid line: unitarized results, dashed lines: naive result,
black dashed line: Limit of saturation of A20 (W+W+) / A00 (ZZ).
Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| > 4.5.
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6.2.2 Isoscalar-Tensor

As can be observed from Table 2, a tensor resonance has a stronger impact on the low-energy
EFT than a scalar resonance of equal width. In Fig. 2, we display the distributions for a tensor
isoscalar resonance with m = 1 TeV and Γ = 100 GeV.

The resonance visibly modifies the distribution already at low energy, such that the EFT
analysis, given sufficient sensitivity, should catch the deviation from the SM. Nevertheless, the
excess at the peak in the ZZ channel is sizable. Beyond the resonance, unitarization is essential
in the tensor case. In the W+W+ final state the tensor enters only as t-channel exchange , so
there is no resonance but a broad enhancement. This enhancement is rather well described by
the corresponding unitarized EFT.

As in the scalar case, the curves without unitarization do not provide a useful phenomeno-
logical description.

In Fig. 2c, we consider a heavy tensor-isoscalar with strong coupling, m = 1.2 TeV and
Γ = 480 GeV. The resonance peak appears as a broad enhancement, which extends to both
low and high energies. The EFT approximation, with sizable coefficients, is rather accurate in
this case. The actual resonance curve shows a nontrivial threshold structure which corresponds
to the interplay of all partial waves which are excited by s-channel and t-channel exchange
contributions. However, we should keep in mind that the prediction for such a strong coupling
is uncertain in any case and should not be taken too seriously.
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(a) pp → W+W+jj, isoscalar tensor with
mf = 1000 GeV and Γf = 100 GeV.
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(b) pp → ZZjj, isoscalar tensor with
mf = 1000 GeV and Γf = 100 GeV.
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(c) pp → ZZjj, strongly interacting isoscalar
tensor with mf = 1200 GeV and Γf = 480 GeV.

Figure 2: Differential cross sections of an isoscalar tensor resonance.
Solid line: unitarized results, dashed lines: naive result,
black dashed line: Limit of saturation of A22 (W+W+) / A02 (ZZ).
Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| > 4.5.
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6.2.3 Isotensor-Scalar

Turning to the isotensor case, we now get a resonance in all final states including W+W+. This
is illustrated by the plots in Fig. 3 for m = 800 GeV and Γ = 80 GeV.

Due to the large number of degrees of freedom (nine states which are degenerate in mass),
the peak is rather prominent while the low-energy EFT parameters are again small. We observe
that the peak value is slightly below (W+W+) and above (ZZ) the appropriate unitarity limit,
respectively. This is the effect of t-channel exchange which also contributes and can have either
sign.

Contrary to the weakly interacting scenario, a non-unitarized low-lying and strongly inter-
acting isotensor-scalar with mass of mφ = 650 GeV and width Γφ = 260 GeV violates the A20

slightly above the resonance as illustrated in Figure 3c. Therefore, a unitarization is needed for
this strongly interacting resonance. The low-energy effective field theory approach does only
coincide in the unitarized case at high energies, because the eigenamplitudes of the isotensor-
scalar as well as the dimension-eight operators are already saturated through the T-matrix
formalism.
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(a) pp → W+W+jj, isotensor scalar
with mφ = 800 GeVand Γφ = 80 GeV.
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(b) pp → ZZjj, sotensor scalar
with mφ = 800 GeVand Γφ = 80 GeV.
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(c) pp → W+W+jj, low lying isotensor scalar
with mφ = 650 GeVand Γφ = 240 GeV.

Figure 3: Differential cross sections of an isotensor scalar resonance.
Solid line: unitarized results, dashed lines: naive result,
black dashed line: Limit of saturation of A20 (W+W+) / A00 (ZZ).
Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| > 4.5.
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6.2.4 Isotensor-Tensor

Similarly to the isotensor-scalar, every vector-boson scattering channel receives a resonant
contribution from the isotensor-tensor multiplet. The W+W+ and ZZ channel distributions of
the isotensor-tensor resonance with mass mX = 1400 GeV width ΓX = 140 GeV are plotted in
Figures 4a and 4b, respectively. Due to the bound of equation (57), the mass of the isotensor-
tensor has to be chosen slightly higher than the mass of the isoscalar-tensor in Figures 2a and
2b when leaving the ratio of width and mass invariant.

The effective field theory with the dimension-eight operators coincides with the onset of
the isotensor-tensor peak. Starting slightly below the resonance, the resonant cross section
deviates from the effective field theory description. Analogously to the isotensor-scalar, the very
distinctive peak of the isotensor-tensor is not captured by the dimension-eight operators. In
the W+W+- channel, even the non-unitarized resonance contribution stays within the unitarity
bound of A22. Contrary to the isotensor-scalar, the isotensor-tensor needs unitarization for
the ZZ final state due to the large tensor contributions in the t- and u−channel. The non-
unitarized amplitudes violate the A02 unitarity already below the mass of the resonance. Even
the resonance peak is hardly visible. The unitarized resonance curve shows a peak, although it
is slightly above the unitarity bound.

In a strongly interacting scenario (ΓX = 720 GeV ), the unitarized isotensor-tensor resonance
peaks below its actual mass atmX = 1800 GeV. This peak originates from the already saturated
eigenamplitudes, which then fall due to the parton distribution functions at high energies.
Besides the resonance peak, the low-energy effective field theory coincides with the isotensor-
tensor for both unitarized and non-unitarized results.
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(a) pp → W+W+jj, isotensor tensor with
mX = 1400 GeV and ΓX = 140 GeV.
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(b) pp → ZZjj, isotensor tensor with
mX = 1400 GeV and ΓX = 140 GeV.
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(c) pp → W+W+jj, strongly interacting isotensor
tensor with mX = 1800 GeV and ΓX = 720 GeV.

Figure 4: Differential cross sections of an isotensor tensor resonance.
Solid line: unitarized results, dashed lines: naive result,
black dashed line: Limit of saturation of A22 (W+W+) / A02 (ZZ).
Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| > 4.5.
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6.3 Results for Complete Processes

The actual analysis of LHC data will have to exploit cross sections and distributions for the
complete final state which consists of the two tagging jets and the decay products of the vector
bosons. In this paper, we only investigate the ZZ channel with its decay into four leptons,
selecting the e+e−µ+µ− final state. This process is straightforward to analyze, but suffers from
the low leptonic branching ratio, so for our simulation we assume the high-luminosity mode
of the LHC with integrated luminosity of 3 ab−1. We anticipate that by including also the
leptonic WW final state and hadronic final states, the results can be considerably improved.

The simulation generates event samples for the complete process with all Feynman graphs, so
there is no restriction on resonant vector bosons as the origin of the final-state leptons. We apply
standard VBS cuts and compare, in Fig. 5, various distributions for the SM (blue), resonance
model with a single isoscalar-scalar (red), and the unitarized low-energy EFT (yellow).

The resonance with m = 1 TeV and Γ = 100 GeV appears, as expected, in the invariant
mass distribution and, more indirectly, in other plots. Clearly, this parameter set is at the
margin of observability in this single channel. The situation obviously improves if we consider
resonances with lower mass, larger coupling, in higher representions, and add other analysis
channels.

7 Conclusions

The Higgs sector of the SM, after the discovery of a light Higgs, is a new field of study for the
experiments at the LHC, and beyond. While the SM yields precise predictions in accordance
with the notion of a weakly coupled theory, a thorough analysis of electroweak data should
be guided by reference simplified models which differ from the SM. Extending the EFT by
higher-dimensional operators is useful for analyzing observables with bounded energy, but open
scattering data require enforcing unitarity and extrapolating into a region where perturbation
theory in the EFT is insufficient.

Without reference to any particular high-energy model, we have augmented the EFT by
resonances with even spin, namely scalar or tensor. Assuming exact SU(2)L × U(1)Y gauge
invariance and, for simplicity, approximate custodial symmetry both in the EFT and beyond,
we can distinguish four distinct resonance multiplets with a single free mass and coupling
parameter each. This class of models includes the decoupling limit of multi-Higgs models and
certain aspects of massive-graviton models.

The models are set up such that we need only take the interaction with the Higgs sector
into account, while couplings to the gauge and fermion sectors occur only via mixing. This is
consistent with the symmetry assumptions and with our knowledge about electroweak precision
data, although it is clearly not guaranteed. The models allow for arbitrary higher-dimensional
operators in the EFT, unrelated to resonance exchange, so we do not lose generality.

All amplitude calculations are meaningless unless we enforce quantum-mechanical unitar-
ity, since naive extrapolations yield event rates in the high-energy region that can exceed the
unitarity bounds by orders of magnitude. We have consistently implemented the T-matrix uni-
tarization scheme which works on the complex scattering matrix of the model directly, simplified
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Figure 5: pp→ e+e−µ+µ−jj at
√
s = 14 TeV with luminosity of 3000 fb−1

with isoscalar tensor at mf = 1000 GeV and Γf=100 GeV
Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| > 4.5; 100 GeV > Me+e− > 80 GeV;
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for the asymptotic range where longitudinal and transveral degrees of freedom decouple.
We have studied the case of a tensor resonance in detail. Since we do not necessarily

restrict ourselves to states that are related to gravity, the model differs from the various massive-
graviton models and studies that can be found in the literature. To our knowledge, the coupling
of a generic tensor resonance to the Higgs sector and the resulting predictions for the LHC have
not been considered in detail before. We find that by employing a Stückelberg procedure for
the implementation in the Lagrangian, instead of the classic Fierz-Pauli approach, we are able
to set up the extended EFT for an isolated tensor resonance manifestly separated from non-
resonant effects. Scalar and tensor resonances can be handled in close analogy. It turns out
that it is possible to extend an effective theory with an isolated tensor resonance up to a cutoff
of order Λ .M2/mH , where M is the resonance mass, and mH is the physical Higgs mass.

We have implemented the models in the Monte-Carlo package WHIZARD and computed
exemplary distributions and simulated event samples for the LHC. The numerical results illus-
trate that resonances in VBS may be detected at the LHC within a certain range of mass and
coupling values. For a final verdict, it will be necessary to perform a complete experimental
study and analysis, based on exclusive event samples in combination with background and de-
tector description. We also find that the comparison with pure-EFT results can be misleading
if resonance and background cannot be clearly separated, as it is typical for the situation at
the LHC. We conclude that data should be analyzed on base of resonance models as well as
pure-EFT simulations. This holds, in particular, if limits or values are to be combined between
distinct final states or with data obtained at a future lepton collider like the ILC [83,84]. There
has been a first study similar to the one presented here, investigating resonances of spins and
isospins zero, one and two in 1 TeV lepton collisions [85], where issues of unitarization did not
play a role.
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A Notation and conventions

A.1 Fields

H =
1

2

(
v + h− iw3 −i

√
2w+

−i
√

2w− v + h+ iw3

)
. (60)

To avoid adding terms proportional to the vacuum expectation value, when adding a Higgs
pair, we introduce

tr
[
H†H

]
→ tr

[
Ĥ†H

]
:= tr

[
H†H− v2

4

]
. (61)

Wµν ≡ W µν
i

τi
2

= +
i

g
[Dµ

W , D
ν
W ] =

(
∂µW ν

k − ∂νW µ
k + gεijkW

µ
i W

ν
j

) τk
2

= ∂µWν − ∂νWµ − ig [Wµ,Wν ] ,

Bµν ≡ Y

2
Bµν = +

i

g′
[Dµ

B, D
ν
B] =

Y

2
(∂µBν − ∂νBµ)

= ∂µBν − ∂νBµ

(62)

The covariant derivative is defined via

DµH = ∂µH− igWµH (63)

and
DµWν = ∂µWν − igWµWν (64)

The equations of motion for the Standard Model yield

(
D2H

)
= µ2H− λ tr

[
H†H

]
H , (65a)

(
D2H

)†
= µ2H† − λ tr

[
H†H

]
H† , (65b)

∂µB
µν = −i

g′

2

(
H†DνH− (DνH)†H

)
, (65c)

DµW
µν = −i

g

2

(
DνHH† −H (DνH)†

)
(65d)
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A.2 SU(2) Tensor Products

The tensor products of Pauli matrices for the isospin quintet τt, the isospin singlet τv, and the
isospin scalar τs are defined, respectively, as

τ++
t = τ+ ⊗ τ+, (66a)

τ+
t =

1

2

(
τ+ ⊗ τ 3 + τ 3 ⊗ τ+

)
, (66b)

τ 0
t =

1√
6

(
τ 3 ⊗ τ 3 − τ+ ⊗ τ− − τ− ⊗ τ+

)
, (66c)

τ−t =
1

2

(
τ− ⊗ τ 3 + τ 3 ⊗ τ−

)
, (66d)

τ−−t = τ− ⊗ τ− , (66e)

τ+
v =

i

2

(
τ+ ⊗ τ 3 − τ 3 ⊗ τ+

)
, (66f)

τ 0
v =

i√
2

(
τ+ ⊗ τ− − τ− ⊗ τ+

)
, (66g)

τ−v = − i

2

(
τ− ⊗ τ 3 − τ 3 ⊗ τ−

)
, (66h)

τs =
1

2
√

3

(
τ 3 ⊗ τ 3 + 2τ+ ⊗ τ− + 2τ− ⊗ τ+

)
, (66i)

where the Pauli matrix for the isospin singlet is related to

τaa ≡ τa ⊗ τa = 2
√

3τs . (67)

All nonzero traces of a product of two tensor products are normalized

tr
[
τ++
t τ−−t

]
= tr

[
τ+
t τ
−
t

]
= tr

[
τ 0
t τ

0
t

]
= tr

[
τ+
v τ
−
v

]
= tr

[
τ 0
v τ

0
v

]
= tr [τsτs] = 1 . (68)

From the properties of the tensor product

(A⊗B)(C ⊗D) = AC ⊗BD (69)

and the trace
tr [A⊗B] = tr [A] tr [B] (70)

we find

tr [(A⊗B) (C ⊗D)] = tr [AC] tr [BD] . (71)

This reduces the trace of an isospin singlet

tr [(A⊗B) τaa] = 2 tr [AB]− tr [A] tr [B] . (72)

Multiplying the two Pauli matrices related to the isospin singlet leads to

τaaτ bb = 3 · 1⊗ 1− 2 τaa. (73)
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B Feynman Rules

The Feynman rules which are used to calculate the vector-boson scattering amplitudes are
summarized in this appendix. Focusing only on weak vector-boson scattering, the Feynman
rules are determined from the Lagrangian, where gluons, photons and fermions are omitted.

B.1 Lagrangian

All Lagrangians are defined within the Higgs matrix realization whose definition can be found
in Appendix A.1. The Standard Model Lagrangian is given by

LSM =− 1

2
tr [WµνW

µν ]− 1

2
tr [BµνB

µν ]

+ tr
[
(DµH)†DµH

]
+ µ2 tr

[
H†H

]
− λ

2

(
tr
[
H†H

])2
. (74)

Dimension-six and -eight operators affecting only the Higgs/Nambu-Goldstone boson sector are
discussed in sections 5.4 and are given by

LHD =FHD tr

[
H†H− v2

4

]
· tr
[
(DµH)†DµH

]
, (75a)

LS,0 =FS,0 tr
[
(DµH)†DνH

]
· tr
[
(DµH)†DνH

]
, (75b)

LS,1 =FS,1 tr
[
(DµH)†DµH

]
· tr
[
(DνH)†DνH

]
. (75c)

As an extension to model generic new physics, additional resonances are introduced. The
scalar resonance σ and the tensor resonance fµν represent singlets of the chiral symmetry
group, whereas Φ has the quantum numbers 1⊗ 1 under SU(2)L× SU(2)R. Φ is referred to as
isotensor for historical reasons, but it actually includes an isovector Φv and isoscalar Φs besides
the isotensor Φt. Also the Fierz-Pauli tensor f can be reformulated into a tensor ff , a vector
Af and a scalar σf such that canonical propagators can be used for each degree of freedom
separately instead of the complicated tensor propagator

∆µν,ρσ(f) =
i

k2 −m2 + iε
Pµν,ρσ(k,m) , (76a)

∆µν,ρσ(f ′) =
i

k2 −m2 + iε

(
1

2
gµρgνσ +

1

2
gµσgνρ −

1

2
gµνgρσ

)
, (76b)

∆µν(A) =
−i

k2 −m2 + iε
gµν , (76c)

∆(σ) =
i

k2 −m2 + iε
, (76d)
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where the projection operator of spin-two states can be written in terms of the spin-one pro-
jection operator,

P µ1µ2,ν1ν2(k,m) =
1

2

[
P µ1ν1(k,m)P µ2ν2(k,m) + P µ1ν2(k,m)P µ1ν2(k,m)

]

− 1

3
P µ1µ2(k,m)P ν1ν2(k,m),

(77)

with

P µν(k,m) =
∑

λ

ε̄µ(λ)(k,m)εν(λ)(k,m) = gµν − kµkν

m2
. (78)

B.2 Unitary Gauge

The Feynman rules in unitary gauge of the Lagrangians defined in this paper are listed in this
section. Only the relevant vertices for the vector-boson scattering process is shown. In other
words, vertices above four fields for effective operators and above three fields for resonances are
neglected.

B.2.1 Standard Model

Aµ1W
+
µ2
W−
µ3

: −ie [(p1µ3 − p2µ3) gµ1µ2 + (p3µ2 − p1µ2) gµ1µ3

+ (p2µ1 − p3µ1) gµ2µ3 ] , (79a)

Zµ1W
+
µ2
W−
µ3

: −icwg [(p1µ3 − p2µ3) gµ1µ2 + (p3µ2 − p1µ2) gµ1µ3

+ (p2µ1 − p3µ1) gµ2µ3 ] , (79b)

hW+
µ2
W−
µ3

: imWggµ2µ3 , (79c)

hZµ2Zµ3 : imZggµ2µ3 , (79d)

W+
µ1
W+
µ2
W−
µ3
W−
µ4

: −ig2 (gµ1µ4gµ2µ3 + gµ1µ3gµ2µ4 − 2gµ1µ2gµ3µ4) , (79e)

Zµ1Zµ2W
+
µ3
W−
µ4

: ic2
wg

2 (gµ1µ4gµ2µ3 + gµ1µ3gµ2µ4 − 2gµ1µ2gµ3µ4) , (79f)

Aµ1Aµ2W
+
µ3
W−
µ4

: ie2 (gµ1µ4gµ2µ3 + gµ1µ3gµ2µ4 − 2gµ1µ2gµ3µ4) , (79g)

Aµ1Zµ2W
+
µ3
W−
µ4

: iecwg (gµ1µ4gµ2µ3 + gµ1µ3gµ2µ4 − 2gµ1µ2gµ3µ4) , (79h)

hµ1hµ2W
+
µ3
W−
µ4

:
i

2
g2gµ3µ4 , (79i)

hµ1hµ2Zµ3Zµ4 :
i

2

g2

c2
w

gµ3µ4 . (79j)
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B.2.2 LHD

hW+
µ W

−
ν :

ig2v3

4
FHDgµν , (80a)

hZµZν :
ig2v3

4s2
w

FHDgµν , (80b)

h(p1)h(p2)h(p3) : −ivFHD (p1 · p2 + p1 · p3 + p2 · p3) , (80c)

hhW+
µ W

−
ν :

5ig2v2

4
FHDgµν , (80d)

hhZµZν :
5ig2v2

4s2
w

FHDgµν , (80e)

h(p1)h(p2)h(p3)h(p4) : −iFHD (p1 · p2 + p1 · p3 + p1 · p4

+p2 · p3 + p2 · p4 + p3 · p4) . (80f)

B.2.3 LS

W+
µ1
W+
µ2
W−
µ3
W−
µ4

:
ig4v4

16
[(FS,0 + 2FS,1) (gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3)

+2FS,0gµ1µ2gµ3µ4 ] , (81a)

Zµ1Zµ2W
+
µ3
W−
µ4

:
ig4v4

16c2
w

[FS,0 (gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3)

+2FS,1gµ1µ2gµ3µ4 ] , (81b)

Zµ1Zµ2Zµ3Zµ4 :
ig4v4

8c4
w

(FS,0 + FS,1) [gµ1µ2gµ3µ4gµ1µ3gµ2µ4

+gµ1µ4gµ2µ3 ] , (81c)

h(p1)h(p2)W+
µ3
W−
µ4

: − ig2v2

4
[FS,0 (p1µ3p2µ4 + p1µ4p2µ3)

+2FS,1gµ3µ4p1 · p2] , (81d)

h(p1)h(p2)W+
µ3
W−
µ4

: − ig2v2

4c2
w

[FS,0 (p1µ3p2µ4 + p1µ4p2µ3)

+2FS,1gµ3µ4p1 · p2] , (81e)

h(p1)h(p2)h(p3)h(p4) : 2i (FS,0 + FS,1) [(p1 · p2) (p3 · p4)

+ (p1 · p3) (p2 · p4)

+ (p1 · p4) (p2 · p3)] . (81f)
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B.2.4 Lσ

σW+
µ W

−
ν :

ig2v2

4
Fσgµν , (82a)

σZµZν :
ig2v2

4c2
w

Fσgµν , (82b)

σh (p1)h (p2) : −iFσp1 · p2 . (82c)

B.2.5 Lφ

φ±±t W∓
µ W

∓
ν :

ig2v2

4
Fφgµν , (83a)

φ±t W
∓
µ Zν :

ig2v2

4
√

2cw
Fφgµν , (83b)

φ0
tW

∓
µ W

±
ν : − ig2v2

4
√

6
Fφgµν , (83c)

φ0
tZµZν :

ig2v2

2
√

6c2
w

Fφgµν , (83d)

φsW
∓
µ W

±
ν :

ig2v2

8
√

3
Fφgµν , (83e)

φsZµZν :
ig2v2

8
√

3c2
w

Fφgµν , (83f)

φ±v h (p)W∓
µ : − gv

2
√

2
Fφpµ , (83g)

φ±v h (p)Zµ :
gv

2
√

2cw
Fφpµ , (83h)

φsh (p1)h (p2) :

√
3

2
iFφp1 · p2 . (83i)

B.2.6 Lf

fµνW
+
ρ W

−
σ :

ig2v2

8
Ff

[
gµσgνρ + gµρgνσ −

cf
2
gµνgρσ

]
, (84a)

fµνZρZσ :
ig2v2

8c2
w

Ff

[
gµσgνρ + gµρgνσ −

cf
2
gµνgρσ

]
, (84b)

fµνh (p1)h (p2) : − i

2
Ff

[
p1µp2 ν + p1µp2 ν −

cf
2
gµνp1 · p2

]
. (84c)
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B.2.7 Lf in Stückelberg formalism

ffµνW
+
ρ W

−
σ :

ig2v2

8
Ff

[
gµσgνρ + gµρgνσ −

cf
2
gµνgρσ

]
, (85a)

ffµνZρZσ :
ig2v2

8c2
w

Ff

[
gµσgνρ + gµρgνσ −

cf
2
gµνgρσ

]
, (85b)

ffµνh (p1)h (p2) : − i

2
Ff

[
p1µp2 ν + p1µp2 ν −

cf
2
gµνp1 · p2

]
. (85c)

Because of ∂νJ
µν
f 6= 0:

Af µ (p)W+
ρ W

−
σ :

g2v2

4
√

2mf

Ff

(
pρgµσ + pσgµρ −

cf

2
pµgσρ

)
, (86)

Af µ (p)ZρZσ :
g2v2

4c2
w

√
2mf

Ff

(
pρgµσ + pσgµρ −

cf

2
pµgσρ

)
, (87)

Af µh (p1)h (p2) :
1√
2mf

Ff
[
p2

1p2µ + p2
2p1µ (88)

+
1

2
(2− cf ) p1 · p2 (p1 + p2)µ

]
. (89)

Because of ∂µ∂νJ
µν
f 6= 0 and Jf

µ
µ 6= 0:

σf (p)W+
ρ W

−
σ :

ig2v2

4
√

6
Ff

[
(cf − 1) gρσ −

1

m2
f

(
2kρkσ −

cf
2
k2gρσ

)]
, (90a)

σf (p)ZρZσ :
ig2v2

4
√

6c2
w

Ff

[
(cf − 1) gρσ −

1

m2
f

(
2kρkσ −

cf
2
k2gρσ

)]
, (90b)

σfh (p1)h (p2) : − i√
6
Ff

[
(cf − 1) (p1 · p2)

− 1

m2
f

(
2p1 · (p1 + p2) p2 · (p1 + p2)

− cf
2
p1 · p2 (p1 + p2)2

)]
. (90c)
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B.2.8 LX

X±±tµνW
∓
ρ W

∓
σ :

ig2v2

8
FX

[
gµσgνρ + gµρgνσ −

cX
2
gµνgρσ

]
, (91a)

X±tµνW
∓
ρ Zσ :

ig2v2

8
√

2cw
FX

[
gµσgνρ + gµρgνσ −

cX
2
gµνgρσ

]
, (91b)

X0
tµνW

∓
ρ W

±
σ : − ig2v2

8
√

6
FX

[
gµσgνρ + gµρgνσ −

cX
2
gµνgρσ

]
, (91c)

X0
tµνZρZσ :

ig2v2

4
√

6c2
w

FX

[
gµσgνρ + gµρgνσ −

cX
2
gµνgρσ

]
, (91d)

XsµνW
∓
ρ W

±
σ :

ig2v2

16
√

3
FX

[
gµσgνρ + gµρgνσ −

cX
2
gµνgρσ

]
, (91e)

XsµνZρZσ :
ig2v2

16
√

3c2
w

FX

[
gµσgνρ + gµρgνσ −

cX
2
gµνgρσ

]
, (91f)

X±vµνh (p)W∓
ρ : − gv

4
√

2
FX

[
pµgνρ + pνgµρ −

cX
2
pρgµν

]
, (91g)

Xvµνv
±h (p)Zρ :

gv

4
√

2cw
FX

[
pµgνρ + pνgµρ −

cX
2
pρgµν

]
, (91h)

Xsµνh (p1)h (p2) :

√
3

4
iFX

[
p1µp2 ν + p1µp2 ν −

cX
2
gµνp1 · p2

]
. (91i)
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B.3 Partial wave functions

In this appendix we collect expressions appearing in the partial-wave expansion of amplitudes.

S0 (s,m) =m2 +
m4

s
log

(
m2

s+m2

)
− s

2
, (92a)

S1 (s,m) =2
m4

s
+
m4

s2

(
2m2 + s

)
log

(
m2

s+m2

)
+
s

6
, (92b)

S2 (s,m) =
m4

s2

(
6m2 + 3s

)
+
m4

s3

(
6m4 + 6m2s+ s2

)
log

(
m2

s+m2

)
, (92c)

P0 (s,m) =1 +
m2 + 2s

s
log

(
m2

s+m2

)
, (92d)

P1 (s,m) =
m2 + 2s

s2

(
2s+

(
2m2 + s

)
log

(
m2

s+m2

))
, (92e)

D0 (s,m) =m2 +
11

2
s+

1

s

(
m4 + 6m2s+ 6s2

)
log

(
m2

s+m2

)
, (92f)

D1 (s,m) =2
m4

s
+ 12m2 +

73

6
s

+
1

s2

(
2m2 + s

) (
m4 + 6m2s+ 6s2

)
log

(
m2

s+m2

)
. (92g)

C T-matrix Counterterms

In the T-matrix unitarization scheme, the unitarization corrections are expressed as momentum-
dependent counterterms for the use as effective Feynman rules in the complete amplitude eval-
uation. Starting from the spin-isospin eigenamplitudes in the gaugeless limit, Sec. 5.2, the
straightforward application of the algorithm in [47] yields s-dependent amplitude corrections
∆AIJ(s). The insertion as effective Feynman rules proceeds in form of the following expressions:
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W±
µ1
W±
µ2
→ W±

µ3
W±
µ4

:
g4v4

4

[
(∆A20(s)− 10∆A22(s))

gµ1µ2gµ3µ4
s2

+15∆A22(s)
gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3

s2

]
, (93a)

W±
µ1
W∓
µ2
→ Zµ3Zµ4 :

g4v4

4c2
w

[(
1

3
(∆A00(s)−∆A20(s))

−10

3
(∆A02(s)−∆A22(s))

)
gµ1µ2gµ3µ4

s2

+5 (∆A02(s)−∆A22(s))
gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3

s2

]
, (93b)

W±
µ1
Zµ2 → W±

µ3
Zµ4 :

g4v4

4c2
w

[(
1

2
∆A20(s)− 5∆A22(s)

)
gµ1µ2gµ3µ4

s2

+

(
−3

2
∆A11(s) +

15

2
∆A22(s)

)
gµ1µ3gµ2µ4

s2

+

(
3

2
∆A11(s) +

15

2
∆A22(s)

)
gµ1µ4gµ2µ3

s2

]
, (93c)

W±
µ1
W∓
µ2
→ W±

µ3
W∓
µ4

:
g4v4

4

[(
1

6
(2∆A00(s) + ∆A20(s))

−5

3
(2∆A02(s) + ∆A22(s))

)
gµ1µ2gµ3µ4

s2

+

(
5∆A02(s)− 3

2
∆A11(s) +

5

2
∆A22(s)

)
gµ1µ3gµ2µ4

s2

+

(
5∆A02(s) +

3

2
∆A11(s) +

5

2
∆A22(s)

)
gµ1µ4gµ2µ3

s2

]
, (93d)

Zµ1Zµ2 → Zµ3Zµ4 :
g4v4

4c4
w

[(
1

3
(∆A00(s) + 2∆A20(s))

−10

3
(∆A02(s) + 2∆A22(s))

)
gµ1µ2gµ3µ4

s2

+5 (∆A02(s) + 2∆A22(s))
gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3

s2

]
. (93e)

These relations are the generalizations of the corresponding formulae in reference [47] for the
case of resonances. Scattering processes involving a Higgs boson have a different off-shell ex-
trapolation. Therefore, the Higgs momentum is included in the Feynman rules for the analogous
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effective vertices given by

W±µ1W∓µ2 → hh : − g2v2

[(
1

3
(∆A00(s)−∆A20(s))

−10

3
(∆A02(s)−∆A22(s))

)
gµ1µ2 (k3 · k4)

s2

+5 (∆A02(s)−∆A22(s))
kµ33 kµ24 + kµ14 kµ23

s2

]
, (93f)

Zµ1Zµ2 → hh : − g2v2

c2
w

[(
1

3
(∆A00(s)−∆A20(s))

−10

3
(∆A02(s)−∆A22(s))

)
gµ1µ2 (k3 · k4)

s2

+5 (∆A02(s)−∆A22(s))
kµ33 kµ24 + kµ14 kµ23

s2

]
, (93g)

W±µ1h→ W±µ3h : − g2v2

[(
1

2
∆A20(s)− 5∆A22(s)

)
kµ12 kµ34

s2

+

(
−3

2
∆A11(s) +

15

2
∆A22(s)

)
gµ1µ3 (k2 · k4)

s2

+

(
3

2
∆A11(s) +

15

2
∆A22(s)

)
kµ14 kµ32

s2

]
, (93h)

Zµ1h→ Zµ3h : − g2v2

c2
w

[(
1

2
∆A20(s)− 5∆A22(s)

)
kµ12 kµ34

s2

+

(
−3

2
∆A11(s) +

15

2
∆A22(s)

)
gµ1µ3 (k2 · k4)

s2

+

(
3

2
∆A11(s) +

15

2
∆A22(s)

)
kµ14 kµ32

s2

]
, (93i)

hh→ hh : 4

[(
1

3
(∆A00(s) + 2∆A20(s))

−10

3
(∆A02(s) + 2∆A22(s))

)
(k1 · k2) (k3 · k4)

s2
(93j)

+5 (∆A02(s) + 2∆A22(s))
(k1 · k4) (k2 · k3) + (k1 · k4) (k2 · k3)

s2

]
.
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