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We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field
theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian.
The latter describes two coupled Péschl-Teller particles. Their interaction, whose strength depends

smoothly on the dimension d, is known to be superintegrable.

Our observation enables us to

exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results
for conformal field theory. These include an explicit construction of conformal blocks in terms of
Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of

theories in different dimensions.

1. INTRODUCTION

Conformal quantum field theories (CFTs) play an im-
portant role for modern theoretical physics. In statistical
physics they describe the universal behavior of second
order phase transitions. At the same time, CFTs also
provide a window into interacting and strongly coupled
quantum field theories which are very difficult to access
otherwise. In d = 2 dimensions, the global conformal
algebra is extended to an infinite-dimensional symme-
try. This was exploited to construct many such models,
paving the way for numerous applications in diverse areas
of physics and mathematics.

While the symmetry enhancement of 2-dimensional
CF'T is certainly helpful, it may not be decisive. In fact,
CFTs in any dimension d are very strongly constrained
by global conformal symmetry. Within the so-called con-
formal bootstrap programme, the solution of CFTs can
be reduced to certain integral equations, the crossing
symmetry constraints E—B] These provide a system of
equations for the dynamical coefficients in the operator
product expansion involving only the kinematically de-
termined crossing kernel, i.e. group theoretic data. And
indeed, recent numerical studies of the crossing symme-
try equations, in particular for the conformal Ising model
in d = 3 dimensions, have provided ample new precision
data on this model, see M] and references therein.

Analytical progress is lagging behind partly because it
is restricted to certain limits in which there exists suffi-
cient control of the kinematical input. This is what our
work addresses. We will focus on the group theoretic
building blocks of scalar 4-point functions, the so-called
conformal blocks that underly the entire bootstrap pro-
gramme. Partial waves can be characterized through a
second order differential equation ﬂﬂ] So far, a construc-
tion of solutions of conformal Casimir equations in terms
of hypergeometric functions is only known in even inte-
ger dimensions, where they can be obtained from Gauss
hypergeometric functions.

Our main observation is that the Casimir equation for

conformal blocks in d dimensions may be transformed
into the eigenvalue problem for a Calogero-Sutherland
(CS) Hamiltonian, whose eigenfunctions are given by
Heckman-Opdam (HO) hypergeometric functions [6].
Thereby we connect the poorly developed theory of con-
formal blocks to integrability and the modern theory of
special functions. The relevant CS Hamiltonian turns
out to be superintegrable, i.e. it possesses an additional
Runge-Lenz-like integral of motion ﬂ] The latter is part
of the (degenerate) double affine Hecke algebra (DAHA)
B] which provides an extremely powerful algebraic un-
derpinning, introduces a distinguished g-deformation and
bridges to the dual Ruijsenaars-Schneider (RS) model [d].
This leads to a wealth of interesting relations for confor-
mal blocks some of which we shall touch upon below.

The plan of this paper is as follows. In the next section
we will briefly review the characterization of conformal
blocks through the conformal Casimir equation. For ped-
agogical reasons we shall then explore our general theme
in d = 2 where the relevant CS model decouples into two
Poschl-Teller systems. These are known to be solvable
through hypergeometric functions. Then we turn to the
d-dimensional problem in section 4 and explain how the
two Poschl-Teller systems are coupled in order to describe
conformal blocks in d-dimensional conformal field theory.
The known eigenfunctions of the resulting CS Hamilto-
nian are used in section 5 to construct conformal blocks
from a g-deformed version of HO hypergeometric func-
tions. We conclude by highlighting a few applications of
known mathematical results, many of them quite recent,
to the conformal bootstrap programme.

2. CONFORMAL PARTIAL WAVES

In this section want to set up the problem by briefly
reviewing some material from ﬂﬂ] The correlation func-
tion of four scalar conformal primary fields of weight
A;,i = 1,...,4 in a d-dimensional conformal field the-
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ory can be decomposed as
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For a Euclidean theory, z, z are complex variables. The
function G receives contributions from all the primary
fields that can appear in the operator product expansion
of the field ¢1 and ¢o

G(2,2) = > N (AN (A)Gau(2,2) . (4)
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This expansion separates the dynamically determined co-
efficients A of the operator product from the kinematic
conformal blocks Ga ;. The latter are eigenfunctions of
the conformal Laplacian D2,

DSG(Z,E) = %CAJG(Z,E) (5)
with eigenvalues
Car=AA-d)+1(l+d—-2) (6)

and subject to an additional boundary condition that
selects a unique (up to normalization) combination of
solutions. The form of the conformal Laplacian can be
worked out easily, see e.g. ﬂﬂ],

D?:=D>+D" +¢ % @—0) + (z20-%%9)| (7)

where e =d — 2 and
D? = 22(1 - 2)0* — (a+b+1)2°0 —abz.  (8)

D’ is defined similarly in terms of z. In d = 2 dimen-
sions the Hamiltonian splits into sum of two indepen-
dent pieces and the corresponding eigenvalue equations
are straightforwardly related to hypergeometric differen-
tial equations. Our main goal in this work is to solve the
eigenvalue problem for the conformal Laplacian in terms
of some known special functions.

3. POSCHL-TELLER POTENTIAL

In order to get a bit more insight into the structure of
the eigenvalue problem for the conformal Laplacian we

will temporarily set d = 2. The Laplacian then decom-
poses into a sum of operators acting on z and z only and
we shall focus on the eigenvalue problem for D?. This
problem leads to the following second order differential
equation

D?G(z) = h(h — 1)G(2)

Now let us now define a new function which is related to
G by a ‘gauge transformation’ of the form

(z—1)"*i
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where the coordinates z and x are related by

P(x) = G(z) 9)

2 = —sinh 2 g . (10)

Note that this relation maps the complex z-plane to a
semi-infinite strip with Rexz > 0 and Imz € [0,7]. In-
serting these relations it is easy to see that the function
1 is an eigenfunction of the Pdschl-Teller Hamiltonian
with potential
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for the eigenvalue ¢ = 2mE/h* = —(2h — 1)?/4.
The original Schrédinger problem studied by Poschl and
Teller in [10] was a trigonometric version of eq. (). Af-
ter such rotation to y = ix the associated Schrédinger
problem describes a particle that is confined to the inter-
val y € [0, 7]. The Hamilton operator possesses a discrete
spectrum with eigenfunctions given by ordinary Jacobi
polynomials.

The hyperbolic version we are dealing with here is also
referred to as Poschl-Teller Hamiltonian of second kind.
It describes a particle on the half-line > 0. Since the
potential falls off to zero for large x, the Hamiltonian has
a continuous part in its spectrum. The eigenfunctions are
given by

Yp(x) Nzh_%(z— 1)%“""% o Fy (h+(;’hh+b ;Z) .

Before we move on we stress that the Péschl-Teller prob-
lem is related to some classical theory of special functions.
Let us describe this for the trigonometric case in which
eigenfunctions are classical Jacobi polynomials. Like all
other hypergeometric orthogonal polynomials in a single
variable, Jacobi polynomials are obtained from a degen-
eration of the so-called Askey-Wilson polynomials. The
latter may be constructed from the g-deformed version
4®3 of the hypergeometric function 4F3 by specializing
its parameters, see e.g. ] Of course, all these relations
can be lifted to the hyperbolic theory, i.e. from polyno-
mials to functions.



4. CALOGERO-SUTHERLAND POTENTIAL

Historically, the Schrédinger problem for the Poschl-
Teller potential was solved through the relation with the
hypergeometric differential equation. But today it is
much more interesting to look at the relation in the op-
posite direction. Following work of Calogero, Moser and
Sutherland in the early 1970s, see ﬂﬁ—lﬁ], the solvable
Poschl-Teller problem has been generalized in several di-
rections. In particular it was understood that the Poschl-
Teller potential is just the simplest example of a large
family of superintegrable Schrodinger problems involving
multiple particles. The relevant potentials are associated
with reflection groups and give rise to so-called (trigono-
metric or hyperbolic) Calogero-(Moser)-Sutherland mod-
els [15).

In the last section we recalled that the Casimir equa-
tion for blocks in 2-dimensional chiral conformal field the-
ory is equivalent to the Poschl-Teller problem. Our main
claim is that this extends to the full Casimir equation for
conformal blocks in d dimensions. In complete analogy
to the discussion above, it turns out that the Casimir
equation is equivalent to the hyperbolic CS model for
reflection group BCs. Its potential is given by

VEE ) (w1, m2) = VR (@n) + ViR (22) +
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It is built from two Poéschl-Teller systems with an in-
teraction term whose coupling explicitly depends on the
dimension d. The six terms of this potential reflect the
six positive roots of the BC5 root system. To relate the
associated Schrodinger problem on the BC; Weyl cham-
ber with the eigenvalue equation () for the conformal
Laplacian we generalize the gauge transformation (@) to
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where z; = z and 29 = 2. It is not difficult to verify that
this gauge transformation, along with the relation

2; = —sinh 2 % . (14)

between the coordinates z; and x;, turns the conformal
Laplacian into the CS Hamiltonian for the potential ([I2]),
with the eigenvalue ¢ = —d(d — 2)/4 — (Ca,; + 1)/2.
The appearance of the BC5 root lattice possesses a nat-
ural explanation in the corresponding harmonic analy-
sis formulation of the problem HE], where it enters as
a projection of the root lattice of the conformal algebra
s0(1,d + 1),d > 5, to the 2-dimensional plane spanned
by the Cartan generators of an embedded so(1,3).

Just as the 1-dimensional P&schl-Teller problem is ex-
actly solvable, so are the higher-dimensional CS exten-
sions and hence, by the relation (3], the eigenvalue

problem for the conformal Laplacian. Let us note that
the coupling constant in front of the interaction term is
€ =d—2. Ind = 2 dimensions, we are just dealing
with two independent integrable Pdschl-Teller systems.
Going away from d = 2 introduces a new coupling in
the potential. It is quite remarkable that this coupling
is also integrable. One may notice that in d = 4 dimen-
sion the interaction terms vanishes once again. This im-
plies that 2d and 4d conformal blocks are simply related
by a gauge transformation. The latter switches between
bosonic/fermionic statistics of the wave function. For
conformal blocks, the simple relation between d = 2 and
d = 4 dimensions is indeed consistent with the standard
expressions [3].

5. SOME APPLICATIONS

What makes the observed relation between conformal
blocks and the CS Hamiltonian interesting are the con-
nections of the latter with integrability and the modern
theory of special functions. The integrability of the CS
model can be established using so-called Dunkl opera-
tors, i.e. a special set of linear first order operators that
involve reflections. From powers of these Dunkl opera-
tors one can construct sufficiently many commuting op-
erators to render the problem integrable, in fact even su-
perintegrable (in rational/hyperbolic cases). Along with
the multiplication by coordinates and Weyl-reflections,
Dunkl operators generate a (trigonometric) degeneration
of the so-called double affine Hecke algebra. The lat-
ter involves an additional deformation parameter ¢ that
is sent to ¢ = 1 when dealing with the (undeformed)
CS model. In order to understand the origin of the pa-
rameter ¢ one needs to turn to the rational Ruijsenaars-
Schneider model which is related to our hyperbolic CS
model by a bi-spectral duality [17]. Within the dual the-
ory, g controls the deformation from the rational to the
hyperbolic version. Many more details on these topics
can be found e.g. in |8, [1§].

All this structure is an integral part of the modern the-
ory of special functions. In the context of the (trigono-
metric) Poschl-Teller problem we briefly sketched the re-
lation between classical Jacobi and g-deformed Askey-
Wilson polynomials. The latter possess well developed
multi-variable extensions which are known as g-deformed
HO or (Macdonald)-Koornwinder polynomials K. Just
as the trigonometric Poschl-Teller problem can be solved
through a degenerate limit of Askey-Wilson polynomi-
als, eigenfunctions of the trigonometric CS Hamiltonian
may be obtained from Koornwinder polynomials in the
limit ¢ — 1. This web of interrelations may be lifted
from polynomials to functions, i.e. from the trigonomet-
ric to the hyperbolic theory. The lift turns Koornwinder
or g-deformed HO polynomials into what Rains refers
to as wvirtual Koornwinder polynomials K, see @] We
can also think of them as ¢-deformed HO hypergeometric
functions, up to normalization issues.



Before we can spell out a concrete formula we need
to split the data A,l that characterize the internal field
into a partition (l1,l2) and a real parameter x. Upon
imposing usual unitarity bounds, this is done as follows

b= 5(A D) (15)

ll ZZZQ+Z y X = (A—l)—lg . (16)

N =

The virtual Koornwinder polynomials K l(i)lz for the root

system BC, are functions of two variables u;,i = 1,2
that are associated to two-row partitions (l1,l2). By ap-
propriate choice of their seven parameters, we can obtain
conformal blocks as
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where € = d — 2 and
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for i = 1,2 for z; = z,29 = Z are obtained by inverting
the relations (I4]) with u; = exp ;. Note that the argu-
ments u; agree with the radial coordinates of m] up to
a sign.

Virtual Koornwinder polynomials possess a binomial
expansion in terms of Okounkov’s BC,-type interpola-
tion Macdonald polynomials, see HE] section 7. These
should be considered as generalizations of the usual se-
ries expansion of hypergeometric functions F'(u) in terms
of monomials ©*. In the case the BCs root system, the in-
terpolation Macdonald reduce to Gegenbauer polynomi-
als upon taking ¢ — 1 and the combinatorial prefactors
may be expressed through the hypergeometric functions
4F3. The resulting expansion reproduces a formula for
conformal blocks that was found by Dolan and Osborn
in [3].

In order to demonstrate the powerful consequences of
the relation between conformal field theory and CS mod-
els we want to sketch a few features of the blocks that
seemingly were not observed before. The first one con-
cerns an interesting strong-weak coupling duality of the
BC,, CS model that was noted by Serban in [21] and can
be neatly derived once the theory has been g-deformed,
using so-called Cauchy identities, see @] The duality re-
lates wave functions of the model with parameters (a, b, €)

and
- 2 1 2b 4
(d,b,g):( (a+ )_17_,_>
€ € €

This duality is non-perturbative in the integrable cou-
pling e that describes the deformation away from two
decoupled Poschl-Teller systems. Note that e = 2 is
the self-dual point at which the duality acts trivially.

In the context of conformal blocks, the parameter € is
related to the dimension d through ¢ = d — 2 and the
self-dual point corresponds to 4-dimensional conformal
field theories. Away from this special point, the duality
allows to write the blocks of a theory in dimension d as
an integral over blocks of another theory in dimension
d =2d/(d—2). An explicit formula for the integral ker-
nel of this transformation may be inferred from [19, 21].

As we mentioned before, the q-deformation that proved
useful at least for the duality we discussed in the previ-
ous paragraph, originates from the duality between the
hyperbolic CS and the rational RS model. Within the
context of the RS model, one can also obtain Gauss-like
recurrence relations that describe the behavior of HO hy-
pergeometric functions under finite shifts of their param-
eters, see e.g. m] There also exist growth estimates, see

| for some recent work, and an interesting relation with
(quantum) affine Knizhnik-Zamolodchikov equations for
(q-deformed) blocks [24, [25]. We will detail all these fea-
tures of blocks in a forthcoming longer paper.

6. CONCLUSION AND OUTLOOK

The main observation of this work that the Casimir
equation for conformal blocks is equivalent to the
Schrédinger equation for the BC; CS model, embeds
the central objects in the bootstrap programme of d-
dimensional conformal field theory into the rich world of
superintegrable quantum systems. The deep connections
to the modern theory of special functions have powerful
implications for conformal blocks of which we have seen
just two examples in the previous section.

There are a number of obvious extensions of our work
that merit further investigation. The first one concerns
the extension to superconformal field theory. In fact, the
Casimir equations for conformal blocks in superconformal
field theories have been discussed previously, but in most
cases explicit formulas are only known for a restricted set
of external scalar fields, see e.g. @] for some interesting
recent developments and many references to the earlier
literature.

Another interesting direction concerns the so-called
crossing kernel of d-dimensional conformal field theory.
In the numerical bootstrap program, the crossing sym-
metry is usually written in terms of conformal blocks,
with one side of the equation involving blocks in the so-
called s-channel while the other side is expressed in terms
of t-channel waves. The blocks in the two different chan-
nels are related by the crossing kernel, so that crossing
symmetry may be expressed in terms of operator prod-
uct coefficients \;(A) and the crossing kernel, stripping
off the (z, z)-dependent conformal blocks. With the ana-
lytic control of conformal blocks we have described above
it is possible to obtain new and more explicit formulas
for the crossing kernels.

Let us finally stress again that in our entire discussion,
the dimension d enters as a continuous parameter which



is interpreted as a coupling constant of the CS model.
There exist many conformal field theories for d = 2 di-
mensions that can be solved through their higher spin
symmetries. It should be possible to combine the results
we outlined above with the ideas that were put forward
recently in ﬂﬂ] to study the spectrum of conformal field
theories in 2 + ¢ dimensions, at least for small e. We will
return to these interesting problems in future work.
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