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MBsums – a Mathematica package for the representation of
Mellin-Barnes integrals by multiple sums∗

Micha l Ochman and Tord Riemann

Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, 15738 Zeuthen,

Germany

Feynman integrals may be represented by the Mathematica packages
AMBRE and MB as multiple Mellin-Barnes integrals. With the Mathematica
package MBsums we transform these Mellin-Barnes integrals into multiple
sums.

PACS numbers: 11.80.Cr, 12.38.Bx

1. Introduction

In recent years, there was remarkable progress in the development of
(semi-)automatized software for the numerical calculation of arbitrary, com-
plicated Feynman integrals. Basically, two approaches are advocated. One
relies on sector decomposition. For an introduction given at this conference
and for further references see [1]. We will report on the other approach,
based on Mellin-Barnes representations [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
When [9] appeared in 2005, several unsolved problems of different complex-
ity existed. We mention non-planar diagrams, the massive case, multi-loop
tensor integrals, Minkowskian kinematics. For all of the items, progress is
reported in [2], based on the source-open software AMBRE/MB [13, 14, 8].
An alternative is the direct analytical evaluation of MB-integrals. This is
difficult. But in view of recent progress in algebraically summing up infinite
sums by the LINZ group’s Computer algebra algorithms for nested sums and
products, one might hope to achieve a breakthrough [15]; certainly only if
the result leads to appropriate classes of functions. The idea is to apply
the Linz group’s algorithms (as well as those of others, e.g. [16]) to sums of

∗ Corresponding author: Tord Riemann, E-mail: tordriemann@gmail.com. Part of a
talk presented by J. Gluza at the XXXIX International Conference of Theoretical
Physics “Matter to the Deepest”, Ustron, Poland, September 13–18, 2015. Extended
version of the contribution to the proceedings in Acta Physica Polonica 46 (2015).
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residues after applying Cauchy’s theorem [17]. A first attempt was reported
in [18].

The automatized derivation of the multiple sums for a given MB-integral
is certainly the easier part of the task, but it is the first step. We report here
on a first version of the Mathematica program MBsums [19] for transforming
MB-representations for Feynman integrals into multiple sums. The licence
conditions of the source-open package are those formlulated in the CPC
non-profit use licence agreement of the Computer Physics Communications
Program Library [20]. The authors expect that the potential users read and
follow the licence agreement when using this code.

2. The Mathematica package MBsums

The package MBsums transforms Mellin-Barnes integrals into sums, by
closing the integration contours and calculating the integrals by the residue
theorem, i.e. by constructing sums over all residues inside the contours. The
current version of MBsums is 1.0. The package MBsums works with Wolfram
Mathematica 7.0 and later.

In order to obtain a sum from an MB-integral the user should use the
MBIntToSum function of MBsums:

MBIntToSum[int,{},contours] (1)

or

MBIntToSum[int,kinematics,contours], (2)

where int is the MB-integral in the form as it is denoted in the Mathematica
package MB [9]1:

int = MBInt[f,{{eps -> 0},{z1 -> c1, z2 -> c2, ... , zD -> cD}]

(3)
which corresponds to

int =
1

(2πi)d

∫ i∞+c1

−i∞+c1
· · ·

∫ i∞+cD

−i∞+cD

f
D∏

k=1

dzk. (4)

The integrand f can have the form

f =
∑
j

fj (5)

1 The package MBsums uses notations of the package MB, but can be run also indepen-
dently.
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and each fj is assumed to be of the form of

fj = ξj

∏
m Γ(N

(j,1)
m )

∏
mΨ(n)(N

(j,2)
m )∏

m Γ(N
(j,3)
m )

∏
m

rN
(j,4)
m

m , (6)

where Ψ(0)(z) = d ln(Γ(z))/dz, Ψ(n>0)(z) = dnΨ(0)(z)/dzn, ri are free pa-
rameters (usually kinematic parameters) in int and ξj is a factor indepen-
dent of z-variables. The

N (j,k)
m =

∑
i

α
(j,k)
m,i zi + β(j,k)

m + γ(j,k)m ǫ, (7)

where α
(j,k)
m,i , β

(j,k)
m , γ

(j,k)
m are rational numbers and ǫ (eps) is an infinitesimal

dimensional shift, e.g. arising from d = 4 − 2ǫ. All the singularities of
the integrand of the MB-integral f are due (and only due) to Gamma and
PolyGamma functions.

The values of c1, c2, ... , cD are converted to rational numbers by
MBIntToSum before calculations.

Let us now focus on the case when the list kinematics is empty, i.e. we
will consider (2). The list contours has the form

contours = {z1 -> L/R, z2 -> L/R, ... , zD -> L/R}. (8)

The order of the z-variables defines the order of integrations chosen by the
user (from left to right). The L (R) means that the contour will be closed
to the left (right). The L/R choice made by the user can be changed if
kinematics is not empty and this will be covered later. The output of
MBIntToSum in (2) is of the form

{MBsum_1, MBsum_2, ... , MBsum_Q} (9)

where

MBsum_i = MBsum[Sum_Coefficient_i,Conditions_i,List_i] (10)

represents a sum with summand Sum_Coefficient_i that has non-negative
indices given in the list List_i, and Conditions_i are conditions on those
indices. The complete answer is the sum of all MBsum_i in the list.

The list kinematics has the form

kinematics = {r_1 -> v_1, r_2 -> v_2, ... , r_K -> v_K}, (11)

where r_i are free parameters (usually kinematic parameters) in int and
v_i are values of r_i. If kinematics is not empty then MBIntToSum will
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try to change the L/R choice made by the user in the list contours in order
to obtain sums that have good asymptotic behaviour at given values of r_i.
In any case the user is informed how the contour was closed. This will be
explained later in detail. The values of v_i are converted to rational num-
bers by MBIntToSum before calculations. The user can turn off all messages
printed by MBIntToSum by typing MBsumsInfo=False and turn them on by
typing MBsumsInfo=True.

In addition we provide function DoAllMBSums[sums,nmax,kinematics]

that sums the sums in the form (9). The nmax is the maximal value of
each index, the minimal value is given by conditions on indices. The list
kinematics is as above and may be empty. We used Wolfram Mathematica
function ParallelMap inside DoAllMBSums to sum individual sums in the
list sums in parallel.

3. Obtaining the sums

Let us now shortly explain how we obtain the sums. We point out the
most important ingredients in our algorithm. Let us focus on the case when
the list kinematics is empty, i.e. we will consider (2). The MB-integral is
in the form as it was denoted in (3). Let us now assume that the user has
chosen as first integration the z2->L. As a first step we form a list, which
we call NegArgsDoC, of arguments of the Gamma and PolyGamma functions
in the numerators that give residues for Re(z2) < c2 (see (3), the remaining
contours are seen as a straight lines). We call that list NegArgsDoC. Next
w consider all possible cases: When all Gamma and PolyGamma functions that
have arguments in NegArgsDoC contribute to a residue at the same time,
and when only some subset of them contributes to a residue at the same
time. We consider all possible subsets of NegArgsDoC. Additionally we
have to be careful when some Gamma functions in the denominator become
singular at some points. If we have terms like Gamma[2 z2], then the poles
are at z2 = −n/2 and we consider there 2 cases: n = 2n′ and n = 2n′ +
1, where n and n′ are non-negative integers. Similarly we proceed with
arbitrary M × z2 terms, where M is some integer value and in general
with all n/M terms which appear together with integration variable in the
arguments of the Gamma and PolyGamma functions. So we produce a list of
cases

{{f
(1)
1 , c

(1)
1 }, {f

(1)
2 , c

(1)
2 }, ..., {f

(1)
K1

, c
(1)
K1

}}, (12)

where f
(1)
i are expressions after taking residues of f and c

(1)
i are conditions

on the index that numerates terms (residues) in f
(1)
i . We obtain a list of

K1 elements after integrating over z2. Let us now assume that the user
has chosen as second integration variable z5->R. Then we repeat the whole
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procedure on each f
(1)
i taking into account conditions c

(1)
i . So we produce

analogous to (12) a list of cases

{{f
(2)
1 , c

(2)
1 }, {f

(2)
2 , c

(2)
2 }, ..., {f

(2)
K2

, c
(2)
K2

}}. (13)

We repeat the whole procedure for each integration variable.

4. Contours and convergent sums

Let us now shortly explain how we obtain the sums if the list kinematics
is not empty. We follow the order of integration given in the list contours.
Our aim is to determine the L/R such that we obtain sums that have good
asymptotic behaviour at given values of r_i in the list kinematics. We do
it in the following way. At each integration step s we analyse the expressions

f
(s)
i that are to be integrated over some zC . Each f = f

(s)
i we decompose

as
f =

∑
j

gj (14)

and each g = gj is of the form

g = ra11 ra22 · · · raKK F , aj =
∑
i

aj,izi, (15)

where ri are the kinematic parameters in the list kinematics and F contains
the rest of g. If we integrate over zC , we consider

czC , c = r
a1,C
1 r

a2,C
2 · · · r

aK,C

K . (16)

The value of c is calculated. MBIntToSum prints the error message:

Found c = c (not a number): please complete kinematic’s list.

for each gi in each f
(s)
i when c is symbolic (not a number) and at the end

MBIntToSum prints

Unable to find correct contour for zC.

and returns {}. The user should complete the list kinematics.

For each gi in each f
(s)
i it is returned L if |c| > 1 or R if |c| < 1 indicating

how to close the contour or {} if |c| = 1.

If for each gi in each f
(s)
i it is returneded L (R) or {} then the contour

for zC will be closed to left (right) if it is returned at least one L (R).
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If for each gi in each f = f
(s)
i it is returned {} then the choice of user

given in the list contours is taken.
If for some gi it is returned R and for some gj it is returned L then

MBIntToSum prints the error message:

Unable to find correct contour for zC.

and returns {}. Otherwise we compute the sums as described above. We
repeat the whole procedure for each integration variable. We stress that
this procedure as described above does not always give convergent sums.

There are MB-integrals for which no convergent sums can be found. One
such example is the following MB-integral:

B1 =
1

2πi

∫ i∞

−i∞
dzΓ2(1 + z)Γ2(1− z) . (17)

Here we can apply the first Barnes lemma [3] and obtain B1 = 1/6, but the
reader can check that indeed the infinite series of residues diverge both for
Re z > 0 and Re z < 0.

Consider the following integral (see also [3]):

Bx =
1

2πi

∫ i∞

−i∞
dzxzΓ2(1 + z)Γ2(1− z), x > 0 ∧ x 6= 1. (18)

Closing the contour to the right (Re z > 0) gives the following series

sR = −
∞∑
n=1

nxn(2 + n ln(x)), (19)

convergent for 0 < x < 1, while closing the contour to the left (Re z < 0)
gives the following series

sL = −
∞∑
n=1

nx−n(2− n ln(x)), (20)

convergent for x > 1. Both sL and sR give the same formula after summing
up, that is

sLR =
x(2− 2x+ (1 + x) ln(x))

(x− 1)3
, x > 0 ∧ x 6= 1, (21)

so Bx = sLR and limx→1Bx = B1.
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5. Simplification of sums

We also provide function SimplifyMBsums[sums] that takes each
MBsum[] in the list sums in the form (9) and simplifies it. The output
of SimplifyMBsums is of the form (9). If MBsum[f,c,l] is the sum to
be simplified then SimplifyMBsums uses the Mathematica function Reduce

to simplify the conditions c. If Reduce returns – after applying Math-
ematica function LogicalExpand to c – for c an answer in the form
c_1||c_2||...||c_R, then we decompose MBsum[f,c,l] into

{MBsum[f,c_1,l],MBsum[f,c_2,l],...,MBsum[f,c_R,l]}

. If some MBsum[f,c_i,l] contains conditions c_i like

n1 == C[1] && n2 == C[1] + C[2]

where n1, n2 are summation indices in MBsum[f,c_i,l], then we make
the substitutions n1 -> C[1] and n2 -> C[1] + C[2] in f and update
c_i and l in MBsum[f,c_i,l]; C[1] and C[2] are new summation indices.
We assume that C[] are integers. Next, we unify the names of indices.
Finally, we combine sums having the same conditions. It can happen e.g.
that we obtain 4-dimensional sums from a 3-dimensional sum after applying
SimplifyMBsums. To illustrate this, let us consider the following example.
Let c be

c = n3 >= 0 && n2 >= 1 && n1 >= 0 &&

n2 >= 1 + n3 && 1 + n1 <= n2

then

Reduce[c, {n1, n2, n3}, Integers]

gives

Element[C[1] | C[2] | C[3] | C[4], Integers] &&

C[1] >= 0 && C[2] >= 0 && C[3] >= 0 && C[4] >= 0 &&

n1 == C[1] + C[2] &&

n2 == 1 + C[1] + C[2] + C[3] + C[4] &&

n3 == C[2] + C[3]

In addition we provide function MergeMBsums[sums] that only combines
sums in the list sums (in the form (9)) having the same conditions.
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6. Examples

In all the examples we will proceed as follows. We start with Feynman
integral I in d = 4 − 2ǫ dimensions. First, the MB-representation for I
is obtained using the Mathematica package AMBRE v.1.2 [11, 12]. Next the
analytical continuation ǫ → 0 as well as the expansion of the integrals
around ǫ = 0 is obtained using the Mathematica package MB v.1.2 [9, 8].
In some examples, we also used the Mathematica package barnesroutines
v.1.1.1 by David A. Kosower [8] in order to reduce the dimensionality of the
MB-integrals.

6.1. Massive QED on-shell one-loop box diagram

The first example is the massive QED one-loop box diagram with two
photons in the t-channel; see the example file 1lbox.nb [2]. The input
integral is, with kinematics p2i = m2 for i = 1, 2, 3, 4 and p1+p2 = −p3−p4:

I = eγEǫ
∫

ddk1
iπd/2

1

(k21 −m2)(k1 + p1)2(k1 − p3)2[(k1 + p1 + p2)2 −m2]
.

(22)
Using AMBRE one obtains the following MB-representation for finite ǫ:

I = eγEǫ (−t)−2−ǫ

(2πi)2Γ(−2ǫ)

∫ i∞

−i∞
dz1

∫ i∞

−i∞
dz2((−x)z1yz2

Γ2(1 + z2)Γ(−z2)

Γ(2 + 2z2)

×Γ(−z1)Γ
2(−1− ǫ− z1 − z2)Γ(2 + ǫ+ z1 + z2)Γ(2 + 2z1 + 2z2))

(23)

with x = m2/t, y = s/t, (p1 + p2)
2 = s, (p1 + p3)

2 = t. The MB-
representation (23) is the same, up to irrelevant factors, as that in [21].
See also the sums there, compare also with the MB-representation in
example3.nb [14], described in [11]. Next one performs the analytical con-
tinuation of (23) for ǫ → 0 and the expansion of the resulting integrals
around ǫ = 0 up to ǫ1 using MB:

{MBint[((-x)^z1*y^(-1 - z1)*Gamma[-z1]^3*Gamma[1 + z1]*

(-6 + 3*eps^2*EulerGamma^2 + 4*eps^2*Pi^2 +

6*eps*Log[-t] - 3*eps^2*Log[-t]^2 -

6*eps^2*EulerGamma*Log[y] + 3*eps^2*Log[y]^2 +

12*eps^2*PolyGamma[0, -2*z1]^2 +

12*eps^2*PolyGamma[0, -z1]^2 + 6*eps^2*EulerGamma*

PolyGamma[0, 1 + z1] - 6*eps^2*Log[y]*

PolyGamma[0, 1 + z1] + 3*eps^2*PolyGamma[0, 1 + z1]^

2 - 12*eps^2*PolyGamma[0, -z1]*(EulerGamma -



Ochman-Riemann-MBsums printed on November 5, 2015 9

Log[y] + PolyGamma[0, 1 + z1]) +

12*eps^2*PolyGamma[0, -2*z1]*(EulerGamma - Log[y] -

2*PolyGamma[0, -z1] + PolyGamma[0, 1 + z1]) -

12*eps^2*PolyGamma[1, -2*z1] +

6*eps^2*PolyGamma[1, -z1] +

3*eps^2*PolyGamma[1, 1 + z1]))/

(6*eps*t^2*Gamma[-2*z1]), {{eps -> 0}, {z1 -> -1/2}}],

MBint[(-2*eps*(-x)^z1*y^z2*Gamma[-z1]*

Gamma[-1 - z1 - z2]^2*Gamma[-z2]*Gamma[1 + z2]^2*

Gamma[2*(1 + z1 + z2)]*Gamma[2 + z1 + z2])/

(t^2*Gamma[2 + 2*z2]), {{eps -> 0},

{z1 -> -1/2, z2 -> -1/4}}]}

The expression agrees numerically with the MB-representations in Eq. (4.25)
of [22] and in Eq. (4.67) of [23] after analytical continuation and expansion
in ǫ by MB.

We would now like to reproduce the representation by sums of the MB-
integrals above. We aim at sums to be convergent at

Lk = {x -> -1/10, y -> 1/50, t -> -10}. (24)

We start with the first, one-dimensional integral on the list, which we denote
by dim1int. Then

dim1sum = MBIntToSum[dim1int, Lk, {z1 -> L}]

gives

{MBsum[-(y^n1*n1!^2*(-4 + 3*eps^2*Pi^2 +

2*eps^2*HarmonicNumber[n1]^2 -

2*eps^2*HarmonicNumber[n1, 2] + 4*eps*Log[-t] -

2*eps^2*Log[-t]^2 - 4*eps^2*HarmonicNumber[n1]*

Log[-x] + 2*eps^2*Log[-x]^2))/(4*(-1)^n1*eps*t^2*

(-x)^n1*x*(1 + 2*n1)!), n1 >= 0, {n1}]}

together with the message how the contour was closed:

z1->L ( Re z1 < -1/2 )

. Here, the original choice how to close the contour is unchanged.
The user can check that the same result can be obtained with
dim1sum = MBIntToSum[dim1int, {}, {z1 -> L}]. One can now check
the result numerically:

DoAllMBSums[dim1sum, 50, Lk] // N

gives
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0.222878 - 0.0967945/eps + 0.709316 eps

in agreement with

{0.222878 - 0.0967945/eps + 0.709316 eps, 0.}

from MBintegrate[{dim1int}, Lk]//N.
Next, we do the two-dimensional integral on the list, which we denote

by dim2int. Then

dim2sum = MBIntToSum[dim2int, Lk, {z1 -> L, z2 -> L}]

gives

{MBsum[-(eps*(-x)^(n1 - n2)*y^n2*(-1 + 2*n1)!*n2!*

(Pi^2 + 6*HarmonicNumber[n1]*HarmonicNumber[

-1 + n1 - n2] - 12*HarmonicNumber[-1 + 2*n1]*

HarmonicNumber[-1 + n1 - n2] +

3*HarmonicNumber[-1 + n1 - n2]^2 +

6*HarmonicNumber[n1]*HarmonicNumber[n2] -

12*HarmonicNumber[-1 + 2*n1]*HarmonicNumber[n2] -

3*HarmonicNumber[n2]^2 - 12*HarmonicNumber[n1]*

HarmonicNumber[1 + 2*n2] +

24*HarmonicNumber[-1 + 2*n1]*HarmonicNumber[

1 + 2*n2] + 12*HarmonicNumber[n2]*

HarmonicNumber[1 + 2*n2] -

12*HarmonicNumber[1 + 2*n2]^2 +

3*HarmonicNumber[-1 + n1 - n2, 2] +

3*HarmonicNumber[n2, 2] - 12*HarmonicNumber[1 + 2*n2,

2] - 6*HarmonicNumber[n1]*Log[-x] +

12*HarmonicNumber[-1 + 2*n1]*Log[-x] -

6*HarmonicNumber[-1 + n1 - n2]*Log[-x] +

3*Log[-x]^2 + 6*HarmonicNumber[n1]*Log[y] -

12*HarmonicNumber[-1 + 2*n1]*Log[y] -

6*HarmonicNumber[n2]*Log[y] +

12*HarmonicNumber[1 + 2*n2]*Log[y] - 3*Log[y]^2))/

(3*(-1)^(3*n1)*t^2*x*n1!*(-1 + n1 - n2)!*(1 + 2*n2)!),

2*n1 >= 1 && n2 >= 0 && n1 >= 1 + n2, {n1, n2}],

MBsum[(2*(-1)^(-2*n1 - n2)*eps*(-x)^(n1 - n2)*y^n2*

(-1 + 2*n1)!*n2!*(-n1 + n2)!*(HarmonicNumber[n1] -

2*HarmonicNumber[-1 + 2*n1] + HarmonicNumber[

-n1 + n2] - Log[-x]))/(t^2*x*n1!*(1 + 2*n2)!),

2*n1 >= 1 && n2 >= 0 && n1 <= n2, {n1, n2}],

MBsum[(eps*(-x)^n1*y^(-1 - n1 + n2)*(-1 - n1 + n2)!*



Ochman-Riemann-MBsums printed on November 5, 2015 11

(-1 + 2*n2)!*(Pi^2 + HarmonicNumber[n2]^2 -

2*HarmonicNumber[n2]*HarmonicNumber[-1 - n1 + n2] +

HarmonicNumber[-1 - n1 + n2]^2 - 4*HarmonicNumber[n2]*

HarmonicNumber[-1 + 2*n2] +

4*HarmonicNumber[-1 - n1 + n2]*HarmonicNumber[

-1 + 2*n2] + 4*HarmonicNumber[-1 + 2*n2]^2 +

4*HarmonicNumber[n2]*HarmonicNumber[

-1 - 2*n1 + 2*n2] - 4*HarmonicNumber[-1 - n1 + n2]*

HarmonicNumber[-1 - 2*n1 + 2*n2] -

8*HarmonicNumber[-1 + 2*n2]*HarmonicNumber[

-1 - 2*n1 + 2*n2] +

4*HarmonicNumber[-1 - 2*n1 + 2*n2]^2 +

HarmonicNumber[n2, 2] - HarmonicNumber[-1 - n1 + n2,

2] - 4*HarmonicNumber[-1 + 2*n2, 2] +

4*HarmonicNumber[-1 - 2*n1 + 2*n2, 2] -

2*HarmonicNumber[n2]*Log[y] +

2*HarmonicNumber[-1 - n1 + n2]*Log[y] +

4*HarmonicNumber[-1 + 2*n2]*Log[y] -

4*HarmonicNumber[-1 - 2*n1 + 2*n2]*Log[y] + Log[y]^2))/

((-1)^(3*n2)*t^2*n1!*n2!*(-1 - 2*n1 + 2*n2)!),

n1 >= 0 && 2*n2 >= 1 && 1 + n1 <= n2, {n1, n2}]}

together with the message how the contour was closed :

z1->R ( Re z1 > -1/2 )

z2->R ( Re z2 > -1/4 )

Here the original choice how to close the contours was changed. We can
now check the result numerically:

DoAllMBSums[dim2sum, 50, Lk] // N

gives

-0.0917188 eps

in agreement with

{-0.0917189 eps, {8.79914*10^-6 eps, 0}}

from MBintegrate[{dim2int}, Lk]//N.
Further, we give examples of two potential errors. The

dim2sum = MBIntToSum[dim2int, Lk, {z2 -> L, z1 -> L}]

prints
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z2->R ( Re z2 > -1/4 )

Unable to found correct contour for z1.

and returns {}, while

dim2sum = MBIntToSum[dim2int, {t -> -10}, {z1 -> L, z2 -> L}]

prints

Found c = -x (not a number): please complete kinematic’s list.

Unable to find correct contour for z1.

and returns {}.

6.2. Massive on-shell planar double box

The next example is the massive on-shell planar double box diagram;
see the example file 2lbox.nb at [2]. The integral was studied in [24]. Our
kinematics is p2i = m2 for i = 1, 2, 3, 4, p1 + p2 = −p3 − p4):

I = e2γEǫ
∫

ddk1
iπd/2

ddk2
iπd/2

1

(k21 −m2)(k1 + p1)2[(k1 + p1 + p2)2 −m2]

×
1

(k1 − k2)2(k22 −m2)[(k2 + p1 + p2)2 −m2](k1 − p3)2
. (25)

The MB-representation of (25) agrees with [24]. Further, we will use the
MB-representation (25) in example7.nb from [14] in variable fin without
the e2γEǫ factor, which will be added later. Next the analytical continuation
of fin in ǫ → 0 as well as the expansion of the resulting integrals around
ǫ = 0 up to ǫ−2 is obtained with MB v.1.2.:

int1 = MBint[((-x)^(z1 + z6)*Gamma[-z1]^3*Gamma[1 + z1]*

Gamma[-z6]^3*Gamma[1 + z6])/(2*eps^2*s^2*t*Gamma[-2*z1]*

Gamma[-2*z6]), {{eps -> 0}, {z1 -> -1/2, z6 -> -1/2}}]

with x = m2/s, (p1 + p2)
2 = s, (p1 + p3)

2 = t. We now produce sums from
the MB-integral above, that are convergent at

Lk = {s -> -1/5, x -> -5, t -> -1/10}. (26)

Then

s1 = MBIntToSum[int1, Lk, {z1 -> R, z6 -> R}]

gives
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{MBsum[((-1)^(-n1 - n2)*(-x)^(-n1 - n2)*n1!^2*n2!^2)/

(2*eps^2*s^2*t*x^2*(1 + 2*n1)!*(1 + 2*n2)!),

n1 >= 0 && n2 >= 0, {n1, n2}]}

together with the message how the contour was closed (the original choice
is unchanged):

z1->L ( Re z1 < -1/2 )

z6->L ( Re z6 < -1/2 )

The numerical check:

DoAllMBSums[s1, 5, Lk] // N

gives

-4.68459/eps^2

in agreement with

{-4.6846/eps^2, {0.000453913/eps^2, 0}}

from MBintegrate[{int1}, Lk] and with the analytical result in [24].
The two-dimensional sum in s1 can be written as a squared one-

dimensional and can be summed-up with Mathematica 9.0:

(8 ArcSin[1/(2 Sqrt[x])]^2)/(eps^2 s^2 t (-1 + 4 x))

in numerical agreement with the above.

6.3. Massless on-shell planar double box

Next we consider the on-shell massless planar double box (25) with m =
0; see [6]. Our kinematics is p2i = 0 for i = 1, 2, 3, 4 and p1+p2 = −(p3+p4):

I = e2γEǫ
∫

ddk1
iπd/2

ddk2
iπd/2

1

k21(k1 + p1)2(k1 + p1 + p2)2

×
1

(k1 − k2)2k
2
2(k2 + p1 + p2)2(k1 − p3)2

=
K(x, ǫ)

(−s)2+2ǫ(−t)
, (27)

where x = t/s, (p1 + p2)
2 = s, (p1 + p3)

2 = t; see the example file
2lbox-m0.nb at [2]. The MB-representation for (27) is obtained using AMBRE
v.1.2, based on the derivation of the MB-representation in example7.nb

(available at [14]). From the four-dimensional MB-representation stored in
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variable fin we removed the 1/(−s)2+2ǫ(−t) factor and obtained K(x, ǫ),
stored in variable Kfin. Compare this with the five-dimensional MB-
representation for K(x, ǫ) in [6]. Next, the analytical continuation of Kfin
at ǫ → 0 and the expansion of the resulting integrals around ǫ = 0 up to
ǫ0 are obtained with MB v.1.2. Finally, with barnesroutines v.1.1.1 [8] one
may reduce the dimensionality of the MB-integrals. One obtains several
one-dimensional MB-integrals. Next, these MB-integrals are transformed
into one-dimensional sums. We checked both the MB-integrals and sums
to be in good numerical agreement at x = 1/15 with the analytic result for
K(x, ǫ) in [6]. There were no sums (because zero-dimensional MB-integrals)
to be done for the ǫ−2-term, and we obtained the analytic result already.
The sums for the ǫ−1-term and the ǫ0-term could be done with advanced
tools by J. Blümlein and C. Schneider. They agree analytically with K(x, ǫ)
in [6].
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