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Abstract

A recent ”beam splitting” experiment at LCLS apparently demonstrated that after
a microbunched electron beam is kicked on a large angle compared to the diver-
gence of the FEL radiation, the microbunching wave front is readjusted along the
new direction of motion of the kicked beam. Therefore, coherent radiation from
an undulator placed after the kicker is emitted along the kicked direction without
suppression. This strong emission of coherent undulator radiation in the kicked
direction cannot be explained in the framework of conventional synchrotron ra-
diation theory. In a previous paper we explained this puzzle. We demonstrated
that, in accelerator physics, the coupling of fields and particles is based, on the
one hand, on the use of results from particle dynamics treated according to the
absolute time convention and, on the other hand, on the use of Maxwell equations
treated according to the standard (Einstein) synchronization convention. Here lies
the misconception which led to the strong qualitative disagreement between theory
and experiment. After the ”beam splitting” experiment at LCLS, it became clear
that the conventional theory of synchrotron radiation cannot ensure the correct
description of coherent and spontaneous emission from a kicked electron beam,
nor the emission from a beam with finite angular divergence, in an undulator or a
bending magnet. However, this result requires further experimental confirmation.
In this publication we propose an uncomplicated and inexpensive experiment to
test synchrotron radiation theory at 3rd generation light sources.

1 Introduction

The results of the ”beam splitting” experiment at LCLS [1], demonstrated
that even the direction of emission of coherent undulator radiation is be-
yond the predictive power of conventional synchrotron radiation (SR) the-
ory. That experiment constituted the original basis for arguing that there

Preprint submitted to 11 May 2016



must be something wrong with the theory. In fact, in open contrast with it,
after a microbunched electron beam is kicked on a large angle compared
to the divergence of the FEL radiation, powerful emission of coherent ra-
diation has been observed in the kicked direction [1]. In a previous paper
[2] we demonstrated that the effect of aberration of light supplies the ba-
sis for a quantitative description of this phenomenon. Maxwell’s theory is
usually treated under the standard time order, which is based on the use of
clocks in uniform motion with respect to the laboratory frame (i.e. in rest
with respect to the uniform motion imprinted by the kick) and synchro-
nized by light-signals. In contrast to this, particle dynamics is usually based
on a different time order (non-standard, or absolute-time synchronization
convention), which is based on the use of clocks at rest with respect to the
laboratory frame and synchronized by light-signals. This essential point has
never received attention in the physics community. There are two possible
ways of coupling fields and particles in this situation. The first, Lorentz’s
prerelativistic way, consists in a ”translation” of Maxwell’s electrodynamics
to the absolute time world-picture. The second, Einstein’s way, consists in a
”translation” of particle tracking results to an electromagnetic world-picture
(that is, to the standard time order). Conventional particle dynamics shows
that the electron beam direction changes after the kick, while the orienta-
tion of the microbunching phase front stays unvaried. We showed [3] that
a ”translation” of particle tracking results to the electromagnetic world pic-
ture (or vice versa) predicts a surprising effect, in complete contrast to the
conventional treatment. Namely, in the ultrarelativistic asymptotic (v→ c),
the orientation of the plane of simultaneity (that is the microbunching phase
front) is always perpendicular to the beam velocity. This effect explains the
production of coherent undulator radiation from a modulated electron beam
in the kicked direction without the suppression usually predicted by theory.

Immediately after the publication of the results of the ”beam splitting”
experiment at the LCLS, it became clear to us that the conventional SR theory
cannot even ensure a correct description of spontaneous emission (i.e. of
single particle radiation). In particular, one of the immediate consequences
of the beam splitting experiment at LCLS is the occurrence of a red shift of
the resonance wavelength, which arises in the kicked direction. Clearly, the
conventional SR theory predicts a zero red shift for a fundamental reason
related to the Doppler effect. In fact, before and after the kick, the electron has
the same speed. Since in terms of conventional SR theory an electron emits
spontaneous undulator radiation without red shift in the kicked direction,
we insist on performing an uncomplicated and inexpensive experiment at
3rd generation light sources that can confute the conventional theoretical
approach.

In this work we stress that the presence of red shift in undulator radiation au-
tomatically implies the same problem for conventional cyclotron radiation
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theory. In fact, the conventional theory predicts that there should be no red
shift for radiation emitted by an electron with velocity directed along and
across the magnetic lines of force. In the ultrarelativistic limit well-known
analytical formulas which describe the spectral and angular distribution of
cyclotron radiation emitted by an electron moving in a constant magnetic
field, having a non-relativistic velocity component parallel to the field, and
an ultrarelativistic velocity component perpendicular to it. According to
the conventional approach, exactly as for the undulator case, the angular-
spectral distribution of radiation is a function of the total velocity of the
particle due, again, to the Doppler effect. At present, relativistic cyclotron
radiation results are textbook examples (e.g. [4, 5, 6] ) and do not require
a detailed description. We note, however, that cyclotron-synchrotron radi-
ation emission is one of the most important processes in plasma physics
and astrophysics and the results of an experimental test of conventional SR
theory would constitute a truly critical experimental test for a much wider
part of physics than that of SR or XFEL sources.

2 A crucial experiment to test SR theory with 3rd generation light source

As already discussed in the Introduction, in this paper we focus on the
description of an experiment which can reveal the difference between the
predictions of conventional SR theory and our proposed correction in some
commonly used setups.

In the following we will assume a filament electron beam approximation,
that allows us to take advantage of analytical presentations for single particle
SR fields. This means that the emittance of the electron beam is small enough
to neglect finite electron beam size and angular divergence in an undulator.
In other words, spatially coherent undulator radiation is assumed to be used
to test SR theory. In accordance with the diffraction condition, the electron
beam emittance sets the minimum wavelength at which radiation can be
diffraction limited. The performance of synchrotron radiation sources has
increased tremendously in terms of spatial coherence during the last years.
In particular, new 3rd generation light sources with ultra-low emittance
in the range ε ' 0.3nm, which are presently under operation or under
construction, can produce practically fully diffraction limited (i.e. spatial
coherent) undulator radiation in the soft X-ray photon energy range around
water window (0.25 keV).

We also assume that monochromatization is good enough to neglect the
finite bandwidth of the radiation around the fundamental frequency, and
that the electron beam energy spread is negligible. Contrarily to the band-
width of a frequency filter, the energy spread is fixed for a given facility: its
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presence constitutes a fundamental effect. The typical energy spread for 3rd
generation light sources is of order 0.1%. For the LCLS source this figure
is about an order of magnitude smaller. We studied the impact of a finite
energy spread using the expression for the intensity of a diffraction limited
beam including energy spread. We compared, at the resonance frequency,
i.e. at zero detuning parameter, the case for negligible energy spread with
the case corresponding to an energy spread of 0.1% for a number of undu-
lator periods Nw = 70, which are typical for 3rd generation light sources.
We found that differences in the maximum intensities are within 10%. This
reasoning allowed us to conclude that the simplest analytical result for zero
energy spread can be applied to practical cases of interest involving 3rd
generation light sources and undulators with up to 70 periods with good
accuracy.

When one needs to specify the angular-spectral flux density at any position
down the beam line, one needs to calculate the field at any position down the
beam line. In order to do so, we first discuss the field from a single relativistic
electron moving without kick along the undulator axis. We indicate the
velocity of the electron with v and the Lorentz factor with γ = 1/

√
1 − v2/c2.

We consider a planar undulator, so that the transverse velocity of the electron
can be written as

~v⊥(z) = −
cK
γ

sin (kwz)~ex , (1)

where kw = 2π/λw, with λw the undulator period and K the undulator
parameter

K =
λweHw

2πmec2 , (2)

me being the electron mass and Hw being the maximum of the magnetic
field produced by the undulator on the z axis. The resonance condition at
the fundamental harmonic is given by

ω
vz
−
ω
c

= kw , (3)

where vz is the average speed in the z direction. In terms of K and γ, the
resonance frequency is

ωr =
2ckwγ2

1 + K2/2
. (4)
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SR theory is naturally developed in the space-frequency domain, as one
is usually interested in radiation properties at a given position in space
at a certain frequency. Here we define the relation between temporal and
frequency domain via the following definition of Fourier transform pairs:

f̄ (ω) =

∞∫
−∞

dt f (t) exp(iωt)↔ f (t) =
1

2π

∞∫
−∞

dω f̄ (ω) exp(−iωt) . (5)

A well-known expression for the angular distribution of the first harmonic
field in the far-zone can be found in literature. Such expression is axis-
symmetric, and can therefore be presented as a function of a single obser-
vation angle θ, where

θ2 = θ2
x + θ2

y , (6)

θx ' tanθx = x0/z0 and θy ' tanθy = y0/z0 being angles measured from the
undulator z-axis in the horizontal and in the vertical direction, and (x0, y0, z0)
being the observation position relative to the center of the undulator. In the
following we will always assume that the ultra-relativistic approximation
is satisfied, which is the case for SR setups. As a consequence, the paraxial
approximation applies too. The paraxial approximation implies a slowly
varying envelope of the field with respect to the wavelength. It is therefore
convenient to introduce the slowly varying envelope of the transverse field
components as

Ẽ(z, x, y, ω) = Ē(z, x, y, ω) exp (−iωz/c) . (7)

One then obtains the following distribution for the slowly varying envelope
of the electric field:

~̃E(θ) = −
KωeL
2c2z0γ

AJJ exp
[
i
ωθ2z0

2c

]
sinc

[
L
2

(
C +

ωθ2

2c

)]
~ex ,

(8)

where sinc(·) ≡ sin(·)/(·). The field is polarized in the horizontal direction.
Here L = λwNw is the undulator length and Nw the number of undulator
periods, ω = ωr + ∆ω, C = kw∆ω/ωr and ωr is the fundamental resonance
frequency which can be obtained from Eq. (4). Finally, AJJ is defined as

AJJ = Jo

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)
, (9)
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Jn being the n-th order Bessel function of the first kind. Eq. (8) is valid only
when the resonance approximation is valid. This approximation does not
replace the paraxial one, based on γ2

� 1, but it is used together with it. It
takes advantage of another parameter that is usually large, i.e. the number
of undulator periods Nw � 1.

The physical meaning of Eq. (8) can be best understood by considering
the properties of radiation in terms of photon flux density. For a filament
electron beam of current I, the angular spectral flux density in the direction
(θx, θy) can be written as

dF
dΩ

=
dṄph

dΩ(dω/ω)
=

I
e~

cz2
0

4π2 |Ẽ|
2 , (10)

where dṄph/(dω/ω)dΩ is the number of photons per unit time per unit
solid angle per relative frequency bandwidth, and Ẽ is the slowly varying
envelope of the electric field produced by a single electron in the space-
frequency domain 1 .

The maximum value of |Ẽ|2 at the resonance wavelength as a function of θx

and θy is reached on-axis, i.e. for θx = θy = 0. The on-axis angular spectral
flux at perfect resonance is given by

max
(

dF
dΩ

)
=

I
e
αK2A2

JJ
L2

4λ2γ2 , (11)

whereα = e2/(~c) is the fine structure constant. The angle-integrated spectral
flux F = dṄph/(dω/ω) is defined as

F =

∫
dF
dΩ

dθxdθy . (12)

If we substitute Eq. (10) in Eq. (12) we obtain

F =
I
e
παK2A2

JJ
Nw

2(1 + K2/2)
. (13)

Let us now discuss the effect of a deflection angle η ' tan η = vx/vz ' vx/c,
that is our kick, in accordance to conventional SR theory. The undulator

1 Note that Eq. (10) depends on the units chosen, in this case Gaussian units, and
on definition of Fourier transformation, Eq. (5)
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radiation field emitted by an electron with a deflection angle can be derived
after rather cumbersome calculations. These calculations are based on the
well-known formulas for the retarded fields, and were first presented in [7,
8]. using our previous notation, an explicit expression for the radiation field
emitted by an electron with a detuning from resonance C and a deflection
angle η is

~̃E(~θ, ~η) = −
KωeL
2c2z0γ

AJJ exp
[
i
ωθ2z0

2c

]
sinc

L
2

C +
ω

∣∣∣θ − η∣∣∣2
2c


~ex . (14)

It is possible to give an elementary explanation of one obvious effect due
to electron deflection. Since the magnetic field experienced by the electron
is assumed to be independent of its transverse coordinate, the trajectory
followed is still sinusoidal, but the effective undulator period is now given
by λw/ cos η ' (1 + η2/2)λw. This induces a relative red shift in the resonant
wavelength ∆λ/λ = η2/2. In practical cases of interest we may estimate a
deflection angle up to about η ' 1/γ. Then, the relative red shift ∆λ/λ ' 1/γ2

should be compared with the relative bandwidth of the resonance, that is
∆λ/λ ∼ 1/Nw, Nw being the number of undulator periods. In all situation
of practical relevance 1/γ2

� 1/Nw and, as a result, the red shift in the
resonance wavelength due to the increase of the effective undulator period
can be neglected.

It is clear from the above that, according to conventional SR theory, if we
consider radiation from one electron (or from a filament beam) at detuning
C from resonance, the introduction of a kick only amounts to a rigid rotation
of the angular distribution along the new direction of the electron motion.
This is plausible, if one keeps in mind that after the kick the particle has
the same energy and emits radiation in the kicked direction owing to the
Doppler effect. After such rotation, Eq. (8) transforms into Eq. (14).

Let us now discuss the effect of a kick in accordance to our predictions
[2]. Lorentz demonstrated that the principle of Galilean relativity, i.e. the
Galilean law of addition of velocities, holds not only in mechanics but also
in experiments involving optics and electrodynamics as long as we neglect
effects proportional to v2

x/c2. This accuracy is more than sufficient in our
case of interest, because the kick angle (η . 1/γ) is very small (order of 0.1
mrad), so that a first approximation over the parameter vx/c yields a correct
quantitative description. In what follows we will thus endorse a Galilean
description. According to the principle of Galilean relativity, the physical
laws appear the same in any two inertial frames, S0 and S, and are related
by a Galileo transformation. In the inertial frame S0, that is the laboratory
frame, the electron velocity components after the kick are (vx, 0, vz), where
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vz =
√

v2 − v2
x and v is the beam velocity along the z-axis, i.e. the undulator

axis upstream of the kicker. Consider now an inertial reference frame S
moving with uniform motion at speed vx along the x-axis of the frame S0. In
S, the electron velocity components are just (0, 0, vz). Since all inertial frames
are equivalent, S and S0 can only be distinguished from one another by
their relative speed vx, and we can transform quantities from S to S0 and
viceversa using a Galileo transformation. Now we remind that since we
resort to Galilean relativity, simultaneity of events does not depend on the
reference frame chosen (S, S0 or any other inertial frame), that is it is absolute.
Therefore, the kicked electron, as seen in the frame S, reproduces exactly
the situation upstream of the kicker as seen in the frame S0. However, it is
clear from the above that if an electron is at perfect resonance in S0 before
the kick and moves with longitudinal velocity (0, 0, v), then after the kick
the same electron cannot be at perfect resonance in the frame S, because
of the different longitudinal velocity vz. We find that the red shift in the
resonance wavelength due to the difference between longitudinal velocities
cannot be neglected in practical situation. The rule for computing the result
in laboratory frame S0 is simple. One takes the velocity of the light with
respect to the frame S and adds it vectorially to the velocity of the frame
S with respect to the laboratory frame S0. The direction of the resulting
vector is the apparent direction of the source of light as measured at the
observer position in the laboratory frame. The rule conforms to the principle
of Galilean kinematics 2 .

The preceding Galilean approach gives the following expression for the
radiation field in question

2 We thus describe a complicated situation by finding a reference system where
analysis is easier and then we transform back to the old reference frame. Note that
leading treaties and textbooks on classical electrodynamics tell us that a Lorentz
transformation always leads to correct result. However, if we apply a Lorentz
boost, our predictions of radiation properties will be incorrect in our case: it seems
puzzling that only a Galileo boost is correct. However, we note that even in the
non-relativistic limit, when we can neglect second order corrections in vx/c, which
are intrinsically relativistic, Lorentz and Galilean transformations are different. In
fact the term xvx/c2 in the Lorentz transformation for time, leading to relativity of
simultaneity, is a first order correction. Yet this term is only conventional and has
no direct physical meaning: with a suitable clocks synchronization convention this
term can be eliminated. In other words, Galilean and Lorentz transformations are
different even in the non-relativistic limit only because they are based on the use
of different synchronization conventions. Our point is that the usual description of
electron motion is based on the use of clocks in rest relative to the laboratory frame,
synchronized by light-signals, and that under this convention only a Galilean boost
can be used. In contrast, Lorentz transformation is based on the use clocks in rest
relative to the frame moving with translational velocity vx, synchronized by light-
signals. More details can be found in section 3.
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Fig. 1. Basic setup for our proposed critical test. Top: the case for a filament beam
without kick. Bottom: the case for a filament beam kicked by an angle η. In both
cases, the X-ray pulse is filtered by a monochromator F and the total energy recorded
by a detector D as a function of the detuning.

~̃E(θ, η) = −
KωeL
2c2z0γ

AJJ exp
[
i
ωθ2z0

2c

]
sinc

L
2

C +
ωη2

2c
+
ω

∣∣∣θ − η∣∣∣2
2c


~ex .

(15)

This formula has nearly, but not quite the same form as Eq. (14), the differ-
ence consisting in the term ωη2/(2c) in the argument of the sinc function.
Attention must be called to the difference in resonance frequency between
undulator radiation setups with and without the kick. When the electron
has a uniform translational motion with velocity vx, the red shift in the res-
onance frequency can be expressed by the formula ∆ω/ωr = −ωrη2/(2kwc),
which can be written as ∆ω/ωr = −γ2η2/(1 + K2/2). We now see a second
order correction η2 that is, however, multiplied by a large factor γ2. We thus
conclude that both the apparent readjusting of microbunch front orientation
and red shift in the resonance wavelength observed at the LCLS beam split-
ting experiment can be quantitatively explained with the help of Galilean
relativity.

In order to confirm our prediction, we propose a simple experiment at 3rd
generation light sources with ultra-low emittance in the soft X-ray range.
The basic setup for a test experiment is sketched in Fig. 1. The soft X-ray
undulator beam line should be tuned to a minimum photon energy (typi-
cally this limit is related with the water window). The radiation pulse goes
through a monochromator filter F and its energy is subsequently measured
by the detector D. No precise monochromatization of the undulator radi-
ation is required in this case: a monochromator line width ∆ω/ω ' 0.001
is sufficient. In order for our test experiment to be carried out, it is neces-
sary to control the beam kicking e.g. by corrector magnets. In the case of
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no kick the maximum pulse energy registered by the detector will coincide
with the monochromator line tuned to resonance, Fig. 1 (top). When the
kick is introduced, Fig. 1 (bottom), the conventional SR theory still predicts
(up to corrections ∆ω/ωr = η2/2, discussed before and negligible) a zero
red shift in the resonance wavelength. In contrast to this, one of the imme-
diate consequences of our theory is the occurrence of a non-zero red shift
of the resonance wavelength, which arises because the electron beam has
a uniform translational motion with velocity vx ' vη in the direction per-
pendicular to the undulator axis. The object of the whole experiment is to
confirm or confute the difference in resonance frequencies between the two
configurations in Fig. 1. The proposed experimental procedure is reasonably
simple and based on relative measurements. A necessary condition for this
type of test experiment is the validity of the filament beam approximation.

3 Discussion and Conclusions

There is another interesting problem where our correction of SR theory
results is required. It is the problem of cyclotron radiation. Calculations
pertaining radiation from an ultra-relativistic electron in helical motion in a
uniform magnetic field are well-known, see e.g. [4, 5, 6]. Similarly as for the
case of undulator radiation, however, these calculations lead to incorrect
results because of improper analysis for the case of a uniform translational
motion of the electron in the direction of magnetic field. Consider Fig. 2
(right). We argue that the angular divergence and critical frequency of the
radiation emitted by an electron with relativistic factorγ = 1/

√
1 − v2/c2 � 1

spiraling with pitch angle angle χ ' π/2 about a magnetic field B are not
∆θ ∼ 1/γ and ωc ∼ Bγ2 as usually stated but rather, respectively, ∆θ ∼ 1/γ⊥
and ωc ∼ Bγ2

⊥
, where γ⊥ = 1/

√
1 − v2

⊥
/c2 and v⊥ = v sinχ.

The influence of the uniform translational motion along the magnetic field
direction on the radiation emission can be described purely kinematically.
Up to date, our community never considered the question of the method
of synchronizing spaced clocks used for describing the particle motion.
However, without a clear definition of this method, any attempt to solve
electrodynamic problems will lead to incorrect results. In our previous pa-
per [3] we demonstrated that Galilean transformations supply the basis for
a quantitative description of the results obtained at LCLS. Since the creation
of special relativity, most researches assume that Lorentz transformations
immediately follow from the postulates of the theory of relativity. However
these postulates alone are not sufficient to obtain Lorentz transformations:
one additionally needs to synchronize spatially separated moving clocks
with the help of light signals. If this is done using the Einstein synchro-
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Fig. 2. Geometry for radiation production from circular and helical motion. On the
same reference system we show an electron in a uniform magnetic field (left) on a
circular orbit and (right) on a helical orbit.

nization convention, Lorentz transformations follow. However, if the same
clocks are synchronized following a different synchronization convention,
other transformations are obtained. The main point behind our criticism of
conventional SR theory is that, under a uniform translation, the electron
motion is not described by using clocks in rest relative to the moving ref-
erence frame and synchronized by light-signals, but rather by using clocks
in rest relative to the laboratory frame and synchronized by light-signals,
i.e. following the so-called absolute time convention. This statement follows
from the observation that particle dynamics in the laboratory frame treats
time as an independent variable. Unfortunately, in the work of the majority
of researches dealing with cyclotron theory development, the synchroniza-
tion procedure of clocks has either not been considered at all or has been
performed incorrectly.

Widely accepted expressions for the angular and spectral distributions of
radiation from an ultra-relativistic electron on a helical orbit were calculated
in [9, 10]. Let us discuss in some detail the cyclotron radiation emitted
by an electron moving in a constant magnetic field with a non-relativistic
component of the velocity parallel to the direction of the magnetic field, and
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a ultra-relativistic component perpendicular to it. Here we shall only give
some final results and discuss their relation with the conventional SR theory
from a bending magnet with reference to Fig. 2. In the case of a uniform
translational motion with non-relativistic velocity along the magnetic field
direction, the radiation field in the far zone according to [5], and using the
notations in that reference, is given by

~̃E(χ, α) ∼
{
~ex

(ξ2 + ψ2)K2/3

 ω2ωc

(
1 +

ψ2

ξ2

)3/2
−i~ey

(ξ2 + ψ2)1/2ψK1/3

 ω2ωc

(
1 +

ψ2

ξ2

)3/2 } , (16)

where K1/3 and K2/3 are the modified Bessel functions, ξ = 1/γ, ψ = χ − α

(χ is the angle between ~v and ~B and α that between ~n and ~B); the angle ψ is
clearly the angular distance between the direction of the electron velocity ~v
and the direction of observation ~n. Here ωc is defined by 3eBγ2/(2mec).

This result can be understood most easily by comparison with the theory
of the radiation emitted by an ultra-relativistic electron moving instanta-
neously at constant speed on a circular path, Fig. 2 (left). For convenience
we now define the small deflection angle η = π/2 − χ, and we discuss its
effects in accordance with conventional SR theory. It is clear from Eq. (16)
that if we consider the radiation from an electron with relativistic factor γ
moving on a circular orbit (Fig. 2 (left)), the introduction of the kick only
amounts (as before for the undulator case) to a rigid rotation of the angular
distribution along the new direction of the electron motion (Fig. 2 (right)).
As for the undulator case, this is intuitively sound if one keeps in mind that
after the kick the electron has the same velocity in magnitude, and emits
radiation in the kicked direction owing to the Doppler effect.

The angular-spectral distribution in Eq. (16) was recovered in treatments
which make no explicit use of the theory of relativity [9, 10]. When there is
motion along the field, that is for η , 0, like in Fig. 2 (right), the calculation
leading to Eq. (16) is rather elaborate. It is therefore desirable to have an
independent derivation explicitly based on the theory of relativity. This
was carried out in [11]. Consider Fig. 3. The reference frame K′ in which
the electron moves in circular motion was transformed to a frame K, in
which the electron proceeds following a helical trajectory (note that the
magnetic field remains unchanged by the transformation from K′ to K). The
reader can compare Fig. 3 with Fig. 2, where both motions happen in the
same inertial frame, the laboratory frame. In [11] it was shown that Eq. (16)
holds, indeed, in the frame K for a particle whose velocity is (vx, vy, vz) =
(v sinχ cosφ, v sinχ sinφ, v cosχ). The Lorentz transformation, which leads
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Fig. 3. Geometry for radiation production from circular and helical motion, follow-
ing [11]. In different reference systems we show (left, system K′) an electron on a
circular orbit and (right, system K) the helix of an electron in a uniform magnetic
field. System K′ is obtained rom system K using a Lorentz boost in the z direction.

to the value vz = v cosχ for the z-component of the velocity yields

(vx, vy, vz) = (v′ cosφ′/γz, v′ sinφ′/γz, vz) , (17)

where γz = 1/
√

1 − v2
z/c2, v′ is the velocity of the electron in the frame K′

and the phase angle φ′ = φ is invariant. This means that, in order to end up
in K with a transverse velocity v⊥ = v sinχ, one must start in K′ with v′ =
γzv sinχ. In the ultra-relativistic approximation γ2

⊥
= 1/(1− v2

⊥
/c2)� 1, and

one finds the simple result v′ = v, so that a Lorentz boost with non-relativistic
velocity vz leads to a rotation of the particle velocity ~v of an angle η = π/2−
χ ' vz/c. If one transforms the radiation field for a particle in circular motion
in the system K′ and neglects second order terms v2

z/c2
� 1 in observation

angle and frequency, one obtains the result that the effect of a kick amounts to
a rigid rotation of the angular-spectral distribution of the radiation emitted
by an electron moving with velocity v on a circle that is, once more, Eq. (16).
This behavior of the radiation field under Lorentz transformations is widely
accepted as an independent check of the correctness of Eq. (16).

14



We now present our reasons why the conventional theory of cyclotron ra-
diation, and in particular Eq. (16), should be modified.

Let us start with the treatment [11], which makes explicit use of relativity.
When we discuss the case of Fig. 2 we refer to a single reference frame, and
we need to define exactly what we are doing and what we are measuring.
In order to measure the velocity of our electron, we must first synchronize
distant clocks in the laboratory frame, which we assume to be inertial. The
conventional choice of clock synchronization corresponds, in our case, to
the choice of standard ”light-signal” synchronization. After this choice is
made, the speed of light measured with these synchronized clocks in the
laboratory frame will always be c, isotropically, i.e. in any direction of space.
Using these clocks, which are fixed and at rest in the laboratory frame, we
measure, in the same laboratory frame, the electron velocity components
before (Fig. 2, left) and after (Fig. 2, right) the kick. In contrast, reference [11]
investigated a Lorentz transformation from the reference frame K′ in which
the electron moves in circular motion to the moving frame K, in which the
electron moves in a helical motion, Fig. 3. When we perform this transfor-
mation we must consider that the circular motion and the helical motion are
now described in the judgement of two different reference systems, K′ and
K (Fig. 3), with different time coordinates. However, we should remember
that what we really need is to discuss circular and helical motion in the same
reference frame (the laboratory frame in Fig. 2) where the same clocks at rest
are synchronized according to the standard convention for electron velocity
measurements for both setups. If we, at variance, make a Lorentz transfor-
mation from K′ to K to describe the situation in Fig. 3, we automatically
change the rhythm of the clocks, and we must take into account that this
corresponds to a change in the horizontal velocity component (the horizon-
tal coordinates do not change because the boost is in the vertical direction).
This means that the Lorentz transformation described in [11] has actually
no relation with our problem of comparing SR radiation before and after the
kick. The changes through the action of a kicker in the dynamical evolution
of the electron from Fig. 2 left to Fig. 2 right, both in the laboratory frame,
cannot be described as a Lorentz boost from the system K′ to the boosted
system K in Fig. 3.

In the following we present a calculation of radiation from an electron in he-
lical motion based on the solution of Maxwell’s equations in the laboratory
frame and discuss the influence of a uniform translation along the magnetic
field on radiation phenomena. More generally, we consider a system of
electrons having a common uniform translation, which is characterized by
a velocity ~v = (0, 0, vz). We derive the equations that describe this situation
by a change of variables [12]. In fact, it is natural to refer the phenomena
in a moving frame that is fixed to the system and shares its translation;
these new coordinates will be represented by x′, y′, z′. They are given by
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x′ = x, y′ = y, z′ = z− vzt. For any quantity F (for example the radiation field
or the current density), which depends on spatial coordinates and time, we
may distinguish two differential coefficients, which we denote respectively
as ∂F/∂t and (∂F/∂t). The first partial derivative is used when F is considered
as a function of t and the ”absolute” coordinates. i.e. when the coordinates
with respect to axes fixed in the laboratory frame are taken as independent
variables. The second partial derivative is used when F is considered as a
function of t and the ”relative” coordinates, i.e. when the coordinates with
respect to the axes moving with velocity vz are taken as independent vari-
ables. The relation between the two quantities is expressed by the formula

(
∂F
∂t

)
=
∂F
∂t

+ vz
∂F
∂z
. (18)

As to the differential coefficients with respect to spatial coordinates we have
∂/∂z′ = ∂/∂z (and similarly ∂/∂x′ = ∂/∂x and ∂/∂y′ = ∂/∂y). Therefore the
d’Alambertian, which enters in the basic equation of electromagnetism, is a
partial differential operator whose change of form can be calculated just by
replacing ∂/∂t with (∂/∂t) = ∂/∂t + vz∂/∂z.

After this replacement, taking x, y, z and t as independent variables, we
can see that the inhomogeneous wave equation for the electric field in the
laboratory frame has nearly but not quite the usual, standard form that
takes when there is no translation. The main difference consists in the ”in-
terference” term 2(vz/c)∂2~E/∂t∂z. Once we have the wave equation in the
correct form in the laboratory frame, we may apply it to the study of various
phenomena. Following [12], however, the discussion of many cases can be
based on a mathematical trick, without the direct solution of the modified
wave equation. Lorentz found that the solution of the electrodynamic prob-
lem in the ”true” time t can be obtained with minimal efforts by formally
desynchronizing the ”true” time t to t′ = t − zvz/c2 and using t′ without
changing the d’Alambertian in the form outlined above. It is immediately
seen by direct calculations that a shift of time is necessary in order to the
eliminate interference term 3 :

3 We have just seen that the wave equation in the laboratory frame, i.e. the equation
that describes radiation from an electron in helical motion by using (x, y, z, t) as
independent variables, includes an ”interference” term in ∂2~E/(∂t∂z), see the left
part of Eq. (19), where both derivatives with respect to t and z appear. It follows
that, due to the presence of a translational motion, the electron does not radiate like
an electron moving on a circle, but it rather picks up extra-effects. In principle, the
modified wave equation may be solved directly without mathematical tricks, for
example by numerical methods, and one may directly derive wavefront readjusting
and red shift associated with the ”interference” term.
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∇⊥
~E +

(
1 −

v2
z

c2

)
∂2~E
∂z2 − 2

(vz

c

)
∂2~E
∂t∂z

−
1
c2

∂2~E
∂t2

= ∇⊥~E +

(
1 −

v2
z

c2

)
∂2~E
∂z2 −

(
1 −

v2
z

c2

)
1
c2

∂2~E
∂t′

2

. (19)

As we continually neglect quantities of second order (v2
z � c2), we may

substitute (1 − v2
z/c2)∂2~E/∂z2 with ∂2~E/∂z2. The situation is very different

in the case of the term (1 − v2
z/c2)∂2~E/∂(ct′)2, because this term yields a

”renormalized” velocity of light c′ = c/
√

1 − v2
z/c2 ' c + v2

z/(2c2), which
is now involved, instead of c in the resonance condition with relativistic
velocity v⊥.

We come to the conclusion that the interference term described above yields
an aberration angle vz/c and an effective increase in the velocity of light
from c to c′, i.e. a red shift in the resonance condition in accordance with
experimental results of the LCLS beam splitting experiment with a modu-
lated electron beam. In order to work with the conventional velocity of light,
we can just make consistent use of the substitution t′ −→ t′/

√
1 − v2

z/c2. In
this case, the electron velocity v =

√
v2

z + v2
⊥

will be transformed to v⊥. The
treatment presented here shows that there are subtle cancelations that ac-
tually lead to a simple result. In order to obtain this result, we made use
of a famous theorem formulated by Lorentz, the theorem of corresponding
states. According to this theorem, an electron (or a system of electrons) in a
state of uniform translation with velocity vz produces radiation with identi-
cal angular-spectral density distribution as an electron in the corresponding
state without translation. So, the rule for computing the radiation in the
case of uniform translation is simple. One takes the radiation characteristics
in the corresponding state and introduces an angle of aberration of vz/c
radians, with vz � c. In the case of an electron in a helical motion with rela-
tivistic factor γ, the corresponding state is an electron moving in a circle with
relativistic factor γ⊥. This is plausible if one keeps in mind that radiation
is related with acceleration, which is identical in the corresponding states.
The influence of the uniform translation is responsible for the aberration of
light and is described purely kinematically, as it must be. The theorem of
corresponding states demonstrates that the principle of Galilean relativity,
i.e. invariance under Galilean transformations, is to be expected not only in
mechanics, but also in experiments involving optics and electrodynamics in
the case when intrinsically relativistic effects ( i.e. effects of order of v2

z/c2 in
radiation properties ) may be neglected. We demonstrated the effectiveness
of this broad conclusion above, when the undulator case was discussed.
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