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Abstract

We discuss the computation of form factors for semi-leptonic decays of B-, Bs- mesons
in lattice QCD. Considering in particular the example of the static Bs form factors we
demonstrate that after non-perturbative renormalization the continuum limit can be taken
with confidence. The resulting precision is of interest for extractions of Vub. The size of
the corrections of order 1/mb is just estimated at present but it is expected that their
inclusion does not pose significant difficulties.
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1 Introduction

Weak decays of B-mesons are a very important piece in the puzzle of understanding about
how well the Standard Model of particle physics describes Nature. One relevant question
concerns the determination of the Cabibbo-Kobayashi-Maskawa matrix element Vub from
different decays. This fundamental parameter of the Standard Model is not known very
precisely yet. Testing for consistent values provides a check of the Standard Model. In fact
results extracted from inclusive decays agree with those from different exclusive decays, like
B → π`ν or B → τν [1–3], only after stretching the presently estimated uncertainties by
around a factor three. We avoid calling this a three-sigma tension since the uncertainties
are largely systematic, coming from the theoretical computation of form factors in lattice
QCD on one side and the perturbative treatment of inclusive decays on the other side. But
also experimental uncertainties contribute.

In this letter we consider the determinations of semi-leptonic form factors for Bs-mesons
from lattice QCD. A review with some discussion of the challenges involved is found
in [4]. It appears that the most relevant challenge is the presence of a (large) mass scale
mb ∼ 5 GeV. Together with inverse lattice spacings below 4 GeV this distorts the con-
tinuum physics considerably in a straight application of lattice QCD. We do not want to
review here this issue in detail, but just mention that this leads one to consider effective
field theories for the b-quark or extrapolations in its mass, again guided by effective field
theory considerations. The most advanced computations [5–8], use either a relativistic
heavy quark action or employ non-relativistic QCD on the lattice. There the challenge
is twofold. First, a fully non-perturbative renormalization program for the heavy-light
currents does not (yet) exist. It is replaced by “mostly non-perturbative” renormaliza-
tion [9, 10], where the factor Zhl/

√
ZhhZll is taken from 1-loop perturbation theory and

this approximation is expected to be a good one [9,10]; alternatively straight 1-loop pertur-
bation theory is used. Second, discretisation errors are estimated only by power-counting
arguments because continuum limit extrapolations may involve a complicated functional
dependence on the lattice spacing. As a consequence we are not aware of the compu-
tation of a non-perturbatively renormalized heavy-light form factor extrapolated to the
continuum.

In order to place the present work into context, let us briefly list the steps which are
necessary to come to a trustworthy result of interest to phenomenology:

a) obtain the ground state matrix elements 〈K|V µ(0)|Bs〉 that mediate the transition,
b) renormalize the currents (and thus matrix elements) and, if an effective theory is

used, relate them to QCD (“matching”),
c) take their continuum limit,
d) extrapolate to the quark masses realized in Nature,
e) map out the q2 dependence.

Here we demonstrate our solutions to a)–c). We are very brief about our specific choices in
a), even though the extraction of the ground-state-to-ground-state matrix element which
gives the leading form factor, h⊥, is delicate since excited state contributions have signifi-
cant amplitudes. Details on this more technical but important issue are relegated to a
companion paper [11]. Steps d)–e) will follow in due course.
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We concentrate on the non-perturbative renormalization and the continuum limit
albeit only in the leading order of Heavy Quark Effective Theory (HQET). We consider
a single value of the momentum transfer and a single value of the light dynamical quark
masses with only two degenerate dynamical flavors. These restrictions mean that our
computation does not immediately advance phenomenology, but since a continuum limit
was not taken before we can see for the first time how it works, and the result provides
a cross check on the uncertainty estimates of previous computations. We will find that
with our discretisation and with non-perturbative renormalization, the continuum limit
(for Kaon momentum around 0.5 GeV) is smooth. Given that the inclusion of 1/mb

effects in the systematic treatment of HQET [12] was not a severe problem (apart from
a lot of work) in other quantities [13–15] we are very encouraged to complete the started
programme towards phenomenologically relevant results.

2 Form Factors

We consider the decay Bs → K`ν. Working at the leading order in the weak interactions,
the transition amplitude factorises into a straightforward leptonic amplitude and the QCD
matrix element with the equivalent form-factor decompositions

〈K(pK)|V µ(0)|Bs(pBs)〉 =

=

(
pBs + pK −

m2
Bs
−m2

K

q2
q

)µ
· f+(q2) +

m2
Bs
−m2

K

q2
qµ · f0(q2)

=
√

2mBs

[
vµ · h‖(pK · v) + pµ⊥ · h⊥(pK · v)

]
. (2.1)

The last line, with

vµ = pµBs
/mBs , pµ⊥ = pµK − (v · pK) vµ ,

defines the form factors, h‖ and h⊥. The usual squared momentum transfer q2 = (q0)2−q2,
with qµ ≡ pµBs

− pµK, is here replaced by

pK · v =
m2

Bs
+m2

K − q2

2mBs

, (2.2)

which at fixed Kaon four-momentum pK is independent of the mass of the b-quark. This
property, together with the factor (2mBs)

1/2 in (2.1), is convenient to discuss the behaviour
of the amplitude at large mass of the b-quark. It removes the mass-dependence of the
(standard) relativistic normalization 〈Bs(p

′)|Bs(p)〉 = 2E(p)(2π)3δ(p− p′) of the state of
the heavy meson. Since the current V µ(x) ≡ ψ̄u(x)γµψb(x) translates into heavy quark
effective (mass-independent) fields with only a logarithmically mass-dependent conversion
function, the form factors h‖ and h⊥ scale only logarithmically with the mass in the limit
of large b-quark mass.

Choosing for the remainder of this letter the rest-frame of the Bs-meson with vµ =

(1, 0, 0, 0) as a reference frame, the invariant kinematic variable is just pK · v = EK, the
energy of the final-state pseudo-scalar. Upon neglecting small terms proportional to the
squared mass of the final-state lepton, the differential decay rate is then given by

dΓ(Bs → K`ν)

dq2
=

G2
F

24π3
|Vub|2|pK|3[f+(q2)]2 . (2.3)
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A comparison of (2.3) with the experimentally measured rate allows for a determination
of |Vub| once the form factors are known. They need to be determined at a single value (or
ideally in a range) of EK where overlap with experimental data exists.

In our frame (pBs = 0), the form factors are obtained from the (QCD) matrix elements

(2mBs)
−1/2〈K(pK)|V 0(0)|Bs〉 = h‖(EK) , (2.4)

(2mBs)
−1/2〈K(pK)|V k(0)|Bs〉 = pkKh⊥(EK) . (2.5)

With the above normalization, eq. (2.1), they have an HQET expansion

h‖(EK) = CV0(Mb/ΛMS)hstat,RGI
‖ (EK) · [1 + O(1/mb)] , (2.6)

h⊥(EK) = CVk
(Mb/ΛMS)hstat,RGI

⊥ (EK) · [1 + O(1/mb)] (2.7)

without factors that involve a power of the quark mass. Rather the r.h.s. depend logarith-
mically on the mass of the heavy quark, due to the matching of HQET to QCD. In our
notation,

V stat,RGI
0,k = Zstat,RGIV stat

0,k (2.8)

are the renormalization group invariant (RGI) operators in HQET, and the conversion
functions Cx connect (the matrix elements of) V stat,RGI

0 and V stat,RGI
k to the ones in QCD,

see [16,17].
The functions Cx are known with 2-loop matching (for short “2-loop”), i.e. up to

α(mb)3 corrections in continuum perturbation theory [18–25]. We use them here with the
RGI b-quark mass Mb and the Λ-parameter determined in the theory with two dynamical
flavors [13, 26], i.e. Mb/ΛMS = 21.2(1.2) , where the uncertainty of Λ dominates. The
conversion functions then evaluate to1

CV0(Mb/ΛMS) = 1.214(6)(13) , (2.9)

CVk
(Mb/ΛMS) = 1.134(7)(47) , (2.10)

where the quoted uncertainty is estimated as the difference between 2-loop and 1-loop. It
is not entirely clear whether this is a conservative estimate of the perturbative error (see
sect. 2.3 of [12]).

Let us clarify the difference to standard 1-loop renormalization of heavy-light form
factors. We renormalize the HQET currents in (2.8) non-perturbatively, thus the conti-
nuum limit of their matrix elements is not affected by any perturbative uncertainty. Then,
in the continuum, the factor Cx is known only perturbatively, but to one more power of
αs than what is available for the total Zx = Cx × Zstat,RGI in other approaches. Thus,
even if we quote an uncertainty of up to five percent for the renormalization, this is an
O(α3) uncertainty where usually it is O(α2). In the future the ALPHA collaboration will
non-perturbatively match HQET and QCD [28] also for the vector currents [29]. One then
obtains directly Zx = Cx × Zstat,RGI with full non-perturbative precision.

We now proceed to the numerical evaluation of the mb-independent RGI matrix ele-
ments hstat,RGI

x , which are not affected by perturbative errors or ambiguities.
1 They are conveniently summarized in [27].

4



3 Lattice Calculation

3.1 Framework and Renormalization

For our first numerical investigation of the problem, we choose Nf = 2 flavors of quarks.
The prime reason for this choice is that in a related project, the non-perturbative matching
of HQET to QCD for the currents V0, Vk is being carried out at the order 1/mb [29–32].
Once this is complete, we will be able to include the 1/mb corrections with little additional
effort. For now, we remain at the lowest order of HQET, namely the static order.

The b-quark is then replaced by a static quark [33] labelled “h”. Two different discreti-
sations, HYP1 and HYP2, are chosen [34]. These have moderate discretisation errors and
a much improved signal-to-noise ratio compared to the classic Eichten-Hill static quark
action [33]. The bare currents

V stat
0 = ψuγ0ψh + acV0(g0)ψl

∑
l

←−
∇S
l γlψh, (3.1a)

V stat
k = ψuγkψh − acVk

(g0)ψl

∑
l

←−
∇S
l γlγkψh, (3.1b)

are form-identical to the ones in QCD, apart from the O(a) improvement terms (
←−
∇S de-

notes the symmetric covariant derivative acting on the field to the left). The coefficients2 ,
cV0 , cVk

, are known to 1-loop order: cx = c
(1)
x g20 + O(g40) with [35]

HYP1: c
(1)
Vk

= 0.0029(2) , c
(1)
V0

= 0.0223(6) (3.2a)

HYP2: c
(1)
Vk

= 0.0518(2) , c
(1)
V0

= 0.0380(6) . (3.2b)

The multiplicative renormalization of the currents eq. (2.8) can be written as

V stat,RGI
0 = Zstat

A,RGI(g0)Z
stat
V/A(g0)V

stat
0 , (3.3)

V stat,RGI
k = Zstat

A,RGI(g0)V
stat
k , (3.4)

where the notation emphasises that V stat
k renormalizes exactly as Astat

0 due to the spin
symmetry of HQET, while for V0 an extra factor Zstat

V/A(g0) originates from the broken
chiral symmetry of Wilson fermions. We use the non-perturbative results

Zstat
A,RGI(g0) = R(µ)Zstat

A (g0, aµ) (3.5)

with [36]

R(µ0) = 0.880(7) (3.6)

relating Astat
0 at scale µ0 = 1/Lmax in the Schrödinger functional scheme to the RGI oper-

ator; and Zstat
A (g0, aµ0), the renormalization factor at the same scale µ [36]. The factor R

is known non-perturbatively by running to very high µ and continuum extrapolation. The
remaining piece Zstat

A (g0, aµ) is reproduced from [36] in Table 1. For the finite renormal-
ization Zstat

V/A we use a range

[Zstat
V/A(g0)]

−1 = 0.97(3) . (3.7)

2 Spin symmetry leads to the identity cVk = cA0 . Ref. [35] uses the notation cstatA , cstatV for cA0 , cV0 .
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cx = 0 cx = c
(1)
x g20

β HYP1 HYP2 HYP1 HYP2
5.2 0.7104( 5) 0.7920( 5) 0.7007( 5) 0.7432( 5)

5.3 0.7057(27) 0.7839(26) 0.6965(27) 0.7376(25)

5.5 0.6901(27) 0.7597(26) 0.6820(26) 0.7218(24)

Table 1: Values for Zstat
A (g0, aµ) × 0.880. At β = 5.2 they are taken directly from table 4 of

reference [36], at β = 5.3 they are obtained using the interpolating polynomial of equation (B.3)
and table 9 of that reference and for the β = 5.5 numbers we performed a linear extrapolation of
the ones at β = 5.29 and β = 5.4.

id β L/a a [fm] mπ [MeV] Ncfg κs θ/(2π)

A5 5.2 32 0.0749(8) 330 1000 0.13535 0.034

F6 5.3 48 0.0652(6) 310 300 0.13579 0.350

N6 5.5 48 0.0483(4) 340 300 0.13631 0

Table 2: Overview of the subset of Nf = 2 CLS ensembles on which we performed our measure-
ments. Lattice spacings are taken from [38], an update of [26]. All ensembles have T = 2L and
mπL ≥ 4 where mπ is the pion mass. Ncfg denotes the number of configurations on which we
performed measurements. The hopping parameter of the strange quark is denoted by κs. The
angle θ appears in the flavor-twisted boundary conditions, as explained in the text.

This range is generous, because Zstat
V/A has been seen to be very close to one in the quenched

approximation [37], and at 1-loop order, there is no Nf–dependence. Despite these argu-
ments our range in (3.7) is no more than an educated guess. This is adequate since Zstat

V/A

affects only one of the 1/mb suppressed terms, which we just use as an illustration of
the associated uncertainty. Again, we note that such issues will be eliminated when the
non-perturbative matching is carried out.

3.2 Simulation Parameters

We base our investigation on a subset of the lattice gauge field configurations with two
degenerate flavors of improved Wilson fermions and Wilson gauge action generated by the
Coordinated Lattice Simulations (CLS) effort [26]. The observables are computed on three
ensembles, namely A5, F6 and N6, chosen to have roughly the same pion mass but three
different lattice spacings, see Table 2. The quoted lattice spacings were determined from
the Kaon decay constant fK in reference [26] and updated in reference [38].

Our choice of the gauge field ensembles fixes the degenerate up and down quark masses,
ml. For the spectator strange (valence) quark mass we are free, however, to choose any
smooth function ms(ml) which passes through the physical point. As in [26] we define this
function by fixing the Kaon mass in units of the Kaon decay constant to its physical value
at our (and any) value of ml. We expect that this will lead to a flat extrapolation to the
physical value of ml, the “physical point”.

We choose |pK| = 0.535 GeV which corresponds to the minimum available momentum
with periodic boundary conditions for all fields on the N6 lattice. On the other lattices
we keep pK = (1, 0, 0) (2π + θ)/L fixed by introducing flavor-twisted boundary conditions

6
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Figure 1: Effective energy of CK (left) and CBs (right) on ensemble N6. Note that both panels have
equal ranges on the corresponding axes. One can identify reasonable plateaus with small errors
even though the Kaon carries a non-vanishing momentum and we have a static Bs-meson. The
value for the ground state energy as obtained from a two-exponential fit is shown as a red band.
Uncertainties shown here are only those of Estat and EK in lattice units, not the ones of mbare and
the lattice spacing. The data points are shown for the case of maximum smearing, while the fit
involves all the smearing levels.

[39] ψs(x + L1̂) = eiθψs(x), for the strange quark. The Bs-meson is kept at rest by
ψh(x + L1̂) = eiθψh(x), and we remain with periodic boundary conditions for all other
fields. The numerical values for θ are listed in Table 2. Our choice of pK yields a central
value of q2 = 21.22 GeV2 at all lattice spacings and an error coming from the lattice spacing
of 0.03− 0.05 GeV2. Note that the flavor-twist is introduced only for quenched quarks.

3.3 Correlation Functions and Matrix Elements

We work with all-to-all light quark propagators [40, 41] implemented by a random U(1)
source placed on each time slice (“full time dilution” [42]). While this is numerically costly,
it significantly reduces the large-time variance. Together with the deflated solver [43–45]
that we use, it is thus very cost effective. Most notably, this feature of our computa-
tion provides access to all time separations of two-point and three-point functions on our
lattices. For details we refer to [11].

The two-point functions are defined as

CK(y0 − x0) =
∑
y,x

e− i ~p·(y−x)〈Psu(y)Pus(x)〉, (3.8)

CBs
ij (y0 − x0) =

∑
y,x

〈P (i)
sb (y)P

(j)
bs (x)〉, (3.9)

with the pseudoscalar density P (i)
q1q2

(x) = ψq1
(x)γ5ψq2

(x). Indices i and j denote the use
of different Gaussian wave functions for the light quarks with a set of smearing parameters
as in [13]. Up to terms which are exponentially suppressed in the time extent T of the
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torus, we can parameterise CK, CBs as

CK(tK)
tK�a∼

∑
n

(
κ(n)

)2
e−E

(n)
K tK ≈

(
κ(0)

)2
e−E

(0)
K tK , (3.10)

CBs
ij (tBs)

tBs�a∼
∑
n

β
(n)
i β

(n)
j e−E

(n)
Bs tBs ≈

N∑
n=0

β
(n)
i β

(n)
j e−E

(n)
Bs tBs , (3.11)

where we have denoted amplitudes by κ(n) = L3/2(2EK)−1/2〈0|Pus(0)|K,n〉 and β
(n)
i =

L3/2(2EBs)
−1/2〈0|P (i)

sb (0)|K,n〉, while energies are labelled E
(n)
K , E

(n)
Bs

. The restrictions
tx � a are required because we use an improved action where the positivity of the transfer
matrix is not guaranteed. In a fit to these correlation functions, we use t-ranges denoted
by tK2

min ≤ tK ≤ tK2
max and tB2

min ≤ tBs ≤ tB2
max, respectively, and N is the number of excited

Bs-meson states which we include. Note that we have restricted ourselves here to only
the ground state of the Kaon. There is a single, fixed, smearing level for the Kaon. In
the Kaon two-point function, ground-state dominance sets in at around 1.2 fm, while for
the Bs-meson this happens a bit earlier for our optimal (widest) Gaussian wave function.
An illustration is found in Figure 1, which also shows that a reasonably good precision is
reached; plateaus are also clearly visible at the larger lattice spacings.

The three-point function

CBs→K
µ,j (x0f − x0v, x0v − x0i ) =

∑
xf ,xv ,xi

e− ip·(xf−xv)〈Pdu(xf )V µ(xv)P
(j)
bd (xi)〉 (3.12)

has a representation

CBs→K
µ,i (tK, tBs)

tK,tBs�a∼
∑
m

∑
n

κ(m)ϕ(m,n)
µ β

(n)
i e−E

(m)
K tK e−E

(n)
Bs tBs

≈
N∑
n=0

κ(0)ϕ(0,n)
µ β

(n)
i e−E

(0)
K tK e−E

(n)
Bs tBs . (3.13)

We perform a global fit to CK, CBs
ij , and C

Bs→K
µ,i . For the latter we consider (tK, tBs)-values

restricted to the rectangle with tK3
min ≤ tK ≤ tK3

max,µ and tB3
min ≤ tBs ≤ tB3

max,µ.
The desired form factors are given by the ground-state matrix elements

hstat,bare
‖ = ϕ

(0,0)
0

√
2EK , (3.14a)

hstat,bare
⊥ =

ϕ
(0,0)
k

pkK

√
2EK . (3.14b)

Their extraction from the data is rather delicate because statistical errors grow with time
separations. Due to our all-to-all computation and the use of HYP1, HYP2 discretisations,
we still have a precision of better than two percent for tK . 2 fm and tBs . 1.5 fm in the
two-point functions; for the three-point function it drops below the two-percent level at
around tK + tBs ≈ 2 fm (in the fitting region). However, we find that N = 2 excited states
are necessary in our global fit to obtain a good description of the data and, in particular,
a safe extraction of the most important form factor ϕ(0,0)

k .
To determine the reliability of the fits, we vary the boundaries tB2

min, t
K3
min, and tB3

min

of the fit ranges and verify that the fit results remain unchanged within errors. As an
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Figure 2: Stability of the fit parameters ϕ(0,0)
0 (left) and ϕ

(0,0)
k (right) on ensemble N6 with

respect to variations of tB3
min/a (different groups) and of tK3

min/a = 11 . . . 19 (within the groups). In
each panel, the value used to determine the bare form factor is marked with a filled square.

example, Fig. 2 shows the dependence of the fit results for ϕ(0,0)
0 and ϕ

(0,0)
k on tK3

min and
tB3
min (keeping tB3

min − tB2
min = 5a fixed). The other boundaries are chosen to suppress the

effects of excited Kaon states (tK2
min), of noise (tB2

max), and of the finite time extent T . The
latter two criteria considerably constrain our choice of tK3

max,µ and tB3
max,µ.

Table 3 lists the fit ranges which we used for the HYP2 data. The bare ground-state
matrix elements are shown in Table 4. Further details will be described in [11].

3.4 Continuum Limits

The bare form factors, renormalized as explained in Sect. 3.1, yield the RGI form factors
listed in Table 5. Their errors take account of all statistical correlations and autocorrela-
tions as described in [13] based on [46,47]. For these non-perturbatively renormalized form
factors (at fixed squared momentum transfer q2, or Kaon energy pK · v) the continuum
limit can now be taken.

Fig. 3 shows the dependence of the results on the lattice spacing and the continuum
extrapolation for the two discretisations (HYP1 and HYP2). As our best result we estimate
the continuum limit by a linear extrapolation in a2 of the data with cx = c

(1)
x g20, as

illustrated in the figure.
For h‖ a simple constant extrapolation (a weighted average) yields compatible results,

but of course with much smaller error bars. Since there is no reason, why a2 effects should
be entirely absent, we use the numbers with the larger error bars.

It seems not critical that we know the O(a) improvement coefficients of the currents
only in 1-loop perturbation theory. These coefficients are not very relevant at the level of
precision of our data.3

Finally we combine the continuum limits of HYP1 and HYP2 in a weighted average,

hstat,RGI
‖ = 0.976(41)(11)GeV1/2, (3.15a)

hstat,RGI
⊥ = 0.876(43)(35)GeV−1/2 , (3.15b)

where the second errors are the ones from the perturbative uncertainty in Cx.
3 The reader should not be confused by the fact that bare numbers may depend significantly on cx;

discretisation errors have to be assessed after renormalization.
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β tK2
min tK2

max tB2
min tB2

max tK3
min tK3

max,0 tK3
max,1 tB3

min tB3
max,0 tB3

max,1

5.2 1.27 2.32 0.45 2.55 0.82 1.35 1.05 0.67 1.57 1.35
5.3 1.43 3.06 0.46 2.54 0.84 1.82 1.82 0.65 1.62 1.50
5.5 1.34 2.26 0.43 2.11 0.82 1.34 1.06 0.67 1.34 1.44

Table 3: Ranges of tK and tBs (in fm) as used in our global fits to HYP2 data.

cx = 0 cx = c
(1)
x g20

β HYP1 HYP2 HYP1 HYP2

h‖ [GeV1/2]
5.2 1.38(3) 1.34(3) 1.38(3) 1.34(3)

5.3 1.42(4) 1.35(3) 1.42(4) 1.35(3)

5.5 1.40(3) 1.34(2) 1.40(3) 1.34(2)

h⊥ [GeV−1/2]
5.2 1.46(6) 1.33(6) 1.47(7) 1.39(6)

5.3 1.48(9) 1.35(8) 1.50(9) 1.40(8)

5.5 1.37(4) 1.25(3) 1.39(4) 1.31(3)

Table 4: Unrenormalized form factors h‖, h⊥ for the specified discretisations.

cx = 0 cx = c
(1)
x g20

β HYP1 HYP2 HYP1 HYP2

hstat,RGI
‖ [GeV1/2]

5.2 1.01(4) 1.10(4) 1.00(4) 1.03(4)

5.3 1.03(5) 1.09(4) 1.02(4) 1.03(4)

5.5 0.99(4) 1.05(4) 0.98(4) 1.00(4)

continuum 0.98(5) 1.02(5) 0.97(5) 0.98(5)

hstat,RGI
⊥ [GeV−1/2]

5.2 1.04(5) 1.05(5) 1.03(5) 1.04(5)

5.3 1.05(7) 1.06(6) 1.04(6) 1.04(6)

5.5 0.95(3) 0.95(3) 0.95(3) 0.94(3)

continuum 0.88(5) 0.88(5) 0.88(5) 0.87(5)

f̃+,1 1.78(8) 1.79(8) 1.78(8) 1.76(8)

Table 5: Renormalized form factors hstat,RGI
‖ , hstat,RGI

⊥ and their continuum limits. The last line
gives the conventional combination of form factors, f+.
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Figure 3: Results for hstat,RGI
‖ (left) and hstat,RGI

⊥ (right) with 1-loop O(a) improvement coefficients.
Data for actions HYP1/2 are separated slightly in a2 for better visibility. The lines show continuum
extrapolations linear in a2.

3.5 The Form Factors f+ and f0, and a Comparison to Other Results

We now have different options to estimate the form factor f+. Working only at static
order, we can use any quantity f̃+,i with

f+ = f̃+,i · [1 + O(1/mb)] , (3.16)

and we consider (dropping the argument of CV0 , CVk
)

f̃+,1 =
√
mBs/2

(
(1− EK

mBs

)CVk
hstat,RGI
⊥ (EK) +

1

mBs

CV0 h
stat,RGI
‖ (EK)

)
, (3.17a)

f̃+,2 =
√
mBs/2CVk

hstat,RGI
⊥ (EK) . (3.17b)

In f̃+,1 all known terms and kinematical factors are taken into account, despite the fact
that the form factors h‖ and h⊥ contain further 1/mb suppressed contributions which we
do not control, while in f̃+,2 we systematically drop all 1/mb suppressed contributions.
Numerically we have (combined HYP1/2)

f̃+,1 = 1.77(7)(7) , (3.18a)

f̃+,2 = 1.63(8)(6) . (3.18b)

Of course one could also include in (3.17b) the exactly known kinematical prefactor of h⊥
via f̃+,3 = (1 − EK/mBs) f̃+,2 = 0.864 × f̃+,2. Such ∼ 15% uncertainties/ambiguities will
be reduced to 1%− 2% when we include all 1/mb terms.

In order to give a single number, we estimate the O(1/mb) terms in this way and
quote

f+(21.22GeV2) = f̃+,2 ± 0.15 f̃+,2 = 1.63(8)(6)± 0.24 . (3.19)

Besides f+ it is common in the literature to report results for the scalar form factor
f0, which is another linear combination of h⊥ and h‖. To estimate its value, we use

f̃0 =

√
2/mBs

1−m2
K/m

2
Bs

(
(1− EK

mBs

)CV0 h
stat,RGI
‖ (EK) +

p2
K

mBs

CVk
hstat,RGI
⊥ (EK)

)
, (3.20)
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where, analogous to f̃+,1, all known kinematic O(1/mb) terms are included. Our (combined
HYP1/2) result is

f̃0 = 0.66(3)(1) . (3.21)

Our results, eq. (3.19) and eq. (3.21), compare rather well with other values of the
form factors in the literature. The result of Flynn et al. [6], extracted at our value of q2,
is f+ ≈ 1.65(10) and f0 ≈ 0.62(5), while Bouchard et al. [7] have f+ ≈ 1.80(20) and f0 ≈
0.66(5). As should be clear our estimates have a systematic error of a completely different
nature. While we focused our effort on taking the continuum limit of non-perturbatively
renormalized matrix elements at a fixed Kaon momentum, we have so far neglected the
dependence on the light-quark mass which – according to [6, 7] – is below our errors.

4 Conclusion and Outlook

For the first time we have been able to perform a study of the continuum limit of fully
non-perturbatively renormalized form factors. They are computed at a fixed squared mo-
mentum transfer q2 = 21.22 GeV2, and we have concentrated on the leading order form
factors in 1/mb. In RGI form these are unambiguous. Our main result is contained in
Fig. 3. It shows that the continuum limit at a Kaon momentum of 1/2 GeV is smooth.
This behaviour of the discretisation errors for matrix elements with a momentum of this
size is not obvious a priori and linked to our choice of actions; a generalization is at most
possible at a rather qualitative level. With this encouraging result, we may consider also
somewhat larger momenta in the future.

Our numbers in eq. (3.19) and eq. (3.21) provide a positive cross-check of [6,7]. Already
now, they thus strengthen our confidence in the form factors extracted on the lattice and
summarized in [4], but they will be of a more direct phenomenological interest when the
1/mb terms are included and the errors shrink accordingly. At that point we also have
to carefully consider the extrapolation to the physical light quark masses and finally more
than one value of the Kaon momentum will be of interest. As a bottom line, the study
presented here suggests that all this is possible with a precision which is of interest for an
extraction of Vub from experimental decay rates.
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