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Abstract: We analyse a combination of ATLAS and CMS searches for dijet resonances at
run I and run II, presenting the results in a way that can be easily applied to a generic Z ′

model. As an illustrative example, we consider a simple model of a Z ′ coupling to quarks
and dark matter. We first study a benchmark case with fixed couplings and then focus
on the assumption that the Z ′ is responsible for setting the dark matter relic abundance.
Dijet constraints place significant bounds on this scenario, allowing us to narrow down the
allowed range of dark matter masses for given Z ′ mass and width.
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1 Introduction

Resonant structures in the invariant mass distribution of dijet events are amongst the
most generic signatures for “exotic” new physics at the LHC, since any new heavy particle
produced in the s-channel at hadron colliders can decay back into a pair of jets. Searches
for dijet resonances are therefore a high priority at both ATLAS and CMS and have been
among the first searches carried out at a centre-of-mass energy of 13 TeV [1, 2]. These
searches are complemented by earlier searches at 8 TeV [3, 4], as well as a dedicated search
for dijet resonances with an invariant mass below 1 TeV at CMS based on a novel data
scouting technique [5]. Among the many models probed by such searches are Randall-
Sundrum (RS) gravitons [6], excited quarks [7, 8] and models with a leptophobic Z ′ [9–11].

The latter model of a massive spin-1 boson that couples predominantly to quarks has
received a significant amount of interest in the context of dark matter (DM) production
at hadron colliders. The reason is that a leptophobic Z ′ can have large couplings to the
DM particle and thereby mediate the interactions that keep DM in thermal equilibrium
in the early Universe. We can then hope to experimentally probe these interactions with
a range of different DM search experiments. Two sensitive probes of such scenarios are
direct detection experiments searching for evidence of DM-nucleus scattering and searches
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for missing energy at the LHC [12–27]. In fact, DM models with a leptophobic Z ′ have
served to inspire a class of so-called simplified DM models, which are now commonly used
to optimise LHC searches for DM [28, 29].

However, as emphasised in a number of previous works [24, 30, 31], DM models with
a massive spin-1 mediator cannot only be probed by conventional DM searches, but also
by direct searches for the mediator, in particular searches for dijet resonances. Due to
the presence of invisible decays of the mediator, the width of resonance may be broadened,
making it harder to distinguish the signal from the smoothly-falling QCD backgrounds. The
purpose of the present work is to derive combined limits on such models by re-analysing all
avialable LHC searches for dijet resonances.

The present work aims to take a largely model-independent approach, so that our
results can be applied to a range of different Z ′ models. For this purpose, we take the
width of the Z ′ as a free parameter, which we allow to be as large as Γ/mZ′ = 0.3. The
resulting bound on the Z ′-quark coupling can then be applied to models where the Z ′

decays exclusively to quarks (for example if couplings to DM are negligible or absent, or if
decays of the Z ′ into DM are kinematically forbidden), to models where the width of the Z ′

is given exclusively in terms of its couplings to quarks and DM (as is the case in simplified
DM models) and to models where additional unobserved decay channels may be present
that further broaden the Z ′ width. To illustrate our approach, we show how the resulting
dijet constraints can be applied to simplified DM models and how they can be combined
with information on the relic abundance of DM to determine those regions of parameter
space where thermal freeze-out via a Z ′ is incompatible with constraints from the LHC.

The outline of our work is as follows: We first perform a combined analysis of searches
for dijet resonances from the CMS and ATLAS experiments at both 8 and 13 TeV in
section 2. We present the results of this analysis in terms of an upper limit on the Z ′-quark
coupling as a function of the Z ′ mass and width, which is valid for a wide range of Z ′ models.
In section 3 we then show how these results may be applied to a specific model, namely a
model with a Z ′ mediator coupling to quarks and DM. We first consider a simplified model
similar to the one presently employed by the LHC collaborations and then combine such
a model with relic density constraints to place limits on the coupling and the mass of the
DM particle. Additional technical details are provided in the appendices.

2 Limits on generic Z ′ models from dijet resonance searches at the LHC

In this section we describe our technique for the re-analysis of searches for dijet resonances
from the LHC run I and II and present the resulting combined limits. Our basic approach
can be divided into three separate steps. We first implement a fully general Z ′ model in
a Monte Carlo generator to produce dijet events at the relevant centre-of-mass energies
and apply the selection cuts corresponding to the various analyses. We then compare the
predicted distributions of the dijet invariant mass to the experimental data, employing the
same strategy as the experimental collaborations to model the background contribution.
Finally, we combine the experimental tension from all data sets in a statistically consistent
way in order to determine the largest signal strength that can still be compatible with
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all experimental data. The details of each of these steps are discussed in the following
subsections.

2.1 Dijet event generation

The first step in our analysis is to generate dijet events resulting from a new Z ′ mediator
with mass 500 GeV ≤ mZ′ ≤ 4 TeV, which interacts with the standard model quarks q via
the vectorial coupling gq. To generate this signal, we add the following terms to the SM
Lagrangian:

Lkin = −1

4
F ′µνF

′µν +
1

2
m2
Z′Z ′µZ

′µ , (2.1)

Lint = −gqZ ′µ
∑
q

q̄γµq , (2.2)

where F ′µν = ∂µZ ′ν − ∂νZ ′µ. Although we do not specify any other couplings of the Z ′,
such couplings may in principle be present.1 We therefore do not calculate the total decay
width Γ of the Z ′ in terms of its quark coupling but instead take Γ to be a free parameter
of the model.

An important advantage of taking Γ and gq as independent parameters is that the shape
of the dijet invariant mass distribution depends only on the two parameters mZ′ and Γ,
whereas the total magnitude of the signal is proportional to g4

q irrespective of whether the
Z ′ is produced on-shell or off-shell.2 We can therefore generate events for different values
of mZ′ and Γ and a fixed value of gq and apply the simple rescaling σ ∝ g4

q to obtain signal
predictions for the full three-dimensional parameter space.

Our simulation of dijet events is carried out using a pipeline of the publicly available
software packages FeynRules_v1.6.11 [32], MadGraph_v3.2.2 [33], Pythia_v8.186 [34, 35]
and FastJet_v3.0.5 [36]. First, we implement the model Lagrangian in FeynRules to
calculate the Feynman rules and generate a UFO model file [37]. In MadGraph we then
generate matrix elements for all processes involving a virtual Z ′ and a pair of u, d, s, c or
b quarks in the final state.

The output from MadGraph is interfaced with Pythia, which we use both as a Monte
Carlo event generator and to simulate showering and hadronisation. For our simulations,
we use the CTEQ5L parton distribution function [38]. We neglect next-to-leading order
corrections, which are expected to lead to somewhat larger cross sections [39], so we give a
conservative bound. The resulting final states are clustered with FastJet using the anti-
kT algorithm [40]. We choose the jet parameters (cone-size R, maximum pseudorapidity
η and minimum transverse momentum pTmin of the jet) to match those adopted by each
experiment under consideration (see table 1).

1In particular, we assume at this point that the Z′ has vectorial couplings to quarks. We will discuss
below how our results can be applied to models with axial couplings to quarks and to a combination of
vectorial and axial couplings.

2Note in particular that we allow the unphysical situation that the branching ratio into quarks, given
by Γqq̄/Γ, can become larger than unity. This does not pose a problem as long as the resulting constraints
are only evaluated for physical combinations of gq and Γ.
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R |η| pTmin Ref.
ATLAS 13 TeV 0.4 < 2.4 50 GeV [1]
CMS 13 TeV 1.1 < 2.5 30 GeV [2]
ATLAS 8 TeV 0.6 < 2.8 50 GeV [3]
CMS 8 TeV 1.1 < 2.5 30 GeV [4]

CMS 8 TeV (low mjj) 1.1 < 2.5 30 GeV [5]

Table 1. Jet parameters chosen for the anti-kT algorithm for the five experimental searches. The
radius parameter is defined as R =

√
(∆η)2 + (∆φ)2 with φ the azimuthal angle. For the CMS

analyses, jets are first reconstructed with a radius parameter of 0.5 (0.4) at 8 TeV (13 TeV) and are
then combined into two fat jets with radius parameter 1.1.

Once the jets have been reconstructed, we apply the experimental selection cuts out-
lined in table 2. For each event that passes these cuts we calculate the invariant mass of
the dijet system. Rather than performing a full detector simulation, we approximate the
uncertainties in reconstructing the energy and momentum of the jet events arising from
detector performance by applying a Gaussian smearing to the invariant dijet mass. For this
purpose, we take the detector resolution in both ATLAS and CMS to be

σ(mjj) = 1.8GeV
√
mjj/GeV , (2.3)

which was determined by fitting the smeared signals to shapes given by the CMS experi-
ment [4] for a RS graviton benchmark model. The smeared invariant masses are then binned
according to the bin sizes given by the different experiments and the resulting histrograms
are converted into differential cross sections dσZ′/dmjj .

2.2 Compatibility of a dijet signal with LHC data

Once the dijet invariant mass distributions have been generated, the second step is to deter-
mine the compatibility of such a signal with observations at the LHC. For this purpose, we
follow the approach of the experimental collaborations and assume that the SM background
can be described by a smooth function of the form:

dσSM

dmjj
=

P0 (1−mjj/
√
s)
P1

(mjj/
√
s)
P2+P3 log(mjj/

√
s)
, (2.4)

where the parameters Pi are determined by fitting the function to the data.3 The total dijet
invariant mass distribution is then given by dσ/dmjj = dσSM/dmjj + dσZ′/dmjj , where
the first term depends on the unknown parameters Pi, while the second term depends on
the assumed values for mZ′ , Γ and gq.

To compare the model prediction to experimental data, we calculate the usual χ2 test
statistic

χ2 =
∑
i

(
di − si
σi

)2

, (2.5)

3While the CMS analyses at 8 and 13 TeV and the ATLAS analysis at 8 TeV allow all four parameters
to vary, the ATLAS analysis at 13 TeV fixes P3 = 0.
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mjj |∆ηjj | additional Ref.
ATLAS 13 TeV > 1.1 TeV < 1.2 pT,j1 > 440 GeV and pT,j2 > 50 GeV [1]
CMS 13 TeV > 1.2 TeV < 1.3 pT,j1 > 500 GeV or HT > 800 GeV [2]
ATLAS 8 TeV > 250 GeV < 1.2 - [3]
CMS 8 TeV > 890 GeV < 1.3 - [4]

CMS 8 TeV (low) > 390 GeV < 1.3 - [5]

Table 2. Experimental cuts adopted by the five experimental searches. pT,j1 refers to the
transverse momentum of the leading jet, while pT,j2 refers to the subleading jet. HT is the scalar
sum of all jet pT for jets with pT > 40 GeV and |η| < 3, and ∆ηjj refers to the rapidity separation
of the leading and subleading jets.

where the index i denotes the bin number in a given experiment, di is the observed differ-
ential cross section with corresponding (statistical) error σi and si is the predicted signal
containing both the SM contribution and the new-physics signal. We now fix the unknown
parameters Pi by finding the minimum of the χ2 distribution with respect to these param-
eters (called χ̂2).

We now want to place an upper bound on the magnitude of the new-physics signal,
beyond which the sum of signal and background are incompatible with the data. For this
purpose, we employ a ∆χ2 method. We first calculate χ̂2 in the absence of a contribution
from the Z ′ mediator (called χ̂2

0) and then define ∆χ2(mZ′ ,Γ, gq) = χ̂2(mZ′ ,Γ, gq)− χ̂2
0.

For ∆χ2 < 0, the data actually prefers a non-zero contribution from the Z ′ mediator.
Positive values of ∆χ2, on the other hand, are disfavoured by the data. In such a case, we
can calculate the p-value, i.e. the probability to observe at least as large a value of ∆χ2

from random fluctuations in the data as

P = 1− CDF
(
1,∆χ2

)
(2.6)

where CDF
(
1, χ2

)
is the cumulative distribution function for the χ2 distribution with one

degree of freedom.4

As discussed above, the new-physics signal is proportional to g4
q . As we increase gq,

keeping mZ′ and Γ fixed, we will reach the point where ∆χ2 becomes so large that P
becomes unacceptably small. For P < 5%, we can exclude the corresponding value of
gq at the 95% confidence level. If P > 5%, the value of gq cannot be excluded by the
experiment under consideration, but it may still be excluded by the combination of results
from several experiments. Such a combination is necessarily model-dependent in the sense
that it requires an assumption on the ratio of the production cross section of the resonance

4We note that the ∆χ2 test statistic as we define it does not exactly follow a χ2-distribution. The reason
is that we take χ̂2

0 to be the value of χ̂2 for gq = 0 rather than finding the value of gq that actually minimises
χ̂2 (called gq,0) in order to avoid the problem that the data may prefer a negative signal contribution. Since
χ̂2(0) ≥ χ̂2(gq,0), our definition yields slightly smaller values for ∆χ2 than the one obtained from minimising
χ̂2 with respect to gq. Using a χ2-distribution to calculate the p-value therefore means that we slightly
overestimate the p-value and consequently place more conservative bounds. We have verified that the error
made by this approximation is small by determining the actual distribution of ∆χ2 from a Monte Carlo
simulation for specific parameter points.

– 5 –



1000 1500 2000 2500 3000 3500 4000

0.001

0.010

0.100

1

mRS [GeV]

σ
⨯
B
R
⨯
A
[p
b]

Our limit

CMS observed limit

CMS expected limit

Figure 1. Comparison of our method for setting limits from dijet data (blue, dashed) with those
from the CMS experiment [4] (green, solid) presented in terms of the cross section times acceptance,
for the benchmark model of an RS graviton [6].

at 8 TeV and 13 TeV. Since we use a Z ′-model to generate dijet events, our combination is
valid for any resonance produced dominantly from light quarks (with equal couplings to all
flavours).

For a given signal hypothesis, we can follow the procedure described above to obtain
a value of ∆χ2 for each experiment under consideration. Crucially, the parameters Pi are
fitted independently for each experiment. Since the two CMS searches at 8 TeV are not
statistically independent, we use ref [4] for mZ′ ≥ 1 TeV and ref [5] for smaller Z ′ masses.
We can then simply add up the individual contributions to ∆χ2 to obtain ∆χ2

total. This
test statistic is again expected to approximately follow a χ2-distribution with one degree of
freedom, so we can calculate the combined p-value with eq. (2.6).

Validation based on the RS-graviton model

To validate our limit-setting procedure, we have applied our analysis chain to the RS gravi-
ton model [6], which is used as a fiducial benchmark by CMS [4]. The model contains
two free parameters, namely the mass of the RS graviton mRS and the curvature of the
five-dimensional bulk k/M̃Pl where M̃Pl is the reduced Planck mass. The latter is taken
to be k = 0.1M̃Pl, which fully determines the width and the couplings relevant for the
generation of dijet events for a given value of mRS. We adopt these values to calculate
the total production cross section and to generate dijet invariant mass distributions. We
then multiply the resulting distributions with a rescaling factor µ in order to determine the
largest signal strength that is still compatible with data. Applying the resulting rescaling
factor to the total cross section then yields an upper bound on the production cross section
as a function of the RS graviton mass. Figure 1 shows the comparison of the bounds we
obtain with the results from the CMS analysis. We conclude that our approach yields good
agreement with the results from the CMS collaboration over a wide range of masses.

2.3 Results

Having described the strategy for deriving bounds on the Z ′-quark coupling gq, we now
present the results of our analysis in a way that can be applied to a wide range of Z ′
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models. We consider mZ′ masses between 500 GeV and 4 TeV in steps of 50 GeV. For
each mediator mass, we consider six different widths: 1%, 2%, 5%, 10%, 20% and 30% (in
units of mZ′). These values were chosen to best sample the variation in the constraints for
different widths. In particular, we note that for a Z ′ width smaller than 1% of mZ′ , the
shape of the dijet invariant mass distribution is dominated by the detector resolution and
therefore becomes independent of Γ. For each combination of mZ′ and Γ we then determine
the largest value of gq that is compatible with the experimental data at 95% confidence level
(called gq,95%).

While the resulting values of gq,95% typically depend on mZ′ in a non-monotonic way
(due to different random fluctuations from bin to bin), the dependence on Γ is typically very
smooth, with larger values of Γ corresponding to larger values of gq,95% (i.e. weaker bounds).
We can make use of this observation to interpolate between the values of Γ considered in
our simulation. Specifically, we find that it is possible to fit gq,95% for fixed mZ′ using a
function of the form

gq,95%(mZ′ ,ΓZ′)4 = a(mZ′)

(
ΓZ′

mZ′

)b(mZ′ )

+ c(mZ′) , (2.7)

where the values of a, b and c are listed in table 3 in appendix A as a function of mZ′ . We
show gq,95% as a function of mZ′ and Γ as obtained from the interpolation functions in the
left panel of figure 2.

For mZ′ . 1.5 TeV dijet constraints are able to exclude values of gq between 0.1 (for
a narrow width) and 0.3 (for a broad width). For larger masses, these bounds become
somewhat weaker and reach up to gq,95% ≈ 0.6 for mZ′ ∼ 4 TeV and Γ/mZ′ > 0.2. We
observe that rather weak bounds are obtained for mZ′ ≈ 1.6–1.7 TeV. The reason is that
in this mass range all four experiments see an upward fluctuation in the data, so that the
observed bound is weaker than the expected one (see e.g. in [41]).5

Since we have consistently treated Γ and gq as independent parameters, our results can
be applied to any Z ′ model (with universal vector-like couplings to quarks) by applying the
following procedure:

1. For given Z ′ mass and given couplings of the Z ′ to all other particles in the theory,
calculate the total decay width Γ.

2. Look up gq,95% for this value of Γ and the assumed Z ′ mass.

3. If gq,95% is larger than the assumed Z ′-quark coupling, the parameter point is allowed.
Otherwise, it is excluded at 95% confidence level.

While the procedure detailed above applies to Z ′ models with universal vector couplings
to all quarks, it is also possible for us to constrain more complicated models. For this
purpose, we make use of the narrow-width approximation (NWA), which is valid as long

5This pattern is driven by the ATLAS 8 TeV data set and is most pronounced for very broad widths.
The largest preference for a non-zero contribution from a Z′ is found for mZ′ = 1.7 TeV, Γ/mZ′ = 0.3 and
gq = 0.55. The local significance of this excess is 3.3σ for ATLAS alone and 3.8σ for the combination of all
data sets.
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as the width of the Z ′ is small compared to its mass (typically Γ/mZ′ < 0.3). The NWA
states that the cross section for the production of dijet events via a resonance factorises
into the production cross section of the resonance and the probability for this resonance to
decay into a pair of jets:

σ(pp→ Z ′ → jj) = σ(pp→ Z ′)× BR(Z ′ → jj) , (2.8)

where BR(Z ′ → jj) = Γ(Z ′ → jj)/Γ = 5 g2
q mZ′/(4π Γ). In the model we consider the

Z ′ production cross section is proportional to g2
q , with a constant of proportionality that

depends on the Z ′ mass and the centre-of-mass energy. Consequently, the dijet signal in
each experiment is proportional to g2

q times the relevant branching ratio:

σ(pp→ jj) ∝ g2
q × BR(Z ′ → jj) . (2.9)

Indeed, this relation is also correct for the differential cross section, i.e. the shape of the
dijet invariant mass distribution is independent of the coupling gq for fixed mediator mass
and width.

This observation motivates a different way of presenting our results, namely to place
an upper bound on the combination [12]

j ≡ g2
q × BR(Z ′ → jj) . (2.10)

As discussed above, j is proportional to g4
q for fixed Γ. We can then calculate the upper

bound on j at 95% confidence level, called j95%, by evaluating j for gj,95%. We emphasise
that it is perfectly acceptable for this calculation to yield a branching ratio larger than
unity. In this case the conclusion would simply be that the experimental bounds cannot
exclude any value of gq compatible with the chosen value of Γ.

Our results for j95% are shown in the right panel of figure 2. The advantage of this
approach is that j95% can also be used to constrain models beyond the one considered here.
In particular, our analysis can be applied to the following cases:

• For a Z ′ with both vector (gVq ) and axial (gAq ) couplings to quarks, the production
cross section for a Z ′ is proportional to (gVq )2 + (gAq )2. In such a model, one should
therefore calculate

[
(gVq )2 + (gAq )2

]
×BR(Z ′ → jj) and compare the result to j95% as

shown in the right panel of figure 2.6

• The Z ′ production is typically dominated by up and down quarks in the initial state.
Consequently, for a Z ′ with different couplings to the three generations, one can obtain
an approximate bound by calculating g2

1 × BR(Z ′ → jj), where g1 is the coupling to
the first generation, and comparing the result to the bound on g2

q ×BR(Z ′ → jj) (i.e.
j95%) shown in figure 2.

For the convenience of the reader, we provide a plain text version of j95% as a function of
mZ′ and Γ in the supplementary material accompanying this paper.

6For a Z′ with purely axial couplings to quarks, one can also directly compare gAq to gq,95% shown in
left panel of figure 2.
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Figure 2. Bounds on gq (left) and j ≡ g2q × BR(Z ′ → jj) (right) from a combination of ATLAS
and CMS dijet searches at 8 TeV and 13 TeV at 95% confidence level as a function of the Z ′ mass
and width.

This discussion concludes the general analysis of dijet constraints. The remainder of
the paper is dedicated to a specific application of the results shown above, which serves
as an illustration for the procedure described above and uses this procedure in order to
constrain a model of particular interest.

3 Constraints on a leptophobic Z ′ coupling to DM

We now show how the results from the previous section can be applied to a specific model.
For this purpose, we consider a simple model of a leptophobic Z ′ coupling to DM (see [42,
43]), which is similar in spirit to the spin-1 s-channel simplified DM model discussed in
refs. [17, 19, 22, 25, 26, 28, 29]. Assuming DM to be a Majorana fermion ψ, the interactions
between the SM and the dark sector are defined by the following Lagrangian:

Lkin =
i

2
ψ̄γµ∂µψ −

1

2
mDM ψ̄ψ −

1

4
F ′µνF

′µν +
1

2
m2
Z′Z ′µZ

′µ (3.1)

Lint = −1

2
gADMZ

′
µψ̄γ

µγ5ψ − gqZ ′µ
∑
q

q̄γµq . (3.2)

The Majorana nature of the DM particle ensures that it can only have an axial cou-
pling to the Z ′, which significantly reduces constraints on the model from direct detection
experiments. On the SM side, the couplings of the Z ′ are assumed to be purely vectorial,
which is consistent with the assumption that the Z ′ couples neither to leptons nor to the
SM Higgs [44]. We do not specify the additional dark Higgs necessary to generate the Z ′

mass and the DM mass [44], assuming that this particle is sufficiently heavy and sufficiently
weakly mixed with the SM Higgs to be irrelevant for LHC phenomenology. While additional
heavy fermions are needed to cancel anomalies, these can be colour-neutral and vector-like
with respect to the SM gauge group, making them very difficult to observe at the LHC.
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The resulting decay widths are then given by7

Γ(Z ′ → qq̄) =
mZ′ g2

q

4π

√
1−

4m2
q

m2
Z′

(
1 + 2

m2
q

m2
Z′

)
(3.3)

Γ(Z ′ → ψψ) =
mZ′

24π
(gADM)2

(
1−

4m2
DM

m2
Z′

)3/2

, (3.4)

where we have assumed mZ′ > 2mt, 2mDM. The equations above enable us to calculate the
total decay width Γ, which is required in order to apply the dijet bounds derived above.

3.1 Bounds for fixed couplings

The model introduced above has four free parameters (the two masses mZ′ and mDM and
the two couplings gq and gDM). Since kinematic distributions at the LHC depend more
sensitively on the masses than on the couplings, it is interesting as a first step to study
LHC constraints for fixed couplings and varying masses. This approach is consistent with
the most common way of presenting LHC constraints on DM simplified models.8 Following
the recommendations from [29, 45], we consider the case qq = 0.25, gDM = 1. For these
couplings the width of the Z ′ varies between 2.5% (for m′Z < 2mDM, 2mt) and 4.3% (for
m′Z � 2mDM, 2mt) of its mass.

For each combination of mZ′ and mDM, we calculate the width Γ and then read off the
largest allowed value for gq from figure 2. Whenever gq,95% < 0.25, the parameter point is
excluded by our combined dijet bounds. The results of this analysis are shown in figure 3
with the dijet excluded regions shown in red. We find that Z ′ masses between 500 GeV and
1600 GeV are excluded irrespective of the value of mDM. For mZ′ between 1600 GeV and 3
TeV, the model is excluded for heavy DM particles, such that the invisible branching ratio
of the Z ′ is small and decays into dijets dominate.

For comparison, we also show the parameter region (in gray) where the coupling of the
DM particle to the longitudinal component of the Z ′ violates perturbative unitarity [24,
44] and the masses for which the assumed couplings reproduce the observed DM relic
abundance, Ωh2 = 0.12 [46], calculated using micrOMEGAs_v4.1.8 [47]. Details on the relic
density calculation can be found in the following subsection.

We find that there are only two regions where the relic density is compatible with dijet
constraints: A low-mass region with mZ′ < 500GeV and mDM < 150GeV and a high-mass
region with mZ′ > 3 TeV and mDM > 1200 GeV.9 This conclusion is, however, obviously

7The pre-factor 1/(24π) for the decay into DM results from the fact that there are two identical particles
in the final state.

8Note that our model is not identical to any of the simplified models presently used by the ATLAS
and CMS collaborations, because we consider a Majorana DM particle. Nevertheless, the same analysis
presented here can be applied to a model with a Dirac DM particle.

9We emphasise that in the low-mass region there may be additional dijet constraints from previous
hadron colliders, as well as constraints from dijet resonances produced in association with SM gauge
bosons [11, 24]. Moreover, this region of parameter space is tightly constrained by mono-X searches,
in particular searches for jets in association with missing transverse energy [48–51]. These searches are very
sensitive to Z′ masses below about 1 TeV, but lose sensitivity very quickly towards larger masses, where
dijet constraints can still be sensitive.
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dependent on our choice of couplings. To study whether the intermediate mass range can
be made compatible with dijet constraints for different choices of couplings, one could in
principle repeat the analysis from above for many different combinations of gq and gDM (or
simply scan the entire parameter space). Instead, we will take a more systematic approach
and develop a new method that can be used to establish the compatibility of relic density
constraints and dijet searches across the entire parameter space of our model.

3.2 Combining di-jet bounds and relic density

Out of the four-dimensional parameter space of our model, we are particularly interested
in those combinations of masses and couplings for which the thermal freeze-out of the DM
particle can reprodue the relic abundance

Ωh2 = 0.1188± 0.0010 (3.5)

which is the result from Planck CMB observations combined with Baryon Acoustic Oscil-
lations, supernova data and H0 measurements [46]. We will approximate the relic density
as Ωh2 = 0.12 in the rest of this work.

We emphasise that the relic density requirement can be relaxed if the dark sector
consists of multiple components or if the thermal history of the Universe is non-standard.
Nevertheless, it is certainly of interest to consider those parameters for which the sim-
plest assumptions are already sufficient to match observations. If these parameters can be
excluded experimentally, the model would require additional ingredients in the dark sec-
tor (such as additional annihilation channels, additional stable states or a mechanism to
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produce additional entropy after DM freeze-out), which by itself would be an important
conclusion.

The remainder of this section focusses on how to reduce the parameter space of our
model by imposing the relic density constraint. We first discuss some general aspects of the
relic density calculation and then introduce a convenient set of free parameters that can be
used to combine the relic density requirement with dijet constraints. Finally, we apply the
dijet constraints from above to place bounds on the simple thermal freeze-out scenario.

To first approximation, we can obtain the relic density by calculating the cross section
for DM annihilation into a pair of quarks, σψψ→qq̄, and expanding the result in terms of
the relative velocity v of the two DM particles:

σψψ→qq̄ v ≈ a+ b v2 +O(v4) . (3.6)

The relic abundance is then approximately given by

Ωh2 ' 1.07× 109 GeV−1 xfo

MPl
√
g∗ (a+ 3b/xfo)

, (3.7)

where xfo ∼ 20–30 is the ratio of the DM mass and the freeze-out temperature and g∗ ∼
80–90 is the number of relativistic degrees of freedom during freeze-out. For our model, we
find a = 0 (due to the Majorana nature of DM) and

b =
3 (gDM)2 g2

q

12π

(m2
q + 2m2

DM)(1−m2
q/m

2
DM)1/2[

(m2
Z′ − 4m2

DM)2 + (ΓmZ′)2
] . (3.8)

For mDM ≈ mZ′/2, the denominator in eq. (3.8) becomes very small and DM an-
nihilation receives a resonant enhancement. In this case, an expansion in terms of the
velocity of the two DM particles is insufficient for an accurate calculation of the relic den-
sity and numerical methods are needed. We therefore calculate the relic density using
micrOMEGAs_4.1.8 [47], including two modifications under the instruction of the authors
(see appendix B).10

For given mZ′ , mDM and gDM we can then numerically determine the value of gq that
is required to reproduce the observed relic density.11 As long as mDM is well below the
resonance region, i.e. mDM � mZ′/2, eq. (3.8) implies that the annihilation cross section
is proportional to g2

q g
2
DMm2

DM/m
4
Z′ . Therefore it is always possible to fix gq in such a

way that the observed value of Ωh2 is matched and the solution is always unique. In the
resonance region, the annihilation cross section is proportional to g2

q g
2
DM/Γ, which is still

a monotonic function of gq so that any solution is unique. However, since the expression
g2
q g

2
DM/Γ remains finite for gq →∞, it is possible that no solution exists. In short, as long

as gDM is large enough, there will always be a unique value of gq that reproduces the relic
abundance.

We therefore obtain a function gq(mZ′ ,mDM, gDM), which is illustrated in figure 4 as
a function of gDM for various fixed values of mZ′ and mDM. The resulting curves have the
following features:

10We thank Alexander Pukhov for providing us with these modifications and for his help in the imple-
mentation.

11The width Γ is determined internally by micrOMEGAs in a self-consistent way.
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Figure 4. Curves of constant relic density Ωh2 = 0.12 in the plane of the two couplings for fixed
masses of the dark matter particle and mediator.

1. Since the annihilation cross section grows monotonically with the DM mass (for fixed
couplings and mediator mass), the lines for different DM masses never cross, i.e.
smaller values of mDM always require larger couplings.

2. For sufficiently small DM masses, the curves are hyperbolas (gq ∝ 1/gDM), whereas
for larger values of mDM, the curves are steeper at small gDM and flatter at large gDM

due to the resonance effects discussed above.

We will make use of these properties below to choose a particularly convenient set of free
parameters for the analysis of our model.

3.2.1 Relic density constraints for a fixed width

Having constructed the function gq(mZ′ ,mDM, gDM) from the relic density requirement, one
could now simply proceed to scan the remaining three-dimensional parameter space. One
subtlety arises, however, from the fact that the width Γ — and therefore the bound from
dijet constraints — depends on all three parameters in a non-trivial way. For example, for
fixed mZ′ and mDM one would naively expect stronger dijet constraints for smaller gDM

corresponding to larger gq (implying both a larger production cross section of the resonance
and a larger branching fraction into dijets). However, if at the same time Γ increases, it is
conceivable that dijet constraints are weakened sufficiently to evade experimental bounds
and that in fact larger values of gq are less constrained than smaller couplings.

To avoid this complication, we take both mZ′ and Γ as free parameters. As shown in
figure 2, for fixed values of these two parameters we can always place an unambiguous upper
bound on gq. A second important advantage of this approach is that mZ′ and Γ are the
two parameters that are most directly observable at the LHC. While the DM mass is very
difficult to measure at the LHC and coupling constants can only be inferred in the context of
a specific model, an observation of a new resonance in the dijet channel would immediately
enable us to determine the mass and the width of the mediator from the invariant mass
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Figure 5. Examples of how we find pairs of couplings that satisfy the relic density constraint (blue)
for a given fixed width (red).

distribution.12 To be able to directly interpret such an observation in the context of the
present model, it therefore makes sense to construct all bounds in terms of these two most
apparent observables.

In order to treat the width Γ as a free parameter, we need to determine those combina-
tions of mDM, gDM and gq that reproduce the observed relic density while at the same time
matching the required width. For this purpose we first of all observe from eqs. (3.3)–(3.4)
that for fixed mZ′ and mDM < mZ′/2 the total width Γ is an ellipse in the couplings.13

We can now consider ellipses of constant width Γ in the same gq-gDM-plane used in figure 4
to study the relic density constraints. Since the relic density curve is convex while the
constant-width curve is concave, the two curves will have either exactly two intersects or
zero intersects (neglecting those special cases where the two curves just touch at exactly
one point). In other words, for fixed values of mZ′ , Γ and mDM, there is either no combi-
nation of gq and gDM that reproduces the relic density constraint or there are two separate
solutions corresponding to the desired value of Γ. Whenever there are two solutions, we
define Solution I to be the one with larger gDM (and therefore smaller gq) and Solution II
to be the one with smaller gDM (larger gq). Two examples are shown in figure 5.

As noted above, increasing the value of mDM will shift the relic density curve towards
smaller couplings. Conversely, the constant-width curve will be shifted to larger couplings
(due to the larger phase-space suppression of Z ′ → ψψ). This means that for each value of
mZ′ and Γ there is a minimum value of mDM, called mDM,min(mZ′ ,Γ), such that there is
no solution for mDM < mDM,min and two solutions for mDM > mDM,min. Increasing mDM

beyond mDM,min will shift Solution I to larger values of gDM and smaller values of gq and
vice versa for Solution II. As mDM approaches mZ′/2, Solution I will yield arbitrarily large
values of gDM and thus ultimately violate the perturbativity bound gDM <

√
4π. Solution

12This argument assumes that the width of the resonance is large compared to the detector resolution.
Nevertheless, for a narrow resonance it is still possible to determine the mass and place an upper bound on
the width.

13For mDM ≥ mZ′/2, the total width is independent of gDM and hence a straight line gq = const.
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Figure 6. Left: The minimum value of the DM mass required in order to simultaneously satisfy
the relic density constraint and reproduce the assumed Z ′ width. For smaller DM masses, the relic
density curve and the constant width curve do not intersect in the gDM-gq plane (see figure 5).
Right: The smallest value of gDM that can reproduce the observed relic density and the assumed
width. This value corresponds to Solution II for mDM slightly below mZ′/2.

II, on the other hand, will approach a small but non-zero minimum value of gDM, called
gDM,min.14 Figure 6 shows both mDM,min and gDM,min as a function of mZ′ and Γ.

With these considerations in mind, we can now eliminate either mDM or gDM in
favour of Γ and proceed with either (mZ′ , Γ, gDM), where gDM,min < gDM <

√
4π, or

with (mZ′ , Γ, mDM), where mDM,min < mDM < mZ′/2. While in the first case we find a
single value of gq for each set (mZ′ , Γ gDM) compatible with the relic density constraint
and consistent with the required width, the second case yields two separate solutions as
discussed above. We discuss both possibilities below, as they each offer different physical
insights.

3.2.2 Dijet bounds on the DM coupling

We have shown above that for fixed mZ′ and Γ smaller values of gDM correspond to larger
values of gq. Using figure 2 to read off the upper bound on gq from dijet searches thus allows
us to place a lower bound on gDM. This lower bound on gDM is shown in figure 7. Wherever
no bounds from dijet searches can be placed, we simply show the smallest value of gDM for
which the relic density curve and the constant-width curve intersect (called gDM,min above).
If on the other hand the lower bound from dijet searches is so strong that it requires gDM

to be larger than
√

4π, we conclude that it is impossible to find perturbative values of gq
and gDM such that the width Γ and the relic density can be reproduced without violating
dijet constraints. The corresponding regions are shaded in orange in figure 7.

We observe that rather large values of gDM are required in order to avoid dijet con-
straints. While the consistency of the relic density requirement and the assumed width only

14Note that in fact the resonant enhancement of the annihilation cross section is maximal (and hence
the coupling gDM is minimal) for mDM slightly below mZ′/2. We determine the DM mass corresponding
to gDM,min numerically.
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Figure 7. Lower bound on the DM coupling gDM from the combination of the relic density
constraint and LHC dijet searches. In the orange shaded region, gDM,min becomes non-perturbative,
i.e. all perturbative values of gDM are excluded by LHC dijet searches.

required gDM,min ∼ 0.1–0.3 (see figure 6), dijet constraints require gDM > 1 in almost the
entire parameter space that we consider. For large Z ′ width, even larger values of gDM are
required in order to reduce the branching ratio of the Z ′ into dijets. For mZ′ . 1.5TeV and
Γ/mZ′ & 0.2 as well as for 1.7 TeV . mZ′ . 3.3 TeV and Γ/mZ′ & 0.25, all perturbative
values of gDM that reproduce the relic abundance are excluded by dijet searches. For larger
Z ′ masses, LHC dijet searches lose sensitivity, but significant improvements in this mass
range can be expected from upcoming runs of the LHC at 13 TeV.

3.2.3 Dijet bounds on the DM mass

Let us finally present our results from a complementary perspective by taking mDM as a
free parameter and determining both gDM and gq from the relic density constraint and the
requirement of a constant width. As discussed above, for each value of mDM we obtain two
separate solutions, with Solution I (II) corresponding to larger (smaller) gDM. For each of
the two solutions, we can directly read off from figure 2 whether the parameter point is
excluded by the combined dijet constraints that we have derived above. These exclusion
limits in turn allow us to determine the allowed range of DM masses as a function of mZ′

and Γ. We now discuss the two different solutions in turn.
As noted above, for Solution I (i.e. larger values of gDM), the DM coupling increases

with the DM mass. The requirement to have a perturbative coupling, gDM <
√

4π, therefore
gives an upper bound on mDM, called mDM,max. For some values of mZ′ and Γ we find
that Solution I yields a non-perturbative value of gDM for all values of the DM mass, so for
these combinations of Z ′ mass and width only Solution II is of interest.

Conversely, for Solution I smaller DM masses correspond to larger values of gq. Since
large values of gq are excluded by LHC dijet searches, we can use the LHC bounds to

– 16 –



0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.05

0.10

0.20

0.50

Γ/mZ' [GeV]
m
D
M
/m

Z
'

Larger gDM solution (mZ' = 1 TeV)

mDM,max

mDM,min

D
ije
t
ex
cl
ud
ed

(m
D
M
,m
ax

<
m
D
M
,m
in
)
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function of the mediator width for mZ′ = 1TeV using Solution I (larger values of gDM). The dotted
orange line indicates the bound on mDM,min in the absence of LHC dijet constraints (see figure 6).

place a lower limit on mDM, called mDM,min.15 The combination of the perturbativity
requirement and LHC dijet searches therefore yield a range of permitted dark matter masses
[mDM,min,mDM,max], which satisfy all of our constraints. In other words, for mDM in this
range, it is possible to find values of gq and gDM that yield the observed relic abundance
and are consistent with all other constraints that we consider.

Figure 8 shows one example, where we have fixed the Z ′ mass to 1 TeV and show
mDM,min (orange) and mDM,max (blue, dashed) as a function of Γ. To illustrate the impact
of dijet searches, we also show the value of mDM,min that one obtains solely from the
consistency of relic density and constant width (orange, dotted). For large values of Γ we
find that mDM,max < mDM,min, i.e. all perturbative solutions are excluded by LHC dijet
searches. In the specific case under consideration, this occurs for Γ/mZ′ & 0.19.

Figure 9 shows the largest allowed DM mass (left) and the smallest allowed DM mass
(right) as a function ofmZ′ and Γ. The plots can be read by picking a point on the plane (i.e.
fixing mZ′ and Γ) and then reading of mDM,max and mDM,min from the two panels to find
the range of permitted dark matter masses [mDM,min,mDM,max] that satisfy all constraints.
Those combinations ofmZ′ and Γ for whichmDM,max < mDM,min are shaded in orange. The
grey region indicates those combinations of Z ′ mass and width for which no perturbative
solutions can be found. As expected, the orange shaded region is identical to the one found
in figure 7.

Turning now to Solution II, we note that for this solution perturbativity constraints
will typically be less important (because we consider smaller values of gDM), while dijet
constraints will be more important (because the corresponding values of gq are larger).16

Compared to the previous solution, the situation is now reversed: The requirement of
perturbativity may raise mDM,min, while dijet constraints will lower mDM,max. We show the
maximum and minimum allowed DM masses for Solution II in figure 10.

15Note that even if LHC dijet searches are not constraining, there is always a lower limit on mDM from
the requirement that the relic density curve and the constant-width curve intersect in the gq-gDM plane.

16For the widths that we are considering, Γ/MZ′ ≤ 0.3, gq is always less than unity, so we never run into
problems with the perturbativity of gq.
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Figure 9. Maximum (left) and minimum (right) allowed value of the DM mass as a function of
the mediator mass and width using Solution I (larger values of gDM).
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Figure 10. Maximum (left) and minimum (right) allowed value of the DM mass as a function of
the mediator mass and width using Solution II (smaller values of gDM).

As expected, we find dijet constraints (shown in orange) to be significantly stronger
than for Solution I. For large width, the entire range 500GeV ≤ mZ′ ≤ 3500GeV is excluded
by dijet constraints. For mZ′ ∼ 1200 GeV the dijet bounds extend down to very narrow
resonances. As discussed above, dijet bounds are particularly weak around 1600 GeV, due
to an intriguing upward fluctuation in the data. Finally, we note that we can always find a
value of the DM mass such that Solution II corresponds to perturbative couplings (so the
grey shaded region from figure 9 is absent).
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4 Conclusions

We have presented a combination of all available searches for dijet resonances at the LHC
in the context of a generic Z ′ model. Taking the width of the resonance and its coupling to
quarks as independent parameters allows us to obtain constraints that apply irrespective of
whether the Z ′ decays exclusively into quarks or dominantly into other states. The results
of this analysis, summarised in figure 2 and table 3, are provided in such a way that they
can be easily used to constrain a range of different models.

As a specific illustration of our approach, we have applied our constraints to a Z ′

that couples to quarks and dark matter (DM), similar in spirit to a DM simplified model
with a spin-1 s-channel mediator. It is straight-forward to map our constraints onto the
parameter plane showing DM mass versus mediator mass for fixed couplings, which is
conventionally used to present LHC results from missing energy searches. We show that for
the typical choice of couplings (gDM = 1, gq = 0.25), dijet searches can exclude the range
500 GeV < mZ′ < 3 TeV for almost all values of the DM mass (see figure 3).

Finally, we have focussed on the special case that the Z ′ mediates the interactions
of DM and quarks responsible for thermal freeze-out, so that one of the parameters of the
model can be eliminated by the requirement to reproduce the observed relic abundance. We
have constructed a novel way of studying this set-up by making explicit the parameters that
can be directly probed by searches for dijet resonances, i.e. the mass and the width of the Z ′.
The remaining free parameter can then be taken to be either the DM coupling (figure 7) or
the DM mass (figures 9 and 10). We find that for very broad widths (Γ/mZ′ & 0.25) and Z ′

masses below about 3 TeV, LHC searches already exclude the possibility that the DM-quark
interactions mediated by the Z ′ are responsible for setting the DM relic abundance.

Furthermore, these figures provide a useful tool for interpreting future searches for dijet
resonances at the LHC. Should an excess be seen in such a search, the mass and the width
of the resonance can be determined from the data in a model-independent way. One can
use these figures to look up whether the new state could conceivably act as the mediator
into the dark sector. If a solution to the relic density requirement exists, the plots then
provide the allowed ranges of the DM mass and coupling. Presently there is still ample
room for such an interpretation, so there is much to be learned from the upcoming LHC
data at 13 TeV.
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A Tabulated bounds on gq

We provide the numerical values of the dijet constraints obtained in section 2 in table 3.

Table 3. Numerical values of the fit to the constraint on the quark coupling as a function of width
outlined in eq. (2.7).

MZ′ [GeV] 10× a(MZ′) b(MZ′) 1000× c(MZ′)
500 2.4295 2.208 0.0588
550 1.3808 1.760 0.0712
600 0.7648 1.452 0.0000
650 0.5251 1.496 0.0584
700 0.4153 1.389 0.0000
750 0.4266 1.375 0.0000
800 0.4865 1.386 0.0000
850 1.2889 2.047 0.2376
900 0.3078 1.259 0.0000
950 0.7027 1.729 0.0540
1000 0.5892 1.341 0.0743
1100 0.4600 1.183 0.0000
1200 0.3674 1.334 0.0000
1300 1.4714 1.879 0.0809
1400 1.8096 1.723 0.1545
1500 4.4052 1.920 0.1901
1600 13.7015 1.989 0.5733
1700 5.4250 1.468 0.0000
1800 5.1603 1.729 0.2606
1900 4.8469 1.751 0.3736
2000 4.7523 1.629 0.3762
2100 3.3313 1.425 0.0000
2200 3.9147 1.458 0.1891
2300 4.9732 1.550 0.3758
2400 4.9159 1.588 0.4994
2500 3.3318 1.450 0.3996
2600 3.5345 1.509 0.3922
2700 3.9016 1.565 0.4383
2800 3.2388 1.440 0.4402
2900 2.6469 1.318 0.6291
3000 3.0428 1.315 0.7375
3100 3.5767 1.326 1.1560
3200 2.6266 1.129 0.6442
3300 4.0536 1.286 0.6851
3400 6.1825 1.421 1.3730
3500 3.7765 1.162 0.5939
3600 5.0627 1.262 1.3046
3700 6.5994 1.307 2.1257
3800 6.8087 1.191 3.0885
3900 5.6611 0.936 0.0000
4000 9.5274 1.061 0.0000
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B Specific modifications of micrOMEGAs

In this appendix we detail two modifications to CalcHEP [52], which is used by micrOMEGAs
to calculate the cross sections for DM pair annihilation. Both modifications are necessary in
order to correctly treat the width of the Z ′ close to the resonance (i.e. for mDM ≈ mZ′/2).

The first modification is necessary to avoid numerical instabilities leading to kinks in
the curves of constant relic density as a function of gDM and gq for fixed mDM and mZ′

(see figure 4). These kinks arise due to the way the Breit-Wigner (BW) propagator is
implemented in CalcHEP. The standard BW distribution for a particle with mass m and
momentum q is given by

|M|2 ∝ 1

(q2 −m2)2 +m2Γ2
, (B.1)

where the term involving Γ removes the divergence as the particle becomes on-shell (q2 →
m2). However, since the width is a sum of diagrams of varying orders, its presence in
eq. (B.1) can spoil gauge invariance. For this reason CalcHEP implements the BW formula
as a piecewise function over three regions: Formula B.1 is used with a non-zero width for
|q2 − m2| < RmΓ, where R is an arbitrary number that is by default fixed to 2.7. For
|q2 −m2| >

√
R2 + 1mΓ, on the other hand, the width in eq. (B.1) is set to zero. In the

intermediate region the width Γ is replaced by a function of q2 that interpolates between
the two cases. For fairly large widths, as considered in the present work, this interpolation
procedure can lead to kinks in the relic density calculation. To remove such kinks one can
simply increase the value of R from its default value by changing the value of the variable
BWrange [53]. We have found that R = 100 is sufficient to remove the kinks in our plots.17

Furthermore, as pointed out in ref. [30], the width Γ of the resonance depends in general
on the momentum transfer q2, i.e. Γ = Γ(q2). For the case of narrow widths (Γ/m � 1),
eq. (B.1) gives a good approximation, because Γ is only relevant for q2 ≈ m2 and one can
therefore approximate Γ ≈ Γ(q2 = m2). Since we consider widths as large as 30% in this
work, it is however appropriate to modify the BW formula in order to take the momentum
dependence of the width into account.

Following appendix A of [30], we can approximately capture the momentum dependence

by setting Γ(q2) =

√
q2

m Γ(q2 = m2). This substitution yields

|M|2 ∝ 1

(q2 −m2)2 + (q2)2

m2 Γ(q2 = m2)2
(B.2)

for the shape of the BW resonance. This modification can be implemented by editing the
function prepDen used in the CalcHEP code.
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