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Abstract

The strong CP problem is one of many puzzles in the theoretical description of elemen-

tary particles physics that still lacks an explanation. Solutions to that problem usually

comprise new symmetries or fields or both. The main problem seems to be how to

achieve small CP in the strong interactions despite large CP violation in weak interac-

tions. Observation of CP violation is exclusively through the Higgs–Yukawa interactions.

In this letter, we show that with minimal assumptions on the structure of mass (Yukawa)

matrices the strong CP problem does not exist in the Standard Model and no extension

to solve this is needed. However, to solve the flavor puzzle, models based on minimal

SU(3) flavor groups leading to the proposed flavor matrices are favored.
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Introduction.—Problems are the nourishment of theoretical physics. Besides several other

problems that still wait to be finally solved, the strong CP problem seems to be one of the sim-

plest to be elucidated. The problem itself resides in the interplay of non-perturbative effects

in Quantum Chromodynamics (QCD) and CP violation (CPV) in weak interactions (basically

the Higgs–Yukawa sector in the Standard Model). Curiously, the majority of present day

solutions to many of the problems in high energy physics obey the tendency of always going

beyond the Standard Model (SM); the strong CP problem seems to share the same tendency.

However, here we follow a different philosophy and carefully scrutinize the structure of the

SM, offering an alternative solution to the strong CP problem. Our point of view might be

defined as pragmatic as we only study the mass matrices along with the bi-unitary transfor-

mations diagonalizing them. Now, before moving to the details of our treatment let us first

briefly discuss what the strong CP problem is. A comprehensive review of this problem can

be found e. g. in [1] and similar references.

The θ parameter of QCD parametrizes the non-equivalence of possible QCD vacua as for

non-abelian gauge fields there can be non-vanishing winding numbers defined as

n=
g2

32π2

∫

d4 x F a
µν

F̃ aµν , (1)

and therefore an effective action

Seff =

∫

d4 xL+ iθn. (2)

The axial anomaly introduces via

∂ µ j5
µ
=

g2

16π2
F a
µν

F̃ aµν , (3)

effectively a change in Seff by rotations of the quark fields with exp(iγ5

θq

2
) that shifts the

gauge field θ parameter as

θ → θ̄ = θ − θq. (4)

The same transformation affects quark mass terms as mq̄LqR → eiθq mq̄LqR and may con-

versely be used to trace CP violating effects stemming from the masses. Due to this property,

we may identify the physical remaining phase after such rephasing with the axial phase

1



transformation and be left with

θ̄ = θ + argdet
�

Mu

�

+ arg det
�

Md

�

= θ + arg det
�

MuMd

�

. (5)

The parameter θ̄ violates CP and induces an electric dipole moment for the neutron, so

bounds are roughly θ̄ < 10−10 [2]. Such a huge cancellation between those two contribu-

tions in Eq. (5) is to be seen as a fine-tuning problem as they are conceptually independent.

The strong CP problem now manifests itself in the question why θ̄ is so small although CPV

in weak interactions has been found to be rather large (large, of course, compared to θ̄ , not

on absolute grounds).

Interpreting θ as a Lagrangian parameter, it is the only parity violating term in the QCD

Lagrangian (and because charge conjugation is conserved, the θ -term explicitly violates CP).

Imposing global CP-invariance (though parity is enough), then θ = 0 and the problem re-

duces to understand why argdet
�

MuMd

�

is such a small number (or why it should exactly

vanish).

Popular solutions to this problem are besides the possibility of having one massless quark

(typically the u-quark but the same holds for a massless d-quark), the introduction of at

least one new symmetry (like an axial U(1) or Peccei–Quinn [3] symmetry) that gets spon-

taneously (or softly [4, 5]) broken and comprises a light pseudo Nambu–Goldstone boson,

the axion [6,7].1 A third way to compass the problem is via mechanisms worked out by Nel-

son [12] and Barr [13, 14], for a recent review see [15]. The principal requirement for this

mechanism is a vanishing argdet
�

Mq

�

and a way to spontaneously break CP in the context

of Grand Unified Theories, alternatively spontaneously [16] or softly broken parity [17] (or

a combination of all of them [18, 19]). Another approach with spontaneous CPV is the one

involving discrete flavor symmetries [20]. For last, generalized P-invariance in left-right sym-

metric theories can also provide valuable methods on computing approximately θ̄ through

the corresponding right-handed quark mixing matrix [21–23].

In the course of this letter, we show that the vanishing argdet
�

Mq

�

is automatic in the

SM imposing a minimal constraint on the relevant phases despite having sufficiently large

CPV in flavor physics. The CPV in the weak interactions is unrelated to the relevant phases

for argdet
�

Mq

�

and may only give a small finite contribution at higher orders as θ = 0 at

tree-level [24]. In the following, we give an explicit example of symmetry structures of mass

1Axions and axion-like particles (ALPs) have a very rich phenomenology, summarized e. g. in [8], with an

ongoing experimental effort to detect them (as the ALPS experiment at DESY [9, 10] and future facilities like

ALPS-II or SHiP at CERN [11]).
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matrices that have the desired property and start by finding the minimal assumptions for the

mass matrices to fulfill that.

Disentangling weak and strong CPV.—A complete knowledge of the quark mass matrices,

Mu and Md, tackles down the flavor puzzle in the SM and finally gives the solution to the

strong CP problem. Strong and weak CPV are of different origins, as we will show, and large

CPV in the weak sector therefore does not necessarily imply strong CPV in spite of the fact

that both reside in the same mass matrices

• weak CPV: the Jarlskog invariant Jq ∼ Im
�

det([MuM
†
u
, MdM

†

d
])
�

, see [25],

• strong CPV: the θq-term from above θq ≡ −arg det
�

MuMd

�

.

For “complete knowledge” of mass matrices, it is sufficient to set up each matrix in terms of

known parameters, where a full theory of flavor is still lacking. By the freedom of relying

on an effective description of the mass matrices, we encompass the strong CP problem by an

ansatz to understand the flavor puzzle.

In the following, we will assume that all quark masses are different from zero, as sug-

gested by lattice calculations [26]. Our minimal requirement for the mass matrices follows

very obviously from the usual Singular Value Decomposition

Mq = L
†
q
ΣqRq, (6)

with Lq and Rq unitary transformations and Σq = diag(mq1
, mqq

, mq3
) a positive diagonal

matrix, mqi
> 0. Consequently, we find

argdet
�

MuMd

�

= argdet
�

L
†
u
ΣuRuL

†

d
ΣdRd

�

= arg
�

det L
†
u

detRu det L
†

d
detRd

�

, (7)

after using the well-known property of the determinant, det(AB) = det Adet B, and the args

of the diagonal matrices vanish (as they are real and positive).

In the limit of vanishing mass matrices, the SM Lagrangian (the kinetic terms) obeys a

U(n) symmetry for each gauge multiplet (i. e. left-handed quark doublets and the up- and

down-type right-handed singlets; in total U(n)3) and n generations. The maximal freedom

to rotate these fields is parametrized hence by U(n) transformations U with detU = eiφ,

such that

argdet
�

MuMd

�

= α
(u)

R −α
(u)

L +α
(d)

R −α
(d)

L , (8)

where arg det
�

K q

�

= α
(q)

K and K either L or R. If the left and right unitary rotations Lq and

Rq, respectively, were special unitary rotations, Eq. (8) would vanish trivially. [Recall that
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unitary transformations are equal to special unitary transformations times a global phase,

U(n) = U(1)⊗SU(n).] The global phases give rise to strong CPV and consequently θq is sen-

sitive to these global phases only and insensitive to the complex structure of the underlying

SU(3) transformations responsible for flavor mixing phenomena. Weak CPV on the other

hand has exactly the opposite relation: it is sensitive to the complex nature of the special

bi-unitary transformations and insensitive to global phases (a property exactly expressed

by Jarlskog invariant which is known as a rephasing invariant). Even in the absence of a

global phase that violates CP strongly, we can have arbitrarily large weak CPV: the existence

or non-existence of strong CPV is completely unrelated to the existence or non-existence of

weak CPV as can be seen from the two family case which has no weak CPV while showing in

principle strong CPV. Note that the existence of these global U(1)-phases and the invariance

of the SM field content under a particular combination of such rephasings is known as the

(accidental) conservation of baryon number, which, however, is accidental.

The vanishing argdet
�

MuMd

�

is contrary to the common folklore automatic without

imposing arbitrary assumptions. Our approach to solve the strong CP problem reduces es-

sentially to explain why α
(q)

L = α
(q)

R while, simultaneously, explain the observed amount of

weak CPV, δCKM
CP
= (1.19± 0.15) rad, see [27]. Before we move to an explicit realization of

our findings, let us briefly summarize what we have so far: even if all quarks are massive,

we have a solution to the strong CP problem without imposing any new symmetries. The

requirement arg det
�

MuMd

�

= 0 can be achieved by ensuring α
(q)

L and α
(q)

R for q = u, d to

be zero or even simpler, by requiring them to be equal; the minimal way for the former

scenario would be to propose SU(3) transformations for the diagonalization of the mass ma-

trices which conversely means that any flavor model based on SU(3) gives a solution to the

strong CP problem. Finally, we can still have (arbitrarily large) CPV in weak interactions

as this is unrelated to strong CPV. The main task is somewhat to reduce the arbitrariness

in complex phases that are generally allowed for the mass matrices and give a restrictive

prescription for weak CPV.

Weak CPV and quark mass ratios.—Let us discuss the origin of weak CPV. We want to

construct the desired solution in a minimalistic way without introducing new fields and later

see whether the conditions we find are related to underlying symmetries (that can then

be used to build a model of flavor). This minimalistic solution relates the entries of the

Cabibbo–Kobayashi–Maskawa (CKM) matrix entirely to quark mass ratios and dictates the

exact position of weak CPV in that parametrization [28].

A very famous expression of a mixing angle as a function of a mass ratio was provided by
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the well-known tanθC ≈
p

md/ms for the Cabibbo angle θC [29]. In the following, we name

this expression the Gatto–Sartori–Tonin (GST) relation although the original expression of

Ref. [29] is quite different (we adopt to the usual language in the literature). Based on this

finding, a parametrization of the fermion mixing matrices was proposed that only uses the

mass ratios as input [28]. Besides the phenomenological observation mi ≪ m j for i < j with

masses of the i-th and j-th generation, a crucial assumption behind this parametrization

is that the Euler rotations can be individually expressed by tanθi j =
p

mi/m j. Likewise,

symmetrical structures in the mass matrices have been detected that lead to exactly this kind

of mixing matrices [30]. In that view, the final quark mixing matrix can be decomposed into

a chain of successive rotations where each planar SU(2) rotation can then be written as

U
′
i j
(µi j,δi j) =









1p
1+µi j

q

µi j

1+µi j
e−iδi j

−
q

µi j

1+µi j

eiδi j 1p
1+µi j









, (9)

with µi j = mi/m j and an a priori arbitrary complex phase δi j ∈ [0, 2π). We identify sinθi j =
q

µi j

1+µi j

and cosθi j =
1p

1+µi j

. Defining the CKM-matrix

VCKM = LuL
†

d
, (10)

with the U(3) transformations Lu,d defined via Eq. (6), we have in the formulation of [28]

four mass ratios entering the game and six phases from which three can be removed by

choosing the up-type mass matrix real.2 From the remaining three, only one maximally CP-

violating phase sitting in the 1-2 rotation is needed to fully reproduce the CKM-phase, details

may be found in [28]. It was also pointed out in Ref. [31] that the same follows for certain

1-3 texture zero mass matrices. The approach of [28] is however more general as it does

not rely on specific texture zeros but merely on symmetrical structures à la Ref. [30].

Using this mass ratios parametrization, we similarly compute the Kobayashi–Maskawa

CP-phase in terms of mass ratios. In the standard parametrization, the most recent global

fit obtains for it δCKM
CP
= (1.19± 0.15) rad [27]. In the following, we want to estimate the

corresponding theoretical value. After imposing individual rotations of the type (9), we can

finally build up a quark mixing matrix that has non-vanishing CPV (even though the two

2This rephasing should not introduce a new strong CP-phase as we only shuffle complex entries from Mu

to Md. Moreover, any global phase does not play a role for weak CP-violation as the relevant objects are the

left-hermitian products Mu,dM
†
u,d

.
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family case lacks a viable source for CPV as the remaining phase can be absorbed in the

complex spinors).

The procedure introduced in Ref. [28] gives a mixing matrix which cannot be directly

compared to the conventional parametrization. In order to do that, we first need to rephase

both the up and down type quark fields

ṼCKM = χuVCKMχ
†

d
, (11)

in such a way that we are able to produce the following structure

ṼCKM ∼









Re Re C

C C Re

C C Re









, (12)

where χq = diag(eiφq , 1, 1) and Re and C mean real and complex entries. After rephasing,

we get the following expression for the Kobayashi–Maskawa CP-phase

δ
q

CP ≈ arctan





È

µds(1+ µds)

µuc(1+ µuc)



≈ (1.38± 0.10) rad, (13)

which after insertion of the values of the quark mass ratios, µds = 0.051± 0.001 and µuc =

0.0021± 0.0001, we find it to be in agreement to the experimental value.3 Hence, we have

proven that inside the SM the amount of weak CPV can be calculated by means of the quark

mass ratios.

Strong CPV and flavored mass matrices.—Finally, we show how to avoid strong CPV and

achieve θq = 0. For that we need to extend the previous treatment to include global phases.

We start by finding out the form of the mass matrices which are implied by only taking

special unitary transformations.

The mass matrix which gets diagonalized by a transformation of the type (9) can be

obtained very easily in the two family case and can be generalized to n > 2 generations

according to [30]. In Ref. [30], mass matrices are constructed in such a way to allow the

sequential diagonalization of [28] without preference to any of the families. The basic

assumption behind this approach is that Higgs–Yukawa interactions (or conversely mass

matrices if one does not specify the mass generating mechanism directly) are symmetric

3The quark masses have been treated as running MS masses evaluated at the weak scale (Q2 = M2
Z
),

numbers are taken from App. A in Ref. [28].
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under permutations of the fermion fields. This permutation symmetry is then supposed to

be broken stepwise as S3L ⊗ S3R → S2L ⊗ S2R → S2A⊕ S2S, where the last step proceeds to a

sum of anti-symmetric and symmetric permutation matrices of two objects.

We exemplarily study the two-family case where the mass matrix originated in the se-

quential breakdown of permutation symmetries [30] is given in a preferred basis as

M =

 

0
p

m1m2e−iδm

−pm1m2eiδm m2−m1

!

. (14)

Now, we want to map this structure resulting in a GST relation to the most general

case of a 2 × 2 mass matrix. The GST relation gives Eq. (9) as the corresponding unitary

transformation. A general U(2) matrix has two more parameters that can be expressed as an

additional phase on the diagonal and an overall phase factor,

U = eiφ/2

 

cosθ eiη sinθ e−iδ

− sinθ eiδ cosθ e−iη

!

, (15)

such that detU = eiφ . According to Eq. (15), the relevant left rotation of a generic mass

matrix should also have the form

L= eiαL/2

 

cosθLeiβL sinθLe−iδL

− sinθLeiδL cosθLe−iβL

!

. (16)

The same expression follows for the right transformation R with L↔ R in Eq. (16) and the

individual entries of the mass matrices can be expressed via

M = ei
αR−αL

2

 

cosθLe−iβL − sinθLe−iδL

sinθLeiδL cosθLeiβL

! 

m1 0

0 m2

! 

cosθReiβR sinθRe−iδR

− sinθReiδR cosθRe−iβR

!

, (17)

and thus

M11 = ei
αR−αL

2

�

e−i(βL−βR)m1 cosθL cosθR+ e−i(δL−δR)m2 sinθL sinθR

�

,

M12 = ei
αR−αL

2

�

e−i(βL+δR)m1 cosθL sinθR− e−i(βR+δL)m2 cosθR sinθL

�

,

M21 = ei
αR−αL

2

�

ei(βR+δL)m1 cosθR sinθL − ei(βL+δR)m2 cosθL sinθR

�

,

M22 = ei
αR−αL

2

�

ei(βL−βR)m2 cosθL cosθR+ ei(δL−δR)m1 sinθL sinθR

�

.

(18)

Matching this set of equations to the matrix form of Eq. (14) reduces the freedom of the
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U(2) rotations as the structure is dictated by the simple symmetry patterns. We find the

conditions

αL = αR, βL − βR = δL −δR = 0, θR = −θL. (19)

The first condition on the global phase is our essential solution to the strong CP problem

and the reason why Eq. (8) vanishes. (Of course, this is trivial as Eq. (14) exhibits no global

phase.) The second condition gives the off-diagonal phase in Eq. (14) as δm = δL(R)+ βL(R).

And the third condition plainly says that left and right unitary transformations rotate in

opposite directions. Actually, there is no need for prohibiting a global phase for the mass

matrix as the left rotations L (that are phenomenologically important) are defined via the

object MM
†. Still, the phases of L and M would be unrelated.

The constraints of Eqs. (19) provide very valuable information especially on the right-

handed rotations coded in R resulting in the clear prediction that mixing angles of the right-

handed sector have exactly the same magnitude as the known left-handed (i. e. CKM) ones.

The future detection of right-handed currents may be a razor to finally rule the proposed

description out, although we do not predict right-handed currents at all! As side remark,

let us note that recent investigations on minimal left-right symmetric models hint toward

the same conclusion of V
R
CKM
= V

L
CKM
[22, 23]. Surprisingly, we do no get exact equality

but rather find for the right-handed sector the angles θ
CKM,R

12 = θ
CKM,L

12 , θ
CKM,R

23 = θ
CKM,L

23 , and

θ
CKM,R

13 ≈ θCKM,L

13 /10, which results from the intricate structure of VCKM in Ref. [28].

Conclusions.—We have addressed the strong CP problem within the SM by fully modeling

the quark mixing matrix in terms of mass ratios as recently proposed [28]. The assessment

of the strong CP problem basically consists in explaining why the amount of strong CPV

stemming from the quark masses, here denoted as θq = −arg det
�

MuMd

�

, should be zero,

while simultaneously a large value (compared to θq) of weak CPV appears, which is coded

in the Jarlskog invariant Jq of the experimentally measured (fitted) CKM-matrix. In this

letter, we have showed that this problem is, on general grounds, not a problem inside the

SM. Without the need of introducing new fields and/or symmetries, we have studied the

general properties of the source of strong CPV, θq. The complex phases implied by θq are

entirely unrelated to the phases of weak CPV. Splitting the generational freedom of the gauge

kinetic terms as U(3) = U(1)⊗ SU(3), it can be clearly seen that arbitrary U(1) factors lead

to θq 6= 0 while the SU(3) nature is responsible for Jq 6= 0. The specific pattern of Yukawa

matrices needed to build the proper hierarchies for the fermion masses as well as the correct

mixing matrix may be produced by spontaneous breakdown of the maximal flavor group as
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proposed in Ref. [32]. For the weak CPV we showed that in the recently proposed fermion

mass ratios parametrization [28] the leading contribution to the CKM-phase is given by

δ
q

CP ≈ arctan





È

µds(1+ µds)

µuc(1+ µuc)



≈ (1.38± 0.10) rad, (20)

which is in agreement to the observed value δCKM
CP
= (1.19± 0.15) rad. The absence of the

strong CPV is guaranteed by imposing a very minimal condition on the mass matrices such

that θq =
∑

q=u,d
α
(q)

R − α
(q)

L = 0 if α
(q)

L = α
(q)

R , though the basic constraint is much weaker.

(This gets important in the context of Grand Unification when up- and down-quark mass

matrices are related to each other.) It has been shown that minimal symmetrical require-

ments on the Higgs–Yukawa interactions according to [30] lead to the given constraint and

non-trivial CKM-mixing. As consequence of this, the mixing of the right-handed sector is

fixed and predicts for the right-handed CKM-matrix θCKM,R
12 = θCKM,L

12 , θCKM,R
23 = θCKM,L

23 , and

θ
CKM,R

13 ≈ θCKM,L

13 /10. This fingerprint can be tested in future experiments within a variety of

extensions of the Standard Model.
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