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Abstract: The chirally rotated Schrödinger functional (χSF) with massless Wilson-type

fermions provides an alternative lattice regularization of the Schrödinger functional (SF),

with different lattice symmetries and a common continuum limit expected from universality.

The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the

bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is

achieved one expects the mechanism of automatic O(a) improvement to be operational in

the χSF, in contrast to the standard formulation of the SF. This is expected to significantly

improve the attainable precision for step-scaling functions of some composite operators.

Furthermore, the χSF offers new strategies to determine finite renormalization constants

which are traditionally obtained from chiral Ward identities. In this paper we consider

a complete set of fermion bilinear operators, define corresponding correlation functions

and explain the relation to their standard SF counterparts. We discuss renormalization

and O(a) improvement and then use this set-up to formulate the theoretical expectations

which follow from universality. Expanding the correlation functions to one-loop order of

perturbation theory we then perform a number of non-trivial checks. In the process we

obtain the action counterterm coefficients to one-loop order and reproduce some known

perturbative results for renormalization constants of fermion bilinears. By confirming the

theoretical expectations, this perturbative study lends further support to the soundness of

the χSF framework and prepares the ground for non-perturbative applications.
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1 Introduction

The chirally rotated Schrödinger functional (χSF) [1, 2] provides a new tool to address

renormalization and O(a) improvement problems in lattice QCD and similar lattice gauge

theories with Wilson type fermions. With an even number of massless fermion flavours

it is formally related to the standard Schrödinger functional (SF) [3–5] by a non-singlet

chiral field rotation. Such chirally rotated SF boundary conditions have first appeared

with staggered fermions [6] where the chiral rotation can be absorbed in the reconstruc-

tion of four-spinors from the one-component staggered fermion field [7, 8]. Similarly, with

Ginsparg-Wilson or domain-wall fermions such boundary conditions [9, 10] can be re-

interpreted as standard SF boundary conditions, based on exact Ginsparg-Wilson-type

lattice symmetries [11]. With Wilson fermions the chiral field rotation does not correspond

to a lattice symmetry, and the χSF can thus be seen as an alternative lattice regularization

of the SF. The χSF has practical advantages when applied to non-perturbative renormaliza-

tion problems. In particular, the expected property of automatic O(a) improvement [2, 12]

will potentially be very helpful in reducing systematic errors in continuum extrapolations

of step-scaling functions. The theoretical framework for the χSF has been defined in ref. [2]

where also some perturbative tests have been performed at tree-level. Here we would like

to define the framework for systematic tests and applications of the χSF. In particular we

define boundary-to-boundary correlation functions, as well as boundary-to-bulk correlation

functions for a complete set of non-singlet fermion bilinear operators. We then establish a

dictionary translating them to their SF counterparts. This is reminiscent of twisted mass

QCD [13], except that we will here exclusively focus on the massless theory. From univer-

sality one then expects that the same dictionary holds in terms of renormalized correlation

functions up to cutoff effects. We formulate various consequences of this expectation such as

flavour and parity symmetry restoration, the possibility to determine finite renormalization

constants (otherwise obtainable by chiral Ward identities), and scale dependent renormal-

ization constants in SF schemes, together with their step-scaling functions. We then use

one-loop perturbation theory to perform non-trivial tests of these expectations. Some ele-

ments of the set-up together with tests in quenched QCD have already appeared in ref. [14],
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and preliminary one-loop results for the SF coupling have been given in refs. [15, 16]. For

related non-perturbative applications of the χSF to quenched lattice QCD cf. refs. [17, 18].

Preliminary results for two-flavour lattice QCD can be found in ref. [19].

The paper is organized as follows: in Section 2 we use a continuum language to discuss

the connection between the SF and the χSF and the respective correlation functions of

interest. The transcription to the lattice regularization is described in Section 3, followed

by a discussion of renormalization and Symanzik O(a) improvement, for both the standard

SF and the χSF. In Section 4 we summarize the theoretical expectations for the χSF.

The remainder of this paper discusses the perturbative expansion and one-loop results

for the action parameters (Section 5) and various ways to test and apply the theoretical

expectations in perturbation theory (Sects. 6 and 7). Section 8 contains a discussion of a

gluonic observable, the SF coupling, to one-loop order. Conclusions are drawn in Section 9,

and 3 appendices collect some definitions regarding fermion bilinear fields (Appendix A), a

few details on the calculation of the fermionic contribution to the SF coupling at one-loop

order (Appendix B) and a comparison at weak coupling between perturbation theory and

Monte-Carlo simulations (Appendix C).

2 Correlation functions and universality relations

In this section we recall the χSF boundary conditions and define the set of correlation

functions needed for our study. We shall use a continuum notation and defer the translation

to the lattice to Section 3.

2.1 Chiral rotations and correlation functions

The continuum action for Nf massless fermions in an external gauge field1 Aµ(x),

Sf =

∫
d4x ψ(x)γµDµψ(x), Dµ = ∂µ +Aµ, (2.1)

has exact flavour and chiral symmetries. The latter are broken if one imposes the standard

SF boundary conditions on the fermionic fields,

P+ψ(x)|x0=0 = 0, P−ψ(x)|x0=T = 0,

ψ(x)P−|x0=0 = 0, ψ(x)P+|x0=T = 0, (2.2)

with the projectors P± = 1
2(1± γ0). Indeed, assuming Nf = 2 flavours, a chiral non-singlet

transformation,

ψ → R(α)ψ, ψ → ψR(α), R(α) = exp(iαγ5τ
3/2), (2.3)

1With fermions in the fundamental representation of the gauge group SU(N) we have Aµ = Aa
µT

a, where

T a are the anti-hermitian generators in the fundamental representation, a sum over a = 1, . . . , N2
− 1 is

implied, and we normalize the generators by tr(T aT b) = −
1
2
δab. Generalizations to other representations

are straightforward and do not affect the discussion of chiral and flavour symmetries.
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with α = π/2 transforms Eqs. (2.2) to

Q̃+ψ(x)|x0=0 = 0, Q̃−ψ(x)|x0=T = 0,

ψ(x)Q̃+|x0=0 = 0, ψ(x)Q̃−|x0=T = 0 , (2.4)

where

Q̃± = 1
2(1± iγ0γ5τ

3), (2.5)

and the Pauli matrix τ3 acts on the flavour indices. If the field transformation is performed

as a change of variables in the functional integral one obtains relations between standard

SF and χSF correlation functions,

〈
O[ψ,ψ]

〉
(Q̃+)

=
〈
O[R(−π/2)ψ,ψR(−π/2)]

〉
(P+)

, (2.6)
〈
O[ψ,ψ]

〉
(P+)

=
〈
O[R(π/2)ψ,ψR(π/2)]

〉
(Q̃+)

. (2.7)

Here, the subscript indicates the projector defining the Dirichlet component of the fermion

field at x0 = 0. Note that the boundary fermion fields are included in this transformation

by the identification,

ζ(x) = ψ(0+,x), ζ̄(x) = ψ(0+,x), (2.8)

ζ ′(x) = ψ(T−,x), ζ̄ ′(x) = ψ(T−,x). (2.9)

The arguments 0+ or T− indicate that the fields are located in the bulk, infinitesimally

away from the boundaries at x0 = 0, T . For later convenience we have not included the

projectors P± or Q̃±, in contrast to conventions used in the literature [2, 20]. Instead we

include these projectors explicitly when defining the bilinear boundary source fields.

2.2 Flavour structure and symmetries

While the standard SF can be formulated for any number of flavours, this is not straight-

forward for the χSF [2]. We will restrict attention to gauge theories with an even number

of fermion flavours. So far we have assumed Nf = 2, i.e. a doublet structure,

ψ =

(
ψu

ψd

)
, (2.10)

with up and down type flavours. For the correlation functions defined below it will be

convenient to introduce more than a single up or down type flavour, such that flavour non-

singlet fermion bilinear fields can be formed with only up- or only down-type fermions.

We are thus led to consider the case Nf = 4 which we obtain by replicating the doublet

structure,

ψ =




ψu

ψd

ψu′

ψd′


 , (2.11)
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i.e. there are two up and two down type flavours. Obviously this implies that the flavour

matrix τ3 in Eqs. (2.3),(2.5) should be replaced by

τ3 → 1l2 ⊗ τ3 = diag(1,−1, 1,−1). (2.12)

It is often convenient to reduce the flavour structure of the projectors,

Q̃
∣∣∣
Nf=2

= diag(Q+, Q−), Q̃
∣∣∣
Nf=4

= diag(Q+, Q−, Q+, Q−), (2.13)

with

Q± = 1
2 (1± iγ0γ5). (2.14)

Although the χSF boundary conditions differ for up and down type flavours, this does

not mean that the SU(Nf) flavour symmetry is broken. In fact, as discussed in ref. [2],

the distinction between flavour and chiral symmetries in the absence of mass terms is

conventional. We here follow the convention used in ref. [2] and define the flavour symmetry

such that the corresponding field transformations take their usual form in the standard SF

basis. In this basis, a flavour transformation for Nf = 2 flavours with parameters ωa

(a = 1, 2, 3), looks as usual,

ψ → exp

(
i

3∑

a=1

ωaτa

)
ψ, ψ → ψ exp

(
−i

3∑

a=1

ωaτa

)
. (2.15)

As the SF and χSF fields are related by the chiral rotation (2.3) the same flavour symmetry

transformation on the χSF fields takes the form

ψ → R(−α) exp
(
i

3∑

a=1

ωaτa

)
R(α)ψ, (2.16)

ψ → ψR(α) exp

(
−i

3∑

a=1

ωaτa

)
R(−α). (2.17)

In particular, in the continuum the χSF shares all the symmetries with the standard SF,

i.e. the full flavour symmetry, charge conjugation, spatial rotations and parity. Of particular

interest is the parity symmetry, which in the SF basis is realized by

P :

{
ψ(x) → γ0ψ(x̃),

ψ(x) → ψ(x̃)γ0,
x̃ = (x0,−x), (2.18)

whereas its covariantly rotated χSF version reads, for α = π/2,

P5 :

{
ψ(x) → iγ0γ5τ

3ψ(x̃),

ψ(x) → −ψ(x̃)iγ0γ5τ3,
x̃ = (x0,−x). (2.19)

The P5-symmetry plays an important rôle in the following, as it may be used to classify

lattice correlation functions and their approach to the continuum limit. More precisely,

in the lattice regularized χSF the P5-even correlation functions are automatically O(a)
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improved in the bulk, whereas their P5-odd counterparts are pure lattice artefacts. Hence,

P5 may be taken as a substitute for the γ5τ
1 symmetry used in ref. [2],

ψ → γ5τ
1ψ, ψ → −ψγ5τ1, (2.20)

which corresponds to a discrete flavour symmetry. The advantage of P5 is that it is flavour

diagonal and therefore more suitable for χSF correlation functions with specific flavour

assignments.

2.3 SF correlation functions

The SF correlation functions required for this work have previously appeared in the liter-

ature, e.g. in refs. [20, 21]. When written in terms of fixed flavours, f1, f2 ∈ {u, d, u′, d′},
with f1 6= f2, they take the form

fX(x0) = −1

2
〈Xf1f2(x)Of2f1

5 〉(P+), kY(x0) = −1

6

3∑

k=1

〈Y f1f2
k (x)Of2f1

k 〉(P+). (2.21)

In the literature, the composite fields X and Yk stand for the fermion bilinears2 X = A0, P

and Yk = Ak, Vk, Tk0. Here we also include X = V0, S and Yk = Ak, T̃k0. While these

additional correlation functions are odd under parity (2.18) and thus vanish exactly, we

will need them for the dictionary with their χSF counterparts defined below. Finally, the

fermion bilinear source fields at the lower time boundary are defined by

Of1f2
5 =

∫
d3yd3z ζ̄f1(y)P+γ5ζf2(z), (2.22)

Of1f2
k =

∫
d3yd3z ζ̄f1(y)P+γkζf2(z). (2.23)

Note that the projector P+ must be written explicitly as we did not include it in the

definition of the fermionic boundary fields ζ and ζ̄, Eq. (2.8). Integrating over the fermion

fields in the functional integral one obtains, for example,

fA(x0) =
1

2

∫
d3yd3z 〈tr {S(x; 0,y)P+γ5P−S(0, z;x)γ0γ5}〉G , (2.24)

where 〈· · · 〉G denotes the gauge field average, S(x, y) the propagator for a single fermion

flavour, and the trace is to be taken over colour and Dirac indices. The SF boundary

conditions in terms of the fermion propagator,

P+S(x, y)|x0=0 = 0 = S(x, y)P−|y0=0, (2.25)

now imply that the correlation function vanishes if the projector in Eq. (2.22) is reverted,

P+ → P−. In the lattice regularized theory this only holds after taking the continuum

limit and may thus be used as a check. Finally, we also need the boundary-to-boundary

correlators,

f1 = −1

2

〈
Of1f2

5 O′f2f1
5

〉
(P+)

, k1 = −1

6

3∑

k=1

〈
Of1f2

k O′f2f1
k

〉
(P+)

, (2.26)

2cf. Appendix A for our definitions and conventions.
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where the fermion bilinear source fields at the upper time boundary are defined by

O′f1f2
5 =

∫
d3yd3z ζ̄ ′f1(y)P−γ5ζ

′
f2(z), (2.27)

O′f1f2
k =

∫
d3yd3z ζ̄ ′f1(y)P−γkζ

′
f2(z). (2.28)

2.4 χSF correlation functions

To obtain correlation functions in the χSF we apply the identities (2.6),(2.7) to the standard

SF correlation functions. First we define the bilinear source fields Qf1f2
5 and Qf1f2

k such

that they rotate into the standard SF sources (2.22),(2.23), i.e.

〈O[R(π/2)ψ,ψR(π/2)]Qf1f2
5,k 〉(Q̃+) = 〈O[ψ,ψ]Of1f2

5,k 〉(P+), (2.29)

and the same for the primed source fields at the upper time boundary. In this way one

obtains, for example,

Quu′

5 =

∫
d3yd3z ζ̄u(y)γ0γ5Q−ζu′(z), (2.30)

Qdu
5 =

∫
d3yd3z ζ̄d(y)γ5Q−ζu(z), (2.31)

and the complete set of source fields can be found in Appendix A.

We now define the correlation functions for fermion bilinears X = V0, A0, S, P , by

gf1f2X (x0) = −1

2

〈
Xf1f2(x)Qf2f1

5,±

〉
(Q̃+)

, (2.32)

where we label the correlation functions by the flavour indices of the fermion bilinear

operator in the bulk. It is then straightforward to work out the relations (2.6),(2.7) for

these particular correlation functions:

fA = guu
′

A = gdd
′

A =−igudV = igduV , (2.33)

fP = iguu
′

S =−igdd′S = gudP = gduP , (2.34)

fV = guu
′

V = gdd
′

V =−igudA = igduA , (2.35)

fS = iguu
′

P =−igdd′P = gudS = gduS . (2.36)

Hence, by using the chirally covariant definition of the boundary source fields, Eqs. (2.30)

and (2.31), the properties of the correlation functions gX under chiral rotations are the

same as for the inserted fermion bilinear operators.

Proceeding similarly for the source fields with an open spatial vector index, Eq. (2.23),

the correlation functions of the bilinear fields Yk = Ak, Vk, Tk0, T̃k0 are defined by

lf1f2Y (x0) = −1

6

3∑

k=1

〈
Y f1f2
k (x)Qf2f1

k

〉
(Q̃+)

, (2.37)
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and their relations to the standard SF correlation functions are found to be,

kV = luu
′

V = ldd
′

V =−iludA = ilduA , (2.38)

kA = luu
′

A = ldd
′

A =−iludV = ilduV , (2.39)

kT = iluu
′

T̃
=−ildd′

T̃
= ludT = lduT , (2.40)

k
T̃
= iluu

′

T =−ildd′T = lud
T̃

= ldu
T̃
. (2.41)

Finally, boundary-to-boundary correlators are defined by

gf1f21 = −1

2

〈
Qf1f2

5 Q′f2f1
5

〉
(Q̃+)

, (2.42)

lf1f21 = −1

6

3∑

k=1

〈
Qf1f2

k Q′f2f1
k

〉
(Q̃+)

. (2.43)

Again, the primed sources at the upper time boundary are chirally mapped to their stan-

dard SF counterparts, leading to rather simple entries for our dictionary,

f1 = guu
′

1 = gdd
′

1 = gud1 = gdu1 , (2.44)

k1 = luu
′

1 = ldd
′

1 = lud1 = ldu1 . (2.45)

Note that, in the continuum, there are only 6 independent non-zero correlation functions,

namely fA, fP, f1 and kV, kT, k1 and the corresponding χSF correlation functions can be

looked up in the dictionary. As the standard SF correlation functions are real-valued, their

χSF counterparts must be either real or purely imaginary. While this dictionary is trivial

in the formal continuum theory, it does however lead to non-trivial consequences once the

lattice regularization with Wilson-type fermions is in place, due to the additional symmetry

breaking by the Wilson term.

3 Lattice set-up, renormalization and O(a) improvement

The lattice formulation of the standard Schrödinger functional on a lattice of spacing a and

size (T/a)× (L/a)3 is taken over from ref. [20]. The chirally rotated Schrödinger functional

will be used in the form described in ref. [2]. We refer to these references for unexplained

notation.

3.1 Lattice actions

The lattice action,

S[U,ψ, ψ] = Sg[U ] + Sf [U,ψ, ψ], (3.1)

consists of a pure gauge and a fermionic part. For the former we choose Wilson’s plaquette

action [3],

Sg[U ] =
1

g20

∑

p

w(p)tr{1− U(p)}, (3.2)
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where the sum is over all oriented plaquettes p, and U(p) denotes the parallel transporter

around p, constructed from the link variables Uµ(x). We choose L-periodic boundary

conditions in all the spatial directions,

Uµ(x+ Lk̂) = Uµ(x), k = 1, 2, 3, (3.3)

where k̂ denotes a unit vector in direction k. In the Euclidean time direction we choose

homogeneous boundary conditions for the spatial gauge potential at x0 = 0, T , i.e. the

spatial link variables at the boundaries are set to unit matrices,

Uk(0,x) = 1l = Uk(T,x), k = 1, 2, 3 . (3.4)

With these boundary conditions, the weight factors w(p) take the values

w(p) =

{
ct(g0) if p is a time like plaquette attached to a boundary plane,

1 otherwise.
(3.5)

Here ct is an O(a) boundary counterterm coefficient. Near the continuum limit it is seen to

multiply the dimension 4 operator tr{F0kF0k}, where Fµν denotes the gluonic field strength

tensor. Disregarding fermion fields, this operator is the only non-vanishing boundary coun-

terterm at order a given our choice of boundary conditions. Hence, all O(a) effects in the

pure gauge theory can be cancelled by choosing ct(g0) appropriately.

The fermionic fields ψ and ψ are taken to be L-periodic in space,

ψ(x+ Lk̂) = ψ(x), ψ(x+ Lk̂) = ψ(x), k = 1, 2, 3. (3.6)

Apart from the SU(N) gauge field, the fermions are coupled to a constant U(1) background

field λµ = exp(iaθµ/L), so that the covariant forward and backward derivatives are given

by

∇µψ(x) =
1

a

[
λµUµ(x)ψ(x+ aµ̂)− ψ(x)

]
, (3.7)

∇∗
µψ(x) =

1

a

[
ψ(x) − λ−1

µ Uµ(x− aµ̂)†ψ(x− aµ̂)
]
. (3.8)

We will always assume θ0 = 0 and θk = θ (k = 1, 2, 3), leaving θ as a single parameter. On

a lattice with infinite Euclidean time extent the Wilson-Dirac operator can be written as

a finite difference operator in time,

aDWψ(x) = −U0(x)P−ψ(x+ a0̂) +Kψ(x)− U0(x− a0̂)†P+ψ(x− a0̂), (3.9)

with the time diagonal operator K,

Kψ(x) =

(
1 +

1

2

3∑

k=1

{
a(∇k +∇∗

k)γk − a2∇∗
k∇k

}
)
ψ(x)

+ csw
i

4
a2

3∑

µ,ν=0

σµν F̂µν(x)ψ(x). (3.10)
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Here, the last term is the Sheikholeslami-Wohlert term [22] in the notation of ref. [20].

Using a continuum-like normalisation, the fermionic action for either the standard SF or

the χSF takes the form,

Sf [U,ψ, ψ] = a4
∑

x

ψ(x) (DW + δDW +m0)ψ(x) , (3.11)

where DW is the reduction of the Wilson-Dirac operator to the finite time interval between

x0 = 0 and x0 = T , which incorporates the respective boundary conditions, and δDW

arises due to the fermionic boundary counterterms.

In the case of the χSF, three different versions have been proposed in ref. [2] and we

here choose

aDWψ(x) =





−U0(x)P−ψ(x+ a0̂) + (K|csw=0 + iγ5τ
3P−)ψ(x) if x0 = 0,

aDWψ(x) if 0 < x0 < T ,

(K|csw=0 + iγ5τ
3P+)ψ(x) − U0(x− a0̂)†P+ψ(x− a0̂) for x0 = T .

(3.12)

Note that the dynamical field variables here include the fermion fields at Euclidean times

x0 = 0 and x0 = T , i.e. the sum over x0 in Eq. (3.11) runs from 0 to T . If the Sheikholeslami-

Wohlert term is included we set it to zero at the boundaries, even though the orbifold

construction yields a different prescription [2]. The difference in the action is of O(a2) and

thus irrelevant. The boundary counterterms for the χSF are included by setting

δDWψ(x) = (δx0,0 + δx0,T )
[
(zf − 1) + (ds − 1) aDs

]
ψ(x), (3.13)

Ds =
1

2

3∑

k=1

{(∇k +∇∗
k)γk − a∇∗

k∇k} , (3.14)

and the values for the two coefficients, zf and ds will be specified in Sect. 4. Note that this

definition of Ds differs from [2] in that it also includes a second order derivative term3.

The Wilson-Dirac operator for the standard SF in the same notation reads

aDWψ(x) =





−U0(x)P−ψ(x+ a0̂) +Kψ(x) if x0 = a ,

aDWψ(x) if a < x0 < T − a ,

Kψ(x)− U0(x− a0̂)†P+ψ(x− a0̂) for x0 = T − a .

(3.15)

In contrast to our chosen set-up for the χSF the dynamical fermionic field variables in

the standard SF are restricted to Euclidean times 0 < x0 < T − a, i.e. the sum over x0
in Eq. (3.11) runs only from a to T − a. Finally, in the standard SF, the counterterm

contribution is given by

aδDWψ(x) = (c̃t − 1) (δx0,a + δx0,T−a)ψ(x). (3.16)

3The motivation is of purely technical origin as it led to a more transparent implementation of the

counterterm in the Monte Carlo simulation programs.
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3.2 Lattice correlation functions

The correlation functions introduced in Sect. 2 can now easily be transcribed to the lattice.

One essentially needs to specify the boundary quark fields ζ and ζ̄ at time x0 = 0 and ζ ′

and ζ̄ ′ at time x0 = T . As before we leave out the projectors here and the notation is

therefore the same for both the SF and the χSF, i.e. in expectation values one performs

the replacement,

ζf (x) = U0(0,x)ψf (a,x), ζ ′f (x) = U0(T − a,x)†ψf (T − a,x), (3.17)

ζ̄f (x) = ψf (a,x)U0(0,x)
†, ζ̄ ′f (x) = ψf (T − a,x)U0(T − a,x). (3.18)

Note that this correspondence is incomplete if the Wick contractions include two-point

functions with source and sink at the same boundary [2, 20]. Here we avoid this problem

by our choice of flavour assignments in the correlation functions of Sect. 2. Note also that

we have left out the O(a) counterterm proportional to d̄s [2], which can be included by the

replacement,

ζf (x) →
(
1 + d̄saDs

)
ζf (x), (3.19)

and similarly for ζ̄f and ζ ′f , ζ̄
′
f . As will be further explained in Section 4, these O(a)

counterterms produce P5-odd contributions to P5-even observables affecting the latter only

at O(a2).

With these conventions the fermion-bilinear boundary sources are obtained from their

continuum counterparts by replacing the integrals over space by lattice sums4, e.g.

Of1f2
5 = a6c̃2t

∑

y,z

ζ̄f1(y)P+γ5ζf2(z), Quu′

5 = a6
∑

y,z

ζ̄u(y)γ0γ5Q−ζu′(z), (3.20)

and analogously for all other boundary source fields (cf. Appendix A).

Finally we mention that one may restrict attention to the flavour combinations ud and

uu′ for all correlation functions, without loss of information. This is due to an exact lattice

symmetry, namely P -parity combined with up/down flavour exchange, which may be used

to show that

gduX = ±gudX , gdd
′

X = ±guu′

X , (3.21)

and analogously for lY and the boundary-to-boundary correlation functions. Furthermore,

combining this with charge conjugation, some χSF correlation functions can be shown to

vanish identically, namely

gudS = guu
′

V = 0 = luu
′

A = lud
T̃
, (3.22)

in addition to the SF correlation functions fV, fS and kA, kT̃.

4In the standard SF the rescaling by c̃t combines with the c̃t-contribution to the Wilson-Dirac operator in

Eq. (3.16) to form the O(a) counterterm containing the time derivative [20]. Whether or not the coefficient

appears explicitly or is included in the definition of the fermion boundary fields depends on the precise

definition of the latter.

– 10 –



3.3 Renormalization

Renormalization requires the introduction of renormalized parameters,

g2R = Zg(g
2
0 , aµ)g

2
0 , mR = Zm(g20 , aµ)

(
m0 −mcr(g

2
0)
)
, (3.23)

and renormalized composite fields,

[Xf1f2 ]R = ZX(g
2
0 , aµ)X

f1f2 , (3.24)

where µ denotes the renormalization scale and X = Aµ, Vµ, P, S, Tµν , T̃µν . In addition

the boundary fermion fields ζ, ζ̄ and ζ ′, ζ̄ ′ are multiplicatively renormalized by a common,

scale dependent renormalization constant, Zζ [2, 20]. This implies that renormalized SF

correlation functions are of the form

[fX]R(x0) = Z2
ζZXfX(x0), [kY]R(x0) = Z2

ζZYkY(x0), (3.25)

and, for the boundary-to-boundary correlators,

[f1]R = Z4
ζ f1, [k1]R = Z4

ζ k1 . (3.26)

Provided the renormalization factors are chosen appropriately, one expects that the con-

tinuum limit can be taken at fixed gR and mR. In this work we focus on the massless limit,

mR = 0 which implies that the bare mass, m0, is tuned to its critical value, mcr. As usual,

this can be achieved by tuning to the point in parameter space where the non-singlet axial

current is conserved. In terms of the SF correlation function one requires

∂̃0[fA]R(x0) = 0 ⇔ ∂̃0fA(x0) = 0 , (3.27)

for a chosen set of kinematical parameters x0, T/L and θ. Note that the chiral limit is

special in that the renormalization constant of the axial current drops out in Eq. (3.27).

The renormalization of the χSF correlation function is almost completely analogous,

i.e. one defines renormalized χSF correlation functions,

[
gf1f2X

]
R
(x0) = Z2

ζZXg
f1f2
X (x0),

[
gf1f21

]
R
= Z4

ζ g
f1f2
1 , (3.28)

[
lf1f2Y

]
R
(x0) = Z2

ζZYl
f1f2
Y (x0),

[
lf1f21

]
R
= Z4

ζ l
f1f2
1 , (3.29)

and one may again determine the massless limit by requiring,

∂̃0g
f1f2
A (x0) = 0 , (3.30)

for some choice of flavour indices and kinematical parameters. However, with the χSF there

is the additional complication that the boundary conditions are not protected against renor-

malization [2]. In fact the scale-independent renormalization constant, zf (g0) in (3.13), is

required to ensure that the χSF boundary conditions and thus parity and flavour symmetry

are restored up to cutoff effects. In order to determine zf one thus needs to require that

some parity breaking correlation function vanishes exactly already at finite lattice spacing.
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From Section 2 we may choose any of the correlation functions on the RHS of Eqs. (2.35),

(2.36) or Eqs. (2.39),(2.41), which does not vanish exactly. An example would be to require

[
gudA
]
R
(x0) = 0 ⇔ gudA (x0) = 0, (3.31)

again with some choice for the kinematical parameters. Choosing gudA is in fact appealing

as it can be used to tune both the bare mass m0 and zf : up to cutoff effects, the mass

tuning renders gudA (x0) independent of x0, whereas the tuning of zf shifts gudA (x0) by an

overall constant.

3.4 Symanzik O(a) improvement

On-shell O(a) improvement in the chiral limit requires the inclusion of the Sheikholeslami-

Wohlert term in the action, with coefficient csw. Furthermore, there are 2 improvement

coefficients, namely ct, c̃t in the case of the SF, and ct, ds in the case of the χSF, which are

required to cancel O(a) boundary effects.

To obtain O(a) improved correlation functions one then needs to include the countert-

erms that are required for the fermion bilinear operators Aµ, Vµ and Tµ (cf. Appendix A),

with coefficients cA, cV and cT, respectively. Note that this affects the renormalization of

the mass, as the mass determined from the improved axial current depends on cA. In terms

of SF correlation functions the condition of vanishing mass changes by an O(a) offset,

∂̃0fA(x0) = −cAa∂∗0∂0fP(x0),

which directly translates to an O(a) offset in the critical bare mass parameter. In other

words, to reduce the uncertainty in the renormalized mass to O(a2), both csw and cA are

required5. For the SF correlation functions discussed here this exhausts the list of required

O(a) improvement coefficients. For the χSF, a further O(a) boundary counterterm with

coefficient d̄s is needed to correct the fermionic boundary fields ζ, ζ̄ and ζ ′, ζ̄ ′, cf. ref. [2]

and Eq. (3.19).

4 Theoretical expectations for the χSF

With the definitions made in the preceding sections we may now state our theoretical

expectations which will then be subjected to perturbative tests. We assume that m0 and,

in the case of the χSF, also zf have been determined as described in the previous section.

4.1 Boundary conditions and symmetry restoration

As discussed in ref. [2], the projectors Q̃± in the χSF boundary conditions (2.4) correspond

to the special case α = π/2 of

P±(α) =
1

2

(
1± γ0e

iαγ5τ3
)
, P±(α = π/2) = Q̃±. (4.1)

5Incidentally, this fact has been used to obtain improvement conditions for the determination of both

csw and cA in [20].

– 12 –



While parity protects the value α = 0 even for the lattice regularized SF, there is no

lattice symmetry protecting the value α = π/2 in the case of the χSF. Hence, restoring

the P5 symmetry, Eq. (2.19), on the lattice up to O(a) effects, through a condition like

Eq. (3.31) is tantamount to implementing the correct χSF boundary conditions. The

boundary conditions, on the other hand, can be more directly checked by reversing the

projectors Q± → Q∓ in the boundary fermion bilinear sources (cf. Appendix A). Note that

this reversal does not affect P5-parity as the projectors Q± commute with P5. Denoting

the thus obtained but otherwise unchanged correlation functions by a subscript “−”, one

would like to check that

lim
a→0

[
gf1f2X,−

]
R
(x0) = 0, (4.2)

and analogously for lY, g1 and l1. We focus on the P5-even correlation functions and exclude

those correlation functions which are expected to vanish for being P5-odd. In practice it is

advantageous to cancel the multiplicative renormalization constants by forming ratios, i.e.

Rg,f1f2
X,− (x0) =

gf1f2X,− (x0)

gf1f2X (x0)
, Rl,f1f2

Y,− (x0) =
lf1f2Y,− (x0)

lf1f2Y (x0)
. (4.3)

While we expect these ratios to vanish in the continuum limit it is not immediately obvious

at which rate this should happen. We also note that the same question can be asked for

the standard SF, although in this case no tuning is required to ensure the correct boundary

conditions are obtained in the continuum limit.

4.2 Automatic O(a) improvement

Symanzik O(a) improvement applies to both the χSF and the SF as discussed in the

previous section. However with massless Wilson fermions and χSF boundary conditions

there is a simplification due to automatic O(a) improvement [12], as explained in [2].

It is convenient to distinguish between different kinds of O(a) effects: these may either

arise from the bulk action and composite fields in the bulk, or from O(a) effects due to

the presence of the boundaries. Bulk O(a) counterterms contribute at O(a2) to P5-even

observables, and at O(a) to P5-odd observables. In fact the latter are pure lattice artefacts

and would vanish if parity was exactly realized on the lattice. Since it is straightforward

to classify observables by P5 one may thus avoid O(a) effects by restricting attention to

P5-even observables. This is known as the mechanism of automatic O(a) improvement [12].

Unfortunately, this nice pattern in the bulk is distorted by boundary O(a) effects, which

can be due to both P5-even (ct, ds) and P5-odd (d̄s) counterterm insertions. Hence, those

renormalized χSF correlation functions which translate to fA, fP, f1 and kV, kT, k1, are

expected to approach the continuum limit with bulk O(a2) and boundary O(a) corrections;

the latter can be cancelled by appropriately tuning the boundary improvement coefficients

ct and ds. This implies the possibility of using unimproved Wilson fermions and omitting

all O(a) counterterms to the composite fields in the bulk.

Note that the tuning conditions for mcr and zf generally define these parameters

up to an O(a) ambiguity, unless Symanzik O(a) improvement is implemented. Hence, if

zf is obtained from an alternative condition, one generally expects the difference, ∆zf ,
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to asymptotically vanish at a rate of O(a), and the same applies to the critical mass,

mcr. We emphasise that these O(a) ambiguities are not in conflict with automatic O(a)

improvement [2]; for, treating any such O(a) shift of zf or mcr as an insertion of the

respective P5-odd counterterms into the P5-even correlation function of interest, the result

will be of O(a) and combine with the O(a) coefficient to produce a total change of O(a2).

As mentioned above, P5-odd correlation functions are expected to vanish in the contin-

uum limit, at a rate linear in the lattice spacing. If correctly O(a) improved à la Symanzik,

this rate should change to O(a2). Conversely, this fact may be used to obtain alterna-

tive O(a) improvement conditions. This is potentially very interesting but will be left to

future work. Here we will only verify that P5-odd observables vanish indeed at a rate

proportional to a. This includes the bulk O(a) counterterm contributions to the P5-even

correlation functions, guu
′

A , luu
′

V and ludT , namely

∂̃0g
uu′

P (x0), ∂̃0l
uu′

T (x0), ∂̃0l
ud
V (x0) . (4.4)

As these come with an explicit factor a, their contribution amounts to an O(a2) effect.

4.3 Flavour symmetry restoration

Focussing on the boundary-to-boundary correlation functions, Eqs. (2.44),(2.45), we expect

that the chain of equalities on the RHS holds for renormalized correlation functions, so that

the ratios

Rg =
guu

′

1

gud1
, Rl =

luu
′

1

lud1
, (4.5)

should converge to 1 in the continuum limit, thereby demonstrating the restoration of

flavour symmetry. Going a step further one may also show that the continuum limit is

reached with O(a2) corrections only: according to the above discussion of automatic O(a)

improvement, the only O(a) effects can be caused by the P5-even boundary counterterms

with coefficients ct and ds. In a Symanzik type analysis of the cutoff effects we may

account for small changes ∆ct and ∆ds in these coefficients by insertion of the respective

counterterms. Denoting these insertions by g1;ct and g1;ds , we then obtain e.g.

[
gf1f21

]
R
= gf1f21 + a

(
∆ctg

f1f2
1;ct

+∆dsg
f1f2
1;ds

)
+O(a2) , (4.6)

where the correlation functions on the RHS are calculated in Symanzik’s effective contin-

uum theory. Expanding the first ratio, Rg, in Eq. (4.5), its expansion coefficient at O(a)

has 2 parts,

∆ct

(
guu

′

1;ct

guu
′

1

−
gud1;ct
gud1

)
+∆ds

(
guu

′

1;ds

guu
′

1

−
gud1;ds
gud1

)
. (4.7)

Due to guu
′

1 = gud1 , it remains to show that

guu
′

1;ct = gud1;ct , guu
′

1;ds = gud1;ds . (4.8)

This is straightforward: the counterterms are both invariant under chiral and flavour trans-

formations, which are the very symmetries of the continuum theory implying guu
′

1 = gud1 .

Hence the same relation must hold with the insertions of the counterterms.

– 14 –



4.4 Scale-independent renormalization constants

We now apply the same universality argument to correlation functions with fermion bilinear

fields in the bulk. Equating the right hand sides of Eq. (2.33), in terms of the renormalized

correlation functions, one obtains

[guu
′

A ]R(x0) = −i[gudV ]R(x0) . (4.9)

Defining the ratio of bare correlation functions,

Rg
AV(g

2
0 , a/L;x0, θ, T/L) =

−igudV (x0)

guu
′

A (x0)
, (4.10)

we expect that, at fixed renormalized parameters gR and mR = 0, and with fixed kinemat-

ical parameters, for instance, x0 = T/2, T = L and θ = 0.5,

Rg
AV ∼

a/L→0

ZA

ZV
+O(a2) . (4.11)

Here, the renormalization constants ZA and ZV are as required to restore the continuum

symmetries. We emphasize that these are the same continuum chiral and flavour symme-

tries which are encoded in the corresponding Ward identities. Therefore, we expect that,

up to cutoff effects, ZA and ZV or their ratios must coincide with results obtained by

imposing Ward identities as normalization conditions [23, 24].

Why do we expect the cutoff effects to be of order a2 in Eq. (4.11)? Firstly, automatic

O(a) improvement implies the absence of bulk O(a) effects from these ratios of P5-even

correlation functions. Secondly, O(a) corrections from the O(a) boundary counterterms

associated with ct and ds drop out in the ratio for the same reason this happens in the

ratios of boundary-to-boundary correlation functions, Eq. (4.5). This corresponds with a

similar argument [20] regarding Ward identities: the external source fields localised outside

the space-time region where the O(a) improved Ward identity is probed need not be O(a)

improved for the Ward identity to hold up to O(a2) effects (cf. Section 6 of [20]).

At this point it is useful to recall that Wilson fermions in the bulk actually enjoy exact

lattice symmetries leading to the conserved vector currents,

Ṽ f1f2
µ (x) =

1

2

[
ψf1(x)(γµ−1)Uµ(x)ψf2(x+aµ̂)+ψf1(x+aµ̂)(γµ+1)Uµ(x)

†ψf2(x)

]
. (4.12)

We recall that in our conventions (i.e. the physical basis defined by standard SF boundary

conditions, cf. Subsect 2.2) the symmetries associated with these vector currents are inter-

preted either as flavour or chiral symmetry, depending on the flavour assignments. In any

case, since Noether currents associated with exact lattice symmetries are protected against

renormalization one may infer that ZṼ = 1, and, furthermore,

∂∗0g
f1f2
Ṽ

(x0) = 0, a < x0 < T, (4.13)

exactly, i.e. not just up to finite lattice spacing effects. Therefore one expects

Rg

AṼ
∼

a/L→0
ZA +O(a2), (4.14)
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where this ratio is defined as in Eq. (4.10) but with the conserved current, Eq. (4.12)

replacing the local current in the vector correlation function. Here we have again assumed

that the renormalized parameters and the kinematics have been chosen e.g. as discussed

after Eq. (4.10). Having a conserved vector current also allows for the determination of ZV

for the non-conserved local current, simply by taking the ratio

Rg

VṼ
(x0) =

gud
Ṽ
(x0)

gudV (x0)
∼

a/L→0
ZV +O(a2). (4.15)

Alternative ratios for the current normalization constants ZA and ZV can be formed with

the l-correlation functions,

Rl
AṼ

(x0) =
iluu

′

Ṽ
(x0)

ludA (x0)
, Rl

VṼ
(x0) =

luu
′

Ṽ
(x0)

luu
′

V (x0)
. (4.16)

Finally, one can also determine the finite ratios among scale-dependent renormalization

constants that belong to the same chiral multiplet by considering the ratios,

Rg
PS(x0) =

iguu
′

S (x0)

gudP (x0)
, Rl

TT̃
(x0) =

iluu
′

T̃
(x0)

ludT (x0)
. (4.17)

One then expects,

Rg
PS ∼

a/L→0

ZP

ZS
+O(a2), (4.18)

where we emphasize that both renormalization constants are associated with the flavour

non-singlet operators. Regarding the tensor densities we expect

Rl
TT̃

= 1 + O(a2), (4.19)

since the operators Tµν and T̃µν are related by a lattice symmetry, cf. Appendix A.

4.5 Scale-dependent renormalization constants

So far we have used the universality relations to the right hand sides of our dictionary. A

more direct comparison between renormalized correlation functions calculated in the SF

and in the χSF is rendered difficult by the fact that the bare boundary source fields O5

and Q5 are not simply related to each other, due to the very different structure of the

lattice actions near the boundaries. This has to be contrasted with bare composite fields

in the bulk which can be chosen to be the same independently of the boundary conditions.

Consequently, if we define Zζ through the respective ratios

ZSF
ζ =

(
f
(0)
1 /f1

) 1
4
, ZχSF

ζ =
(
g
(0)
1 /g1

) 1
4
, (4.20)

the ratio of these Z-factors yields a scale independent constant which only logarithmically

approaches 1 in the continuum limit. Here, the numerators are the lowest order perturba-

tive expressions, e.g.

f
(0)
1 = f1|g20=0, (4.21)
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such that the Z-factors are unity at leading order of perturbation theory.

Despite this limitation, we may compare scale-dependent renormalization constants

for bulk operators in SF renormalization schemes. For instance, the SF scheme for the

pseudo-scalar density can be defined through [14, 25, 26],

[fP]R(T/2)√
[f1]R

=
fP(T/2)√

f1

∣∣∣∣
g0=0

, (4.22)

[
gudP
]
R
(T/2)

√[
gud1
]
R

=
gudP (T/2)√

gud1

∣∣∣∣∣∣
g0=0

, (4.23)

where at a given renormalization scale µ = L−1 (defined e.g. through the value of the

renormalized coupling) we require the renormalized matrix elements to be equal to their

tree level values at g0 = 0. The boundary-to-boundary correlators f1 and gud1 are used to

cancel the boundary quark field renormalization factors Zζ . The resulting expressions for

the renormalization constant of the pseudo-scalar density are then given by,

ZSF
P (g20 , L/a) = c(L/a)

√
f1

fP(T/2)
, ZχSF

P (g20 , L/a) = c′(L/a)

√
gud1

gudP (T/2)
, (4.24)

where the factors c and c′ are chosen such that ZSF,χSF
P (0, L/a) = 1. Note that the

renormalization scale is fixed in terms of L, the physical extent of the spatial volume.

This implies that all dimensionful parameters have to be scaled in a fixed proportion to L.

Having set the mass to zero and x0 = T/2 one usually sets the aspect ratio ρ = T/L = 1 [25].

Finally one needs to fix any dimensionless parameters, e.g. θ = 0.5, in order to completely

specify the SF scheme.

Similarly, one can define SF renormalization conditions for the tensor-density through,

ZSF
T (g20 , L/a) = b(L/a)

√
k1

kT(T/2)
, ZχSF

T (g20 , L/a) = b′(L/a)

√
lud1

ludT (T/2)
, (4.25)

where again the factors b and b′ are chosen such that ZSF,χSF
T (0, L/a) = 1 holds exactly

on a finite lattice with extent L/a. We note that the renormalization condition for the

pseudo-scalar density can be turned into a renormalization condition for the non-singlet

scalar density by combining it with an estimator of the ratio ZP/ZS, Eq. (4.18). We

also remark that, by applying the same SF renormalization procedure to scale-independent

renormalization problems, one may define e.g. a renormalized axial current in the SF scheme

with corresponding renormalization constants ZSF
A and ZχSF

A . However, we stress that such

a renormalized axial current is not canonically normalized, i.e. it does not satisfy the axial

Ward identities.

To conclude, we note that if O(a) improved Wilson fermions are used in both the SF

and χSF determinations, one expects, for X = P,T, . . .

RX =
ZχSF
X

ZSF
X

= 1 + O(a2), (4.26)
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provided that the boundary improvement coefficients ct, c̃t for the SF and ct, ds for the

χSF have been correctly tuned. In the case of the ratio of ZT’s the SF computation also

requires the necessary O(a) bulk counterterm for Tµν , otherwise uncancelled O(a) effects

are expected in the ratio between the SF and χSF renormalization constants (4.25).

The tensor density provides a first example where automatic O(a) improvement is

advantageous in the calculation of the step-scaling function. On the lattice one defines

ΣT(u, a/L) =
ZT(g

2
0 , 2L/a)

ZT(g20 , L/a)

∣∣∣∣
u=ḡ2(L)

, (4.27)

with some renormalized coupling ḡ2(L) held fixed at the value u. Denoting the contin-

uum step-scaling function by σT(u) and with the correct choice for the boundary O(a)

improvement coefficients ct and ds or c̃t, we expect, in the case of the χSF,

ΣT(u, a/L) = σT(u) + O(a2). (4.28)

In contrast, complete O(a) improvement with the standard SF also requires the inclusion

of the bulk counterterm ∝ cT (cf. Appendix A).

5 Perturbation theory

5.1 Perturbative expansion of parameters and correlation functions

The perturbative expansion of the renormalized correlation functions in (3.28) follows very

closely the literature [3, 27]. In particular, the gauge action remains the same, so that the

gauge fixing procedure can be taken over unchanged.

The coefficients in the action are functions of the bare coupling, and have a perturbative

expansion in g20 ,

c(g0) = c(0) + g20 c
(1) +O(g40), (5.1)

where c generically refers to mcr, zf , ds, ct, c̃t. The tree-level values are given by [2, 3, 27],

m(0)
cr = 0, z

(0)
f = 1, d(0)s = 1/2, c

(0)
t = 1, c̃

(0)
t = 1 , (5.2)

and the one-loop coefficients m
(1)
cr , z

(1)
f and d

(1)
s and c

(1)
t are given below. Renormalization

factors are expanded similarly,

Z(g20 , L/a) = 1 + g20 Z
(1)(L/a) + O(g40), (5.3)

where Z stands for Zζ or ZX in the case of fermion bilinear fields Xf1f2 . We distinguish

between renormalization scale-independent and scale-dependent renormalization factors.

Among the former are ZA, ZV and and ratios such as ZP/ZS, whereas ZP, ZS and ZT

depend on the renormalization scale µ = L−1 which, as before, has been identified with the

inverse of L, the linear extent of the spatial volume. To obtain renormalized correlation

functions in perturbation theory one may e.g. adopt the minimal subtraction of logarithms

scheme [21] with (µ = L−1). However, one must then still allow for finite renormalizations,
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as otherwise the continuum relations between correlation functions will not hold in general.

More precisely, to renormalize consistently with the expected continuum relations derived

in Section 2, one may start and renormalize a given field minimally but allow for finite

parts in the renormalization of its chirally transformed counterpart.

Given these definitions, fixing the renormalized parameters gR and mR = 0 amounts

to tuning the bare parameters according to

g20 = g2R +O(g4R), m0 = m(1)
cr g

2
R +O(g4R), (5.4)

and, up to higher orders in the coupling, the boundary counterterm coefficients are set to

zf = 1 + z
(1)
f g2R, ds =

1
2 + d(1)s g2R, c̃t = 1 + c̃

(1)
t g2R, ct = 1. (5.5)

Note that, to the order considered, the gluonic boundary counterterm ∝ ct enters the

fermionic correlation functions only at tree-level via the gluon propagator. In order to de-

termine its one-loop value for the χSF we have also computed a gluonic observable, namely

the SF coupling constant at one-loop order (cf. Section 8). Except for this calculation we

stay with vanishing background gauge field and thus only require csw to be set at tree-level,

i.e. csw = c
(0)
sw = 1, 0, for O(a) improved and unimproved Wilson fermions, respectively.

We are now ready to expand the renormalized correlation functions in Eq. (3.28) in

powers of g2R. Defining the expansion coefficients of the renormalized and O(a) improved

correlation functions by

[gX]R = g
(0)
X (x0) + g2R g

(1)
X (x0) + O(g4R), [g1]R = g

(0)
1 + g2R g

(1)
1 +O(g4R), (5.6)

the one-loop coefficients take the form,

g
(1)
X (x0) =

∑

n

g
(1)
X,n(x0) +m(1)

cr g
(0)
X;m0

(x0) +
(
Z

(1)
X + 2Z

(1)
ζ

)
g
(0)
X (x0)

+ z
(1)
f g

(0)
X;zf

(x0) + d(1)s g
(0)
X;ds

(x0) + d̄(1)s g
(0)

X;d̄s
(x0) + a c

(1)
X g

(0)
δX (x0) , (5.7)

g
(1)
1 =

∑

n

g
(1)
1,n +m(1)

cr g
(0)
1;m0

(x0) + 4Z
(1)
ζ g

(0)
1 + z

(1)
f g

(0)
1;zf

+ d(1)s g
(0)
1;ds

+ d̄(1)s g
(0)

1;d̄s
. (5.8)

Note that, for the sake of readability, we have left out the flavour indices on all terms of

these equations, and we have defined the counterterm contributions for gX,

g
f1f2(0)
X;m0

=
∂

∂m0
g
f1f2(0)
X

∣∣∣∣
m0=0

, (5.9)

g
f1f2(0)
X;zf

=
∂

∂zf
g
f1f2(0)
X

∣∣∣∣
zf=1

, (5.10)

g
f1f2(0)
X;ds

=
∂

∂ds
g
f1f2(0)
X

∣∣∣∣
ds=1/2

, (5.11)

g
f1f2(0)

X;d̄s
=

∂

∂d̄s
g
f1f2(0)
X

∣∣∣∣
d̄s=0

. (5.12)
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Figure 1: The set of tree-level and one-loop diagrams contributing to the boundary-to-bulk

correlation functions gf1f2X and lf1f2Y . Fermion propagators are represented by continuous

lines, while curly lines represent the gluon propagator. Fermionic counterterms insertions

are represented by a cross on a fermion line. Gluon lines not starting from a fermion line

originate from the explicit time like link variables in the fermionic boundary fields ζ and

ζ̄, Eqs. (3.17),(3.18).

and similarly for g1. The correlation functions gδX refer to the bulk O(a) counterterms δX

associated with some of the fermion bilinear fields X (cf. Eqs. (A.4)) We have assumed

that their respective coefficients cX vanish at tree-level, i.e. c
(0)
X = 0, which is known to be

the case for the local bilinears (cf. Appendix A). Analogous expansions are obtained for

the correlation functions [lY]R and [l1]R, and also for the standard SF functions (with the

obvious modifications). The sums over n in (5.7) and (5.8) run over the set of all those

diagrams containing a gluon line (see Figures 1, 2 and 3). For later use we give the sum of

these diagrams a separate name,

g
(1,a)
X =

∑

n

g
(1)
X,n, g

(1,a)
1 =

∑

n

g
(1)
1,n, (5.13)

and analogously for all other correlation functions. As we said, the terms with subscripts

“m0”, “zf”, “ds” and “d̄s”, indicate the contributions due to insertions of the counterterms

proportional to these coefficients. Diagrammatically these are represented by crosses on

the fermion lines. Note that we have included the counterterm ∝ d̄
(1)
s for completeness

of notation, although this counterterm has been omitted in our calculation. While the d̄s
counterterm is correctly implemented at tree level (d̄

(0)
s = 0, cf. [2]), in the following we

omit the one-loop counterterm, effectively setting d̄
(1)
s = 0 in Eqs. (5.7),(5.8), and all other

correlators. The reason this can be done consistently is that, by the mechanism of automatic

O(a) improvement, it only contributes O(a2) effects to any of the P5-even correlation

functions. Its inclusion would however be required for the study of O(a) improvement for

the P5-odd correlation functions, which is beyond the scope of this work.
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Figure 2: The set of tree-level and one-loop diagrams contributing to the boundary-to-

boundary correlation functions gf1f21 and lf1f21 .

5.2 The numerical calculation and checks performed

All terms appearing in (5.7) and (5.8) are functions of a/L that can be evaluated numer-

ically by inserting the explicit time-momentum representation of the vertices and propa-

gators into the expressions of each diagram. To this end, we have produced a FORTRAN

program for the numerical evaluation of Feynman diagrams both in the standard and chi-

rally rotated SF. Numerical results for each diagram and counterterm have been compared

against previous calculations [28] in the case of the standard SF, finding agreement up to

rounding errors. For the χSF we have checked all diagrams for the gX and lY correlators by

an independent FORTRAN program, excluding the ones involving the point-split vector

current. A check for the latter has been performed by comparing ratios of correlators to

Monte-Carlo simulations at small values of the bare couplings, g20 , cf. Appendix C. Further

confidence in the correctness of our code is gained by the perfect agreement with results

in the literature for the current normalization constants (cf. Section 7). We have numeri-

cally checked gauge parameter independence for all correlators on small lattices and then

performed all subsequent calculations in the Feynman gauge (setting the gauge parameter

λ0 = 1), in which the gluon propagator for the plaquette action is diagonal. This allows for
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Figure 3: The set of tree-level and one-loop diagrams contributing to the boundary-to-

bulk correlation functions involving the point-split vector current, i.e., gf1f2
Ṽ

and lf1f2
Ṽ

. Note

that each diagram in the figure represents the two terms forming the point-split current

(4.12). The two fermion lines do not meet at the vertex due to the point-split nature of the

current, and gluons lines may originate from the gauge links that appear in the operator.

a considerable speed-up in the numerical computation. A technical point worth noting is

that we calculated the fermion propagator for fixed spatial momentum by numerical matrix

inversion, as the available analytic result assumes ds = 1, whereas the correct tree-level

value is d
(0)
s = 1/2 [2]. While it would have been possible to calculate an approximate

fermion propagator analytically by single or double insertion of the boundary counterterm,

we refrained from doing this as it would prevent a direct comparison with non-perturbative

data at finite lattice spacing.

In the remainder of this section we determine the one-loop parameters of the lattice

action, m
(1)
cr , z

(1)
f and d

(1)
s from this data, and c

(1)
t is quoted from a separate calculation of

the fermion determinant following the lines of ref. [29], as described in Section 8.

5.3 Determination of m
(1)
cr and z

(1)
f

The determination of mcr and zf is done by solving simultaneously the system of equations

consisting of the conditions (3.30) (with flavours f1f2 = ud) and (3.31). Expanding these
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equations to order g2R, we obtain

0 = ∂̃0g
ud(1,a)
A +m(1)

cr ∂̃0g
ud(0)
A;m0

+ z
(1)
f ∂̃0g

ud(0)
A;zf

+ d(1)s ∂̃0g
ud(0)
A;ds

+ d̄(1)s ∂̃0g
ud(0)

A;d̄s
+ ac

(1)
A ∂∗0∂0g

ud(0)
P ,

(5.14)

and

0 = g
ud(1,a)
A +m(1)

cr g
ud(0)
A;m0

+ z
(1)
f g

ud(0)
A;zf

+ d(1)s g
ud(0)
A;ds

+ d̄(1)s g
ud(0)

A;d̄s
+ ac

(1)
A ∂̃0g

ud(0)
P , (5.15)

where we always assume x0 = T/2, and T = L. The determination ofm
(1)
cr and z

(1)
f becomes

particularly simple when choosing θ = 0. Indeed, for this choice, the contributions of the

counterterms proportional to ds, d̄s and cA vanish. Moreover, for θ = 0, the contribution

of the counterterm proportional to z
(1)
f in (5.15) is constant in x0, and hence the derivative

∂̃0g
ud(0)
A;zf

in (5.14) vanishes. The determination of m
(1)
cr thus becomes independent of z

(1)
f in

this case. For a given lattice size in the range L/a ∈ [6, 48] we then solve the 2 equations

and obtain the series

m(1)
cr (a/L) = − ∂̃0g

ud(1,a)
A (L/2)

∂̃0g
ud(0)
A;m0

(L/2)
, (5.16)

z
(1)
f (a/L) = −

g
ud(1,a)
A (L/2) +m

(1)
cr (a/L)g

ud(0)
A;m0

(L/2)

g
ud(0)
A;zf

(L/2)
. (5.17)

From these, we extrapolate to the asymptotic values

m(1)
cr = lim

a/L→0
m(1)

cr (a/L), z
(1)
f = lim

a/L→0
z
(1)
f (a/L), (5.18)

following the blocking method described in [30]. The values obtained in this way are

collected in Table 1 for the fundamental representation of the gauge group6. We reproduce

the values of m
(1)
cr available in the literature [31–34], as expected, since these asymptotic

results only depend on the regularization of the bulk action, and are hence unaffected by

the choice of boundary conditions. This is a further strong check on the correctness of

our calculation. The values for z
(1)
f , instead, have been calculated here for the first time,

cf. Table 1.

In order to check the correctness of the determination of z
(1)
f , we recompute it using the

following alternative renormalization conditions (again for x0 = T/2, T = L and θ = 0),

guu
′

P = 0, ludV = 0 and luu
′

T = 0 , (5.19)

and the same solution for m
(1)
cr as before. In each case we obtained an asymptotic value of

z
(1)
f consistent with those in Table 1.

6Values of am
(1)
cr and z

(1)
f for a representation R can be obtained from the numbers quoted in Table

1 by replacing CF → C2(R). For the symmetric, antisymmetric, and adjoint representations one has

C2(R) = 2CF(N + 2)/(N + 1), 2CF(N − 2)/(N + 1) and N , respectively.
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am
(1)
cr z

(1)
f

c
(0)
sw = 1 −0.2025565(3) × CF 0.16759(1) × CF

c
(0)
sw = 0 −0.32571(2) × CF 0.3291(2) ×CF

Table 1: Results for am
(1)
cr and z

(1)
f with and without the clover term, for the fundamental

representation of the gauge group.
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Figure 4: Differences in the value of z
(1)
f at finite lattice spacing obtained with the different

tuning conditions given in Eqs. (3.31) and (5.19) (all data for θ = 0 and CF = 4/3).

Finally, we calculated the differences ∆z
(1)
f (a/L) at finite lattice spacing between

z
(1)
f (a/L) obtained using the condition (3.31), and that obtained with the conditions (5.19),

i.e.,

∆z
(A)
f = z

(1)
f

∣∣∣
guu

′

P =0
− z

(1)
f

∣∣∣
gudA =0

,

∆z
(B)
f = z

(1)
f

∣∣∣
luu

′

T =0
− z

(1)
f

∣∣∣
gudA =0

, (5.20)

∆z
(C)
f = z

(1)
f

∣∣∣
ludV =0

− z
(1)
f

∣∣∣
gudA =0

.

These are displayed in Figure 4. For θ = 0 the only source of cutoff effects in these

differences comes from the bulk action, and is completely eliminated by the clover term.

Hence, for c
(0)
sw = 1 the differences ∆z

(1)
f behave as an O(a2) effect, in contrast to c

(0)
sw = 0

for which they behave linearly in a, up to possible logarithmic corrections.

5.4 Determination of d
(1)
s

The determination of the 1-loop boundary improvement coefficient d
(1)
s can be obtained

by requiring the absence of O(a) effects at O(g2R) in some P5-even observable. Following

a strategy similar to the one used in [27] for the extraction of the boundary improvement
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coefficient c̃
(1)
t , we consider the ratio

RP(θ, a/L) =

[
gudP (x0; θ, a/L)

]
R[

gudP (x0; 0, a/L)
]
R

∣∣∣∣∣
x0=T/2

= R
(0)
P (θ, a/L)

(
1 + g2R r

(1)
P (θ, a/L) + O(g4R)

)
,

(5.21)

which has a finite continuum limit, and the tree level ratio, R
(0)
P (θ) is O(a) improved. The

one-loop ratio r
(1)
P (θ, a/L) can then be expanded in a/L

r
(1)
P (θ, a/L) =

(
g
ud(1,a)
P

g
ud(0)
P

∣∣∣∣∣
θ

− g
ud(1,a)
P

g
ud(0)
P

∣∣∣∣∣
θ=0

)
+m(1)

cr


 g

ud(0)
P;m0

g
ud(0)
P

∣∣∣∣∣∣
θ

−
g
ud(0)
P;m0

g
ud(0)
P

∣∣∣∣∣∣
θ=0




+ z
(1)
f



g
ud(0)
P;zf

g
ud(0)
P

∣∣∣∣∣∣
θ

−
g
ud(0)
P;zf

g
ud(0)
P

∣∣∣∣∣∣
θ=0


+ d(1)s

g
ud(0)
P;ds

g
ud(0)
P

∣∣∣∣∣∣
θ

,

= r
(1)
P (θ, 0) +

a

L


r1 + d(1)s

L

a

g
ud(0)
P;ds

g
ud(0)
P

∣∣∣∣∣∣
θ


+O(a2),

(5.22)

where the constant r1 is the coefficient of the O(a) effect in r
(1)
P (θ, a/L) in the absence of

the ds-counterterm. Hence, the condition that r
(1)
P (θ, a/L) be O(a) improved leads to the

equation

d(1)s = −r1 ×


 lim
a/L→0


L
a

g
ud(0)
P;ds

g
ud(0)
P

∣∣∣∣∣∣
θ





−1

. (5.23)

We have analysed the sequence of values for L/a = 6, 8, . . . , 48 with the blocking procedure

of ref. [30]. Besides θ = 0.5 we have produced further data for the set of values θ =

0.1, 0.25, 0.75 and 1.0. In the case of the O(a) improved data c
(0)
sw = 1 we also considered

analogous ratios to Eq. (5.21) using ludA (x0) and the boundary-to-boundary correlation

functions gud1 and lud1 . Consistent numerical results were obtained and we quote

d(1)s =

{
−0.0006(3) × CF, c

(0)
sw = 1 ,

−0.0184(5) × CF, c
(0)
sw = 0 .

(5.24)

Note that this consistency indirectly verifies automatic O(a) improvement, as it demon-

strates the irrelevance at O(a) of both the counterterm proportional to d̄s (which was

omitted) and of the SW-term in the case of the unimproved Wilson fermion data.

5.5 Determination of c
(1)
t

In order to obtain the complete set of χSF action parameters to order g20 , we would also

like to compute the one-loop coefficient,

c
(1)
t = c

(1,0)
t +Nfc

(1,1)
t , (5.25)

for the lattice χSF regularization. However, ct multiplies a gluonic counterterm, so that the

fermionic correlation functions at one-loop order are only sensitive to its tree-level value,

– 25 –



c
(0)
t = 1. We thus consider a gluonic observable, the SF coupling, ḡ2(L), defined as the

response coefficient to a chromo-electric background field in ref. [3]. Expanding in the bare

coupling,

ḡ2(L) = g20 + p1(L/a)g
4
0 +O(g60), (5.26)

the logarithmically divergent one-loop coefficient, p1(L/a), decomposes into a purely glu-

onic, and a fermionic contribution,

p1(L/a) = p1,0(L/a) +Nf p1,1(L/a). (5.27)

For gauge groups SU(2) and SU(3) the gluonic coefficient p1,0 was first computed in [3, 35]

and the fermionic part, p1,1, in ref. [29], for fermions in the fundamental representation

and with standard SF boundary conditions. Given the nature of these calculations with

a non-trivial gauge background field, it is not obvious how these results depend on the

number of colours, N , and the fermion representation. This dependence has been worked

out in ref. [36] where the results are given for general N and SU(N) group constants. In

particular the gluonic coefficient, first computed for SU(3) in ref. [35], takes the form,

c
(1,0)
t = −0.08900(5) =

[
−0.0316483(4) ×N +

0.017852(13)

N

]

N=3

, (5.28)

and is, to this order, independent of the fermion regularization. The analysis of p1,1(L/a)

nicely illustrates some of the main points of this paper and is left to Section 8. We here

just quote the result of this analysis for fermions in the fundamental representation,

c
(1,1)
t =





−0.006610(5), χSF, c
(0)
sw = 0,

0.006890(5), χSF, c
(0)
sw = 1,

0.019141(2), SF, c
(0)
sw = 1.

(5.29)

The value for the standard SF is in perfect agreement with ref. [29]. According to ref. [36],

for a general fermion representation R these numbers need to be scaled by T (R)/T (F ),

with T (R) refers to the normalisation of the trace of two (hermitian) SU(N)-generators in

the representation R.7

6 Perturbative tests

Having determined the action parameters to O(g20) we may now test the theoretical ex-

pectations discussed in Sect. 4 to this order in perturbation theory. This section describes

our tests of the boundary conditions, the mechanism of automatic O(a) improvement, the

restoration of flavour symmetry and a direct comparison between SF and χSF observables.

7T (R) = 1/2, (N+2)/N , (N−2)/N , and N for the fundamental, symmetric, antisymmetric, and adjoint

representations, respectively.
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6.1 Boundary conditions

On the lattice boundary conditions are not so much imposed as implicitly encoded by

the structure of the action near the boundary. Testing whether the boundary conditions

are satisfied (up to cutoff effects) is therefore not trivial. Considering the first ratios of

Eq. (4.3), we expand perturbatively,

Rg,f1f2
X,− = R

g,f1f2(0)
X,− + g2RR

g,f1f2(1)
X,− +O(g4R), (6.1)

with the tree-level and one-loop terms given by

R
g,f1f2(0)
X,− =

g
f1f2(0)
X,−

g
f1f2(0)
X

, R
g,f1f2(1)
X,− =

g
f1f2(1)
X,−

g
f1f2(0)
X

−R
g,f1f2(0)
X,−

g
f1f2(1)
X

g
f1f2(0)
X

, (6.2)

and analogous expressions are obtained for other ratios in Eq. (4.3), and for the corre-

sponding ratios of standard SF correlation functions.

Using these definitions we compute the tree-level and one-loop terms in (6.1) for all

the P5-even boundary-to-bulk correlation functions, for c
(0)
sw = 1 and for θ = 0, 0.5, and

their standard SF counterparts. The tree-level ratios vanish exactly when θ = 0, both in

the χSF and in the standard SF. For θ = 0.5 instead, the tree-level ratios are non-zero at

finite lattice spacing, and vanish at a rate of O(a2), cf. Figure 5. We find that the size

of the cutoff effects in both set-ups is comparable at tree-level. Note that the tree-level

correlators do not depend on c
(0)
sw , due to our choice of the trivial gauge background field.

In order to evaluate the same ratios at one-loop order, we insert the series m
(1)
cr (a/L)

and z
(1)
f (a/L) obtained from gA at finite L/a and for θ = 0. The convergence to the

continuum limit of the ratios is displayed in Figure 6. We note that the ratios are very

small for the χSF already at the coarsest lattices, both for θ = 0 and 0.5. In the first case,

cutoff effects are particularly suppressed, and seem to approach zero faster than O(a2)

(top-left panel of Figure 6), whereas the data for θ = 0.5 shows the O(a2) continuum

approach that one might have expected (top-right panel of Figure 6). For the standard

SF the ratios at one-loop, although still small, are an order of magnitude larger than

their χSF counterparts (see bottom panels of Figure 6). In summary, we note that all

the ratios considered approach zero in the continuum limit, at least with a rate of O(a2).

This confirms that the boundary conditions are correctly implemented to one-loop order

of perturbation theory.

6.2 Automatic O(a) improvement

As explained in Subsection 4.2 we may test automatic O(a) improvement either by con-

firming the O(a2) continuum approach of P5-even observables, or by showing that the

associated bulk O(a) counterterm contributions, or, more generally, P5-odd correlations

are pure O(a) effects. Several examples of the former will appear below, where the absence

of cutoff effects linear in a is observed. We here focus on the P5-odd correlations functions,

which are the ones translating to fS, fV or kA, kT̃ according to our dictionary of Section 2.

Among those we omit the ones which vanish identically, Eq. (3.22), which leaves us with
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Figure 5: Tree-level ratios (6.2) between correlation functions defined with reverted pro-

jectors and correct projectors, respectively. Ratios for both standard SF (left panel) and

χSF (right panel) boundary conditions are shown for θ = 0.5.
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Figure 6: One-loop ratios (6.2) between correlation functions defined with reverted and

correct projectors, respectively, for csw = 1 and both θ = 0 and 0.5. The factor CF = 4/3

is included. The ratios for the χSF are displayed in the upper panels, while those for the

SF are shown in the lower panels (note the scale difference).

non-trivial tests of automatic O(a) improvement to be performed for

gudA , guu
′

P , ludV , luu
′

T , (6.3)
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as well as the derivatives

∂̃0g
uu′

P , ∂̃0l
ud
V , ∂̃0l

uu′

T , (6.4)

which also appear as O(a) counterterms to the P5-even correlation functions guu
′

A , ludT and

luu
′

V , respectively (cf. Appendix A).

We first choose data at θ = 0, set x0 = T/2 and insert the series Eqs. (5.16),(5.17) for

m
(1)
cr and z

(1)
f . For θ = 0, all P5-odd correlation functions at tree-level vanish identically

already at finite lattice spacing. At one-loop order, the plots in Figure 7 show the results

for both c
(0)
sw = 0 (left panel) and c

(0)
sw = 1 (right panel). While non-zero at finite lattice

spacing, all these P5-odd correlation functions do indeed vanish in the continuum limit, as

expected from automatic O(a) improvement. To understand the faster continuum approach

in the case of c
(0)
sw = 1, we note that with θ = 0 the counterterm insertions ∝ c

(1)
A , c

(1)
V , c

(1)
T

vanish,

∂̃0g
(0)
P (x0)|θ=0 = ∂̃0l

(0)
T (x0)|θ=0 = ∂̃0l

(0)
V (x0)|θ=0 = 0 , (6.5)

and similarly the contributions ∝ d̄
(1)
s ,

g
(0)

X;d̄s
(x0)|θ=0 = l

(0)

Y;d̄s
(x0)|θ=0 = 0. (6.6)

The same holds for the ds-counterterm. However, both this and the ct-counterterm are P5-

even so that their contribution would anyway be at most an O(a2) effect anyway. Hence, the

only relevant counterterm for O(a) improvement of these observables is the Sheikholeslami-

Wohlert term and its inclusion thus changes the rate of the approach to the continuum

limit from O(a) to O(a2). As an aside we remark that this observation could be used to

determine c
(0)
sw and thus provides a perturbative example for the kind of O(a) improvement

conditions that can obtained from the χSF.

Passing to data for θ = 0.5 and c
(0)
sw = 1, the P5-odd correlation functions are found to

vanish in the continuum limit, both at the tree- and one-loop level, with a rate of O(a) as

should be expected (cf. Figure 8). In conclusion, we confirm that P5-odd observables are

indeed pure lattice artefacts, and confirm that automatic O(a) improvement works out as

theoretically expected.

6.3 Flavour symmetry restoration

In order to check if flavour symmetry is restored in the continuum limit, we consider

the relations between boundary-to-boundary correlation functions with different flavour

content. Taking the ratios in Eq. (4.5) and expanding them to order g2R,

Rg,l = R
(0)
g,l + g2RR

(1)
g,l +O(g4R), (6.7)

we should find that the tree-level coefficients,

R(0)
g =

g
uu′(0)
1

g
ud(0)
1

, R
(0)
l =

l
uu′(0)
1

l
ud(0)
1

, (6.8)

approach unity, whereas the one-loop coefficients,

R(1)
g = R(0)

g

{
g
uu′(1)
1

g
uu′(0)
1

− g
ud(1)
1

g
ud(0)
1

}
, R

(1)
l = R

(0)
l

{
l
uu′(1)
1

l
uu′(0)
1

− l
ud(1)
1

l
ud(0)
1

}
, (6.9)
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Figure 7: Vanishing P5-odd correlation functions at one-loop order, calculated for csw = 0

(left panel), csw = 1 (right panel) and for θ = 0. The series for m
(1)
cr , z

(1)
f at θ = 0 have

been inserted and CF = 4/3 (note the scale difference between the panels).
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Figure 8: Vanishing P5-odd correlation functions for θ = 0.5 both at tree-level (left panel)

and at one-loop order with c
(0)
sw = 1 (right panel). The series for m

(1)
cr (a/L) (5.16) and z

(1)
f

(5.17) have been used and the group factors have been set to N = 3 and CF = 4/3,

respectively.

should vanish in the continuum limit. Computing these coefficients for c
(0)
sw = 1 and 0 and

for θ = 0 and 0.5, we find that the ratios at tree-level are exactly R
(0)
g = R

(0)
l = 1 for all

values of L/a and independently of θ. The one-loop coefficients R
(1)
g and R

(1)
l are non-zero

at finite lattice spacing, but vanish as a/L → 0, thus confirming the restoration of flavour

symmetry. The counterterm insertions proportional to d
(1)
s vanish exactly in this ratio

rendering this counterterm irrelevant not only at O(a) (as expected from the discussion

in Subsect. 4.3) but to all order in a. Somewhat surprisingly, the same statement holds for

the counterterm insertions proportional to m
(1)
cr and z

(1)
f , so that the choice of the critical

mass or the precise definition of zf become irrelevant, too. The results for the coefficients

R
(1)
g and R

(1)
l are displayed in Figure 9 for c

(0)
sw = 1. The behaviour for both values of

θ is very similar and the continuum limit is approached at an even faster rate than the

expected O(a2).
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Figure 9: One-loop ratios R
(1)
g and R

(1)
l , Eq. (6.9), as a function of (a/L)2 for c

(0)
sw = 1.

The factor CF = 4/3 has been included.

6.4 Direct comparison SF vs. χSF

As explained in Sect. 4.5 the bare fermionic boundary source fields being different presents

an obstacle when directly comparing fermionic correlation functions between the SF and

χSF. We are thus led to consider (double) ratios where the boundary source renormalization

factors Zζ are cancelled separately for SF and χSF observables, e.g.

RA =

[
[guu

′

A ]R√
[guu

′

1 ]R

]
×
[

[fA]R√
[f1]R

]−1

, RP =

[
[gudP ]R√
[gud1 ]R

]
×
[

[fP]R√
[f1]R

]−1

. (6.10)

Such ratios are expected to approach 1 in the continuum limit, and similar ratios could

be obtained from the k- and l-functions, with vector and tensor bilinears. In fact, up to

a tree-level factor, all these double ratios correspond to ratios between Z-factors defined

in SF schemes, cf. Eq. (4.26). Since the bare fermion bilinear operators and the bulk

lattice regularization here are taken to be the same for SF and χSF, the renormalization

factors must be equal up to cutoff effects. For these effects to be reduced to O(a2) full

Symanzik improvement of the action and fields is required on the SF side. Note that

this requirement imposes the use of the improved action also for the χSF. Furthermore,

one needs to implement boundary O(a) improvement for the χSF by tuning ds and ct.

Automatic O(a) improvement of the χSF then ensures that the bulk O(a) counterterms to

the fields as well as the P5-odd boundary counterterm ∝ d̄s do not contribute at O(a) and

may be omitted.

To study the continuum approach for RA and RP to O(g2R), we expand the ratios in

the coupling,

RX = R
(0)
X + g2RR

(1)
X +O(g4R), (6.11)

with the tree-level terms given by

R
(0)
X =

g
(0)
X√
g
(0)
1

·

√
f
(0)
1

f
(0)
X

, (6.12)
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Figure 10: Ratios RA and RP at tree-level (left panel) and 1-loop (right panel) calculated

for c
(0)
sw = 1 and CF = 4/3.

and the 1-loop terms,

R
(1)
X = R

(0)
X

{
g
(1)
X

g
(0)
X

− f
(1)
X

f
(0)
X

− 1

2

(
g
(1)
1

g
(0)
1

− f
(1)
1

f
(0)
1

)}
. (6.13)

Looking at data for θ = 0, the tree-level coefficients R
(0)
A and R

(0)
P are exactly 1 even at

finite L/a. For θ 6= 0, R
(0)
P is still exactly 1, whereas R

(0)
A shows a small deviation from 1

which apparently vanishes even faster than O(a2) (see left panel of Figure 10). The one-

loop terms R
(1)
A and R

(1)
P calculated at c

(0)
sw = 1, θ = 0 and θ = 0.5 are displayed in the right

panel of Figure 10. Again we have inserted the finite a/L estimates of m
(1)
cr (5.16) and of

z
(1)
f (5.17). Boundary O(a) improvement by the ds- and c̃t-counterterms, respectively, has

been implemented. Furthermore, for θ = 0.5, the correlation function f
(1)
A receives a con-

tribution from the operator improvement counterterm proportional to cA, which vanishes

for θ = 0. We thus also consider f
(1)
A with the improved axial current AI and label the

corresponding ratio of correlation functions as R
(1)
AI

. In all cases considered, the one-loop

ratios R
(1)
X converge to 0, thus confirming the expectation of universality. Furthermore, the

convergence rate is found to be O(a2) provided O(a) improvement is correctly implemented

at the boundaries and in the bulk for the action and the SF correlation functions. Again,

this indirectly confirms automatic O(a) improvement, as the omitted P5-odd counterterms

∝ d̄s and ∝ cA on the χSF side are not required.

7 Applications based on universality

In this section we now assume universality and demonstrate the determination of scale

independent renormalization factors like ZA or ZV, which are traditionally obtained from

chiral and flavour Ward identities, respectively. We then take another look at SF schemes

for the pseudo-scalar and tensor densities, and study both the renormalization factors and

the associated step-scaling functions.
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7.1 Scale-independent renormalization factors

We now consider the ratios of Subsect. 4.4, which should yield the scale independent factors

ZA and ZV and the scale independent ratios ZP/ZS and ZT/ZT̃, up to cutoff effects of order

a2. Taking for example Rg

VṼ
, Eq. (4.15), we write the perturbative expansion,

Rg

VṼ
= R

g(0)

VṼ
+ g2RR

g(1)

VṼ
+O(g4R) . (7.1)

We set x0 = T/2 and T = L and then expect the tree-level term to approach unity with

O(a2) corrections and we find this is indeed the case. Focusing on the one-loop contribution,

we simplify notation by writing

R
g(1)

VṼ
= Z

g(1)
V (L/a), (7.2)

and similarly for the other estimators of Subsect. 4.4, including those which yield ratios of

Z-factors, e.g.

R
g(1)
PS = [ZP/ZS]

(1)(L/a), (7.3)

and the superscript g or l referring to the gX or lY correlation functions is only used when

a confusion is possible. Note that, besides the P5-odd d̄s-counterterm, we also omit the

ds-counterterm at one-loop order: for θ = 0 it vanishes exactly, however, in general it is

expected to be irrelevant for the O(a) improvement of such ratios and will at most cause

additional O(a2) effects (cf. Section 4). We have verified this expectation explicitly by

studying the combination of ds-counterterm insertions entering the one-loop Z-factors. In

the case of the vector current normalization constants this combination is even found to

vanish exactly.

Following Symanzik analysis of cutoff effects, one then expects that as a/L → 0 the

terms Z
(1)
X are described by the asymptotic series,

Z
(1)
X (L/a) ∼

∞∑

n=0

[rX,n + sX,n ln(L/a)] (a/L)
n. (7.4)

The coefficient rX,0 is the finite asymptotic value of Z
(1)
X . For scale independent renor-

malization constants, the coefficient multiplying the logarithmic divergence must be zero

i.e. sX,0 = 0. All subsequent coefficients in Eq. (7.4) describe the cutoff effects in Z
(1)
X (L/a).

The term linear in a/L should be absent according to the discussion in Subsect. 4.4 re-

garding the boundary O(a) effects. The term proportional to sX,1 is 0 provided that O(a)

effects are absent in the bulk.

We obtain the first asymptotic coefficients in (7.4) following the blocking procedure

described in [30]. For all cases we confirm that the coefficients sX,0, rX,1 and sX,1 are

compatible with zero up to at least 5 decimal digits. Assuming these to be zero in the

subsequent analysis, we can then easily extract the asymptotic values rX,0. The results are

collected in Table 2.

Within the quoted errors the asymptotic values for Z
(1)
V and Z

(1)
A calculated using the

g- and the l-functions are in agreement with each other. We also found agreement with

the literature [37–41] for all renormalization factors, indicating that the method described

in Subsection 4.4 for defining finite renormalization constants is well-founded.
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csw = 1 csw = 0

Z
(1)
A −0.116458(2) −0.133375(2)

Z
(1)
V −0.129430(2) −0.174085(2)

[ZP/ZS]
(1) −0.025944(3) −0.081420(3)

Table 2: One-loop values of the scale-independent renormalization factors of fermions

bilinears for O(a) improved and unimproved Wilson fermions in QCD (CF = 4/3). Values

for general N can be obtained by multiplying the quoted numbers by (3/4) × CF.

7.1.1 Lattice artefacts

Next, we consider the cutoff effects in the finite renormalization factors to O(g20) in per-

turbation theory. At tree-level and one-loop order we define the difference between a given

renormalization constant at finite lattice spacing and its asymptotic value, i.e.,

δ(i)ZX(L/a) = Z
(i)
X (L/a) − Z

(i)
X , i = 0, 1. (7.5)

In view of non-perturbative applications we will focus on the case of O(a) improved action

and set c
(0)
sw = 1.

At tree-level, all renormalizaton constants are unity, Z
(0)
X = 1. For the particular choice

of θ = 0 this is also true at finite lattice spacing, i.e. Z
(0)
X (L/a) = 1, and hence the cutoff

effects vanish exactly, δZX
(0)(a/L) = 0 for all a/L. For θ = 0.5, the tree-level cutoff effects

δZ
g(0)
V and δZ

g(0)
A are numerically around 0.01 for L/a = 6 and vanish at a rate ∝ a2. In

all other cases (including δZ
l(0)
V and δZ

l(0)
A ) the cutoff effects are numerically much smaller

and also vanish at a higher rate than the expected O(a2).

The one-loop cutoff effects in ZV and ZA are shown in Figure 11 for θ = 0 and 0.5. We

study the cutoff effects obtained by using the asymptotic values ofm
(1)
cr and z

(1)
f (cf. Table 1)

in the expansions of ZV and ZA, and also those obtained using the values m
(1)
cr (a/L) and

z
(1)
f (a/L) at finite L/a and for θ = 0 from Eqs. (5.16),(5.17). The latter are denoted

δZ
(1)
X , whereas the former are labelled δZ

(1)
X,as. The qualitative picture is similar to that

observed at tree-level8. Cutoff effects associated to the definitions Z l
V and Z l

A are always

very small even at the coarsest lattices, in contrast to the definitions Zg
V and Zg

A where we

observe considerably larger but still rather small effects. An interesting observation is that

the insertion of the mass counterterm causes an O(1) effect on Zg
V and Zg

A, whereas it is

suppressed by a further power of a/L for Z l
V and Z l

A. The O(1) behaviour is expected since

the insertion of the P5-odd mass counterterm into the P5-even observables combines a power

of a/L with a linear divergence ∝ L/a. What comes as a surprise is the above mentioned

additional O(a/L) suppression, which is also seen for the ratio of tensor densities and in

the pseudo-scalar to scalar ratio. Similarly, regarding the zf -counterterm we find that its

insertion combines to an O(a2) effect in all cases, except for the vector current where it

vanishes exactly. Finally, we recall that the ds-counterterm vanishes exactly at θ = 0,

8However, differently to the tree-level case, cutoff effects at one-loop are non-zero even if θ = 0.
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whereas for θ = 0.5 its contributions are at least of O(a2) and numerically insignificant in

all cases, due also to the smallness of d
(1)
s [cf. Eq. (5.24)]. Regarding P5-odd counterterms,

we find no sign of an O(a) contamination due to either the d̄s-counterterm or the bulk

counterterm to the axial current ∝ cA. The latter contributes higher order effects to Zg
A,

however, these are numerically small so that we have omitted these data in figure 11. In

conclusion, in all cases cutoff effects vanish proportionally to (a/L)2, nicely confirming the

theoretical expectations expressed in Section 4.
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Figure 11: Cutoff effects in the one-loop terms Z
(1)
V and Z

(1)
A computed using the different

definitions in Eqs. (4.14)-(4.16), for c
(0)
sw = 1 and CF = 4/3.

7.2 Scale-dependent renormalization factors

Here we compute to one-loop order in perturbation theory the scale-dependent renor-

malization factors ZP and ZT in SF schemes, defined by the renormalization conditions,

Eqs.(4.24) and (4.25). Again we focus on the O(a) improved action with c
(0)
sw = 1 and we

first insert the the series Eqs. (5.16),(5.17) for m
(1)
cr and z

(1)
f . Expanding both ZP and ZT

in the bare coupling,

ZX(g
2
0 , L/a) = 1 +

∞∑

k=1

Z
(k)
X (L/a)g2k0 , X = P,T, (7.6)

their one-loop coefficients, Z
(1)
P (L/a) and Z

(1)
T (L/a), have an asymptotic expansion analo-

gous to Eq. (7.4), with the finite parts and the coefficients of the logarithmic divergences
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given by

rP,0 = z
(1)
P (θ), sP,0 = −d0 = − 6CF

(4π)2
, (7.7)

rT,0 = z
(1)
T (θ), sT,0 = γ

(0)
T =

2CF

(4π)2
. (7.8)

Here −d0 and γ
(0)
T are the universal one-loop anomalous dimensions of the pseudoscalar

and tensor density, respectively. One then expects the coefficients rX,1 and sX,1 to vanish

provided that O(a) lattice artefacts are absent due to both boundary O(a) improvement

(d
(1)
s and c

(0)
t = 1), and automatic O(a) improvement.

We extract the first asymptotic coefficients in (7.4) for Z
(1)
P and Z

(1)
T in the way de-

scribed in Subsect. 7.1. Note that we here omit the ds counterterm: its contribution

vanishes in all cases considered except for Z
(1)
T at θ = 0.5, where its contribution is so

small as to be below our resolution for the O(a) coefficient rT,1 and can be safely ne-

glected. We then confirm that for all cases the coefficients rX,1 and sX,1 are compatible

with zero to least 4 decimal digits. For the θ = 0.5 data and to this level of precision we

may therefore exclude contributions at O(a) from the omitted d̄s-counterterm, as well as

from the bulk O(a) counterterm ∝ cT in the case of the tensor density, thereby providing

further evidence for automatic O(a) improvement.

The coefficients sP,0 and sT,0 agree with their theoretically expected values in Eqs. (7.7)

and (7.8) to about 5 decimal digits. With this confirmation we set these coefficients to their

expected values and proceed to extract the asymptotic values of z
(1)
P and z

(1)
T , which we

collect in Table 3. The value of z
(1)
P obtained here is in perfect agreement with the result

found in ref. [25].

To study the convergence to the continuum we define the subtracted one-loop renor-

malization constants

∆
(1)
X = Z

(1)
X (L/a) − z

(1)
X (θ)− sX,0 ln(L/a) , X = P,T, (7.9)

where we have now inserted the asymptotic values m
(1)
cr and z

(1)
f from table 1. Figure 12

clearly shows the O(a2) behaviour of the data, with cutoff effects being largest for θ = 0.

θ = 0 θ = 0.5

z
(1)
P −0.119542(1) ×CF −0.092815(1) × CF

z
(1)
T −0.019852(1) ×CF −0.06270(1) × CF

Table 3: One-loop values of the scale dependent renormalization factors of fermions bilin-

ears for c
(0)
sw = 1 and θ = 0 and 0.5.
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Figure 12: Convergence to the continuum limit of the subtracted one-loop coefficients

∆
(1)
P and ∆

(1)
T , Eq. (7.9), with CF = 4/3.

7.2.1 Lattice artefacts in the step scaling functions

For further illustration we look at the respective step-scaling functions for ZP and ZT

(cf. Subsection 4.5),

ΣX(u, a/L) =
ZX(g

2
0 , 2L/a)

ZX(g20 , L/a)

∣∣∣∣
u=ḡ2(L)

= 1 + kX(L/a)× u+O(u2), (7.10)

where

kX(L/a) = Z
(1)
X (2L/a) − Z

(1)
X (L/a). (7.11)

Taking the continuum limit at order u the preceding discussion of the respective Z-factors

implies the results kP(∞) = −d0 ln(2) and kT(∞) = γ
(0)
T ln(2). To study the approach to

these continuum values we define the relative cutoff effects by

δP(a/L) =
kP(L/a)

kP(∞)
− 1, and δT(a/L) =

kT(L/a)

kT(∞)
− 1. (7.12)

These coefficients are shown in figure 13 for θ = 0 and 0.5. Note that we have used the

asymptotic values of m
(1)
cr and z

(1)
f , and we have again omitted the vanishing or (in the

case of the tensor density) numerically very small ds-counterterm contributions. In all

cases the convergence to the continuum limit is dominated by (a/L)2 effects already at

intermediate lattice sizes. Lattice artefacts turn out to be smaller for θ = 0.5 than for

θ = 0. This difference is particularly pronounced for ΣT, for which cutoff effects are quite

large at θ = 0. Note that a similar observation was made for the cutoff effects in ΣP when

calculated in the standard SF [25].

8 The standard SF coupling and ct to one-loop order

We here consider the SF coupling as introduced in [3]. Apart from the calculation of the

gluonic counterterm ∝ ct to order g20 , this provides yet another confirmation of universality
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Figure 13: One-loop cutoff effects in the step scaling functions ΣP and ΣT, for θ = 0 and

0.5.

and automatic O(a) improvement. With boundary O(a) improvement in place we also

compare the residual lattice effects in the χSF regularized step scaling functions to the

standard SF. In this section we restrict attention to lattice QCD i.e. we assume N = 3 and

fermions in the fundamental representation.

8.1 Analysis of the fermionic one-loop coefficient p1,1(L/a)

Taking the expansion of the renormalized SF coupling in g20 , Eq. (5.26), as starting point,

the fermionic coefficient p1,1(L/a) can be calculated as in ref. [29], for a given lattice

resolution L/a using a recursive evaluation of the determinant for fixed spatial momentum

and colour component. The necessary modifications due to χSF boundary conditions are

described in Appendix B. We have written 2 independent FORTRAN codes implementing

both SF and χSF boundary conditions. Perfect agreement (up to rounding errors) was

found between both codes using double precision arithmetic. One of the codes was then

used to produce data fo p1,1(L/a) in quadruple (128 bit) precision arithmetic, for θ = π/5,

both for csw = 0 and csw = 1 and for a range of lattice sizes up to L/a = 64. We have used

the asymptotic tree-level values for the fermionic action parameters z
(0)
f = 1 and m

(0)
cr = 0

and d
(0)
s = 1/2, and c̃

(0)
t = 1. The gluonic action parameter is set to ct = 1 + g20c

(1)
t , with

the fermionic contribution, c
(1,1)
t , as free parameter, to be determined by this calculation.

For a/L→ 0 one then expects the data to show the asymptotic behaviour,

p1,1(L/a) ∼
∞∑

n=0

(rn + sn ln(L/a)) (a/L)
n. (8.1)

The logarithmic divergence must be cancelled by the coupling renormalization, implying

that its coefficient, s0, must be given in terms of the one-loop β-function. Using the

notation

b0 = b0,0 +Nfb0,1, b0,0 =
11N

48π2
, b0,1 = − 1

24π2
, (8.2)
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one expects to find [29]

s0 = 2b0,1 = − 1

12π2
≈ −0.008443431966 . (8.3)

We extracted the asymptotic coefficients of p1,1 from the numerical results following the

method described in [30]. We first confirmed the expected value for s0 for all data sets

with a relative precision better than 1 in 104. Then we subtracted s0 ln(L/a) from the data

using the analytically expected coefficient for s0. This improves the attainable precision

for the analysis of the remaining coefficients. The coefficient r0 depends on the details of

the chosen renormalization scheme for the SF coupling, such as the choice of θ, the aspect

ratio T/L or the parameters of the background gauge field. Its value also depends on the

regularization through the bare coupling used in the expansion (5.26). This regularization

dependence disappears once the bare coupling is replaced e.g. by the MS coupling (cf. [29]).

For r0 we find complete agreement with ref. [29], with comparable precision,

r0
∣∣
χSF, θ=π/5, c

(0)
sw =1

= −0.0346649(1), r0
∣∣
χSF ,θ=π/5, c

(0)
sw =0

= −0.0098682(1), (8.4)

and similarly for data at θ = 0, thereby completely confirming the expectation regarding

universality.

The coefficients r1 and s1 are relevant for O(a) improvement. In particular, with the

standard SF, s1 was found to vanish only for c
(0)
sw = 1, and is therefore related to bulk

O(a) improvement. For the χSF we thus expect that automatic O(a) improvement implies

s1 = 0, independently of csw. Indeed we find that for all our χSF data sets |s1| < 10−4,

thus confirming the expectation.

Finally, the coefficient r1 is related to boundary O(a) effects. From the θ = π/5 data

set with csw = 1, we obtain

r1
∣∣
χSF, θ=π/5, c

(0)
sw =1

= −2c
(1,1)
t + 0.01378(1). (8.5)

Requiring the absence of O(a) effects in the SF coupling at one-loop order means r1 = 0, and

thus determines c
(1,1)
t . Note that this result must be independent of θ or other kinematical

parameters. We have checked that the result (8.5) is reproduced within errors with data

at θ = 0.

For the χSF data with csw = 0 the corresponding result is

r1
∣∣
χSF, θ=π/5, c

(0)
sw =0

= −2c
(1,1)
t − 0.01322(1) , (8.6)

independently of θ. Note that this is in contrast to the standard SF where r1 is found to

be θ-dependent, indicating that boundary O(a) improvement in the standard SF cannot be

achieved separately from bulk O(a) improvement. As our data shows, with the χSF this

is indeed possible. More abstractly, this is due to the fact that P5-parity distinguishes the

even O(a) boundary counterterms (∝ ct, ds) from the odd bulk O(a) counterterm ∝ csw.

– 39 –



8.2 Residual cutoff effects in the step-scaling function

In non-perturbative applications the scale evolution of the SF coupling can be traced with

the help of the step scaling function (SSF) [42],

σ(u) = g2(2L)
∣∣
u=g2(L)

, (8.7)

which relates the value u of the coupling g2 at a scale L to its value at a scale 2L. The lattice

version Σ(u,L/a) of the step scaling function depends on the details of the regularization

and converges to (8.7) in the continuum limit,

σ(u) = lim
a/L→0

Σ(u, a/L). (8.8)

Both continuum and lattice versions of the SSF are expanded in perturbation theory as,

σ(u) = u+ σ1u
2 +O(u3), Σ(u, a/L) = u+Σ1(a/L)u

2 +O(u3), (8.9)

with the 1-loop terms given by

σ1 = 2b0 ln(2), Σ1(a/L) = p1(2L/a) − p1(L/a). (8.10)

We would like to monitor the size of the lattice artefacts in the fermionic contribution to

the SSF. Isolating the part ∝ Nf ,

Σ1(L/a) = Σ1,0(L/a) +NfΣ1,1(L/a), (8.11)

and analogously for σ1, their relative difference,

δ1,1(a/L) =
Σ1,1(L/a)− σ1,1

σ1,1
, (8.12)

is shown in Figure 14 for different levels of improvement. For the χSF (Figure 14, right

panel), the cutoff effects are asymptotically O(a2) once c
(1,1)
t is fixed to the correct value

(5.29). Note that boundary O(a) effects are very different between csw = 0 or 1. Somewhat

surprisingly, once these are removed by including the respective values for c
(1,1)
t , the re-

maining cutoff effects are quite similar for csw = 0 and csw = 1. For the standard SF (Figure

(14), left panel), cutoff effects are essentially zero after O(a) improvement is implemented

in the bulk and at the boundaries. This smallness of the remaining cutoff effects seems to

be an accident for this particular choice of background field and kinematical parameters.

9 Conclusions

In this paper we have defined a complete set of boundary-to-bulk and boundary-to-boundary

correlation functions with both χSF and standard SF boundary conditions. Universality

allows to establish a dictionary between both sets which should be applicable to appropri-

ately renormalized correlation functions. We have discussed renormalization and Symanzik

O(a) improvement in terms of these correlation functions. We have then formulated a few
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Figure 14: Cutoff effects δ1,1, Eq. (8.12), for the χSF (left panel) and the standard SF

(right panel). For both the SF and χSF we show the results with and without clover term.

The legend “b. imp.” refers to c
(1,1)
t being set to the correct values, Eqs. (5.29), otherwise

it is set to zero.

theoretical expectations, from the restoration of χSF boundary conditions, flavour and

parity symmetry, to automatic O(a) improvement, all of which follow from the assumption

of a universal continuum limit. We have thus provided the framework for applications and

checks of the χSF both in perturbation theory and beyond.

We have then carried out the perturbative expansion in order to test the theoretical

expectations to one-loop order. Based on numerical data for a range of lattice sizes from

L/a = 6 to L/a = 48 (for both SF and χSF with and without the SW-term), we have first

calculated the action counterterm coefficients mcr zf and ct, ds to order g20 . The critical

mass mcr and the renormalization constant zf are required to restore physical parity and

flavour symmetries which are broken at finite lattice spacing. Their determination is thus a

pre-condition for any further tests regarding the continuum limit. The counterterms with

coefficients ct, ds remove O(a) effects originating from the time boundaries (analogous to

ct, c̃t in the standard SF).

Having determined the action to this order we have performed the following tests:

first, we have confirmed that the correct boundary conditions are implemented on the

lattice. This was done by reversing the projectors in the boundary sources such as to

project on the expected Dirichlet components of the fermionic boundary fields. The mod-

ified correlation functions were then seen to vanish in the continuum limit, with O(a2)

corrections. For comparison we also looked at the corresponding SF correlation functions,

where comparable if larger cutoff effects are observed. Secondly, we have verified that

flavour symmetry is restored in the continuum limit. This has been done by checking

that ratios of boundary-to-boundary correlation functions with different flavour content

converge to unity, such that the continuum relations (2.44),(2.45) are satisfied. We then

studied ratios of boundary-to-bulk correlation functions which should also approach unity,

provided the fermion bilinear operators in the bulk are correctly renormalized. This was
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confirmed and reproduced a number of results from the literature for ratios of fermion

bilinear renormalization constants. Next, we have confirmed the universality between the

SF and χSF set-ups by comparing renormalization constants for the pseudoscalar and ten-

sor densities in SF schemes. Finally, we have checked that the mechanism of automatic

O(a) improvement works as expected. This was done directly, by observing that a set of

P5-odd correlation functions vanish with a rate of O(a), and indirectly by observing the

absence of O(a) terms in P5-even observables, the cancellation of which would require the

O(a) bulk counterterms. In summary, the perturbative study fully confirms all theoretical

expectations and lends further support to the χSF framework.

With the χSF firmly established as a new tool, we would like to give a short outlook on

current and future applications. With automatic O(a) improvement in place, any bulk O(a)

effect in physical observables vanishes without the need to tune either the csw coefficient in

the action or any of the operator improvement coefficients. This last property is particularly

appealing when studying the renormalization of complicated operators such as 4-fermion

or higher-twist operators, where the non-perturbative determination of improvement coef-

ficients is difficult or impractical. A project to determine the step-scaling functions for a

complete set of 4-quark operators in lattice QCD is currently in progress [43, 44]. In this

context we remark that, in practice, it seems advantageous to include the clover term in

the action, as it drastically reduces the O(a) ambiguity in the critical mass, even if the

axial current in the PCAC relation remains unimproved. This in turn renders the tuning of

zf easier and higher order cutoff effects seem strongly reduced, even though the qualitative

asymptotic behaviour is expected to remain unchanged. This feature has been observed

before in the quenched approximation [14] and is now confirmed by our perturbative study.

In a forthcoming non-perturbative study [45] we will present further non-perturbative

tests of the χSF and, in particular, results for the non-singlet current normalization con-

stants, ZA and ZV (for preliminary results in Nf = 2 lattice QCD cf. [19]). In this context,

perturbation theory allows to make an informed choice of the parameters and to pertur-

batively eliminate cutoff effects from the numerical simulation data.

As a further promising application of the χSF we envisage the determination of the

bulk O(a) improvement coefficients csw, cA, cV, cT. Convenient improvement conditions

can be obtained by requiring some P5-odd observables to vanish exactly (besides the one

used to determine zf ). A systematic investigation along these lines both in perturbation

theory and non-perturbatively is left to future work.
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A Fermion bilinears

We refer to appendix A of ref. [20] for our conventions on the Euclidean γ-matrices. An

over-complete set of fermion bilinear operators is then given by

V f1f2
µ (x) = ψf1(x)γµψf2(x), Af1f2

µ (x) = ψf1(x)γµγ5ψf2(x),

Sf1f2(x) = ψf1(x)ψf2(x), P f1f2(x) = ψf1(x)γ5ψf2(x),

T f1f2
µν (x) = iψf1(x)σµνψf2(x), T̃ f1f2

µν (x) = iψf1(x)γ5σµνψf2(x), (A.1)

where explicit flavour indices are used instead of the usual labeling through the generators

of the flavour group. Over-completeness follows from the fact that only 6 of the tensor

densities Tµν and T̃µν are independent due to the identity,

γ5σµν = −1

2
εµνρσσρσ, (A.2)

with the totally antisymmetric ε-tensor normalized by ε0123 = 1.

In order to achieve on-shell O(a) improvement, a single dimension 5 counterterm is

needed for the bilinear operators in (A.1), so that,

Xf1f2
I (x) = Xf1f2(x) + acX(g0)δX

f1f2(x). (A.3)

Here Xf1f2 is any bilinear operator, while the corresponding O(a) counterterms δXf1f2(x)

are given by,

δV f1f2
µ (x) = ∂̃νT

f1f2
µν (x), δAf1f2

µ (x) = ∂̃µP
f1f2(x),

δSf1f2(x) = 0, δP f1f2(x) = 0,

δT f1f2
µν (x) = ∂̃µV

f1f2
ν (x)− ∂̃νV

f1f2
µ (x), δT̃ f1f2

µν (x) = −εµνρσ ∂̃ρV f1f2
σ (x). (A.4)

The coefficients multiplying the O(a) counterterms are functions of the bare coupling g0.

In perturbation theory these read:

cX(g0) = c
(0)
X + c

(1)
X g20 +O(g40), (A.5)

where their tree-level values c
(0)
X are zero, while the 1-loop values are given by [21, 27, 46]

c
(1)
V = −0.01225(1) ×CF, c

(1)
A = −0.005680(2) × CF, c

(1)
T = c

(1)

T̃
= 0.00896(1) × CF.

(A.6)

In the standard SF, the boundary bilinear operators are

Of1f2
5 = a6

∑

y,z

ζf1(y)P+γ5ζf2(z), O′f1f2
5 = a6

∑

y,z

ζ
′

f1(y)P−γ5ζ
′
f2(z),

Of1f2
k = a6

∑

y,z

ζf1(y)P+γkζf2(z), O′f1f2
k = a6

∑

y,z

ζ
′

f1(y)P−γkζ
′
f2(z), (A.7)
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where O5 and Ok are the bilinears at x0 = 0, while O′
5 and O′

k are bilinears at the boundary

at x0 = T . Given these definitions, the boundary bilinear operators for the χSF depend

on the flavour structure and are given by

Quu′

5 = a6
∑

y,z

ζu(y)γ0γ5Q−ζu′(z), Quu′

k = a6
∑

y,z

ζu(y)γkQ−ζu′(z),

Qdd′

5 = a6
∑

y,z

ζd(y)γ0γ5Q+ζd′(z), Qdd′

k = a6
∑

y,z

ζd(y)γkQ+ζd′(z),

Qud
5 = a6

∑

y,z

ζu(y)γ5Q+ζd(z), Qud
k = a6

∑

y,z

ζu(y)γ0γkQ+ζd(z),

Qdu
5 = a6

∑

y,z

ζd(y)γ5Q−ζu(z), Qdu
k = a6

∑

y,z

ζd(y)γ0γkQ−ζu(z), (A.8)

for the boundary at x0 = 0, and

Q′uu′

5 = −a6
∑

y,z

ζ
′

u(y)γ0γ5Q+ζ
′
u′(z), Q′uu′

k = a6
∑

y,z

ζ
′

u(y)γkQ+ζ
′
u′(z),

Q′dd′
5 = −a6

∑

y,z

ζ
′

d(y)γ0γ5Q−ζ
′
d′(z), Q′dd′

k = a6
∑

y,z

ζ
′

d(y)γkQ−ζ
′
d′(z),

Q′ud
5 = a6

∑

y,z

ζ
′

u(y)γ5Q−ζ
′
d(z), Q′ud

k = −a6
∑

y,z

ζ
′

u(y)γ0γkQ−ζ
′
d(z),

Q′du
5 = a6

∑

y,z

ζ
′

d(y)γ5Q+ζ
′
u(z), Q′du

k = −a6
∑

y,z

ζ
′

d(y)γ0γkQ+ζ
′
u(z), (A.9)

for the boundary at x0 = T .

B One-loop contribution to the SF coupling from fermions in the χSF

We present a few details on the perturbative calculation of the coefficient p1,1(L/a) in

Eqs. (5.26) and (5.27) with χSF boundary conditions. The discussion follows very closely

Appendix A of ref. [29], where the coefficient p1,1(L/a) was calculated for the standard SF.

The reader will be assumed to be familiar with this reference, as we will adopt much of the

notation from there without further notice (in particular we use lattice units a = 1 and

t = x0 for Euclidean time).

For definiteness we assume a doublet with Nf = 2 flavours. One then has

p1,1 =
1

2k

∂

∂η
ln det (DW + δDW +m0)

∣∣∣∣
Uµ(x)=Vµ(x)

, (B.1)

where DW +δDW is the χSF Dirac operator including the counterterms, Eqs. (3.12),(3.13),

Vµ(x) denotes the Abelian background field which depends on the parameters η and ν,

which are set to zero after differentiation by η. Finally, k is the tree-level normalization

constant which ensures the correct normalization of the SF coupling (cf. [29, 35]). The

large determinant in Eq. (B.1) can be reduced to subsectors of fixed spatial momentum p,

colour nc and flavour f , such that

p1,1(L/a) =
1

2k

3∑

nc=1

∑

f=u,d

∑

p

∂

∂η
ln detD(f)(nc,p)

∣∣∣∣
η=ν=0

. (B.2)
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The flavour structure can be further reduced to the up-type determinant by recalling from

ref. [2] that

D(u)
W = γ5

(
D(d)

W

)†
γ5, (B.3)

so that their determinants are complex conjugate to each other. Moreover, we anticipate

that both determinants are real when taken in the Abelian background fields, so that we

can omit the modulus and obtain:

p1,1(L/a) =
1

k

3∑

nc=1

∑

p

∂

∂η
ln detD(u)(nc,p)

∣∣∣∣
η=ν=0

. (B.4)

The task is thus reduced to many evaluations of (the η-derivative of) the determinant

of D(u) for fixed colour and spatial momentum, which corresponds to a matrix of size

4(T + 1) × 4(T + 1). This is most efficiently done by setting up a recursion relation in

Euclidean time, following refs. [3, 29]. The starting point is an eigenvalue equation for a

hermitian operator, which requires us to temporarily remain in 2-flavour space and consider:

(
γ5τ

1D − µ
)
f(t) = 0 . (B.5)

The reduced operator D = diag
(
D(u),D(d)

)
acts on eigenfunctions f(t) as a finite difference

operator in Euclidean time,

(Df) (t) = −P−f(t+ 1) + h(t)f(t)− P+f(t− 1) , (B.6)

where we have extended the functions f(t) beyond the interval [0, T ] by setting

f(−1) = −iγ0γ5τ3f(0), f(T + 1) = iγ0γ5τ
3f(T ), (B.7)

and f(t) = 0 for t < −1 and t > T + 1. In the notation of [29], the function h(t) is given

by

h(t) = 1 +m0 + iq̃k(t)γk +
1

2

3∑

k=1

q̂k(t)
2 − (1− δt,0 − δt,T )

1

2
cswγ0γkp0k

+ (δt,0 + δt,T )
{
(zf − 1) + (ds − 1)

(
iq̃k(t)γk +

1

2

3∑

k=1

q̂k(t)
2
)}
,

(B.8)

where summation over repeated spatial indices is assumed. Note that, at the boundaries

t = 0 and t = T , the function h(t) contains the contribution coming from the boundary

counterterms and the term proportional to csw is absent (cf. Section 3).

To obtain a first order recursion we now reformulate [29],

F (t) = P−f(t) + P+f(t− 1), 0 ≤ t ≤ T + 1 , (B.9)

and, as a consequence of eq.(B.7), F (t) satisfies the boundary conditions

Q̃+F (0) = 0, Q̃−F (T + 1) = 0. (B.10)
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The eigenvalue equation (B.5) now takes the form of a first order recursion relation,

F (t+ 1) = A(t)F (t), (B.11)

with

A(t) = −a(t)−1
{
P−

[
µ2 − a(t)2 + µγ5τ

1 (ck(t)γk − bk(t)γk + 1)

+ck(t)γk (bj(t)γj − 1)]

+ P+

[
bk(t)γk − µγ5τ

1 − 1
]}
.

(B.12)

The coefficients a(t), bk(t) and ck(t) are scalar functions of t given by

a(t) = 1 +m0 +
1

2

3∑

k=1

q̂k(t)
2

+ (δt,0 + δt,T )
{
(zf − 1) + (ds − 1)

1

2

3∑

k=1

q̂k(t)
2
}
, (B.13)

bk(t) = i [1 + (δt,0 + δt,T ) (ds − 1)] q̃k(t)−
1

2
(1− δt,0 − δt,T ) cswp0k , (B.14)

ck(t) = i [1 + (δt,0 + δt,T ) (ds − 1)] q̃k(t) +
1

2
(1− δt,0 − δt,T ) cswp0k . (B.15)

After T + 1 steps one arrives at F (T + 1) which depends linearly on F (0), through

F (T + 1) =M Q̃(µ)F (0) , M Q̃(µ) = A(T )A(T − 1)...A(0) . (B.16)

The boundary conditions (B.10) then imply

det
(
M Q̃

−−(µ)
)
= 0 , (B.17)

where M Q̃
−−(µ) is the matrix Q̃−M

Q̃(µ)Q̃− reduced to the subspace (of dimension 2 × 2)

defined by the projectors Q̃−. Taking into account the dimensionality of the matrices and

following the reasoning of ref. [3], the characteristic polynomial of γ5τ
1D is given by

det
(
γ5τ

1D − µ
)
= det

(
M Q̃

−−(µ)

t=T∏

t=0

a(t)

)
. (B.18)

In practice it is slightly inconvenient to choose a representation of the γ-algebra where Q̃±

are diagonal. Using diagonal γ0 instead, one may perform a unitary rotation,

U †Q̃±U = P±, where U = (1− iτ3γ5)/
√
2, (B.19)

and use the P± projectors. More precisely, Eq.(B.16) reads,

U †F (T + 1) = U †M Q̃(µ)UU †F (0) , (B.20)

and the boundary conditions for U †F are now given in terms of the P± projectors,

P+U
†F (0) = U †Q̃+F (0) = 0 , P−U

†F (T + 1) = U †Q̃−F (T + 1) = 0 . (B.21)
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Hence, if we define

MP (µ) = U †M Q̃(µ)U , (B.22)

we conclude

det
(
M Q̃

−−(µ)
)
= det

(
MP

−−(µ)
)
, (B.23)

where on the RHS the restriction is now to the subspace defined by the P− projector. At

this point one may set µ = 0 and MP
−−(0) becomes flavour diagonal. The final result may

be written in the form

∂

∂η
ln detD(u) = Tr

{(
M (u)

)−1 ∂

∂η
M (u)

}
, (B.24)

where the matrix M (u) is given by

M (u) =
1

2

(
[1 + iγ5]B(T )B(T − 1) · · ·B(0)[1 − iγ5]

)
−−

, (B.25)

with

B(t) = P−a(t)
2 + P+ {1− bk(t)γk}+ ck(t)γk {1− bj(t)γj} . (B.26)

Note that the matrix M (u) and its η-derivative (or any other derivative, here generically

denoted by “prime”) can be generated by the coupled recursion,

G(t+ 1) = B(t)G(t), G′(t+ 1) = B′(t)G(t) +B(t)G′(t) , (B.27)

starting with G(0) = (1− iγ5)P− and G′(0) = 0.

C Perturbation theory versus MC data at large β

In order to further corroborate the perturbative results we obtained for the finite renor-

malization constants ZV and ZA involving the point-split current, we decided to compare

the determinations with results from Monte Carlo simulations at small values of the bare

coupling g0. To this end, we performed simulations at a fixed lattice size L/a = 8, and for

25 different values of β = 6/g20 , in the range β ∈ [50 : 1200]. We note that at O(g20) only

gluonic loops appear in the perturbative expansion of the fermionic correlation functions

entering the definition of ZA,V (cf. Figure 1 and 3). This allowed us to simply generate pure

SU(3) gauge-field configurations on which we measured the relevant fermionic correlators.

For the comparison to be meaningful the Monte Carlo determinations need to mimic

exactly the perturbative computations. This means that the lattice set-up, as well as the

values for the bare parameters and improvement coefficients need to be the same in the

two computations. We therefore set ρ = T/L = 1 and θ = 0. For the bare parameters we

took: m0(g0) = m
(1)
cr (L/a)g20 and zf (g0) = 1+ z

(1)
f (L/a)g20 , where m

(1)
cr (L/a) and z

(1)
f (L/a)

were given by Eqs. (5.16),(5.17) with L/a = 8. Finally, for the improvement coefficients

we considered their asymptotic values up to the relevant order of perturbation theory.

Specifically, we set the boundary improvement coefficients ds(g0) =
1
2 + d

(1)
s g20 , ct = 1, and

d̄s = 0 (cf. Section 5), while for the bulk improvement coefficients we chose csw = 1, and

cA = cV = c
Ṽ
= 0.
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Figure 15: Values of the PCAC quark-mass mPCAC and of gudA as a function of g40 ,

obtained from Monte Carlo simulations at L/a = 8. Both quantities have been measured

in the middle of the lattice i.e. for x0 = T/2.

In order to confirm that the bare parameters m0(g0) and zf (g0) were chosen properly,

we checked whether the conditions (3.30) and (3.31) were realized up to O(g40) corrections.

The results for the corresponding quantities are show in Figure 15. As we can see, the data

are very well described by a pure O(g40) effect over the whole range of g0 we investigated.

The renormalization conditions are then satisfied up to 1-loop order in perturbation theory.

Table 4: Comparison between the 1-loop coefficients Z
(1)
X (L/a) of ZX , X = V,A, for

both the l and g definitions, as obtained from perturbation theory (PT) and Monte Carlo

simulations (MC) at L/a = 8.

Z
(1)
X (L/a) PT MC

(Zg
V )

(1) −0.122586 −0.122596(19)

(Z l
V )

(1) −0.129838 −0.129822(12)

(Zg
A)

(1) −0.109076 −0.109074(22)

(Z l
A)

(1) −0.116640 −0.116645(10)

In Figure 16, instead, we present the results for the two definitions of ZV (left panel),

and ZA (right panel). Specifically, after verifying that ZV and ZA extrapolated correctly

to 1 for g0 → 0, we looked at (ZX − 1)/g20 , X = V,A, in order to extract the 1-loop

coefficients Z
(1)
X (L/a) to be compared with perturbation theory. As we can see from the

figure, there is nice agreement between the perturbative and Monte Carlo determinations.

We note that Z
(1)
X (L/a) was obtained from the Monte Carlo data by considering a linear

fit of (ZX −1)/g20 with respect to g20 , including all but the largest value of g0 we simulated.

For completeness, we collected in Table 4 the results from 1-loop perturbation theory, and

the results of the extrapolations of the Monte Carlo data.
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g
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[3] M. Lüscher, R. Narayanan, P. Weisz, and U. Wolff, The Schrödinger functional: a

renormalizable probe for non-Abelian gauge theories, Nucl. Phys. B384 (1992) 168–228,

[hep-lat/9207009].

[4] S. Sint, On the Schrödinger functional in QCD, Nucl. Phys. B421 (1994) 135–158,

[hep-lat/9312079].

[5] S. Sint, One loop renormalization of the QCD Schrödinger functional, Nucl. Phys. B451

(1995) 416–444, [hep-lat/9504005].

[6] S. Miyazaki and Y. Kikukawa, Boundary condition for staggered fermion in lattice

Schrödinger functional of QCD, hep-lat/9409011.

[7] U. M. Heller, The Schrödinger functional running coupling with staggered fermions, Nucl.

Phys. B504 (1997) 435–458, [hep-lat/9705012].

[8] P. Perez Rubio and S. Sint, Fermionic correlation functions from the staggered Schrödinger

functional, PoS LATTICE2008 (2008) 221, [arXiv:0810.3866].

[9] Y. Taniguchi, Schrödinger functional formalism with Ginsparg-Wilson fermion, JHEP 12

(2005) 037, [hep-lat/0412024].

[10] Y. Taniguchi, Schrödinger functional formalism with domain-wall fermion, JHEP 10 (2006)

027, [hep-lat/0604002].

[11] S. Sint, Schrödinger functional renormalization schemes for Ginsparg-Wilson quarks, PoS

LAT2007 (2007) 253.

[12] R. Frezzotti and G. C. Rossi, Chirally improving Wilson fermions. 1. O(a) improvement,

JHEP 08 (2004) 007, [hep-lat/0306014].

– 49 –

http://xxx.lanl.gov/abs/hep-lat/0511034
http://xxx.lanl.gov/abs/1008.4857
http://xxx.lanl.gov/abs/hep-lat/9207009
http://xxx.lanl.gov/abs/hep-lat/9312079
http://xxx.lanl.gov/abs/hep-lat/9504005
http://xxx.lanl.gov/abs/hep-lat/9409011
http://xxx.lanl.gov/abs/hep-lat/9705012
http://xxx.lanl.gov/abs/0810.3866
http://xxx.lanl.gov/abs/hep-lat/0412024
http://xxx.lanl.gov/abs/hep-lat/0604002
http://xxx.lanl.gov/abs/hep-lat/0306014


[13] ALPHA Collaboration, R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz, Lattice QCD with

a chirally twisted mass term, JHEP 08 (2001) 058, [hep-lat/0101001].

[14] S. Sint and B. Leder, Testing universality and automatic O(a) improvement in massless

lattice QCD with Wilson quarks, PoS LATTICE2010 (2010) 265, [arXiv:1012.2500].

[15] S. Sint and P. Vilaseca, Perturbative lattice artefacts in the SF coupling for

technicolor-inspired models, PoS LATTICE2011 (2011) 091, [arXiv:1111.2227].

[16] S. Sint and P. Vilaseca, Lattice artefacts in the Schrödinger Functional coupling for strongly

interacting theories, PoS LATTICE2012 (2012) 031, [arXiv:1211.0411].

[17] J. Gonzalez Lopez, K. Jansen, D. Renner, and A. Shindler, A quenched study of the

Schroedinger functional with chirally rotated boundary conditions: non-perturbative tuning,

Nucl. Phys. B867 (2013) 567–608, [arXiv:1208.4591].

[18] J. Gonzalez Lopez, K. Jansen, D. Renner, and A. Shindler, A quenched study of the

Schroedinger functional with chirally rotated boundary conditions: applications, Nucl. Phys.

B867 (2013) 609–635, [arXiv:1208.4661].

[19] M. Dalla Brida and S. Sint, A dynamical study of the chirally rotated Schödinger functional

in QCD, PoS LATTICE2014 (2014) 280, [arXiv:1412.8022].
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