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We study higher twist distribution amplitudes for theSUF (3) baryon octet. We identify independent functions
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I. INTRODUCTION

Hard exclusive processes give us unique possibility to study
internal structure of hadrons. The theoretical description of
exclusive processes is based on the QCD factorization ap-
proach [1–6]. Scattering amplitudes (decay amplitudes) in
this approach are given by convolution of the coefficient func-
tion which can be calculated perturbatively with nonpertuba-
tive functions – the distribution amplitudes (DAs). In the infi-
nite momentum frame DAs can be interpreted as the momen-
tum fraction distributions of partons in hadrons.

The DAs are usually classified according to their twist. In
the QCD factorization approach, where the relevantQ2 is
large, the dominant contributions to an amplitude come from
DAs of lowest possible twist. The higher twist DAs give rise
to the power suppressed corrections. The factorization ap-
proach works quite well for the mesons but for baryons it en-
counters conceptual difficulties (see Refs. [7–11]). Also one
faces the difficulties in attempt to provide a quantitative de-
scription of the current experimental data, the electromagnetic
nucleon form factors, in particular.

A quantitative description of the nucleon electromagnetic
form factors has been achieved in the framework of the light-
cone rules (LCSR) [12–14] by taking into account the power
suppressed [15–18] and next-to-leading order [19, 20] correc-
tions. As it has been shown, the power suppressed correc-
tions, which are parameterized by the higher twist nucleon
DAs, give sizeable contribution for moderateQ2 ∼ 2−5GeV.

Unfortunately, our knowledge of the nucleon (baryon) DAs
is quite limited. Only the leading twist nucleon DA is
known with some degree of certainty, while the estimates
of the higher twist nucleon DAs are very poor (see e.g.
Refs. [16, 17, 20, 21] and reference therein).

At the same time, the higher twist DAs contain the contri-
butions that are related to the lower twist DAs – the so-called
Wandzura-Wilczek (WW) contributions [22]. For mesons, the
genuinehigher twist DAs often appear to be much smaller
than the corresponding WW terms. In many cases, keeping
only the WW terms one gets a quite good approximation for

the higher twist DAs (the so-called WW approximation).
The lowest twist meson DAs are defined by matrix elements

of two-particle (quark-antiquark or gluon) light-ray operators.
For such operators the WW contributions were calculated a
long ago. A detailed discussion of the method can be found in
Ref. [23]. We also mention here that WW corrections to the
generalized parton distributions were derived in [24–28].

The situation with baryon DAs is more complicated be-
cause they are determined by matrix elements of three-particle
(three-quarks) operators. Until now the WW corrections
were only known for the first few moments of the nucleon
DAs [15, 16].

The effective technique that allows one to calculate the WW
terms for the multiparticle DAs was developed in [29, 30].
The approach is based on the spinor formalism and conformal
wave expansion for the light-ray operators. Using this tech-
nique the WW corrections to the three-particle nucleon DAs
were calculated up to twist-5 [29, 30]. In the present paper we,
keeping in mind the recent progress in lattice calculationsof
the baryon DA moments [31], derive theSUF(3) baryon octet
DAs in the WW approximation.

The paper is organized as follows: in Sect. II we remind
the basics of the spinor formalism and fix our notations. In
Sect. III, we give the definitions of the DAs for the baryon
octet. The subsections III A, III B contain the analysis of the
mixed chirality DAs up to twist-5 and in the subsection III C
we consider the chiral DAs of twist-4 and 5. The Appendices
contain theSUF(3) relations between different DAs and ex-
plicit expressions for the few first polynomials entering the
expansion of baryon DAs.

II. SPINOR CONVENTIONS

We closely follow the notations of Ref. [34]. In the Weyl
representation, the Diracγ-matrices take the following form

γµ =

(
0 σ µ

σ µ 0

)
, (1)
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where

σ µ = (I ,~σ), σ µ = (I ,−~σ) . (2)

and~σ are the Pauli matrices. Theγ5 matrix and the charge
conjugation matrixC= iγ2γ0 are defined as

γ5 =

(
−I 0
0 I

)
, C=

(
iσ2 0
0 −iσ2

)
. (3)

The Dirac spinor is constructed from two Weyl spinors:

q=

(
q↓

q↑

)
=

(
ψα
χ̄ α̇

)
. (4)

Hereq↓(↑)= 1
2(1∓γ5)q are the left (right) handed quark fields,

respectively.
An arbitrary vectoraµ can be mapped to a 2×2 matrix as

aαα̇ = aµσ µ
αα̇ =

(
a0−a3 −a1+ ia2

−a1− ia2 a0+a3

)
. (5)

In the studies of hard processes, the light-like vectors,n andn̄
(n2 = n̄2 = 0, (n· n̄) 6= 0), are usually introduced. They can be
parameterized by two auxiliary Weyl spinorsλ andµ as

nαα̇ = λα λ̄α̇ , ñαα̇ = µα µ̄α̇ . (6)

The rules for rising (lowering) spinor indices read

λ α = εαβ λβ , λα = λ β εβ α , λ̄ α̇ = λ̄β̇ ε̄ β̇ α̇ , λ̄α̇ = ε̄α̇β̇ λ̄ β̇ ,

where the antisymmetric Levi-Civita tensors are normalized
as ε12 = ε12 = −ε̄1̇2̇ = −ε̄ 1̇2̇ = 1. The products of Weyl
spinors are defined as

(λ µ) = λ α µα =−(µλ ), (λ̄ µ̄) = λ̄α̇ µ̄ α̇ =−(µ̄ λ̄ ). (7)

In the following we use shorthand notation for the quark fields
projections onto the auxiliary spinors:

q↓+ = (λq↓), q↓− = (µq↓), q↑+ = (λ̄q↑), q↑− = (µ̄q↑). (8)

The quark fields can be written in the form

(µλ )q↓α = λαq↓−− µαq↓+, (λ̄ µ̄)q↑α̇ = λ̄α̇q↑−− µ̄α̇q↑+ . (9)

Constructing the light-ray operators it is useful to ascribe two
quantum numbers – twist and helicity – to the quark field pro-

jections (8). The plus components,q↓(↑)+ , have thecollinear

twist equal to 1, while the minus components,q↓(↑)− , have

twist 2. The helicity of theq↓+,q
↑
− projections is− 1

2, whereas

q↑+,q
↓
− have helicity+ 1

2, see Ref. [29] for details.

III. BARYON OCTET DISTRIBUTION AMPLITUDES

A. Twist three distribution amplitudes

In this paper we study the three-quark distribution ampli-
tudes of the baryon octet,

B=




Λ0√
6
+ Σ0√

2
Σ+ p

Σ− Λ0√
6
− Σ0√

2
n

Ξ− Ξ0 − 2√
6
Λ0


 , (10)

in the isospin symmetry limit. It is helpful to recall the
quark content of the isospin multiplets:(p,n) ∼ (uud,udd),
(Σ+,Σ0,Σ−) ∼ (uus,uds,dds), (Ξ0,Ξ−) ∼ (uss,dss) and
Λ0 ∼ uds.

The leading twist distribution amplitudes are defined by the
matrix elements of the twist-3 three-quarks operator:

O
↓
3,~m(z) = ε i jkq↓,i+,m1

(z1)q↑, j+,m2
(z2)q↓,k+,m3

(z3). (11)

Herez = {z1,z2,z3}, ~m= {m1,m2,m3}. mk are the flavor in-
dices,mk = u,d,s andi, j,k are the color indices. The matrix
element of (11) takes the form

〈0|O↓
3,~m(z)|B〉=− p+

2
(uB)

↓
+

∫
Dxe−ip+∑ xizi Φ(B)

3,~m(x) , (12)

whereΦ(B)
3,~m(x) is the corresponding DA,uB stands for the

Dirac spinor of the baryonB, p denotes its momentum,
p+ = (pn) and the integration measure is defined as follows

Dx= dx1dx2dx3 δ (1− x1− x2− x3). (13)

It is clear that the matrix element is nonzero only if the fla-
vor indices of the operator match the flavor content of the
baryon. Invariance of the operator under the permutation
(z1,m1)↔ (z3,m3) together with the isospin symmetry allows
one to express all DAs in terms of seven independent func-
tions. We choose them as

Φ(p)
3,uud Φ(Σ+)

3,uus Φ(Ξ0)
3,ssu Φ(Λ)

3,uds

Φ(Σ+)
3,usu Φ(Ξ0)

3,sus Φ(Λ)
3,usd

(14)

We mark the DAs by their positions in this table and do not

specify the flavor indices explicitly, i.e.Φ(B,k)
3 (x) denote the

DAs of the baryonB in thek-th row (k= 1,2).
One can easily see that the functions in the second row

have certain parity with respect tox1 ↔ x3 permutations.

Namely, the DAsΦ(Σ+ ,2)
3 (x) and Φ(Ξ0,2)

3 (x) are symmetric

while Φ(Λ,2)
3 (x) is antisymmetric under this permutation. The

DAs in the first row,Φ(B,1)
3 (x), do not possess any symme-

tries under permutations of the arguments. The proton DAs,

Φ(p,2)
3 = Φ(p)

3,udu, in the second row is absent because this func-

tion is not independent and can be expressed in term ofΦ(p,1)
3 ,
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namely

Φ(p,2)
3 (x) =−Φ(p,1)

3 (x1,x2,x3)−Φ(p,1)
3 (x3,x2,x1). (15)

The DAs (14) are related to the vector, axial-vector and ten-
sor twist three DAs,V1,A1,T1 which appear in the decomposi-
tion of the three-quark operator with open spinor indices [21]

4〈0|ε i jkqi
m1α(z1n)q j

m2β (z2n)qk
m3γ (z3n)|B(p)〉=

= vαβ ,γ VB
1 (~z)+aαβ ,γ AB

1(~z)+ tαβ ,γ TB
1 (~z)+ . . . , (16)

where the dots stand for higher twist terms and

vαβ ,γ = (/pC)αβ (γ5u+(P))γ ,

aαβ ,γ = (/pγ5C)αβ (u
+(P))γ ,

tαβ ,γ = (iσ⊥
µ pC)αβ (γ

µ
⊥γ5u+(P))γ .

(17)

As usual, the DAs in momentum space are defined by the
Fourier transform

F(~z) =
∫

Dxe−i(pn) ∑xizi F(x) . (18)

Projecting both sides of Eq. (16) onto the auxiliary spinorsλ ,
λ̄ one derives

Φ(B,1)
3 (x) =VB

1 (x)−AB
1(x), (19)

and (cf. Eq. (15))

Φ(B,2)
3 (x1,x2,x3) =−2TB

1 (x1,x3,x2) . (20)

The conformal wave expansion of the DAs (14) goes over
polynomialsPNq which are solutions of the renormalization
group equations,

Φ(B,k)
3 (x,µ) = x1x2x3 ∑

N,q
φ (B,k)

Nq (µ)PNq(x) , (21)

whereµ is the renormalization scale. The common prefac-
tor is fixed by the conformal spins of the fields. The func-
tions PNq(x) are the homogeneous polynomials of degreeN,
PNq(sx) = sNPNq(x), that form an orthogonal system

∫
Dxx1x2x3PNq(x)P

†
Nq′(x) = δqq′c

−1
Nq . (22)

The indexq enumerates different polynomials of the same de-
gree. The polynomialsPNq can be obtained as solutions of
one-loop RG equation for twist-3 three quark operators. Note
that these polynomials do not depend on the flavor content of
three-quark operator because the evolution kernels are flavor-
blind. Each polynomialPNq is either symmetric or antisym-
metric under permutations of the first and third arguments,

P(±)
Nq (x1,x2,x3) =±P(±)

Nq (x3,x2,x1) . (23)

The reduced matrix elementφ (B,k)
Nq can be expressed as a con-

volution integral

φ (B,k)
Nq = cNq

∫
DxP†

Nq(x)Φ(B,k)
3 (x) . (24)

To the one-loop accuracy, the reduced matrix elementsφNq(µ)
have an autonomous scale dependence. Evidently, for the

DAs Φ(Ξ0,2)
3 , Φ(Σ+ ,2)

3 and Φ(Λ,2)
3 the sum in (27) goes over

the symmetric (antisymmetric) polynomials only. The first
few polynomials with the corresponding anomalous dimen-
sions are given in Appendix B. More details can be found in
Refs. [29, 32, 33, 36].

For later convenience we split the DAsΦ(B,1)
3 (x) into sym-

metric and antisymmetric parts with respect tox1 ↔ x3 per-
mutation,

Φ(B,1)
3 (x) = Φ(B,1+)

3 (x)+Φ(B,1−)
3 (x) (25)

and introduce the notationΦ(B,A)
3 (x), where the labelA takes

the valuesA = {1±,2}. Let us assign the signature factor
κ(B,A):

κ(B,1±) =± , κ(B 6= Λ,2) = + , κ(Λ,2) =− (26)

to each DA. The signature factor defines parity of the poly-
nomialsP±

Nq that enter the conformal expansion for the corre-
sponding DA, namely,

Φ(B,A)
3 (x,µ) = x1x2x3 ∑

N,q

φ (B,A)
Nq (µ)Pκ(B,A)

Nq (x) . (27)

As we see in the next section the higher twist DAs can be
written in quite similar form.

B. Mixed chirality higher twist distribution amplitudes

We define the higher twist three-quark operators of mixed
chirality as

O
↑
4,~m(z) = q↓+,m1

(z1)q
↑
+,m2

(z2)q
↓
−,m3

(z3),

O
↓
5,~m(z) = q↓−,m1

(z1)q
↑
−,m2

(z2)q
↓
+,m3

(z3), (28)

where it is tacitly assumed that color indices are contracted
with the antisymmetric tensor. We also recall thatq↓− ≡ (µq↓),

q↑− ≡ (µ̄q↑). The operatorsO↑
4,~m andO

↓
5,~m have helicities

+1/2 and−1/2, respectively.
In the proton case matrix elements of these operators define

the functionsΦ4,Ψ4 andΦ5,Ψ5, [21]. For all other baryons
in the octet (except neutron) there are three independent DAs
related to the matrix elements of these operators.

Twist-4 and 5 DAs can be defined as

〈0|O↑
4,~m(z)|B〉=

mB

4
(µλ )(u↑B)+

∫
Dxe−ip+ ∑zkxk Φ(B)

4,~m(x) ,

〈0|O↓
5,~m(z)|B〉=−mB

4
(µλ )(u↑B)−

∫
Dxe−ip+ ∑zkxk Φ(B)

5,~m(x) .

(29)

There are altogether 11 independent DAs for thep, Σ+,Ξ0 and
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Λ baryons for each twistt = 4,5:

Φ(p)
t,uud Φ(Σ+)

t,uus Φ(Ξ0)
t,ssu Φ(Λ)

t,uds

Φ(Σ+)
t,usu Φ(Ξ0)

t,sus Φ(Λ)
t,usd

Φ(p)
t,duu Φ(Σ+)

t,suu Φ(Ξ0)
t,uss Φ(Λ)

t,sdu

(30)

Similar to the twist-3 case we introduce the notationΦ(B,A)
t (x),

with the indexA taking the values(1±,2). The function

Φ(B,2)
t (x) stands for the DA in the second row of the table (30)

while Φ(B,1±)
t is given by the combination of DAs in the first

and last row, namely

Φ(B,1±)
t (x) =

1
2

(
Φ(B,1)

t (x)±Φ(B,3)
t (x)

)
. (31)

We want to stress here that contrary to the twist-3 functions,

the higher twist functions,Φ(B,A)
t (x), are not symmetric under

the arguments permutation.
In this notation the conventional proton DAs of twist 4 and

5 [21] take the following form

Φ4(5)(x) = Φ(p,1+)
4(5) (x1,x2,x3)+Φ(p,1−)

4(5) (x1,x2,x3) ,

Ψ4(5)(x) = Φ(p,1+)
4(5) (x3,x1,x2)−Φ(p,1−)

4(5) (x3,x1,x2) . (32)

The higher twist DAsΦ(B,A)
t (x) contain contributions from

both the operators of thegeometricaltwist-t and the lower
twist operators. Therefore, we represent the higher twist DAs
in the following form

Φ(B,A)
4 (x) = Φ(B,A),g

4 (x)+Φ(B,A),WW3
4 (x) , (33)

Φ(B,A)
5 (x) = Φ(B,A),g

5 (x)+Φ(B,A),WW3
5 (x)+Φ(B,A),WW4

5 (x).

The conformal wave expansion of the genuine twist-4 DAs,

Φ(B,A),g
4 (x), takes the form

Φ(B,A),g
4 (x) = x1x2∑

Nq
η(B,A)

Nq (µ)Rκ(B,A)
Nq (x) , (34)

where the signature factorκ(B,A) is defined in (26).

The polynomialsR(±)
Nq are the eigenfunctions of the evo-

lution kernel for twist-4 operators, see Ref. [29] for a gen-
eral discussion. IndexN stands for a degree of the polyno-

mial R(±)
Nq (sx) = sNR(±)

Nq (sx) andq enumerates different poly-
nomials of the same degree. Several lowest polynomials with
the corresponding anomalous dimensions can be found in Ap-
pendix B. Here, we note that there exists only one polynomial

of the degreeN = 0, R(−)
00 = 1. Therefore, the expansion of

the positive signature DAs, i.eΦ(B,A)
4 with κ(B,A) = +, goes

over the polynomials of degreeN ≥ 1.
The genuine twist-5 distributions have a similar expansion:

Φ(B,A)g
5 (x) = x3 ∑

N≥1,q

ζ (B,A)
Nq (µ)Tκ(B,A)

Nq (x) . (35)

We emphasize, however, that neither the polynomialsT±
Nq nor

the anomalous dimensions have been calculated so far.
The structure of the WW contributions to the DAs (33) and

(34) do not depend on the flavor content of baryons and can
be easily extracted from the results of Ref. [30]. We derive

Φ(B,A)WW
4 (x) =−x1x2∑

Nq

φ (B,A)
Nq (µ)

(N+2)(N+3)

×
[
N+2− ∂x3

]
x3Pκ(B,A)

Nq (x) , (36)

where summation goes over the polynomials of the parity
κ(B,A).

For the twist-5 DAs, the WW terms of twist-3 and twist-4
have the form

Φ(B,A)WW3
5 (x) = x3∑

Nq

φ (B,A)
Nq (µ)

(N+2)(N+3)

[
−(N+2)2

+(N+1− ∂x2)(N+2− ∂x1)

]
x1x2Pκ(B,A)

Nq (x) (37)

and

Φ(B,A)WW4
5 (x) = x3∑

Nq

η(B,A)
Nq (µ)

(N+1)(N+3)

× [N+1− ∂x2] x2Rκ(B,A)
Nq (x3,x2,x1) , (38)

respectively.

C. Chiral distribution amplitudes

We now define thechiral three-quark operators as

O
↓
4,~m(z) = q↓−,m1

(z1)q
↓
+,m2

(z2)q
↓
+,m3

(z3) ,

O
↑
5,~m(z) = q↓+,m1

(z1)q
↓
−,m2

(z2)q
↓
−,m3

(z3). (39)

They are constructed from the left-handed chiral quarks and
they have the helicity−1/2 and+1/2, respectively. The DAs
related to these operators are defined by

〈0|O↓
4,~m(z)|B〉=

mB

4
(µλ )(u↓B)+

∫
Dxe−ip+ ∑zkxk Ξ(B)

4,~m(x) ,

〈0|O↓
5,~m(z)|B〉=−mB

4
(µλ )(u↓B)−

∫
Dxe−ip+ ∑zkxk Ξ(B)

5,~m(x) .

(40)

For each twist, there are 7 independent DAs which can be
chosen as follows

Ξ(p)
t,uud Ξ(Σ+)

t,uus Ξ(Ξ0)
t,ssu Ξ(Λ)

t,uds

Ξ(Σ+)
t,suu Ξ(Ξ0)

t,uss Ξ(Λ)
t,sdu

(41)

Similarly to the previous case, we denote the DA of the baryon

B in the k-th row (see the table) byΞ(B,k)
t . The proton DAs
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coincide with the conventional definitions of Ref. [21], i.e.

Ξ(p,1)
t (x) = Ξt(x). First two DAs in the second row,Ξ(Σ+,2)

t (x)

andΞ(Ξ0,2)
t (x), are obviously symmetric under interchange of

two last arguments, while theΞ(Λ,2)
t (x) is antisymmetric under

x2 ↔ x3. The nucleon DAΞ(p,2)
t is not independent

Ξ(p,2)
t (x) =−

(
1+P23

)
Ξ(p,1)

t (x) (42)

and, therefore, it is not listed in the table.

The conformal wave expansion for the nucleon DAΞ(p,1)
4

was worked out in Ref. [29]. The eigenfunctions of the evo-
lution kernel for the higher twist chiral three-quark operators
are characterized by parity (which isε = {1,e±i2π/3}) under
the combined cyclic permutations in the position and flavor
spaces. The conformal expansion of the nucleon chiral DA,

Ξ(p,1)
4 , goes over the certain combination of the eigenfunctions

with parity e±i2π/3. The expansion of the chiral DAs for the
other baryons involves the eigenfunctions of the parityε = 1
as well. A more detailed discussion can be found in Ref. [29].
Here, we present the final results only. The expansions forΛ
baryon as compared to all other baryons in the octet have a
slightly different form. Namely,

Ξ(B6=Λ,k)
4 (x) = x2x3

[

∑
Nq

ξ (B)
Nq (µ)Π

(k)
Nq(x)+∑

Nq
θ (B)

Nq (µ)Π
(+)
Nq (x)

]
,

Ξ(Λ,k)
4 (x) = x2x3

[

∑
Nq

ξ (Λ)
Nq (µ)Λ(k)

Nq(x)±∑
Nq

θ (Λ)
Nq (µ)Λ(−)

Nq (x)

]
.

(43)

In the last formula, the signs “± ” correspond tok = 1,2, re-

spectively. The polynomialsΠ(k)
Nq(x), Λ(k)

Nq(x) are related to the

eigenfunctionsΠNq(x) of the parityε = e±i2π/3, which were
calculated in Ref. [29],

Π(1)
Nq(x) = ΠNq(x),

Π(2)
Nq(x) =−(1+P23)ΠNq(x),

Λ(1)
Nq(x) = (1+2P23)ΠNq(x),

Λ(2)
Nq(x) =−(1−P23)ΠNq(x), (44)

whereP23 is the permutation operator:

P23 f (x1,x2,x3) = f (x1,x3,x2). (45)

The eigenfunctions̃Π(+)
Nq andΛ(−)

Nq belong to the parity sector
ε = 1 and they are (anti)symmetric underx2 ↔ x3 permuta-
tion:

P23Π(+)
Nq (x) = Π(+)

Nq (x) , P23Λ(−)
Nq (x) =−Λ(−)

Nq (x) . (46)

Notice that for the protonθ (p)
Nq (µ) = 0 by symmetry.

In order to write down the WW contributions to the twist-5
amplitudes, we define the following functions

W(B)(x) =−P12∑
Nq

ξ (B)
Nq (µ)

(N+1)(N+3)

[
(N+1− ∂3)x3 Π(1)

Nq(x)

+ (N+1− ∂1)x1Π(2)
Nq(x)

]
,

W(Λ)(x) = P12∑
Nq

ξ (Λ)
Nq (µ)

(N+1)(N+3)

[
(N+1− ∂3)x3 Λ(1)

Nq(x)

+ (N+1− ∂1)x1Λ(2)
Nq(x)

]
, (47)

and

W(B)
+ (x) =−P12∑

Nq

θ (B)
Nq (µ)

(N+1)(N+3)

[
(N+1− ∂3)x3

+(N+1− ∂1)x1

]
Π(+)

Nq (x),

W(Λ)
− (x) = P12∑

Nq

ξ (Λ)
Nq (µ)

(N+1)(N+3)

[
(N+1− ∂3)x3

+(N+1− ∂1)x1

]
Λ(−)

Nq (x), (48)

With the help of Eqs. (47) and (48), the WW contributions to
the twist-5 DA can be written in the following form

Ξ(B,1)WW
5 (x) = x1

(
W(B)(x)+W(B)

+ (x)
)
,

Ξ(B,2)WW
5 (x) = x1

(
− (1+P23)W

(B)(x)+W(B)
+ (x)

)
,

Ξ(Λ,1)WW
5 (x) = x1

(
W(Λ)(x)+W(Λ)

− (x)
)
,

Ξ(Λ,2)WW
5 (x) = x1

(
(1−P23)W

(Λ)(x)−W(Λ)
− (x)

)
. (49)

The first few polynomialsΠNq, Π(+)
Nq , Λ(−)

Ng are given in Ap-
pendix B.
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Appendices

Appendix A: Isospin relations

The isospin symmetry allows one to express DAs for any
baryon in the octet in terms of the DAs discussed in the main
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part of the paper. We remind that the DAsΦ(B)
t,~m, Ξ(B)

t,~m depend
on the flavor indicesm1,m2,m3 of the quark fields in the cor-
responding light-ray operators, see Eqs. (12), (29) and (34).

The independent DAs forp, Σ+,Ξ0,Λ baryons are collected
in the Tables (14), (30) and (41). Defining distribution am-
plitudes for the remaining members of the octet we have to
specify the flavor indices of the corresponding DAs. For the
Σ0 baryon DAs we simply take over the flavor indices ofΛ
baryon. Then,Σ−,Ξ− baryon DAs inherit flavor indices from
the corresponding DAs forp,Σ+,Ξ0 baryons with the substi-
tution u ↔ d. For example, the twist-3 DAs that have to be

added to the first row of the table (14) are:Φ(n)
3,ddu, Φ(Σ−)

3,dds,

Φ(Ξ−)
3,ssd andΦ(Σ0)

3,uds.
We accept the same phase conventions for the baryons in

octet as in Ref. [31] (see Appendix A there). Then the follow-
ing relations hold

DA(p)(x) =−DA(n)(x) ,

DA(Ξ−)(x) =−DA(Ξ0)(x) ,

DA(Σ+)(x) =−DA(Σ−)(x) =−
√

2DA(Σ0)(x) , (A.1)

between the DAs of the same type, e.g. (see table (30))

Φ(Σ+)
5,uus(x) =−Φ(Σ−)

5,dds(x) =−
√

2Φ(Σ0)
5,uds(x) .

Below we present the relations between the functions used in
the present paper and those introduced in Ref. [31]:

ΦB6=Λ
[31]±(x) =

1
2
(1+P13)Φ

(B,1)
3 (x) ,

ΠB6=Λ
[31] (x) =−1

2
Φ(B,2)

3 (x) , (A.2)

whereP13 is the permutation operator and

ΦΛ
[31]+(x) =

√
1
6
(1+P13)Φ

(Λ,1)
3 (x) ,

ΦΛ
[31]+(x) =−

√
3
2
(1−P13)Φ

(Λ,1)
3 (x) ,

ΠΛ
[31](x) =−

√
3
2

Φ(Λ,2)
3 (x) . (A.3)

The normalization factors in Eqs. (A.2), (A.3) ensure that in
the limit of SU(3) flavor symmetry the following relations
hold [31, 35]

Φp
[31]+ = ΦΣ−

[31]+ = ΦΞ0

[31]+ = ΦΛ
[31]+ = ΠΣ−

[31] = ΠΞ0

[31]

Φp
[31]− = ΦΣ−

[31]− = ΦΞ0

[31]− = ΦΛ
[31]− = ΠΛ

[31] . (A.4)

Appendix B: Polynomials

In this Appendix, we list lowest polynomials which enter
the expansion of the baryon DAs of different twists. We also

give the anomalous dimensions of the coefficients that accom-
pany these polynomials.

The twist-3 polynomials have the forms:

P00(x) = 1,

P10(x) = (x1− x3)/2,

P11(x) = (x1+ x3−2x2)/2,

P20(x) = 3x2
1−3x1x2+2x2

2−6x1x3−3x2x3+3x2
3 ,

P21(x) = (x1− x3)(x1+ x3−3x2) ,

P22(x) = x2
1+ x2

3−12x1x3+9x2(x1+ x3)−6x2
2. (B.1)

The corresponding one loop anomalous dimensions are (in
units ofαs/2π)

γNq =
{2

3
,

26
9
,

10
3
,

38
9
,

46
9
,

16
3

}
. (B.2)

The mixed chirality twist-4 polynomials are given by

R−
00(x) = 1,

R−
10(x) = x1+ x3−

3
2

x2 ,

R+
10(x) = x1− x3−

1
2

x2 ,

R+
20(x) = x2

2− x2
3−2x1x2+3x1x3−

2
3

x2
1 ,

(
R−

20(x)

R−
21(x)

)
= x2

2+
4
9

(
−5±

√
43
)

x2x3+ x2
3

+
2
9

(
1∓2

√
43
)

x1x2−
1
9

(
17±2

√
43
)

x1x3

+
4
27

(
4±

√
43
)

x2
1 . (B.3)

The corresponding anomalous dimensions are [29]

γNq =
{
−2,

2
9
, 2,

32
9
,

2(14−
√

43)
9

,
2(14+

√
43)

9

}
.

(B.4)

The chiral twist-4 polynomials take the form

Π00(x) = 1,

Π10(x) = x1+ x3−
3
2

x2 ,

Π20(x) = x2
1−4x1x2+2x2

2+2x1x3−4x2x3+ x2
3 . (B.5)

These polynomials correspond toγNq = {−2,4/3,4/3}. Fi-
nally, for the polynomialsΛ± andΠ+ we get

Λ(−)
10 (x) = x2− x3 ,

Λ(−)
20 (x) = x3

2− x2
3−6x1(x2− x3) , (B.6)

Π(+)
20 (x) = x2

1+
1
3
(x3

2+ x2
3)−

1
2

x2x3− x1(x2+ x3)

with the anomalous dimensionsγNq = {−2/3,4,4}.
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We also write down here the first nonzero terms of the WW
contributions for the mixed chirality DAs. For the twist-4 DAs
one gets

Φ(B,A)WW
4 (x) =

1
6

φ (B,A)
00 x1x2(1−2x3)+ . . .

Φ(B,A)WW
4 (x) =

φ (B,A)
10

24
x1x2

(
x1(1−3x3)− x3(2−3x3)

)
+ . . .

for the positive and negative signature DAs, respectively.
For the twist-5 functions one gets

Φ(B,A)WW3
5 (x) =

φ (B,A)
00

6
x3
(
1−2x1− x2(1+2x1)

)
+ . . .

Φ(B,A)WW4
5 (x) =

η(B,A)
10

3
x3
(
1−2x3− x2(1+ x1−3x3)

)
+ . . .

for the positive signature and

Φ(B,A)WW3
5 (x) =

1
12

φ (B,A)
10 x3

(
x1−

1
2

x3+ x2(x3−2x1)

+
3
2

x1(x3− x1)+
3
2

x1x2(x3− x1)
)
+ . . .

Φ(B,A)WW4
5 (x) =−1

3
η(B,A)

00 x3
(
1− x2

)
+ . . .

for the negative signature DAs.
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