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We study higher twist distribution amplitudes for t8ek (3) baryon octet. We identify independent functions
for all baryons in the isospin symmetry limit and calculate Wandzura-Wilczek contributions to the twist-4
and 5 distributions amplitudes.
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I. INTRODUCTION the higher twist DAs (the so-called WW approximation).
The lowest twist meson DAs are defined by matrix elements

Hard exclusive processes give us unigue possibility toystud Of two-particle (quark-antiquark or gluon) light-ray opéars.
internal structure of hadrons. The theoretical descriptib For such operators the WW contributions were calculated a

exclusive processes is based on the QCD factorization apend ago. A detailed discussion of the method can be found in
proach [156]. Scattering amplitudes (decay amplitudes) ifRef- [23]. We also mention here that WW corrections to the
this approach are given by convolution of the coefficientfun generall_zed parton distributions were derived.in h2_4—28].

tion which can be calculated perturbatively with nonpeatub ~ The situation with baryon DAs is more complicated be-
tive functions — the distribution amplitudes (DAs). In tinéii ~ cause they are determined by matrix elements of threeefgarti
nite momentum frame DAs can be interpreted as the momerthree-quarks) operators. Until now the WW corrections

tum fraction distributions of partons in hadrons. were only known for the first few moments of the nucleon
The DAs are usually classified according to their twist. InDAs [15, 1"]_- ]
the QCD factorization approach, where the relev@Atis The effective technique that allows one to calculate the WW

large, the dominant contributions to an amplitude come fronf€'ms for the multiparticle DAs was developed in![29] 30].
DAs of lowest possible twist. The higher twist DAs give rise 1 N€ approach s based on the spinor formalism and conformal
to the power suppressed corrections. The factorization ag¥a@ve expansion for the light-ray operators. Using this tech
proach works quite well for the mesons but for baryons it enlique the WW corrections to the three-particle nucleon DAs
counters conceptual difficulties (see Refs[[7—11]). Alse o Were calculated up to twist-5[29.130]. In the present papgsrw
faces the difficulties in attempt to provide a quantitatiee d X€€Ping in mind the recent progress in lattice calculations
scription of the current experimental data, the electrametig ~ the baryon DA moments [31], derive tige): (3) baryon octet
nucleon form factors, in particular. DAs in the WW approximation. _ _

A quantitative description of the nucleon electromagnetic "€ Paper is organized as follows: in Séct. Il we remind
form factors has been achieved in the framework of the light!n€ basics of the spinor formalism and fix our notations. In
cone rules (LCSR) [12—14] by taking into account the power>€ctIll, we give the definitions of the DAs for the baryon
suppressed [15-18] and next-to-leading order[[19, 20pcerr  OCtet. The subsectiofs I A.TIIB contain the analysis aé th
tions. As it has been shown, the power suppressed corref2ixed chirality DAs up to twist-5 and in the subsection 11 C
tions, which are parameterized by the higher twist nucleofVe consider the chiral DAs of twist-4 and 5. The Appendices
DAs, give sizeable contribution for modera&®8~ 2— 5GeV. contain thesq:(3) relations bet_ween dlffere_nt DAs and ex-

Unfortunately, our knowledge of the nucleon (baryon) DASp|ICIt expressions for the few first polynomials entering th
is quite limited. Only the leading twist nucleon DA is €xPansion of baryon DAs.
known with some degree of certainty, while the estimates
of the higher twist nucleon DAs are very poor (see e.g.
Refs. [16] 1/7, 20, 21] and reference therein).

At the same time, the higher twist DAs contain the contri- _ :
butions that are related to the lower twist DAs — the so-dalle ~ We closely follow the notations of Retf. [34]. In the Weyl
Wandzura-Wilczek (WW) contributions [22]. For mesons, the'epresentation, the Dirgematrices take the following form
genuinehigher twist DAs often appear to be much smaller p
than the corresponding WW terms. In many cases, keeping yH = (—Ou o ) , 1)
only the WW terms one gets a quite good approximation for o 0

II. SPINOR CONVENTIONS
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1. BARYON OCTET DISTRIBUTION AMPLITUDES

where A. Twist threedistribution amplitudes

H_(1& FH = (1. -8
o" =(1,0), o =(1,-9). (2) In this paper we study the three-quark distribution ampli-

and g are the Pauli matrices. Thg matrix and the charge tudes of the baryon octet,

conjugation matrixC = iy?y? are defined as JCN
V6 V2 P
~10 io2 0 > B=| = &_2 (10)
= , C= . . 3 Ve V2 ’
% (0 I) <0 —~ig? ) = =0 2 A\
= = v

The Dirac spinor is constructed from two Weyl spinors: in the isospin symmetry limit. It is helpful to recall the

| quark content of the isospin multiplet§p, n) ~ (uud,udd),
q= (q ) - ('ﬂg) _ @) (=+,2°37) ~ (uusudsddy, (=°,=7) ~ (ussdsg and
q' X A° ~ uds
The leading twist distribution amplitudes are defined by the
HeregH®) = %(1¢ y5)q are the left (right) handed quark fields, matrix elements of the twist-3 three-quarks operator:
respectively.

An arbitrary vectom, can be mapped to a:22 matrix as ‘Dﬁ,m( ) =ekal (@) alhy, (2)a (). (1D)
. . ; Herez = {z,2,z3}, M= {my,my, mg}. my are the flavor in-
Aoy = Au0h, = (—?1 _?;2 ;1:;22) (5)  dices,m¢ = u,d,sandi, j,k are the color indices. The matrix

element of[(Tl1) takes the form

p+

In the studies of hard processes, the light-like vectoes)dn <0|(D§m(z)|B> P ) /@xe ipy s %2 <D( ) (), (12)

(n>=n?=0, (n-n) # 0), are usually introduced. They can be
parameterized by two auxiliary Weyl spinotrsandu as
_ Whered)(f%(x) is the corresponding DAyg stands for the
Nag = AaAa, fAaa = HaMa- (6) Dirac spinor of the baryorB, p denotes its momentum,
p+ = (pn) and the integration measure is defined as follows

The rules for rising (lowering) spinor indices read
PZx=dxgdxdxz d(1— X1 — X2 — X3). (13)

A= gaﬁ)\ﬁv Mg =AP fga, A= Aﬁzgﬂaa Aa = 5aBABa It is clear that the matrix element is nonzero only if the fla-
vor indices of the operator match the flavor content of the

where the antisymmetric Levi-Civita tensors are normalize baryon. Invariance of the operator under the permutation

asep = €2 = —g» = —£2 = 1. The products of Weyl (z1,m) <> (z3,mg) together with the isospin symmetry allows

spinors are defined as one to express all DAs in terms of seven independent func-
tions. We choose them as

AW) =A%g =—(pA), AR)=Aei® =—(UA). (7)

o Pus Ok 9l
In the following we use shorthand notation for the quark geld - e oSSt uas (14)
projections onto the auxiliary spinors: (=) (=9 ")
q)3, usu (D& sus (DS, usd

o A 1 _ A T gl T (o’
4= (Aa), a =), a; =(Ad), a-=(uq). @) We mark the DAs by their positions in this table and do not

The quark fields can be written in the form specify the flavor indices explicitly, |.ecD(35' )(x) denote the
DAs of the baryorB in thek-th row (k= 1,2).

One can easily see that the functions in the second row
have certain parity with respect tq <> x3 permutations.

(z+32> (50‘2) 1
Constructing the light-ray operators it is useful to asetilvo Namely, the DAs®3™ "“(x) and @3~ (x) are symmetric
qguantum numbers — twist and heI|C|ty to the quark field pro-while CD )( X) is antisymmetric under this permutation. The
jections [B). The plus componentg! ", have thecollinear  DAs in the first row,®2 (x), do not possess any symme-
twist equal to 1, while the minus componenqé,m, have tries under permutations of the arguments. The proton DAs,
2 . .
thst 2 The helicity of th€q+,q projections is—%, whereas CD(p ) = ngdeu, in the second row is absent because this func-

q+,q, have heI|C|ty+§, see Ref.[[29] for detalils. tion is notindependent and can be expressed in temg%Jf),

(UM )Gy = AaG — pa@t, (AR)a =Aaq’ —Haq’ . (9)
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To the one-loop accuracy, the reduced matrix elem@y§)
namely have an autonomous scale dependence. Evidently, for the
q,ép,z)(x) _ —¢gp’1)(x1,x2,x3) _¢(3p,1)(x37X27Xl)_ (15) DAs CD(;O’Z), _CD(32+’2>_ and CD(S/\’_2> the sum in [(2I7) goes over
the symmetric (antisymmetric) polynomials only. The first
The DAs [14) are related to the vector, axial-vector and tenfew polynomials with the corresponding anomalous dimen-
sor twist three DAsyy, A;, T; which appear in the decomposi- sions are given in Appendix]B. More details can be found in
tion of the three-quark operator with open spinor indicelj [2 Refs. [29] 32, 33, 36].

For later convenience we split the DA%B’l> (x) into sym-

ki , ‘
4(0]&" Oy, (z21) 0y, 5 (Z2N) Ay (z81) [B(P)) = metric and antisymmetric parts with respectdoc xs per-
=VapyVE(D) +aap AL +tap, TE@) +.... (16)  mutaton,
where the dots stand for higher twist terms and OP (x) = dE) (%) + P (x) (25)
VaB,y: (pc)aﬁ (V5U+(P))Va ) . (BA)
8ap.y = (PYClagp (U (P) (17) and introduce the notatio®; ™"’ (x), where the labeh takes
apy = (PY¥BC)agp 4 the valuesA = {1+,2}. Let us assign the signature factor
tapy = ('Ulj_pc)aﬁ (Vj‘_VSqu(P))V- »#(B,A):
As usual, the DAs in momentum space are defined by the #(Blt) ==+, x(BAN2) =+, x(N2)=— (26)
Fourier transform ’ ’ ’ ’ ’
_f —i(pn) T X7 to each DA. The signature factor defines parity of the poly-
F@ / 7xe F. (18) nomiaIsP,\,iq that enter the conformal expansion for the corre-

Projecting both sides of Ed. (IL6) onto the auxiliary spinbys sponding DA, namely,

A one derives )
O (x, 1) = XXX s aY RPN 0. @)
q

B.1
D5 () = VE(x) — AR(¥). (19)
and (cf. Eq.[(15)) As we see in the next section the higher twist DAs can be
written in quite similar form.
02 (xq,%2,Xg) = —2TF (x4, %a, %) - (20) a

The conformal wave expansion of the DAs](14) goes over

polynomialsPygq which are solutions of the renormalization B. Mixed chirality higher twist distribution amplitudes
group equations,

(B)k) . (B,k) We define the higher twist three-quark operators of mixed
(D3 (X7 IJ) - X1X2X3%(H\‘q (IJ) PNq(X) } (21) Chlrallty as
where u is the renormalization scale. The common prefac- o' (2 =d" — (z)d' . ()" . (z
tor is fixed by the conformal spins of the fields. The func- aml?) = Gim (20)0 m, (2)0° my ().
tions Pyg(X) are the homogeneous polynomials of degkee ‘Dé,m(z) =" (29 1y (22} s (23), (28)

Phg(SX) = SVPyq(X), that form an orthogonal system
. where it is tacitly assumed that color indices are contrhcte
/ DX ¥ %%z Pg(X) P,I,Ld (X) = g Cng- (22)  with the antisymmetric tensor. We also recall that= (uqt),
" = (uq"). The operator®! . and O% . have helicities
The indexq enumerates different polynomials of the same de-q’1 5 grﬁ )1 2 res pect' ol 4m 5,m
gree. The polynomial&yq can be obtained as solutions of +1/ —1/2, resp VELY. ,
one-loop RG equation for twist-3 three quark operatorseNot Inthe proton case matrix elements of these operators define
that these polynomials do not depend on the flavor content € functions®s, ¥, and®s, Ws, [21]. For all other baryons
three-quark operator because the evolution kernels a@flav In the octet (excep.t neutron) there are three independeat DA
blind. Each polynomiaPyq is either symmetric or antisym- relatgd to the matrix elements OT these operators.
metric under permutations of the first and third arguments, ~ 1Wist-4 and 5 DAs can be defined as
Plg (X1, %2, Xa) = £Rg (X, %2, 1) (23) (00} 4(2)B) = %(u/\)(ugﬁ / Pxe P2 (x),
The reduced matrix elememﬁ’k) can be expressed as a con- <0|(Dém(z)|B> = —%(w\ )(ug), / Pxe P+ 1A d)%(x).
volution integral ' ‘ (29)

(Bk) _ / T (B)k)
=C DxPR () . 24
Aa Na | 7% Ng(X) g™ (X) (24) There are altogether 11 independent DAs forghE", =% and
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We emphasize, however, that neither the ponnonﬁﬁlmor

A\ baryons for each twist= 4, 5: the anomalous dimensions have been calculated so far.
The structure of the WW contributions to the DAs](33) and
oM o) o= o™ (34) do not depend on the flavor content of baryons and can
t,uud tuus t,ssu t,uds be easily extracted from the results of Ref)[30]. We derive
cD(er) cD(EO) cD(/\) (30)
,usu t,sus t,usd (HEIBN(“)
s =0 A PBAWW __ Mg WS
o o ok o, ¢TI NN
»(B,A)
Similar to the twist-3 case we introduce the notatluﬁ?i’A> (x), x {N +2- aXS] *sFhg (%), (36)

with the indexA taking the valueg1+,2). The function where summation goes over the polynomials of the parity

®{®2)(x) stands for the DA in the second row of the tablg (30)(B,A).
while <Dt<B’1i) is given by the combination of DAs in the first ~ For the twist-5 DAs, the WW terms of twist-3 and twist-4
and last row, namely have the form
1 B.A
o* ) = 2 (0P £ a®Ix).  (31) EBAWE, Ag (1) )
2 q35 (X)—X3gm —(N+2)
We want to stress here that contrary to the twist-3 functions d
the higher twist functionsp{>* (x), are not symmetric under +(N+1-38,)(N+2— axl)} X1Xo P,fféB’M (x) (37)
the arguments permutation.

In this notation the conventional proton DAs of twist 4 and ;4

5 [21] take the following form
BA
BP0 35, X8) + DL (. X0, ) QEBAWYE ) o "hslq' (1)
4(5) 1, A2, A3 4(5) 1,42,23) 5 5 %(N—l—l)(N—f—?))
(p.1-)

_ p(P1t) ,1-
Was)(X) = Pyg) (X3, X1, X2) — Py “(X3,%1,%2) . (32) KN+ 1 8] % R';\lng,A) (e x0x0). (38)

©
S
X
~~

X
~—

|

The higher twist DASth(B’A)(X) contain contributions from  respectively.

both the operators of thgeometricaltwistt and the lower
twist operators. Therefore, we represent the higher twist D
in the following form C. Chiral distribution amplitudes

BA BA), BA)W . .
P (x) = O I(x) + DPANE (), (33) We now define thehiral three-quark operators as

(B.A) (B.A).9 (B,A),WW, (B,A) WW,
) X) = P X)+®P X)+ ® X).
s (% ° ) ° ) ° ) (Dim(z) :qf,ml(zl)qi,mz(ZZ)qi,m(ZS)a

0L 1(2) = iy ()" 1y (2)0" (7). (39)

BA BA BA They are constructed from the left-handed chiral quarks and
qag ’ )’g(x) = xlngn,slq’ )(u) Rﬁg ' )(x), (34)  they have the helicity-1/2 and+1/2, respectively. The DAs
q related to these operators are defined by

The conformal wave expansion of the genuine twist-4 DAs,

cbiB’A)’g(X)' takes the form

where the signature factes(B, A) is defined in[(2b). 1 _mg | ' i —(B)

The polynomialsR&iq) are the eigenfunctions of the evo- <0|(D4’m(z)|B> N T(HA)(UB)+/9XG Praac —4,m(X),

[ iSt- f, - me i =(B
eral discussion. IndeN stands for a degrec of he polyno. (05n@IB) =~ (HA)(ug)- [ 7xe -T2 =0
mial R,(\,iq) (sx) = sNR,(\,iq) (sx) andq enumerates different poly- (40)
nomials of the same degree. Several lowest polynomials with, gach twist, there are 7 independent DAs which can be
the corresponding anomalous dimensions can be found in A “hosen as follows
pendiXB. Here, we note that there exists only one polynomia

of the degreeN = 0, ng = 1. Therefore, the expansion of —(p) —(zh) —(29 —(A)
the positive signature DAs, i.@le’A> with (B,A) = +, goes Ttuud | ThWes  ThSSM Ttuds (41)
over the polynomials of degréé¢> 1. —(z%) —(29 —(N)
The genuine twist-5 distributions have a similar expansion —tsuu  —tuss =t sdu
cD(SB,A)g(X) = X3 Z ZIEE,A) (1) T,j‘éBA) (x). (35)  Similarly to the previous case, we de(g%te the DA of the baryon
N=>1g B in the k-th row (see the table) b¥; . The proton DAs
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In order to write down the WW contributions to the twist-5
coincide with the conventional definitions of Ref [21],.i.e amplitudes, we define the following functions

(pl)( ): =t(x). First two DAs in the second row,t 2 2>( X) ®
0.2)
and_t (x), are obviously symmetnc under interchange of B)(x) — _Plzg : éng (M) [(N L1 03)x3l'l<1)(x)

two last arguments, while tr&""? (x) is antisymmetric under 5 (N+1)(N+3) Nd

X2 <+ X3. The nucleon DA:I< P2) is not independent

+(N+1— al)xlnﬁg(x)] ,

ZPA() = —(1+Pog) ZPY(x) (42) 0
ST Ng \H (1)
and, therefore, it is not listed in the table. W (x) = Plzg N+ 1)(N+3) [(N +1-05)x/ANg(X)
The conformal wave expansion for the nucleon E%”l) ‘
was worked out in Refl_[29]. The eigenfunctions of the evo- N+1— NG 47
lution kernel for the higher twist chiral three-quark ogera +(N+1=0x Nq(x) 7

are characterized by parity (whichds= {1,e*"/3}) under
the combined cyclic permutations in the position and flavorand

spaces The conformal expansion of the nucleon chiral DA,

—(p. 6®
= goes over the certain combination of the eigenfunctions ,/(B) (x) —P12g o JrN (1) {(N +1— )%
G

with parity 512773, The expansion of the chiral DAs for the *

other baryons involves the eigenfunctions of the pagity 1

as well. A more detailed discussion can be found in Ref. [29]. +(N+1— 31)X1] |‘|(+)(x),
Here, we present the final results only. The expansioné for

baryon as compared to all other baryons in the octet have a

(N
slightly different form. Namely, N () — ENq (1) _
WY (x) Plzé NTD(NL3) (N+1—03)x3
=(B#AK) (B) (k) (B) (+H)
= X) = XoX My +> 6 Myg X1, -
4 ( ) 2243 [éENq (H) Nq( ) % Ng (H) Ng ( )] 4 (N+ 1— al)xl /\§\Iq)(x)7 (48)

EEl/\,k)( = XoX3 [g ENq Nq X) £ g GNq §\fq> (X)] . With the help of Eqs[{47) an@{48), the WW contributions to
the twist-5 DA can be written in the following form

(43)
(B 1HWW (B)
X) = +W, ,
In the last formula, the signs+” correspond tdk = 1,2, re- ) ( ) ( ))
spectively. The polynomiaB(x), Al)(X) are related to the =B2MWW () — ( (14 PogW® (x) + WP (x)) :
eigenfunctiongIng(x) of the paritys = €5127/3, which were ( ")
calculated in Ref.[29], W) = ( () + W )) ;
=000 =xa (1= PrW M ) ~W (). (49)
M) = Mig(), ( )
M (x) = —(1+ Pag)Mng(X). The first few polynomial§Tng, My, Ag are given in Ap-
endiXB.
Ag(X) = (1+2Po3)Mng(X), P
M) = (1= Pe3) (), (44)
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The eigenfunctionﬁ( q> and/\( ) belong to the parity sector
€ =1 and they are (ant|)symmetr|c under <> x3 permuta- Appendices
tion:

_ Appendix A: Isospin relations
Poslig (0 = Mg (%), PoaAld (0 = —AGJ (). (46)

The isospin symmetry allows one to express DAs for any
Notice that for the protoﬁ,{,%)(u) =0 by symmetry. baryon in the octet in terms of the DAs discussed in the main



give the anomalous dimensions of the coefficients that accom
part of the paper. We remind that the DA)#B), Et(?% depend pany these polynomials.
on the flavor indicesn, mp, ms of the quark fields in the cor- ~ The twist-3 polynomials have the forms:

responding light-ray operators, see Efs] (12), (29) lanod (34

The independent DAs fqr, =+, =% A baryons are collected Poo(X

7

(X) =
in the Tables[(14),[(30) and_(#1). Defining distribution am- Pio(X) = (X1 — X3)/2,
plitudes for the remaining members of the octet we have to Pri(X) = (X1 + X3 — 2%) /2,
specify the flavor indices of the corresponding DAs. For the )
30 baryon DAs we simply take over the flavor indices/of Pao(X) = 3x] — 3x1Xp + 2 — 6X1X3 — X3 + 3,
baryon. Then,Z~,=" baryon DAsO|nher|t flavor indices from Po1(x) = (x1 —X3)(X1 + X3 — 3%2),
the correspondmg DAs fap, =1, =" baryons with the substi- Po(X) = X2 2., x3 12X + Do (X0 + Xa) — 6x§. (B.1)

tution u <+ d. For example, the twist-3 DAs that have to be

added to the first row of the table_(14) ar@ér,‘(),du. qJéms, The corresponding one loop anomalous dimensions are (in
units ofas/2m)

(D(S ssd andq)3 uds
We accept the same phase conventions for the baryons in 2 26 10 38 46 16
octet as in Ref[[31] (see Appendix A there). Then the follow- q= {5, 93 9° 9" 3} (B.2)

ing relations hold
The mixed chirality twist-4 polynomials are given by
DA (x) = —DAM(x),

AE ) (x) = —DAE) (x), Roo(X) = 3
(%) =-DAE ) (x) = —v2DAP)(x), (A1) Rio(X) =X1+X3 = 5%
between the DAs of the same type, e.g. (see téble (30)) Rio(X) =x1 — X3 — X,
2
= + 2 2 _Ep
cb(s,uds(x) = cb(s dds( X) = \/ECD5 uds( X). Ro0(X) = X5 — X§ — 2X1X2 + 3X1X3 3X1,

. . . R 4
Below we present the relations between the functions used in %O(x) =X+ (—Si \/4—3) XoXg -+ X2
the present paper and those introduced in Ref. [31]: Ry1(X) 9

+ g (172v43) xaxo - 1 (17£2v43) xaxg

1 B.1
PR (x) = 5 (L4 Prg) 5™ (x), 5
4
1 @, — (4+43)%2. B.3
Ny (9 =~ 5959 (), (A2) + 57 (42 VA4 (B:3)

whereP; is the permutation operator and The corresponding anomalous dimensionslare [29]

2 32 2(14—-/43) 2(14+/43
1 —J_92 = i
Pz (X) = \/;(1+P13)q)(’\1)(x), Wa { 2923 9 ’ 9 }
(B.4)
3
A _ (A1)
Pg1y+ (X) = _\/;(1_ Pi3)®3 (%), The chiral twist-4 polynomials take the form
3 (A2 _
Mg (%) = —\@qng 2 (x). (A.3) Moo(X) =1,
3
The normalization factors in Eq$._(A.2]. (A.3) ensure tmat i M10(x) =1 + x5 - 2
the limit of SU(3) flavor symmetry the following relations M20(X) = X2 — 4x1Xp + 2X5 + 2X1%3 — 4XoX3 +X5.  (B.5)
hold [31,.35]
- - R - - These polynomials correspond yuq = {—2,4/3,4/3}. Fi-
dJ[%]]+ = ®qy: = Pgi = Pea = Nigay = N nally, for the polynomialé\* andn+ we get
P X a2 A (A
qJ[S]]f = CD[3]]7 = CDBJ], = qJ[S]]f = ”[31]- (A.4) /\(16>(X) =% — Xa,
, , N (%) =8 — X — Bxa(xp — Xa) (B.6)
Appendix B: Polynomials 1 1
rl(2+0)(x) =X+ §(X§ +3§) — 5%X2X3 — X1(X2 +X3)

In this Appendix, we list lowest polynomials which enter
the expansion of the baryon DAs of different twists. We alsowith the anomalous dimensiopgq = {—2/3,4,4}.



for the positive signature and

We also write down here the first nonzero terms of the WW

contributions for the mixed chirality DAs. For the twist-AB
one gets

1
(DgB’A)WW(X) = 5 (l{()g’A) X1X2(1 - 2X3) +...

BA
oo™
24

for the positive and negative signature DAs, respectively.
For the twist-5 functions one gets

B,A\WW
P

X) = xlxz(x1(1—3x3)—x3(2—3X3)) +...

(B/A)
o)~ B8 (1 2 (142w .

U(B’M
oAy~ 5 (1 it 36

1 1
g0 = 00 a0 et - 20)
12 2
3 3
+ X6 = Xa) + 5 Xaxe(Xe — Xl)) T
1
(D(SB,A)WW:,(X) --2 né‘gaA) x3(1 — Xz) +...

for the negative signature DAs.
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