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Abstract

We consider six-dimensional supergravity with Abelian bulk flux compactified on
an orbifold. The effective low-energy action can be expressed in terms of N = 1
chiral moduli superfields with a gauged shift symmetry. The D-term potential
contains two Fayet-Iliopoulos terms which are induced by the flux and by the
Green-Schwarz term canceling the gauge anomalies, respectively. The Green-
Schwarz term also leads to a correction of the gauge kinetic function which turns
out to be crucial for the existence of Minkowski and de Sitter vacua. Moduli
stabilization is achieved by the interplay of the D-term and a nonperturbative
superpotential. Varying the gauge coupling and the superpotential parameters,
the scale of the extra dimensions can range from the GUT scale down to the TeV
scale. Supersymmetry is broken by F - and D-terms, and the scale of gravitino,
moduli, and modulini masses is determined by the size of the compact dimensions.
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1 Introduction

The ultraviolet completion of the Standard Model remains a challenging question.
There are strong theoretical arguments for supersymmetry at high scales and, in con-
nection with gravity and string theory, also for compact extra dimensions. But in
the absence of any hint for supersymmetry from the LHC the scale of supersymmetry
breaking is completely unknown, except for a lower bound of O(1) TeV.

In this connection higher-dimensional theories are of interest which relate the scale
of supersymmetry breaking to the size of compact dimensions via quantized magnetic
flux [1]. In the context of the heterotic string it has been argued that five or six di-
mensions are a plausible intermediate step on the way from 10d string theory to a 4d
supersymmetric extension of the Standard Model [2–5], and compactifications to six
dimensions (6d) are also very interesting from the perspective of type IIB string theory
and F-theory [6–8]. Furthermore, 6d theories are interesting from a phenomenological
point of view. They can naturally explain the multiplicity of quark-lepton genera-
tions as a topological quantum number of vacua with magnetic flux [9] and, when
compactified on orbifolds, they provide an appealing explanation of the doublet-triplet
splitting in unified theories [10–13]. Orbifold compactifications with flux combine both
virtues [14], leading to 4d theories reminiscent of “split” [15,16] or “spread” [17] super-
symmetry.

Many aspects of 6d supergravity theories have already been studied in detail in
the past. This includes the complete Lagrangian with matter and gauge fields [18,19],
compactification of gauged supergravity with a monopole background [20], localized
Fayet-Iliopoulos terms generated by quantum corrections [21], singular gauge fluxes at
the fixed points [22] and the cancellation of bulk and fixed point anomalies by the Green-
Schwarz mechanism [23–26]. In particular, it has been shown in [27] how magnetic flux
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together with a nonperturbative superpotential can stabilize both dilaton and volume
modulus.

The present paper extends our previous work [28] where we showed that the Green-
Schwarz mechanism also cancels the anomalies due to the chiral zero modes induced by
the magnetic flux. We now demonstrate that the low-energy effective Lagrangian takes
the form of an N = 1 supergravity model for the moduli superfields with a gauged shift
symmetry. The corresponding Killing vectors are induced by the magnetic flux and also
by the Green-Schwarz term, respectively. Furthermore, N = 1 supersymmetry implies
an important modification of the gauge kinetic function. As discussed already in [29],
this allows for a new class of metastable de Sitter solutions.

The paper is organized as follows. In Section 2 we derive the Kähler potential, the
gauge kinetic function and the D-term potential of the 4d theory with special emphasis
on the effects of the Green-Schwarz term. Minkowski and de Sitter vacua are analyzed
in Section 3 and it is shown how dilaton, volume and shape moduli can be stabilized by
the flux together with a nonperturbative superpotential. The U(1) vector boson mass,
the charged scalar mass, the moduli masses, and the axion masses are evaluated for
two examples of Minkowski vacua with different size of the compact dimensions. An
important aspect of the model is the realization of the super-Higgs mechanism with
combined F - and D-term breaking of supersymmetry. This, together with the modulini
masses, is discussed in Section 4. Details of the search for de Sitter vacua and the super-
Higgs mechanism are given in Appendix A and Appendix B, respectively. Appendix C
contains more details about the example models, including numerical values for their
mass spectra.

2 Effective supergravity action

Let us first consider the bosonic part of the six-dimensional supergravity action with a
U(1) gauge field1,

SB =

∫ (
M4

6

2
(R− dφ ∧ ∗dφ)− 1

4M4
6 g

4
6

e2φH ∧ ∗H − 1

2g2
6

eφF ∧ ∗F
)
, (1)

involving the Ricci scalar R, the dilaton φ, the gauge field A = AM dxM and the
antisymmetric tensor field B = 1

2
BMN dx

M ∧ dxN . The corresponding fields strengths
are given by

F = dA , H = dB −X0
3 ; (2)

M6 is the 6d Planck mass and g6 denotes the 6d gauge coupling of mass dimension −1.
The 3-form X0

3 is the difference between the Chern-Simons forms ω3L and ω3G for the
spin connection ω and the gauge field A, respectively. In the following we ignore ω3L

1We use the differential geometry conventions of [30], the volume form multiplying R is understood.
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since we will not discuss gravitational anomalies, i.e.,

X0
3 = −ω3G = −A ∧ F . (3)

We choose as background geometry the product space M × T 2/Z2 with the metric

(g6)MN =

(
r−2(g4)µν 0

0 r2(g2)mn

)
, (4)

where µ, ν = 0 . . . 3 correspond to the 4d Minkowski space and m,n = 5, 6 to the
internal space. It is convenient to use dimensionless coordinates for the compact space,
(x5, x6) = (y1, y2)L, where L is a fixed physical length scale. The rescaling by the
dimensionless radion field r in (4) leads to standard kinetic terms for the moduli. The
shape of the internal space is parametrized by the two real shape moduli τ1,2 in the
two-dimensional metric (g2)mn,

(g2)mn =
1

τ2

(
1 τ1

τ1 τ 2
1 + τ 2

2

)
, (5)

and the orbifold projection acts as xm → −xm. The physical volume of the internal
space is V2 = 1

2
〈r〉2L2, where 〈r〉 is the vacuum expectation value of the radion field r.

Neglecting the gravitational backreaction on the geometry of the internal space, a
constant bulk flux is a solution of the equations of motion,

〈F 〉 =
f

L2
v2 , f = const , (6)

where v2 = dy1 ∧ dy2. Furthermore, we add to the gauge-gravity sector a bulk hyper-
multiplet containing a 6d Weyl fermion with charge q and two complex scalars. The
hypermultiplet can be decomposed into two 4d N = 1 chiral multiplets with charges
q and −q, respectively. The two complex scalars, φ+ and φ−, have gauge interactions
and a scalar potential which, in 4d N = 1 language, corresponds to an F -term and a
D-term potential of the two chiral multiplets [31],

SM = −
∫ (

(d+ iqA)φ+ ∧ ∗(d− iqA)φ̄+ + (d− iqA)φ−) ∧ ∗(d+ iqA)φ̄−)

+ 2g2
6q

2e−φ|φ+φ−|2 +
g2

6q
2

2
e−φ(|φ+|2 − |φ−|2)2

)
.

(7)

Due to charge quantization the value of the background flux can only take discrete
values,

q

2π

∫
T 2/Z2

〈F 〉 =
qf

4π
≡ −N ∈ Z . (8)
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For |N | > 0, the index theorem guarantees the presence of N massless left-handed
4d Weyl fermions [9]. This model is anomalous, with bulk and fixed point anomalies
calculated in [24],

A = ΛF ∧
(
β

2
F ∧ F + αδOF ∧ v2

)
, (9)

where β = −q4/(2π)3, α = q3/(2π)2, and

δO(y) =
1

4

4∑
i=1

δ(y − ζi) , (10)

where the ζi correspond to the four fixed points on the orbifold. From the first term
in Eq. (9) it is obvious that the background flux contributes to the chiral anomaly. As
shown in [28], all these anomalies are canceled by the Green-Schwarz term

SGS = −
∫ (

β

2
A ∧ F + αδOA ∧ v2

)
∧ dB . (11)

It is now straightforward to compute the 4d effective action by means of dimensional
reduction. Matching the Ricci scalars and the gauge kinetic terms yields for the tree
level 4d Planck mass and the 4d gauge coupling, respectively,

M2
4 =

L2

2
M4

6 ,
1

g2
4

=
L2

2g2
6

. (12)

The gauge part of the 4d effective action has been worked out in [28]. The field
strength H of the antisymmetric tensor B can be written as

H =
(
g2

4M
2
4db+ 2fÂ

)
v2 + Ĥ , Ĥ = dB̂ + Â ∧ F̂ , (13)

where b, Â and B̂ denote 4d scalar, vector and tensor fields. Trading Ĥ for the dual
scalar c by means of the Lagrange multiplier term

∆ScH =
1

2g2
4

∫
M

c d(Ĥ − Â ∧ F̂ ) , (14)

replacing radion and dilaton by the moduli fields s and t,

t = r2e−φ , s = r2eφ , (15)

rescaling the lowest state of the matter field, φ+ →
√

2/Lφ+, and dropping the ‘hat’
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for the 4d vector field, one obtains

S
(4)
B =

∫
M

{
M2

4

2

(
R4 −

1

2t2
dt ∧ ∗dt− 1

2s2
ds ∧ ∗ds− 1

2τ 2
2

dτ ∧ ∗dτ
)

− 1

2g2
4

(
sF ∧ ∗F + (c+ g2

4β
¯̀2b)F ∧ F

)
− g2M4

4

2st2
f 2

¯̀4

− M2
4

4t2

(
db+

2f
¯̀2
A
)
∧ ∗
(
db+

2f
¯̀2
A
)

− M2
4

4s2

(
dc+ g2

4(2α + βf)A) ∧ ∗(dc+ g2
4(2α + βf)A

)
−(d+ iqA)φ+ ∧ ∗(d− iqA)φ̄+ − m̃2

+|φ+|2 −
g2

4q
2

2s
|φ+|4

}
.

(16)

For convenience, we have introduced the dimensionless parameter

¯̀= g4M4L , (17)

and we have dropped2 the matter field φ−. Note that the 6d Ricci scalar contains the
4d Ricci scalar R4 and the kinetic terms of the moduli fields s, t and τ ≡ τ1 + iτ2. For
φ+, the scalar corresponding to the 4d zero mode ψ+, the flux generates the mass term

m̃2
+ = −g2

4M
2
4

qf

st¯̀2
. (18)

For a vacuum expectation value 〈r〉 6= 1 a constant Weyl rescaling (g4)µν →
〈r〉2(g4)µν has to be performed such that the rescaled metric describes physical 4d
distances. The Ricci scalar of the rescaled metric is then multiplied by M2

P = M2
4 〈r〉2.

MP corresponds to the physical Planck mass and is related to M6 by the physical
volume, M2

P = V2M
4
6 . Analogously, the physical coupling g = g4/〈r〉 is related to g6

by g−2 = V2g
−2
6 . Furthermore, we now rescale moduli and matter fields, (s, t, . . .) →

(s, t, . . .)〈r〉2, φ+ → φ+/〈r〉. The resulting final 4d bosonic action is identical to Eq. (16)

2On the orbifold without flux φ− is projected out. In the case with flux it belongs to the first exited
Landau level (n = 1). Its tree-level mass is degenerate with the lowest level (n = 0) of φ+, but for the
following discussion φ− is irrelevant.
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except for a change of parameters,

S
(4)
B =

∫
M

{
M2

P

2

(
R4 −

1

2t2
dt ∧ ∗dt− 1

2s2
ds ∧ ∗ds− 1

2τ 2
2

dτ ∧ ∗dτ
)

− 1

2g2

(
sF ∧ ∗F + (c+ g2β`2b)F ∧ F

)
− g2M4

P

2st2
f 2

`4

− M2
P

4t2

(
db+

2f

`2
A
)
∧ ∗
(
db+

2f

`2
A
)

− M2
P

4s2

(
dc+ g2(2α + βf)A) ∧ ∗(dc+ g2(2α + βf)A

)
−(d+ iqA)φ+ ∧ ∗(d− iqA)φ̄+ −m2

+|φ+|2 −
g2q2

2s
|φ+|4

}
,

(19)

where MP and g are physical Planck mass and gauge coupling, respectively. The
parameter ¯̀ is replaced by

` = 〈r〉¯̀= g4M4〈r〉L = gMP〈r〉L , (20)

and the scalar mass is given by

m2
+ = 〈r〉2m̃2

+ = −g2M2
P

qf

st`2
=

qf

2stV2

. (21)

By construction, the rescaled moduli fields satisfy 〈st〉 = 1. We conclude that given
a vacuum field configuration ((g4)µν , 〈s〉, 〈t〉) one can always perform a rescaling such
that the new metric (g4)µν describes physical 4d distances and the new moduli fields
satisfy 〈st〉 = 1. The length scale 〈r〉L corresponds to the physical size of the extra
dimensions in terms of the physical Planck mass. In the following we shall therefore
directly search for vacua with 〈r〉 = 1, and we set MP = 1.

The flux compactification on the orbifold T 2/Z2 should lead to a 4d theory with
spontaneously broken N = 1 supersymmetry. Indeed, introducing the complex fields

S = 1
2
(s+ ic) , T = 1

2
(t+ ib) , U = 1

2
(τ2 + iτ1) , (22)

and comparing expression (16) with the standard N = 1 supergravity Lagrangian [32],
one immediately confirms that the kinetic terms of the moduli and the matter field are
reproduced by the Kähler potential3

K = − ln(S + S + iXSV )− ln(T + T + iXTV )− ln(U + U) + φ̄+e
2qV φ+ , (23)

3We use the same symbol for a chiral superfield and the related complex scalar; the 4d vectorfield
A is contained in the real superfield V .
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with the Killing vectors

XT = −i f
`2
, XS = −ig2α(N + 1) , (24)

where we have used the relation (8) from the flux quantization α + βf/2 = α(N + 1);
the gauge interaction of the matter field corresponds to the Killing vector

X+ = −iqφ+ . (25)

From the coefficient of F ∧ F one reads off the gauge kinetic function

H = hSS + hTT = 2(S + g2β`2T ) , (26)

whose real part we denote by h. At first glance this appears to be at variance with the
coefficient of F ∧ ∗F suggesting H = 2S. Note, however, that with the Green-Schwarz
term we have included only part of the one-loop corrections to the effective action.
A complete calculation should preserve supersymmetry. Hence, we expect that there
are further contributions such that the correct gauge kinetic function is indeed given
by Eq. (26), which remains to be confirmed by an explicit calculation. The one-loop
corrected gauge kinetic function depends now on the moduli fields S and T . Such a
T -dependence has previously been found in heterotic string compactifications as an
effect of quantum corrections [33,34].

Knowing the Killing vectors and the gauge kinetic function, the D-term potential
is given by [32]

VD =
g2

2h
D2 , (27)

where h = (s+ g2β`2t) and

D = iKTX
T + iKSX

S + iKφ+X
+ ≡ q|φ+|2 + ξ , (28)

ξ ≡ ξT + ξS = − f

t`2
− g2α(N + 1)

s
. (29)

This is the standard D-term potential for a charged complex scalar with a field-
dependent Fayet-Iliopoulos (FI) term ξ. The scalar potential in Eq. (19) contains
the classical part of the D-term potential which is given by ξT . It contributes linearly
to the tree-level mass of the charged scalar and quadratically to the energy density. Su-
persymmetry requires the quantum correction ξS in addition, analogously to the gauge
kinetic function. We therefore keep ξS in the D-term potential, which again should be
verified by direct calculation.

Fayet-Iliopoulos terms ξi which are generated at the orbifold fixed points by quan-
tum corrections have been discussed in [21] in the case of zero bulk flux. These FI terms
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are O(q), their sum and therefore the effective 4d FI term vanishes (
∑

i ξi = 0), and
they are locally canceled by a dynamically generated flux that modifies the zero-mode
wave functions. As we have shown, there is a non-vanishing 4d FI term ξS = O(q3),
which follows from the Green-Schwarz term. Following [21], it would be interesting
to analyze systematically the interplay between the classical bulk flux and the local
quantum flux at the fixed points, and to study their joint effect on the zero-mode wave
functions.

3 Moduli stabilization and boson masses

The explicit form of the supersymmetric effective action enables us to determine the
masses of the bosons in the theory. For the gauge boson A and the charged scalar field
φ+ the results were already given in [28]. However, the non-trivial effective gauge cou-
pling additionally includes higher order terms4 that so far have not been incorporated.

The vector boson mass can be extracted form the bilinear term of the 4d gauge field
in Eq. (16) and reads

m2
A =

2g2

h

(
f 2

`4t2
+
g4α2(N + 1)2

s

)
=

1

2h

(
16π2N2

(gq)2 V 2
2 t

2
+

4g6α2(N + 1)2

s2

)
,

(30)

The lowest charged scalar mass originates from the D-term potential and includes
corrections due to anomaly cancellation and non-trivial gauge kinetic function. This
modifies the classical scalar mass term (18) to

m2
+ =

g2

h

(
− qf
t`2
− g2qα(N + 1)

s

)
=

1

2h

(
4πN

V2 t
− 2g4qα(N + 1)

s

)
.

(31)

Without flux the negative second term, accounting for the quantum corrections induced
by anomaly cancellation, leads to a vacuum expectation value for φ+ such that the total
D-term vanishes. For non-vanishing flux, however, −qf = 4πN > 0 and the first term
tends to stabilize the scalar field φ+ at zero. Consequently, the charged scalars are
stabilized at the origin as long as the first, flux induced, term in Eq. (31) dominates,
i.e. for

s >
g2`2q4

(2π)3

N + 1

2N
t . (32)

4Furthermore, the normalization of the field strength H differs compared to that in [28] in order
to match the supergravity conventions.
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Moreover, the real part of the gauge kinetic function, determining the effective U(1)
gauge coupling, has to be positive for the theory to be consistent. Because of the nega-
tive prefactor of t this leads to a restriction of the physical moduli space parametrized
by s and t (see Eq. (26)),

s >
g2`2q4

(2π)3
t . (33)

Hence, for N ≥ 1 the charged fields are always stabilized at zero for s and t in the
physical region of the moduli space5. Furthermore, in this regime the D-term contri-
bution to the scalar potential is positive. However, it is obvious that the runaway-type
D-term potential alone can not stabilize the moduli fields and we have to include a
superpotential.

A superpotential for the moduli can arise at the orbifold fixed points in the six-
dimensional supergravity theory. The superpotential in the 4d effective action is the
sum of the fixed point contributions. Consistency requires this superpotential to be
gauge invariant6. In the following discussion we neglect a possible coupling of moduli
to charged bulk fields and restrict our attention to a superpotential that only depends
on the moduli fields. For that reason we define a gauge invariant combination of the
two shifting chiral superfields S and T

Z = 1
2
(z + ic̃) ≡ −iXTS + iXST . (34)

The superpotential is a holomorphic function of Z and the gauge invariant modulus U .
Inspired by typical superpotentials induced by nonperturbative effects, such as gaugino
condensation or instanton corrections, we assume the following functional dependence

W = W (Z,U) = W0 +W1 e
−aZ +W2 e

−ãU , (35)

where, without loss of generality, we choose the parameters W0, W1, and W2 to be real.
For an exponential suppression of these nonperturbative effects we further demand that
a and ã are real and positive. The F -term scalar potential reads

VF = eK
(
Ki̄DiWD̄W − 3|W |2

)
. (36)

Note that the Kähler potential (23) is of the no-scale form, and the contribution −3|W |2
is therefore canceled. The F-term potential (36) also contributes to the scalar mass term
m2

+. However, this contribution is O(W 2), which is much smaller than the leading
contribution O(D), and it can therefore be neglected.

5Note that in Eqs. (30)-(33) only the product gq appears, since ` ∝ g. In the following we set q = 1.
6Unless one gauges an R-symmetry leading to constant FI-terms [35,36].
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With the charged fields stabilized at zero the D-term

D = iKTX
T + iKSX

S = − i
t
XT − i

s
XS , (37)

and the linearly independent combination

E = iKTX
T − iKSX

S = − i
t
XT +

i

s
XS , (38)

can be used to rewrite the scalar potential in the convenient form

V =
st

2τ2

(
D2 + E2

)
A+

τ2

st
Ã− 1

τ2

EB − 1

st
B̃ +

g2

2h
D2 , (39)

where the parameters of the superpotential are encoded in

A = |∂ZW |2 , Ã = |∂UW |2 ,
B = (∂ZW )W +W (∂ZW ) , B̃ = (∂UW )W +W (∂UW ) . (40)

For the specific form (35) of the superpotential these quantities are given in App. A.
In order to find minima with vanishing or small cosmological constant one has to solve
the four equations

∂SV = 0 , ∂TV = 0 , ∂UV = 0 , V = ε ≥ 0 . (41)

These are worked out in App. A. We use an inverted procedure to obtain the super-
potential parameters by solving Eqs. (41) after fixing the vacuum expectation values
of the moduli fields and the energy density. Consequently, for vanishing or small cos-
mological constant the derived superpotential is fine-tuned to compensate the large
positive D-term depending on g and L. To solve Eqs. (41) we further have to fix one
of the parameters, which we choose to be ã. However, one of the above combinations,
A, can be uniquely determined in terms of the moduli values at the minimum. Up to
the prefactor τ2 the form is identical to the two moduli case discussed in [29],

A =
g2τ2

2st h2(ρ2 − 1)

(
hT tρ+ h(2− ρ+ ρ2) +

4h2ε

g2E2

)
, (42)

where ρ is the ratio D/E. Therefore, the arguments for the existence of vacua given
in [29] carry over to the three moduli case. Importantly, one necessary condition is that
the prefactor hT of one of the moduli in the gauge kinetic function is negative. In the
above case this constrains the allowed moduli region to a regime where the D-terms are
positive definite. The additional negative contributions from the F -terms of the gauge
invariant superpotential allow to find Minkowski or de Sitter vacua with all moduli
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stabilized. In this way we can construct models with Minkowski or de Sitter vacua
with a size of the internal space that ranges between GUT and TeV scale.

Given a vacuum with r = 1 and the cancellation between F - and D-term contri-
butions to the potential, we can derive the L-dependence of the various parameters
and masses. For (s, t) parametrized by (κ, κ−1) solutions to Eqs. (41) can be found for
certain values of the parameter g2L/κ. Keeping this parameter combination fixed we
then obtain models with different size of the extra dimensions. Accordingly, the scaling
of the effective gauge coupling and D-term potential is

g2
eff ∝ L−1 , VD ∝ L−3 . (43)

This directly implies a scaling of the superpotential parameters

W0,W1,W2 ∝ L−3/2 , a ∝ L , (44)

and allows to deduce the behavior of the bosonic masses

m2
+ ∝ L−2 , m2

A ∝ L−3 , m2
moduli ∝ L−3 , m2

axions ∝ L−3 (45)

Superpotential and boson masses: two examples

In order to illustrate our general results and to get some intuition for the parameters
and mass scales involved, we work out explicitly two models exhibiting Minkowski
vacua with different size of the internal dimensions. As explained above we start with
the choice of the gauge coupling g, the size L of the compact dimensions, and ã in the
superpotential. The parameters of the two models read

Model I: g = 0.2 , L = 200 , ã = 2 ,

Model II: g = 4× 10−3 , L = 106 , ã = 3 .
(46)

The number of flux quanta in both vacua is set to N = 3, which ensures the stabilization
of the charged scalar fields, see Eq. (32), and already hints at a multiplicity which can
be used in grand unified model building [14]. The complex shape modulus is stabilized
at τ = 1, which corresponds to the square torus assumed in [29].

To achieve r = 1 in the vacuum we parametrize (s, t) by (κ, κ−1) as above. There-
fore, the mass scale of the internal dimensions (in 4d Planck units) is given by

(V2)−1/2 =

√
2

L
, (V2)

−1/2
I ≈ 7.1× 10−3 , (V2)

−1/2
II ≈ 1.4× 10−6 , (47)

which corresponds to the GUT scale and an intermediate mass scale, respectively. The
moduli are stabilized at κI = 0.6, κII = 1.2. As discussed above, the combination g2L/κ
remains constant in both models. The minima in the two different models are plotted
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Figure 1: Contour plot of the potential in Model I (L = 200) in the s-t plane (fixed
τ2 = 1) and s-τ2 plane (fixed t = 5

3
).

in the s-t and the s-u plane in Figures 1 and 2. One immediate consistency check for
the solutions is the value of the effective gauge coupling which has to be positive and
small enough to allow a perturbative treatment

(geff)I ≈ 0.49 , (geff)II ≈ 6.9× 10−3 . (48)

This perfectly matches the scaling behavior in Eq. (43). The charged scalar and vector
boson masses can then be evaluated numerically using Eqs. (30) and (31)

(m+)I ≈ 4.2× 10−2 , (mA)I ≈ 1.1× 10−2 ,

(m+)II ≈ 8.3× 10−6 , (mA)II ≈ 3.0× 10−8 .
(49)

Again, the scaling with L of Eq. (45) is realized. For the masses of the moduli fields
ϕi = (s, t, τ2) and the axions ϕ̃i = (c, b, τ1) we need to evaluate the superpotential
parameters. From Eq. (44) we would expect a factor of O(106)and indeed the respective
orders of magnitude are

(W0,W1,W2)I ∼ O(10−2) , (W0,W1,W2)II ∼ O(10−8) . (50)

The numerical values are given in App. C. The nonperturbative exponent in both
vacua is az ≈ 9.4. Knowing the superpotential, and after canonical normalization, the
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Figure 2: Contour plot of the potential in Model II (L = 106) in the s-t plane (fixed
τ2 = 1) and s-τ2 plane (fixed t = 5

6
).

eigenvalues of the moduli masses matrix can be calculated,

m2
ij =

∂2V

∂ϕi∂ϕj

∣∣∣
〈ϕi〉, 〈ϕ̃i〉=0

. (51)

The eigenvalues are all of the order of the vector boson mass and slightly larger than
the gravitino mass. The scaling between the two models matches the one predicted in
Eq. (45). The same is true for the two non-vanishing eigenvalues of the axion mass
matrix

m̃2
ij =

∂2V

∂ϕ̃i∂ϕ̃j

∣∣∣
〈ϕi〉, 〈ϕ̃i〉=0

, (52)

so that

mmoduli ∼ maxions ∼ mA > m3/2 . (53)

One massless axion gives mass to the vector boson via the Stückelberg mechanism.
Their numerical values in both vacua are discussed in App. C, where the scaling is
explicitly demonstrated.

It is instructive to compare the mass spectra of the two models. From Eq. (31)
one reads off that in both cases m+ ∝ L−1. Hence, even the lightest charged scalar
does not belong to the low-energy effective Lagrangian for fields with masses m� L−1.
Nevertheless, we included this scalar in the above discussion to check the stability of
the vacuum, that is m2

+ > 0. The vector boson, moduli and axion masses scale as L−3/2
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Figure 3: Mass spectra of bosons and fermions in Planck units in Model I (left) and
Model II (right) on a logarithmic scale, in comparison with the compactification scale.
The fermions are depicted right of the bosons.

and become parametrically smaller than the size of the extra dimension for large L.

4 Super-Higgs mechanism and fermion masses

The first step in calculating the fermion masses is to disentangle their mixing with
the gravitino, i.e. to identify the Goldstino. Since supersymmetry is broken by F - and
D-terms, the Goldstino is a mixture of the gaugino and modulini. Charged fermions
do not contribute as long as their scalar partners have vanishing vacuum expectation
values. We can therefore restrict our discussion to the gaugino and modulini, and we
also assume a ground state with vanishing cosmological constant.

The bilinear fermionic Lagrangian involves kinetic, mass, and mixing terms for the
gravitino, gaugino and modulini fields. All these terms are determined by the Kähler
potential, the superpotential, the Killing vectors and the gauge kinetic function of the
model. The terms involving the gravitino ψµ are [32]

LG = εµνρσψµσν∂ρψσ −m3/2ψµσ
µνψν −m3/2ψµσ

µνψν + ψµσ
µχ+ χσµψµ , (54)

where χ is a linear combination of the fermions in the theory, and the gravitino mass
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is given by7

m3/2 = eK/2W . (55)

In the model under consideration this yields

m3/2 =
1√
stτ2

(
W0 +W1 e

−aZ +W2 e
−ãU) . (56)

The D-term affects the value of the gravitino mass via the expectation values of the
moduli fields determined in a vacuum with vanishing cosmological constant.

The fermion χ in Eq. (54) is the Goldstino. It is given by a linear combination of
the gaugino λ and modulini ψi, determined by F - and D-terms,

χ = −g
2
Dλ− i√

2
eK/2DiW ψi . (57)

It is well known that the mixing terms in Eq. (54) can be removed via a local field
redefinition of the gravitino [32],

ψµ → ψµ −
√

2√
3m3/2

∂µη +
i√
6
η σµ , η =

i
√

2√
3m3/2

χ . (58)

With this shift, a straightforward calculation yields for the Lagrangian, (54)

LG = εµνρσψµσν∂ρψσ −m3/2ψµσ
µνψν −m3/2ψµσ

µνψν

+ iη σµ∂µη +m3/2ηη +m3/2ηη . (59)

Note that the kinetic term of η has the sign of a ghost. The kinetic term and the mass
term of η lead to modifications of the kinetic terms and the mass matrix of gaugino
and modulini whereas the mass term for the gravitino remains unchanged.

Eq. (59) represents the gravitino Lagrangian in unitary gauge. Hence, the depen-
dence on the Goldstino should completely disappear in the full Lagrangian, which we
explicitly demonstrate in the following. The kinetic terms of gaugino and modulini
read

LK = −ih λσµ∂µλ− iKi̄ ψ
̄
σµ∂µψ

i . (60)

Since the Kähler metric Ki̄ is hermitian, it can be diagonalized by a unitary trans-
formation. Moreover, the real eigenvalues are all positive for the kinetic terms to be
well-defined. Hence, one can rescale the eigenvalues to one by conjugation with a real

7In the following, bosonic terms are understood as expectation values in the ground state.
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diagonal matrix. The combined transformation corresponds to a vielbein for the Kähler
metric,

gikKi̄ g
̄

l̄
= δkl̄ . (61)

It is convenient to redefine gaugino and modulini,

λ→ h−1/2λ , ψi → gikψ
k , (62)

such that their kinetic terms are canonical,

LK = −iλ σµ∂µλ− iδi̄ ψ
̄
σµ∂µψ

i ≡ −iδab̄ χb̄ σµ∂µχa ; (63)

the new index a labels gaugino (χ0 = λ) and modulini (χi = ψi). One can now perform
a unitary transformation which rotates the canonically normalized fermions (λ, ψi) into
η and three orthogonal Weyl fermions χi⊥

χa = Ua
i χ

i
⊥ + Ua

η η . (64)

From Eqs. (57) and (58) one obtains for the matrix elements (U∗)ηa of the inverse
transformation,

(U−1)η0 = (U∗)η0 = − igD√
6hm3/2

, (U−1)ηi = (U∗)ηi =
eK/2DkW√

3m3/2

gki . (65)

One easily verifies the unitarity condition for the η-component,

Ua
η(U

−1)ηa =
1

3eK |W |2

(
g2

2h
D2 + eKKi̄DiWD̄W

)
, (66)

where we used Ki̄ = gikδ
kl̄g̄

l̄
. Clearly, in Minkowski space one has Ua

η(U
−1)ηa = 1.

Since all fermions are canonically normalized the kinetic terms for the orthogonal Weyl
fermions χi⊥ and η are given by

LK = −iχi⊥σµ∂µχi⊥ − iη σµ∂µη . (67)

Combined with Eq. (59) the kinetic terms for η cancel, as expected in the unitary
gauge.

Furthermore, we expect the mass eigenvalue of the Goldstino and its mixing terms
with the other fermions to vanish. In order to show this, we express the fermion bilinears
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in terms of the canonically normalized gaugino and modulini,

LM = −1
2
M00 λλ− 1

2
Mkm ψ

kψm −M0k λψ
k + h.c. = −1

2
Mabχ

aχb + h.c. (68)

The mass matrix elements are given in App. B. Inserting (64), one obtains for the mass
term and mixing of the Goldstino field the expressions

1
2
Mabχ

aχb = 1
2
Mab(U

a
iχ

i
⊥ + Ua

η η)(U b
jχ

j
⊥ + U b

ηη)

= 1
2
Ua
ηMabU

b
η ηη + Ua

iMabU
b
η ηχ

i
⊥ + 1

2
Ua
iMabU

b
j χ

i
⊥χ

j
⊥ .

(69)

Using the explicit form of the fermion mass matrix and Eqs. (65), a straightforward
calculation yields (see App. B)

M0bU
b
η ∝

D

3m3/2

(
eK
(
Ki̄DiWD̄W − 3|W |2

)
+
g2

2h
D2

)
+ iX

̄
∂̄WeK/2 , (70)

which indeed vanishes in Minkowski space for a gauge invariant superpotential. Anal-
ogously, one finds

MkbU
b
η ∝ ∂nV −

2

3W
DnW

(
eK
(
K ̄mDmWD̄W − 3|W |2

)
+
g2

2h
D2

)
, (71)

which also vanishes in Minkowski space for an extremum of the scalar potential. Hence,
the Goldstino indeed decouples from the mass matrix.

In summary, we obtain from Eqs. (59), (67) and (69),

LG = εµνρσψµσν∂ρψσ − iχi⊥σµ∂µχi⊥
−m3/2ψµσ

µνψν −m3/2ψµσ
µνψν − 1

2
M⊥

ab χ
i
⊥χ

j
⊥ , (72)

where

M⊥
ab = Ua

iMabU
b
j (73)

is the mass matrix of the fermions orthogonal to the Goldstino. Again, the cancellation
of F - and D-terms for small cosmological constant allows to derive a general scaling
behavior for the fermion masses. With Eqs. (43) and (44) we obtain

m3/2 ∝ L−3/2 , Mmodulini ∝ L−3/2 . (74)
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Gravitino and fermion masses: two examples

Using the expression (56) for the gravitino mass one obtains for the two models defined
by Eqs. (46) and the vacuum values of the moduli fields (s, t)I,II = (κ, κ−1)I,II,(

m3/2

)
I
≈ 1.8× 10−3 ,

(
m3/2

)
II
≈ 5.2× 10−9 . (75)

The modulini masses are evaluated numerically from Eq. (87). As expected, one finds
one eigenvector with zero mass, the Goldstino. The three remaining fermion fields are
massive with mass eigenvalues of order the gravitino mass

Mmodulini = O(m3/2) . (76)

Again, the explicit numerical values and scaling behaviors are summarized in App. C.
An overview over the mass spectrum in both vacua is provided in Fig. 3. Interestingly,
in both of the vacua one modulini field remains lighter than the gravitino whereas the
other two are slightly heavier.

5 Summary and Outlook

We have analyzed a 6d N = 1 supergravity model compactified to 4d on an orbifold.
Using bulk flux, a nonperturbative superpotential, and the Green-Schwarz term for
anomaly cancellation we obtained 4d de Sitter or Minkowski vacua where all moduli
are stabilized. This allows for an explicit computation of the masses of all particles in
the effective low-energy theory.

In the model under discussion, supersymmetry is broken by both F - and D-terms.
By analyzing the bosonic 6d effective action, we extracted the D-term potential result-
ing from the FI parameter of the anomalous U(1), which receives contributions from
the Green-Schwarz term and from the bulk flux. From the Green-Schwarz term we also
obtained an important correction to the gauge kinetic function. The F -term potential
results from our choice of the superpotential which is of the KKLT-type. Knowing the
complete scalar potential we then calculated the boson masses which depend on the
superpotential parameters and the flux.

For the discussion of the fermion masses we have studied the super-Higgs mechanism
in the presence of F - and D-term breaking. Via a rotation in field space we extracted
the Goldstino which is eaten by the gravitino in unitary gauge. The Goldstino indeed
completely drops out of the Lagrangian, as we explicitly verified using the extremum
conditions of the scalar potential for Minkowski space and the gauge invariance of the
superpotential.

In order to find vacua of our effective theory that are de Sitter or Minkowski and are
within a reasonable parameter range for the moduli, we inverted the problem: Choosing
a gauge coupling and the size of the extra dimensions, and starting from a point in
moduli space we derived equations for the superpotential parameters for which the
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scalar potential is minimized. Having obtained the parameters of our effective theory
that way, we inserted the parameters back into the scalar potential which we then
minimized. As a cross-check, we found the minimum exactly at the point in moduli
space which we used to obtain the parameters in the inverted problem.

Finally, we discussed two example models with different parameters and evaluated
numerically the masses of all particles in the model. In the first example, the extra
dimensions are of order the GUT scale, L−1 ∼ 10−2MP, and moduli, axion and gauge
boson masses are also O(10−2MP), slightly larger than gravitino and modulini masses.
In the second example, the size of the extra dimensions corresponds to an intermediate
scale, L−1 ∼ 10−6MP and all masses scale as m2 ∼ L−3. The only exception is the
charged scalar mass which is of the order of the compactification scale. The size of
the extra dimensions is controlled by the gauge coupling, with g2L = O(10). This
dependence on the gauge coupling can be used to construct models whose size of the
extra dimensions interpolates between the GUT scale and the TeV scale.

The constructed family of de Sitter vacua can easily be combined with higher-
dimensional GUT models, and they also offer an interesting playground to study the
interplay of moduli stabilization and inflation. Since the considered 6d flux compact-
ifications contain all ingredients familiar from string models, i.e. compact dimensions
with flux, the Green-Schwarz mechanism and a nonperturbative superpotential, it will
be very interesting to see whether they can in fact be realized within a string theory
construction.
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A Parameters for de Sitter and Minkowski vacua

For the evaluation of the superpotential parameters it is convenient to define new linear
combinations of the derivative operators

∂+ = s∂S + t∂T , ∂− = s∂S − t∂T , ∂0 = τ2∂U . (77)

In terms of this derivative operators the constraints (41) can be rewritten as (note that
s, t, τ2 > 0)

∂+V = 0 , ∂−V = 0 , ∂0V = 0 , V = ε . (78)

20



Using the specific form of the nonperturbative superpotential (35) the parameters can
be identified as:

A = a2W 2
1 e
−az , (79a)

Ã = ã2W 2
2 e
−ãτ2 , (79b)

B = −2aW0W1 e
−a

2
z cos

(
a
2
c̃
)
− 2aW 2

1 e
−az − 2aW1W2 e

−a
2
z− ã

2
τ2 cos

(
a
2
c̃− ã

2
τ1

)
, (79c)

B̃ = −2ãW0W2 e
− ã

2
τ2cos

(
ã
2
τ1

)
−2ãW 2

2 e
−ãτ2−2ãW1W2 e

−a
2
z− ã

2
τ2cos

(
a
2
c̃− ã

2
τ1

)
. (79d)

Under the assumption W0 < 0 and W1,W2 > 0 the imaginary parts are generically
stabilized at zero. Nevertheless, this has to be checked a posteriori for the specific
superpotential parameters. In the following we will therefore set c̃ = 0 and τ1 =
0 and crosscheck for consistency afterward. We further introduce a convenient new
combination

C = aãW1W2 e
−a

2
z− ã

2
τ2 = ∂UW ∂ZW = ∂ZW ∂UW . (80)

Using the relations

∂+A = −astEA , ∂+B = stE
(
A− a

2
B
)
, ∂+Ã = 0 , ∂+B̃ = stEC , (81)

and analogous equations for ∂−, where E is substituted by D, as well as

∂0A = 0 , ∂0B = τ2C , ∂0Ã = −ãτ2Ã , ∂0B̃ = τ2

(
Ã− ã

2
B̃
)
, (82)

one finds

∂+V = − (st)2

2τ2
aEA(D2 + E2)− st

τ2
E2
(
A− a

2
B
)

+ 1
τ2
BE − 2τ2

st
Ã+ 2

st
B̃ − EC

− 3g2

2h
D2 , (83a)

∂−V = 2st
τ2
AED − (st)2

2τ2
aDA(D2 + E2)− st

τ2
DE

(
A− a

2
B
)
− 1

τ2
BD −DC

− h̃g2

2h2
D2 + g2

h
DE , (83b)

∂0V = − st
2τ2
A(D2 + E2) + 1

τ2
BE − CE − ãτ22

st
Ã+ ãτ2

2st
B̃ . (83c)

Here, we have introduced the linear combination h̃ = 1
2

(hSs− hT t).
One can then reverse the problem of finding a minimum of the scalar potential for

fixed parameters by fixing the values of the moduli and trying to solve Eqs. (77) for
the superpotential parameters instead. It is obvious that the superpotential (35) has
five free parameters, but we only have four equations to determine them. Therefore,
generically we have to fix one of the parameters in order to solve for the others8.

8It is a natural choice to fix ã which corresponds to nonperturbative effects in U .
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The solution for the superpotential parameters has to fulfill several consistency
conditions. For instance, taking into account Eqs. (79a) and (79b), A and Ã have to
be positive. Interestingly, the combination of the equations D∂+V − E∂−V = 0 with
the constraint that V = ε, fixes A unambiguously

A =
g2τ2

2sth2(ρ2 − 1)

(
hT tρ+ h(2− ρ+ ρ2) +

4h2ε

g2E2

)
, (84)

where we have introduced the new variable ρ = D/E. Unfortunately, the rest of the
equations can not be simplified in a similar way and have to be evaluated numerically.

B Fermion masses

In the following we derive the mass matrix for canonically normalized fermions and
show explicitly that the Goldstino decouples in the unitary gauge.

The standard fermion mass terms for gaugino and modulini are given in full gener-
ality in [32]. For our case they read

LM =
√

2gKi̄X
̄
ψiλ− ig√

2

∂ih

h
Dψiλ

− 1
2
eK/2(DiDjW )ψiψj + 1

2
eK/2Ki̄(D̄W )(∂ih)λλ+ h.c. ,

(85)

where DiDjW = Wij + KijW + KiDjW + KjDiW −KiKjW − ΓkijDkW (with Wij =
∂i∂jW etc.). After the rescaling to canonical kinetic terms (62) and transforming to
the unitary gauge (58), the fermion bilinears are given by

LM =
∂ih

2h
eK/2Ki̄(D̄W )λλ− 1

2
eK/2(DiDjW )gikg

j
mψ

kψm

+

√
2g√
h
Ki̄X

̄
gikψ

kλ− ig√
2

∂ih

h3/2
Dgikψ

kλ+m3/2ηη + h.c.

=− 1
2
M00 λλ− 1

2
Mkm ψ

kψm −M0k ψ
kλ+ h.c.

≡− 1
2
Mab χ

aχb + h.c. .

(86)
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Using Ki̄X
̄

= i∂iD [32], the mass matrix elements read

M00 = −∂ih
h
eK/2Ki̄(D̄W ) +

g2

3hm3/2

D2

= −1

h
e−K/2

(
eKKi̄ ∂ihD̄W −

1

3W
g2D2

)
,

M0k = −
√

2g√
h
Ki̄X

̄
gik +

ig√
2h

∂ih

h
Dgik +

√
2ig

3
√
hW

DiWDgik

= −i
√

2g√
h
gik

(
∂iD −

∂ih

2h
D − 1

3W
DiWD

)
,

Mkm = eK/2(DiDjW )gikg
j
m −

2

3W 2
m3/2DiWDjWgikg

j
m

= eK/2gikg
j
m

(
DiDjW −

2

3W
DiWDjW

)
.

(87)

In order to show the decoupling of the Goldstino we now perform the unitary transfor-
mation to the (η, χi⊥) basis, for which we have to show MabU

b
η = 0. Using the above

expressions for Mab and Eq. (65) for U b
η one obtains

M0bU
b
η =

1√
3m3/2

{
M00

ig√
2h
D +M0kδ

kl̄g̄
l̄
D̄WeK/2

}
=

i
√

2√
3m3/2

g√
h

{
D

3m3/2

(
eKKi̄DiWD̄W +

g2

2h
D2

)
− ∂iDKi̄D̄WeK/2

}
=

i
√

2√
3m3/2

g√
h

{
D

3m3/2

(
eKKi̄DiWD̄W +

g2

2h
D2

)
+ iX

̄
∂̄WeK/2 −DWeK/2

}
,

(88)

where we used ∂iD = −iKi̄X
̄
. Clearly, the gauge invariance of the superpotential, i.e

X
̄
∂̄W = 0, implies that in Minkowski space

M0bU
b
η = 0 . (89)
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Similarly, one finds for the second condition

MkbU
b
η =

1√
3m3/2

{
M0k

igD√
2h

+Mikδ
m̄ig̄m̄D̄WeK/2

}
=

1√
3m3/2

gnk

{
eKK ̄mDmDnWD̄W +

g2

h
D∂nD −

g2

2h2
∂nHD

2

− 2

3W
DnW

(
eKK ̄mDmWD̄W +

g2

2h
D2

)}
=

1√
3m3/2

gnk

{
∂nVF + ∂n

(
g2

2h
D2

)
+ 2eKDnWW

− 2

3W
DnW

(
eKK ̄mDmWD̄W +

g2

2h
D2

)}
,

(90)

where we have used the identity

eKKm̄DmDnWD̄W = ∂nVF + 2eKDnWW . (91)

From Eq. (90) one reads off that

MkbU
b
η = 0 (92)

for an extremum of the potential and vanishing vacuum energy density.
As expected, for a gauge invariant superpotential the Goldstino completely decou-

ples from the mass matrix at an extremum of the potential with vanishing cosmological
constant. In the case of a small cosmological constant ε the above equations are modi-
fied by terms O(ε).

C Numerical evaluation of masses

We summarize the superpotential parameters and masses of the bosons and fermions
in the two vacua (46) with different sizes of the extra dimensions and demonstrate
the predicted scaling behavior. The vacuum expectation values for the moduli in the
vacuum are

(s, t, u)I =
(

3
5
, 5

3
, 1
)
, (s, t, u)II =

(
6
5
, 5

6
, 1
)
. (93)

The other input parameters for the two models are

gI = 0.2 , LI = 200 , gII = 4× 10−3 , LII = 106 , (94)
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corresponding to a scale parameter of LI/LII = 5 × 103. In order to obtain unique
solutions for the superpotential we have to fix one of its parameters, see App. A.
Therefore, we choose (ã)I = 2 and (ã)II = 3. The numerical values for the superpotential
parameters and their scaling behavior are summarized in Tab. 1.

With the parameters of the superpotential the moduli, axion, and modulini masses
can also be calculated numerically (after canonical normalization of the kinetic term).
The mass eigenvalues are summarized in Tab. 2. The scaling with respect to the size
of the extra dimensions matches nicely the expressions in (45) and (74). Both mass
hierarchies are depicted in a logarithmic scale in Fig. 3.

Model I Model II Scaling

V
−1/2

2 7.1× 10−3 1.4× 10−6 5.0× 103

W0 −3.0× 10−3 −7.4× 10−9 5.5× 103

W1 1.2× 10−2 3.3× 10−8 5.0× 103

W2 2.8× 10−3 8.5× 10−9 4.8× 103

a 4.5× 102 2.3× 106 5.0× 103

az 9.4 9.4

ã 2 3

Table 1: Numerical values of the superpotential parameters in Planck units for the two
models (46). The scaling parameter is evaluated according to the behavior predicted
in Eq. (44).
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Model I Model II Scaling

V
−1/2

2 7.1× 10−3 1.4× 10−6 5.0× 103

m3/2 1.8× 10−3 5.2× 10−9 5.0× 103

m+ 4.2× 10−2 8.3× 10−6 5.0× 103

mA 1.1× 10−2 3.0× 10−8 5.0× 103

mmodulus,1 1.2× 10−2 3.4× 10−8 5.0× 103

mmodulus,2 4.1× 10−3 1.5× 10−8 4.1× 103

mmodulus,3 3.2× 10−3 1.1× 10−8 4.3× 103

maxion,1 9.4× 10−3 2.7× 10−8 4.9× 103

maxion,2 4.0× 10−3 1.6× 10−8 3.8× 103

Mmodulini,1 4.8× 10−3 1.8× 10−8 4.1× 103

Mmodulini,2 2.6× 10−3 8.3× 10−9 4.7× 103

Mmodulini,3 7.4× 10−4 2.0× 10−9 5.0× 103

Table 2: Numerical values of masses in Planck units for gravitino, charged scalar, vector
boson, moduli, axions and modulini. The scaling parameter is evaluated according to
the behavior predicted in Eqs. (45) and (74).
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