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Abstract

We calculate 3-loop master integrals for heavy quark correlators and the 3-loop QCD cor-
rections to the ρ-parameter. They obey non-factorizing differential equations of second
order with more than three singularities, which cannot be factorized in Mellin-N space
either. The solution of the homogeneous equations is possible in terms of convergent close
integer power series as 2F1 Gauß hypergeometric functions at rational argument. In some
cases, integrals of this type can be mapped to complete elliptic integrals at rational ar-
gument. This class of functions appears to be the next one arising in the calculation of
more complicated Feynman integrals following the harmonic polylogarithms, generalized
polylogarithms, cyclotomic harmonic polylogarithms, square-root valued iterated integrals,
and combinations thereof, which appear in simpler cases. The inhomogeneous solution of
the corresponding differential equations can be given in terms of iterative integrals, where
the new innermost letter itself is not an iterative integral. A new class of iterative integrals
is introduced containing letters in which (multiple) definite integrals appear as factors. For
the elliptic case, we also derive the solution in terms of integrals over modular functions
and also modular forms, using q-product and series representations implied by Jacobi’s
ϑi functions and Dedekind’s η-function. The corresponding representations can be traced
back to polynomials out of Lambert–Eisenstein series, having representations also as el-
liptic polylogarithms, a q-factorial 1/ηk(τ), logarithms and polylogarithms of q and their
q-integrals. Due to the specific form of the physical variable x(q) for different processes,
different representations do usually appear. Numerical results are also presented.



1 Introduction

Many single scale Feynman integrals arising in massless and massive multi-loop calculations in
Quantum Chromodynamics (QCD) [1] have been found to be expressible in terms of harmonic
polylogarithms (HPLs) [2], generalized harmonic polylogarithms [3,4], cyclotomic harmonic poly-
logarithms [5], square-root valued iterated integrals [6], as well as more general functions, entering
the corresponding alphabet in integral iteration. After taking a Mellin transform

M[f(x)](N) =

∫ 1

0

dxxNf(x), (1.1)

they can be equivalently expressed in terms of harmonic sums [7,8] in the simpler examples and
finite sums of different kinds in the other cases [3–6], supplemented by special numbers like the
multiple zeta values [9] and others appearing in the limit N → ∞ of the nested sums, or the
value at x = 1 of the iterated integrals in Refs. [2–8].

In many higher order calculations a considerable reduction of the number of integrals to be
calculated is obtained using integration by parts identities (IBPs) [10], which allow to express
all required integrals in terms of a much smaller set of so called master integrals. Differen-
tial equations satisfied by these master integrals [11, 12] can then be obtained by taking their
derivatives with respect to the parameters of the problem and inserting the IBPs in the result.
What remains is to solve these differential equations, given initial or boundary conditions, if
possible analytically. One way of doing this is to derive an associated system of difference equa-
tions [13–16] after applying a mapping through a formal Taylor series or a Mellin transform. If
these equations factorize to first order equations, we can use the algorithm presented in Ref. [16]
for general bases to solve these systems analytically and to find the corresponding alphabets over
which the iterated integrals or nested sums are built. The final solution in N and x space is
found by using the packages Sigma [17,18], EvaluateMultiSums and SumProduction [19].

However, there are physical cases where full first order factorizations cannot be obtained
for either the differential equations in x or the difference equations in N .1 The next level
of complexity is given by non-factorizable differential or difference equations of second order.
Examples of this are the massive sunrise and kite integrals [12,21–38].

In the present paper, we will address the analytic solution of typical cases of this kind, related
to a series of master integrals appearing in the 3-loop corrections of the ρ-parameter in [39]. It
turns out that these integrals are more general than those appearing in the sunrise and kite
diagrams, due to the appearance of also the elliptic integral of the second kind, E(z), which
cannot be transformed away. The corresponding second order differential equations have more
than three singularities, as in the case of the Heun equation [40]. For the sake of generality,
we will seek solutions of the second order homogeneous differential equations which are given in
terms of Gauß’ 2F1 functions [41] within the class of globally bounded solutions [42], cf. also [43].
Here the parameters of the 2F1 function are rational numbers and the argument is a rational
function of x. The complete elliptic integrals K(z) and E(z) [44–47]2 are special cases of this
class.

The hypergeometric function obeys different relations like the Euler- and Pfaff-
transformations [48, 49], the 24 Kummer solutions [50, 51] and the 15 Gauß’ contiguous rela-
tions [48, 49]. There are more special transformations for higher than first order in the argu-
ment [50, 52–54]. In the present case, equivalent 2F1 representations are obtained by applying

1There are cases in which factorization fails in either x- or N -space, but not in both, cf. [20]. This opportunity
has to be always checked.

2As a convention, the modulus k2 = z is chosen in this paper, also used within the framework of Mathematica.
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arithmetic triangle groups [55]. The corresponding algorithm has been described in Ref. [56] in
its present most far reaching form. The relations of this type may be useful to transform a found
solution into another one, which might be particularly convenient. In the case a function space
of more solutions is considered, these relations have to be exploited to check the independence
of the basis elements.

The main idea of the approach presented here is to obtain the factorization of a high order
scalar difference or differential equation, after uncoupling [57–59] the corresponding linear sys-
tems, to all first order parts and its second order contributions. While the first order parts have
been algorithmically solved in Ref. [16], the treatment of second order differential equations shall
be automated.3 The class of 2F1 solutions has an algorithmic automation to a wide extent [56]
and it seems that this class constitutes the next one following the iterated square-root valued
letters in massive single-scale 3-loop integrals. Applying this method, we obtain the correspond-
ing 2F1 functions with (partly) fractional parameters and rational argument, and ir(rational)
pre-factors, forming the new letters of the otherwise iterated integrals. These letters contain a
definite integral by virtue of the integral representation of the 2F1 function, which cannot be
fully transformed into an integral depending on the follow-up integration variable only through
its integration boundaries. In general, we have therefore to iterate new letters of this kind.
Through this we obtain a complete algorithmic automation of the solution also when second
order differential operators contribute, having 2F1 solutions.

As it will be shown, in a series of cases the reduction of the 2F1 functions to complete elliptic
integrals E(r(z)) and K(r(z)) is possible. Therefore we also study special representations in
terms of q-series, which have been obtained in the case of the sunrise graph, cf. [30,32,33,35,37],
before. More general representations are needed for the integrals considered in the present paper
and we describe the necessary extension.

In performing a higher loop calculation, in intermediary steps usually more complicated
nested integrals and sums occur than in the final result4. The various necessary decompositions
of the problem that have to be performed, such as the integration by parts reduction and others,
account for this in part. It appears therefore necessary to have full control on these occurring
structures first, which finally may simplify in the result. Moreover, experience tells that in more
general situations, more and more of these structures survive, cf. [15] in comparison to [60].
If the mathematical properties of the quantities occurring are known in detail, various future
calculations in the field will be more easily performed.

The paper is organized as follows. In Section 2 we present the linear systems of first order
differential equations for master integrals in Ref. [39] which cannot be solved in terms of iterated
integrals. We first perform a decoupling into a scalar second order equation and an associated
equation for each system. Using the algorithm of Ref. [16], the non-iterative solution both in x-
and Mellin-N -space is uniquely established. In Section 3 we first determine the homogeneous
solutions of the second order equations, which turn out to be 2F1 solutions [42] and obey rep-
resentations in terms of weighted complete elliptic integrals of first and second kind at rational
argument. In Section 4 we derive the solutions in the inhomogeneous case, which are given by
iterated integrals in which some letters are given by a higher transcendental function defined by
a non-iterative, i.e. definite, integral in part. We present numerical representations for x ∈ [0, 1]
deriving overlapping expansions around x = 0 and x = 1. The methods presented apply to a
much wider class of functions than the ones being discussed here specifically. These need neither
to have a representation in terms of elliptic integrals, nor of just a 2F1 function. The respective
letter can be given by any multiple definite integral.

3For more involved physical problems also irreducible higher order differential equations may occur.
4For a simple earlier case, see e.g. [14,60].
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Owing to the fact that we have elliptic solutions in the present cases we may also try to cast
the solution in terms of series in the nome

q = exp(iπτ), (1.2)

where

τ = i
K(1− z(x))

K(z(x))
with τ ∈ H = {z ∈ C, Im(z) > 0} (1.3)

denotes the ratio of two complete elliptic integrals of first kind and z(x) is a rational function
associated to the elliptic curve of the problem. It is now interesting to see which closed form
solutions the corresponding series in q obey. All contributing quantities can be expressed in
terms ratios of the Dedekind η(τ) function [61], cf. Eq. (6.14). However, various building blocks
are only modular forms [62–73] up to an additional factor of

1

ηk(τ)
, k > 0, k ∈ N. (1.4)

We seek in particular modular forms which have a representation in terms of Lambert–Eisenstein
series [74,75] and can thus be represented by elliptic polylogarithms [76]. However, the η-factor
(1.4) in general remains. Thus the occurring q-integrands are modulated by a q-factorial [49,77]
denominator.

Structures of the kind for k > 0 are frequent even in the early literature. A prominent case
is given by the invariant J , see e.g. [78],

J =
G3

2(q)

216000∆(q)
(1.5)

with G2(q) an Eisenstein series, cf. Eq.(6.64), and the discriminant ∆

∆(q) = (2π)12q2
∞∏
k=1

(1− q2k)24 = (2π)12η24(τ). (1.6)

In the more special case considered in [30,32,33,35,37] terms of this kind are not present.
For the present solutions, we develop the formalism in Section 5. We discuss possible exten-

sions of integral classes to the present case in Section 6 and of elliptic polylogarithms [76], as has
been done previously in the calculation of the two-loop sunrise and kite-diagrams [30,32,33,35,37].
Here the usual variable x is mapped to the nome q, expressing all contributing functions in the
new variable. This can be done for all the individual building blocks, the product of which forms
the desired solution. Section 7 contains the conclusions.

In Appendix A we briefly describe the algorithm finding for second order ordinary differential
equations 2F1 solutions with a rational function argument. In Appendix B we present for conve-
nience details for the necessary steps to arrive at the elliptic polylogarithmic representation in
the examples of the sunrise and kite integrals [30, 32, 33, 35, 37]. Here we compare some results
given in Refs. [30] and [35]. In Appendix C we list a series of new sums, which simplify the
recent results on the sunrise diagram of Ref. [79].

In the present paper we present the results together with all necessary technical details and
we try to refer to the related mathematical literature as widely as possible, to allow a wide
community of readers to apply the methods presented here to other problems.
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2 The Differential Equations

The master integrals considered in this paper satisfy linear differential equations of second order[
d2

dx2
+ p(x)

d

dx
+ q(x)

]
ψ(x) = N(x) , (2.1)

with rational functions r(x) = p(x), q(x), which may be decomposed into

r(x) =
nr∑
k=1

b
(r)
k

x− a(r)k
, a

(r)
k , b

(r)
k ∈ Z . (2.2)

The homogeneous equation is solved by the functions ψ
(0)
1,2(x), which are linearly independent,

i.e. their Wronskian W obeys

W (x) = ψ
(0)
1 (x)

d

dx
ψ

(0)
2 (x)− ψ(0)

2 (x)
d

dx
ψ

(0)
1 (x) 6= 0 . (2.3)

The homogeneous Eq. (2.1) determines the well-known differential equation for W (x)

d

dx
W (x) = −p(x)W (x) , (2.4)

which, by virtue of (2.2), has the solution

W (x) =

n1∏
k=1

(
1

x− a(1)k

)b
(1)
k

, (2.5)

normalizing the functions ψ
(0)
1,2 accordingly. A particular solution of the inhomogeneous equation

(2.1) is then obtained by Euler-Lagrange variation of constants [80]

ψ(x) = ψ
(0)
1 (x)

[
C1 −

∫
dx ψ

(0)
2 (x)n(x)

]
+ ψ

(0)
2 (x)

[
C2 +

∫
dx ψ

(0)
1 (x)n(x)

]
, (2.6)

with

n(x) =
N(x)

W (x)
(2.7)

and two constants C1,2 to be determined by special physical requirements. We will consider
indefinite integrals for the solution (2.6), which allows for more singular integrands. For the class
of differential equations under consideration, N(x) can be expressed by harmonic polylogarithms

and rational functions, W (x) is a polynomial, and the functions ψ
(0)
1,2(x) turn out to be higher

transcendental functions, which are even expressible by complete elliptic integrals in the cases
considered here. Therefore Eq. (2.6) constitutes a nested integral of known functions [2–6] and
elliptic integrals at rational argument.

We consider the systems of differential equations [39] for the O(ε0) terms of the master
integrals

d

dx

 f8a(x)

f9a(x)

 =

 4
x

6
x

4(x2−3)
x(x2−9)(x2−1)

2(x4−9)
x(x2−9)(x2−1)

⊗
 f8a(x)

f9a(x)

+

 N8a(x)

N9a(x)

 (2.8)

5



and

d

dx

 f8b(x)

f9b(x)

 =

 4
x

2
x

4(3x2−1)
x(9x2−1)(x2−1)

2(9x4−1)
x(9x2−1)(x2−1)

⊗
 f8b(x)

f9b(x)

+

 N8b(x)

N9b(x)

 , (2.9)

with

N8a(x) =
15(−13− 16x2 + x4)

4x
− 3x(−24 + x2) ln(x)− 18x ln2(x) (2.10)

N9a(x) =
1755 + 1863x2 − 1255x4 + 157x6

12x(x2 − 9)(x2 − 1)
− x(324− 145x2 + 15x4)

(x2 − 9)(x2 − 1)
ln(x)

+
2x(45− 17x2 + 2x4)

(x2 − 9)(x2 − 1)
ln2(x)− 16x3

3(x2 − 9)(x2 − 1)
ln3(x) (2.11)

N8b(x) = −15(−1 + 16x2 + 13x4)

4x
+ 9x(8 + 15x2) ln(x)− 18(x+ 6x3) ln2(x) (2.12)

N9b(x) = −15− 397x2 + 925x4 + 297x6

4x(9x2 − 1)(x2 − 1)
+

3x (−36 + 35x2 + 195x4)

(9x2 − 1)(x2 − 1)
ln(x)

+
6x (5 + 37x2 − 144x4)

(9x2 − 1)(x2 − 1)
ln2(x) +

16x3 (−8 + 27x2)

(9x2 − 1)(x2 − 1)
ln3(x). (2.13)

By applying decoupling algorithms [57–59] one obtains the following scalar differential equation

0 =
d2

dx2
f8a(x) +

9− 30x2 + 5x4

x(x2 − 1)(9− x2)
d

dx
f8a(x)− 8(−3 + x2)

(9− x2)(x2 − 1)
f8a(x)

− 32x2

(9− x2)(x2 − 1)
ln3(x) +

12(−9 + 13x2 + 2x4)

(9− x2)(x2 − 1)
ln2(x)

−6(−54 + 62x2 + x4 + x6)

(9− x2)(x2 − 1)
ln(x) +

−1161 + 251x2 + 61x4 + 9x6

2(9− x2)(x2 − 1)
(2.14)

and the further equation

f9a(x) = −5

8
(−13− 16x2 + x4) +

x2

2
(−24 + x2) ln(x) + 3x2 ln2(x)− 2

3
f8a(x)

+
x

6

d

dx
f8a(x). (2.15)

Likewise, one obtains for the second system

0 =
d2

dx2
f8b(x)− 1− 30x2 + 45x4

x(9x2 − 1)(x2 − 1)

d

dx
f8b(x) +

24(−1 + 3x2)

(9x2 − 1)(x2 − 1)
f8b(x)

− 32x2(−8 + 27x2)

(9x2 − 1)(x2 − 1)
ln3(x) +

12(1− 13x2 − 216x4 + 162x6)

(9x2 − 1)(x2 − 1)
ln2(x)

−6(6− 46x2 − 399x4 + 81x6)

(9x2 − 1)(x2 − 1)
ln(x)− 61− 415x2 + 2199x4 + 675x6

2(9x2 − 1)(x2 − 1)
, (2.16)

f9b(x) = 9x2
(
1 + 6x2

)
ln2(x)− 9

2
x2
(
8 + 15x2

)
ln(x) +

15

8

(
−1 + 16x2 + 13x4

)
− 2f8b(x)

+
1

2
x
d

dx
f8b(x) . (2.17)

The above differential equations of second order contain more than three singularities. We seek
solutions in terms of Gauß’ hypergeometric functions with rational arguments, following the
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algorithm described in Appendix A. It turns out that these differential equations have 2F1

solutions.
Two more master integrals are obtained as integrals over the previous solutions. They obey

the differential equations

d

dx
f10a(x) =

6x
(
x2 − 6

)
H2

0 (x)

(x2 − 1)2
−

4x
(
x2 − 3

)
3(x2 − 1)2

H3
0 (x) +

8

x

[
H−1,−1,0(x)−H−1,1,0(x)−H1,−1,0(x)

+H1,1,0(x)

]
− 8x

x2 − 1
[H0,−1,0(x)−H0,1,0(x)] +

x
[
342− 51x2 + 2π2

(
x2 − 1

)]
3(x2 − 1)2

×H0(x) +
x4(165− 176ζ3) + 8x2(−105 + 22ζ3)− 585

12(x2 − 1)2x
− 2π2

3x
[H−1(x)−H1(x)]

+
4

(x2 − 1)2x
f8a(x) +

2
(
x2 + 3

)
(x2 − 1)2x

f9a(x), (2.18)

d

dx
f10b(x) = −

6
(
15x2 + 2

)
(x2 − 1)2x

H2
0 (x) +

4
(
4x4 + 33x2 + 1

)
3(x2 − 1)2x

H3
0 (x) +

(
8− 16x2

)
(x2 − 1)x

[
H0,−1,0(x)

−H0,1,0(x)

]
+

8

x

[
H−1,−1,0(x)− 2H−1,0,0(x)−H−1,1,0(x)−H1,−1,0(x)

+2H1,0,0(x) +H1,1,0(x)

]
+

3
(
59x2 + 38

)
+ π2

(
4x4 − 6x2 + 2

)
3(x2 − 1)2x

H0(x)

+
15− 192x6ζ3 − 8x2(45 + 2ζ3) + x4(−75 + 208ζ3)

12(x2 − 1)2x3
− 2π2

3x
[H−1(x)−H1(x)]

+
4

3(x2 − 1)2x3
f8b(x) +

2
(
3x2 + 1

)
3(x2 − 1)2x3

f9b(x) , (2.19)

with ζk, k ∈ N, k ≥ 2 the values of the Riemann ζ-function at integer argument and the harmonic
polylogarithms H~a(x) are defined by [2]

Hb,~a(x) =

∫ x

0

dyfb(y)H~a(y); fb(x) ∈ {f0, f1, f−1} ≡
{

1

x
,

1

1− x
,

1

1 + x

}
;

H0, ..., 0︸ ︷︷ ︸
k

(x) =
1

k!
lnk(x);H∅(x) ≡ 1 . (2.20)

Subsequently, we will use the shorthand notation H~a(x) ≡ H~a. The harmonic polylogarithms
occurring in the inhomogeneities of Eqs. (2.18, 2.19) can be rewritten as polynomials of

H0, H1, H−1, H0,−1, H0,1, H0,0,−1, H0,0,1, H0,−1,−1, H0,−1,1, H0,1,−1, H0,1,1, (2.21)

cf. [81].

3 Solution of the homogeneous equation

In the following we will derive the solution of the homogeneous part of Eqs. (2.14, 2.16) as
examples in detail, using the algorithm outlined in Ref. [56], see also Appendix A.
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The homogeneous solutions of Eq. (2.14) read

ψ
(0)
1a (x) =

√
2
√

3π
x2(x2 − 1)2(x2 − 9)2

(x2 + 3)4
2F1

[
4
3

5
3

2
; z

]
(3.1)

ψ
(0)
2a (x) =

√
2
√

3π
x2(x2 − 1)2(x2 − 9)2

(x2 + 3)4
2F1

[
4
3

5
3

2
; 1− z

]
, (3.2)

with

z =
x2(x2 − 9)2

(x2 + 3)3
. (3.3)

The 2F1 solutions (3.1, 3.2) are close integer series [42] obeying

b
∞∑
k=0

τk(c · z)k =
∞∑
k=0

mkz
k, with τk, b ∈ Q, mk ∈ Z, (3.4)

with c = 27. The Wronskian for this system is

W (x) = x(9− x2)(x2 − 1). (3.5)

The solutions are shown in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Figure 1: The homogeneous solutions (3.1, 3.2) ψ
(0)
1a (dashed line) and ψ

(0)
2a (full line) as functions of x.

Equivalent solutions are found by applying relations due to triangle groups [55], see Appendix A,

ψ
(0)
1b (x) =

√
π

4
√

6

{
−(x− 1)(x− 3)(x+ 3)2

√
x+ 1

9− 3x
2F1

[
1
2

1
2

1
; z

]

+(x2 + 3)(x− 3)2
√

x+ 1

9− 3x
2F1

[
1
2
− 1

2

1
; z

]}
(3.6)

ψ
(0)
2b (x) =

2
√
π√
6

{
x2
√

(x+ 1)(9− 3x)2F1

[
1
2

1
2

1
; 1− z

]
8



+
1

8

√
(x+ 1)(9− 3x)(x− 3)(x2 + 3)2F1

[
1
2
− 1

2

1
; 1− z

]}
, (3.7)

where

z(x) = − 16x3

(x+ 1)(x− 3)3
. (3.8)

These solutions have the Wronskian (3.5) up to a sign5 but differ from those in (3.1, 3.2). The
ratios of the homogeneous solutions are given by

ψ
(0)
1a (x)

ψ
(0)
1b (x)

= 33/4

√
π

2
(3.9)

ψ
(0)
2a (x)

ψ
(0)
2b (x)

= − 1

33/4

√
2

π
. (3.10)

The hypergeometric functions appearing in (3.6, 3.7) are given in terms of complete elliptic
integrals [45]

2F1

[
1
2

1
2

1
; z

]
=

2

π
K(z) (3.11)

2F1

[
1
2
− 1

2

1
; z

]
=

2

π
E(z) . (3.12)

Both solutions obey (3.4) with c = 16.

0.0 0.2 0.4 0.6 0.8 1.0

-3

-2

-1

0

Figure 2: The homogeneous solutions (3.6, 3.7) ψ
(0)
1b (dashed line) and ψ

(0)
2b (full line) as functions of x.

We also used the relation [82]

2F1

[
3
2

3
2

2
; z

]
=

4

πz(1− z)
[E(z)− (1− z)K(z)] , (3.13)

5The sign can be adjusted by ψ
(0)
1b ↔ ψ

(0)
2b .
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noting that it is always possible to map a 2F1(a, b; c;x) function with 2a, 2b, c ∈ Z, c > 0 into
complete elliptic integrals. Their integral representations in Legendre’s normal form [83] read

K(z) :=

∫ 1

0

dt√
(1− t2)(1− zt2)

(3.14)

E(z) :=

∫ 1

0

dt

√
1− zt2
1− t2

. (3.15)

In going from (3.1, 3.2) to (3.6, 3.7) also a contiguous relation had to be applied, leading to a
linear combination of two hypergeometric functions. The solutions are shown in Figure 2.

The ratio ψ
(0)
1b /ψ

(0)
2b exhibits the interesting form

ψ
(0)
1b (x)

ψ
(0)
2b (x)

= −1

3

E(z)− r1(x)K(z)

E(1− z)− (1− r1(x))K(1− z)
(3.16)

with

r1(x) =
(x+ 3)2(x− 1)

(x2 + 3)(x− 3)
, and

r1(x)

r1(−x)
= 1− z(x) . (3.17)

Whether 2F1 solutions emerging in single scale Feynman integral calculations as solutions
of differential equations for master integrals are always of the class to be reducible to complete
elliptic integrals a priori is not known. However, one may use the algorithm given in Appendix A
to map a solution to one represented by elliptic integrals, if the parameters of the respective 2F1

solution match the required pattern.
The homogeneous solutions of (2.16) read

ψ
(0)
3 (x) = −

√
1− 3x

√
x+ 1

2
√

2π

[
(x+ 1)

(
3x2 + 1

)
E(z)− (x− 1)2(3x+ 1)K(z)

]
(3.18)

ψ
(0)
4 (x) = −

√
1− 3x

√
x+ 1

2
√

2π

[
8x2K(1− z)− (x+ 1)

(
3x2 + 1

)
E(1− z)

]
, (3.19)

with

z =
16x3

(x+ 1)3(3x− 1)
. (3.20)

The argument 1 − z appeared already in complete elliptic integrals by A. Sabry in
Ref. [21], Eq. (68), with x = −λ, calculating the so-called kite-integral at 2 loops, 55 years
ago; see also Ref. [24], Eq. (A.11), for the sunrise-diagram and [36], Eq. (D.18), with x = 1/

√
u

for the kite-diagram. The latter aspect also shows the close relation between the elliptic struc-
tures appearing for both topologies, which has been mentioned in Ref. [37].

Using the Legendre identity [83]

K(z)E(1− z) + E(z)K(1− z)−K(z)K(1− z) =
π

2
(3.21)

one obtains the Wronskian of the system (3.18, 3.19)

W (x) = x(9x2 − 1)(x2 − 1) , (3.22)
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cf. (2.5).
The homogeneous solutions (3.18, 3.19), which are complex for x ∈ [0, 1], are shown in

Figure 3. The real part of ψ
(0)
3 (x) has a discontinuity at x = 1/3 moving from −(4/9)

√
2/(3π)

to (4/9)
√

2/(3π), while Re(ψ
(0)
4 (x)) vanishes for x > 1/3. Likewise, Im(ψ

(0)
4 (x)) vanishes for

0 ≤ x ≤ 1/3.

0.0 0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Figure 3: The homogeneous solutions (3.18, 3.18) ψ
(0)
3 (dashed lines) and ψ

(0)
4 (full lines) as functions of

x; left panel: real part, right panel: imaginary part.

We finally consider the ratio ψ
(0)
3 /ψ

(0)
4

ψ
(0)
3 (x)

ψ
(0)
4 (x)

= − E(z)− r2(x)K(z)

E(1− z)− (1− r2(x))K(1− z)
, (3.23)

where

r2(x) =
(x− 1)2(3x+ 1)

(x+ 1)(3x2 + 1)
and

r2(x)

r2(−x)
= 1− z(x) . (3.24)

This structure is the same as in (3.16, 3.17) up to the pre-factor.
The solution of the inhomogeneous equations (2.14, 2.16) are obtained form (2.6) specifying

the constants C1,2 by physical requirements. The previous calculation of the corresponding mas-
ter integrals in [39] used expansions of the propagators [84, 85], obtaining series representations
around x = 0 and x = 1. The first expansion coefficients of these will be used to determine C1

and C2. The inhomogeneous solutions are given by

ψ(x) = ψ
(0)
1 (x) [C1 − I2(x)] + ψ

(0)
2 (x) [C2 + I1(x)] , (3.25)

with

I1(2)(x) =

∫
dxψ1(2)(x)

N(x)

W (x)
. (3.26)

Eq. (3.25) is an integral which cannot be represented within the class of iterative integrals. It
therefore requires a generalization. We present this in Section 4. Efficient numerical representa-
tions using series expansions are given in Section 5.
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4 Iterated Integrals over Definite Integrals

The elliptic integrals (3.14, 3.15) cannot be rewritten as integrals in which their argument x only
appears in one of their integral boundaries.6 Therefore, the integrals of the type of Eq. (3.25) do
not belong to the iterative integrals of the type given in Refs. [2,4–6] and generalizations thereof
to general alphabets, which have the form

Hb,~a(x) =

∫ x

0

dyfb(y)H~a(y) . (4.1)

For a given difference equation, associated to a corresponding differential equation, the algorithms
of [17,18] based on [87] allow to decide whether or not the recurrence is first order factorizable.
In the first case the corresponding nested sum-product structure is returned. In the case the
problem is not first order factorizable, integrals will be introduced whose integrands depend on
variables that cannot be moved to the integration boundaries and over which one will integrate
by later integrals. This is the case if the corresponding quantity obeys a differential equation of
order m ≥ 2, not being reducible to lower orders. Examples of this kind are irreducible Gauß’

2F1 functions, to which also the complete elliptic integrals E(z) and K(z) belong.
The new iterative integrals are given by

Ha1,...,am−1;{am;Fm(r(ym))},am+1,...,aq(x) =

∫ x

0

dy1fa1(y1)

∫ y1

0

dy2...

∫ ym−1

0

dymfam(ym)Fm[r(ym)]

×Ham+1,...,aq(ym+1), (4.2)

and cases in which more than one definite integral Fm appears. Here the fai(y) are the usual
letters of the different classes considered in [2, 4–6] multiplied by hyperexponential pre-factors

r(y)yr1(1− y)r2 , ri ∈ Q, r(y) ∈ Q[y] (4.3)

and F [r(y)] is given by

F [r(y)] =

∫ 1

0

dzg(z, r(y)), r(y) ∈ Q[y], (4.4)

such that the y-dependence cannot be transformed into one of the integration boundaries com-
pletely. We have chosen here r(y) as a rational function because of concrete examples in this
paper, which, however, is not necessary. Specifically we have

F [r(y)] = 2F1

[
a b

c
; r(y)

]
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dzzb(1− z)c−b−1 (1− r(y)z)−a ,

r(y) ∈ Q[y], a, b, c ∈ Q. (4.5)

The new iterated integral (4.2) is not limited to the emergence of the functions (4.5). Multiple
definite integrals are allowed as well. They emerge e.g. in the case of Appell-functions [48, 49]
and even more involved higher functions. These integrals also obey relations of the shuffle type
w.r.t. their letters fam(ym)(Fm[r(ym)]), cf. e.g. [81,88].

Within the analyticity region of the problem one may derive series expansions of the corre-
sponding solutions around special values, e.g. x = 0, x = 1 and other values to map out the

6Iterative non-iterative integrals have been introduced by the 2nd author in a talk on the 5th International
Congress on Mathematical Software, held at FU Berlin, July 11-14, 2016, with a series of colleagues present,
cf. [86].
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function for its whole argument range. In many cases, one will even find convergent, widely over-
lapping representations, which are highly accurate and provide a numerical solution in terms of
a finite number of analytic expansion coefficients. We apply this method to the solution of the
differential equations in Section 2 in the following section and return to the construction of a
closed form analytic representation using q-series and Dedekind η functions in Section 6.

5 The Solution of the Inhomogeneous Equation by Series

Expansion

The inhomogeneous solutions of type (3.25) can be expanded into series around x = 0 and x = 1
analytically using computer algebra packages like Mathematica or maple. One either obtains
Taylor series or superpositions of Taylor series times a factor lnk(x), k ∈ N. For all solutions both
expansions have a wide overlap7 and one may obtain in this way a highly accurate representation
of all solutions in the complete region x ∈ [0, 1].

In the following we present the first terms of the series expansion for the functions
f8(9,10),a(b)(x) around x = 0 and x = 1.

For f8a we obtain

f8a(x) = −
√

3

[
π3

(
35x2

108
− 35x4

486
− 35x6

4374
− 35x8

13122
− 70x10

59049
− 665x12

1062882

)
+

(
12x2 − 8x4

3

−8x6

27
− 8x8

81
− 32x10

729
− 152x12

6561

)
Im

[
Li3

(
e−

iπ
6

√
3

)]]
− π2

(
1 +

x4

9
− 4x6

243
− 46x8

6561

−214x10

59049
− 5546x12

2657205

)
−

(
−3

2
− x4

6
+

2x6

81
+

23x8

2187
+

107x10

19683
+

2773x12

885735

)
ψ(1)

(
1

3

)

−
√

3π

(
x2

4
− x4

18
− x6

162
− x8

486
− 2x10

2187
− 19x12

39366

)
ln2(3)−

[
33x2 − 5x4

4
− 11x6

54

−19x8

324
− 751x10

29160
− 2227x12

164025
+ π2

(
4x2

3
− 8x4

27
− 8x6

243
− 8x8

729
− 32x10

6561
− 152x12

59049

)

+

(
−2x2 +

4x4

9
+

4x6

81
+

4x8

243
+

16x10

2187
+

76x12

19683

)
ψ(1)

(
1

3

)]
ln(x) +

135

16
+ 19x2

−43x4

48
− 89x6

324
− 1493x8

23328
− 132503x10

5248800
− 2924131x12

236196000
−

(
x4

2
− 12x2

)
ln2(x)

−2x2 ln3(x) +O
(
x14 ln(x)

)
(5.1)

around x = 0. Here we also applied a series of relations for ψ(k)-functions at rational argument,
cf. Ref. [5].

Likewise, one may expand around y = 1− x = 0. In this case, we can rewrite the inhomoge-
neous solution given in (3.25) as

ψ(y) = ψ
(0)
1 (y)

[
C1 − Ī2(y)

]
+ ψ

(0)
2 (y)

[
C2 + Ī1(y)

]
, (5.2)

7This technique has also been used in Ref. [26].
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with

Ī1(2)(x) =

∫
dy ψ

(0)
1(2)(y)

N(y)

W (y)
, (5.3)

W (y) = ψ
(0)
1 (y)

d

dy
ψ

(0)
2 (y)− ψ(0)

2 (y)
d

dy
ψ

(0)
1 (y). (5.4)

One obtains

f8a(x) =
275

12
+

10

3
y − 25y2 +

4

3
y3 +

11

12
y4 + y5 +

47

96
y6 +

307

960
y7 +

19541

80640
y8 +

22133

120960
y9

+
1107443

7741440
y10 +

96653063

851558400
y11 +

3127748803

34062336000
y12

+7

(
2y2 − y3 − 1

8
y4 − 1

64
y6 − 1

128
y7 − 3

512
y8 − 1

256
y9 − 47

16384
y10

− 69

32768
y11 − 421

262144
y12

)
ζ3 +O(y13) . (5.5)

The solution of Eq. (2.15) around x = 0 reads

f9a(x) =
√

3

(
4x2 +

8x6

81
+

16x8

243
+

32x10

729
+

608x12

19683

)
Im

(
Li3

(
e−

iπ
6

√
3

)]
+
√

3π3

(
35x2

324

+
35x6

13122
+

35x8

19683
+

70x10

59049
+

1330x12

1594323

)
+
√

3π

(
x2

12
+

x6

486
+

x8

729
+

2x10

2187
+

38x12

59049

)

× ln2(3) + π2

(
2

3
− 2x2

9
+

4x4

81
+

8x6

729
+

128x8

19683
+

262x10

59049
+

25604x12

7971615

)
+

(
−1 +

x2

3

−2x4

27
− 4x6

243
− 64x8

6561
− 131x10

19683
− 12802x12

2657205

)
ψ(1)

(
1

3

)
+

(
3x2 +

x4

3
+

11x6

162
+

19x8

486

+
751x10

29160
+

8908x12

492075
+ π2

(
4x2

9
+

8x6

729
+

16x8

2187
+

32x10

6561
+

608x12

177147

)
+

[
−2x2

3
− 4x6

243

−8x8

729
− 16x10

2187
− 304x12

59049

)
ψ(1)

(
1

3

)]
log(x) +

5

2
− 11x2

6
− 5x4

12
− 14x6

243
− 1151x8

34992

−109973x10

5248800
− 2523271x12

177147000
− 2x2 log2(x) +

2

3
x2 log3(x) +O

(
x14 ln(x)

)
. (5.6)

The corresponding expansion around x = 1 is given by

f9a(x) =
5

3
+

2

3
y +

2

3
y2 +

1

2
y3 +

1

3
y4 − 11

480
y5 +

13

1920
y6 − 2461

120960
y7 − 3701

241920
y8

− 76627

4644864
y9 − 1289527

92897280
y10 − 635723359

51093504000
y11 − 13482517

1261568000
y12

+7

(
−2

3
y − 1

6
y2 +

1

4
y3 +

1

64
y5 +

1

256
y6 +

1

256
y7 +

1

512
y8 +

25

16384
y9 +

65

65536
y10

+
99

131072
y11 +

145

262144
y12

)
ζ3 +O

(
y13
)
. (5.7)
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Here the integration constants C1,2 and C1,2 are8

C1 =
35π3

72
+ 18Im

[
Li3

(
−e

5iπ/6

√
3

)]
+

2π2 ln(3)√
3

+
3

8
π ln2(3)

+

√
3

16

[
25− 2 ln(3)

(
45 + 8ψ(1)

(
1

3

))]
(5.8)

C2 = −
[

135

16
− π2 +

3

2
ψ(1)

(
1

3

)](
− 2π

9
√

3

)
(5.9)

C1 =
275

32
π (5.10)

C2 =
275

64
− 275

48
ln(2)− 7

3
ζ3 . (5.11)

The solution of (2.18) is an integral containing the functions f8a(x) and f9a(x). Its series
around x = 0 reads

f10a(x) =
√

3

(
−12x2 − 22x4

3
− 148x6

27
− 359x8

81
− 13652x10

3645
− 21370x12

6561

)

×Im

[
Li3

(
−(−1)5/6√

3

)]
+

(
6 +

22x2

3
+

11x4

3
+

22x6

9
+

11x8

6
+

22x10

15
+

11x12

9

)
ζ3

+π2

(
7x2

6
+

13x4

72
− x6

486
− 12739x8

209952
− 245263x10

2952450
− 1950047x12

21257640

)

+
√

3π3

(
−35x2

108
− 385x4

1944
− 1295x6

8748
− 12565x8

104976
− 23891x10

236196
− 373975x12

4251528

)

+
√

3π

(
−x

2

4
− 11x4

72
− 37x6

324
− 359x8

3888
− 3413x10

43740
− 10685x12

157464

)
ln2(3)

+

(
2π2

3
− x2 +

7x6

81
+

4825x8

34992
+

76078x10

492075
− x4

12
+

561323x12

3542940

)
ψ(1)

(
1

3

)

+

[
−x4 − 32x6

27
− 761x8

648
− 3251x10

2916
− 27455x12

26244
+ π2

(
−5x2

3
− 53x4

54
− 175x6

243

−1679x8

2916
− 15839x10

32805
− 49301x12

118098

)
+

(
2x2 +

11x4

9
+

74x6

81
+

359x8

486
+

6826x10

10935

+
10685x12

19683

)
ψ(1)

(
1

3

)]
ln(x)− 19π4

72
− 1

2
ψ(1)

(
1

3

)2

+
3x4

2
+

245x6

162
+

31723x8

23328

+
634597x10

524880
+

10219913x12

9447840
+O

(
x14 ln(x)

)
. (5.12)

Likewise, one obtains the expansion around x = 1, which is given by

f10a(x) = −11π4

45
+

4 ln4(2)

3
− 4

3
π2 ln2(2) + 32Li4

(
1

2

)
+

[
6 + 3y − 2y2 − 13y3

8
− 163y4

128

8We thank P. Marquard for having provided all the necessary constants and a series of expansion parameters
for the solutions given in Ref. [39] in computer readable form.
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−631y5

640
− 1213y6

1536
− 2335y7

3584
− 36247y8

65536
− 47221y9

98304
− 69631y10

163840
− 1100145y11

2883584

−544987y12

1572864
− 1082435y13

3407872

]
ζ3 +

5y2

2
+

7y3

4
+

2363y4

1728
+

1867y5

1728
+

2293073y6

2592000

+
71317y7

96000
+

8080140871y8

12644352000
+

31879816079y9

56899584000
+

255571071379y10

512096256000

+
1844349403987y11

4096770048000
+

13424123319977921y12

32716805603328000
+

2056360866308893y13

5452800933888000
+O(y13)

(5.13)

with

C3 = −19

72
π4 +

2

3
π2ψ(1)

(
1

3

)
− 1

2
ψ(1)

(
1

3

)2

+ 6ζ3 (5.14)

C3 = 9ζ4 − 6ζ3 − 2B4, (5.15)

with [89]

B4 = −4ζ2 ln2(2) +
2

3
ln4(2)− 13

2
ζ4 + 16Li4

(
1

2

)
, (5.16)

as integration constants in this case.
The series expansion of the solution of Eq. (2.16) is given by

f8b(x) = −

{
145

48
− 19x2 − 261

16
x4 +

19

12
x6 +

4157

288
x8 +

510593

7200
x10 +

13208647

36000
x12

+

(
1

2
+

9

2
x4 − 6x6 − 23x8 − 107x10 − 2773

5
x12
)
ζ2

+2x2
(
−1 + 2x2 + 2x4 + 6x6 + 24x8 + 114x10

)
ζ3

−2x2
(
−1− 14x2 + 4x4 + 12x6 + 48x8 + 228x10

)
ln3(x)

− 1

10
x2
(
120 + 585x2 + 120x4 + 460x6 + 2140x8 + 11092x10

)
ln2(x)

+

[
(33x2 +

201

4
x4 +

29

2
x6 +

307

12
x8 +

7927

120
x10 +

14107

75
x12

−6x2

(
−1 + 2x2 + 2x4 + 6x6 + 24x8 + 114x10

)
ζ2

]
ln(x) +O

(
x14 ln3(x)

)}
.

(5.17)

The solution of Eq. (2.17) reads

f9b(x) = −95

12
+

131

2
x2 +

99

2
x4 +

53

6
x6 +

5999

144
x8 +

196621

800
x10 +

14055067

9000
x12

+

(
−1 + 3x2 − 6x4 − 12x6 − 64x8 − 393x10 − 12802

5
x12
)
ζ2

+2
(
x2 + 2x6 + 12x8 + 72x10 + 456x12

)
ζ3

−2
(
x2 + 4x6 + 24x8 + 144x10 + 912x12

)
ln3(x)
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+

(
24x2 + 96x4 − 24x6 − 128x8 − 786x10 − 25604

5
x12
)

ln2(x)

+

[
−81x2 − 126x4 +

5

2
x6 +

31

6
x8 − 633

40
x10 − 26762

75
x12

−6
(
x2 + 2x6 + 12x8 + 72x10 + 456x12

)
ζ2

]
ln(x) +O

(
x14 ln3(x)

)
. (5.18)

Here the constants in (3.25) have been fixed by comparing to the first expansion coefficients
in [39]

C1 = − 1

24

[
2iπ(145 + 4π2) + 3(165 + 16ζ3)

]
(5.19)

C2 = − 1

12
π(145 + 4π2) = Im(C1) . (5.20)

The solution of (2.19) is given as an integral containing f8(9)b(x) with the constant

C3 = 3ζ4 + 6ζ3 (5.21)

and reads

f10b(x) = 3ζ4 − 4x2 +
7

4
x4 − 553

81
x6 − 87587

1728
x8 − 9136091

33750
x10 − 236649223

162000
x12

+

(
−6x2 − 1

2
x4 +

46

3
x6 +

1957

24
x8 +

30907

75
x10 +

40103

18
x12
)
ζ2

+

[
12x2 − 15

2
x4 − 257

9
x6 − 3613

48
x8 − 103577

500
x10 − 1039019

1800
x12

+

(
8x2 + 16x4 +

116

3
x6 + 128x8 +

2708

5
x10 +

8062

3
x12
)
ζ2

]
ln(x)

+

(
−12x2 − x4 +

92

3
x6 +

1957

12
x8 +

61814

75
x10 +

40103

9
x12
)

ln2(x)

+

(
16

3
x2 +

32

3
x4 +

232

9
x6 +

256

3
x8 +

5416

15
x10 +

16124

9
x12
)

ln3(x)

+

(
6 + 4x2 − 2x4 − 32

3
x6 − 41x8 − 896

5
x10 − 2684

3
x12
)
ζ3 +O

(
x14 ln3(x)

)
.

(5.22)

The corresponding solutions around x = 1 have the expansions

f8b(x) =
275

12
+ 10y − 71y2 + 12y3 +

57

4
y4 + 18y5 − 1079

160
y6 − 621

320
y7 − 30967

80640
y8 +

3449

24192
y9

+
13850687

38707200
y10 +

81562673

170311680
y11 +

6586514681

11354112000
y12

+7

(
2y2 − 3y3 +

7

8
y4 − 1

64
y6 − 3

128
y7 − 15

512
y8 − 9

256
y9 − 687

16384
y10 − 1647

32768
y11

− 15933

262144
y12

)
ζ3 +O

(
y13
)

(5.23)
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f9b(x) =
5

3
+ 2y + 2y2 +

3

2
y3 − 3

2
y4 − 171

160
y5 − 577

640
y6 − 35851

40320
y7 − 77957

80640
y8 − 1726163

1548288
y9

−41342669

30965760
y10 − 27949201859

17031168000
y11 +

6932053241

2838528000
y12

+7

(
−2y +

5

2
y2 − 1

4
y3 +

(3

64
y5 +

(17

256
y6 +

21

256
y7 +

5

512
y8 +

1995

16384
y9 +

9873

65536
y10

+
24741

131072
y11 − 15933

65536
y12

)
ζ3 +O

(
y13
)
. (5.24)

f10b(x) = 2B4 − 9ζ4 +
5

2
y2 +

13

4
y3 +

6251

1728
y4 +

6721

1728
y5 +

10775573

2592000
y6 +

142659

32000
y7

+
60860651591

12644352000
y8 +

298199146349

56899584000
y9 +

1475031521177

256048128000
y10 +

26211821446117

4096770048000
y11

+
235080972861513791

32716805603328000
y12 +

[
6 + 9y + y2 − 11

8
y3 − 307

128
y4 − 1893

640
y5 − 5137

1536
y6

−13179

3584
y7 − 263063

65536
y8 − 431519

98304
y9 − 395741

81920
y10 − 15466743

2883584
y11

−9465637

1572864
y12

]
ζ3 +O

(
y13
)
, (5.25)

with the integration constants

C1 = −iπ275

48
(5.26)

C2 = i

[
C1 −

297

32
+

275

8
ln(2) + 14ζ3

]
(5.27)

C3 =
5

2
− 9ζ4 −

466638231901

12595494912
ζ3 + 2B4, (5.28)

obtained by comparing again to the first expansion coefficients in [39]. The constants are complex
here.

The solutions are illustrated in Figures 4–9. The expansions around x = 0 and x = 1 have
wide overlapping regions in all cases. We use expansions up to O(x50) and O(y50), respectively.
Due to the constants Ci(Ci), i = 1, 2, 3, which are imposed by the physical case studied, all
solutions are real in the region x ∈ [0, 1]. The fact, that the homogeneous solutions in the cases
b, have a branch point, has, however, consequences for the solutions around x = 0, as will be
shown below.

The function f8a(x) is shown in Figure 4. Its boundary values at x = 0, 1 read

f8a(0) =
135

16
− π2 +

3

2
ψ(1)

(
1

3

)
and f8a(1) =

275

12
. (5.29)

At very small x, the expansion around x = 1 delivers too small values, while at large x the small
x expansion evaluates to somewhat larger values, however, well below double precision. f9a(x)
is shown in Figure 5 with the values

f9a(0) =
5

2
+

2

3
π2 − ψ(1)

(
1

3

)
and f9a(1) =

5

3
, (5.30)
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Figure 4: The inhomogeneous solution of Eq. (2.14) as a function of x. Left panel: Red dashed line:
expansion around x = 0; blue line: expansion around x = 1. Right panel: illustration of the relative
accuracy and overlap of the two solutions f8a(x) around 0 and 1.
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Figure 5: The inhomogeneous solution of Eq. (2.15) as a function of x. Left panel: Red dashed line:
expansion around x = 0; blue line: expansion around x = 1. Right panel: illustration of the relative
accuracy and overlap of the two solutions f9a(x) around 0 and 1.
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Figure 6: The inhomogeneous solution of Eq. (2.18) as a function of x. Left panel: Red dashed line:
expansion around x = 0; blue line: expansion around x = 1. Right panel: illustration of the relative
accuracy and overlap of the two solutions f10a(x) around 0 and 1.
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at x = 0, 1 and a very similar behaviour for the approximation around x = 0 and 1 as in the
case of f8a. Figure 6 shows the function f10a, for which the boundaries are

f10a(0) = −19

72
π4 +

2

3
π2ψ(1)

(
1

3

)
− ψ(1)

(
1

3

)2

+ 6ζ3 and f10a(1) = 2B4 − 9ζ4 . (5.31)

Here somewhat larger deviations of the series solutions around x = 0 at 1 and x = 1 at 0 are
visible.
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Figure 7: The inhomogeneous solution of Eq. (2.16) as a function of x. Left panel: Red dashed line:
expansion around x = 0; blue line: expansion around x = 1. Right panel: illustration of the relative
accuracy and overlap of the two solutions f8b(x) around 0 and 1.

In Figure 7 the behaviour of f8b(x) is illustrated. The series expansion around x = 0 starts
to diverge at x ∼ 0.4, while the expansion around x = 1 still holds at x ∼ 0.1. The boundary
values of f8b at x = 0, 1 are

f8b(0) = −145

48
− 1

2
ζ2 and f8b(1) =

275

12
. (5.32)

There is a numerical artefact in Figure 7b at x ∼ 0.14 implied by the zero-transition of f8b in
this region.
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Figure 8: The inhomogeneous solution of Eq. (2.17) as a function of x. Left panel: Red dashed line:
expansion around x = 0; blue line: expansion around x = 1. Right panel: illustration of the relative
accuracy and overlap of the two solutions f9b(x) around 0 and 1.
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A similar behaviour to that of f8b is exhibited by f9b(x), shown in Figure 8. Again the series-
solution around x = 0 starts to diverge for x ∼ 0.4. However, the one around x = 1 holds even
below x ∼ 0.1. The boundary values of f9b at x = 0, 1 are

f9b(0) =
25

6
+ ζ2 and f9b(1) =

5

3
. (5.33)

f10b(x) is shown in Figure 9. The validity of the serial expansions around x = 0 and 1 are
very similar to the cases of f8(9)b(x), discussed above.
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Figure 9: The inhomogeneous solution of Eq. (2.19) as a function of x. Left panel: Red dashed line:
expansion around x = 0; blue line: expansion around x = 1. Right panel: illustration of the relative
accuracy and overlap of the two solutions f10b(x) around 0 and 1.

The boundary values at x = 0, 1 are

f10b(0) = 3ζ4 + 6ζ3 and f10b(1) = 2B4 − 9ζ4 . (5.34)

Notice that the representations (2.16, 5.2) allow for the analytic determination of the Nth
expansion coefficient of the corresponding series around x = 0 (y = 0) using the techniques of
the package HarmonicSums.m [4–6,90,91].

The series expansions agree with those obtained by solving the differential equations through
series Ansätze in [39]. In an attachment to this paper, we present the expansion of the solutions
around x = 0 and x = 1 up to terms of O(x50) for further use. The solutions are well overlapping
in wider ranges in x. In the case of the functions f8(9,10)a(x) the power series expansion around
x = 1 reflects the branch point at x = 1/3 in the homogeneous solution. Our general expressions
easily allow expansions around other fixed values of x, which may be useful in special numerical
applications.

The above representations constitute a practical analytic solution in the case of iterative non-
iterative integrals. Indeed it applies to the whole class of these functions within their analyticity
regions. Thus the method is not limited to cases in which elliptic integrals contribute. Since,
however, the case in which 2F1 solutions may be related in a non-trivial manner, see ii) and iii)
in Section 6, to solutions through elliptic integrals with rational argument is very frequent, we
turn now to a more detailed discussion of this case.
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6 Elliptic Solutions

As we have seen, in special cases the solutions of a second order differential equation having a 2F1

solution may be expressed in terms of the complete elliptic integrals E(r(z)) and K(r(z)). Our
general goal is to represent the emerging structures in terms of q-series with explicit predicted
expansion coefficients in closed form as far as possible, if not even simpler representations can
be found.

Different levels of complexity can be distinguished, depending on the structure of r(z) and
whether only elliptic integrals of the first kind or also of the second kind necessarily contribute.
Furthermore, there are requirements to other building blocks emerging in the solutions, which
we will discuss below.

(i) If the complete elliptic integrals are given by K(z) or K(1−z), choosing the case z ∈ [0, 1],
and similarly for E, one may solve the difference equation, obtained from the differential
equation by a Mellin transform. It turns out that this difference equation factorizes to
first order, unlike the differential equation in x-space; see [92] for an example. The Mellin
transforms (1.1) are given by

M[K(1− z)](N) =
24N+1

(1 + 2N)2
(

2N

N

)2 (6.1)

M[E(1− z)](N) =
24N+2

(1 + 2N)2(3 + 2N)

(
2N

N

)2 , (6.2)

since

K(1− z) =
1

2

1√
1− z

⊗ 1√
1− z

(6.3)

E(1− z) =
1

2

z√
1− z

⊗ 1√
1− z

. (6.4)

Here the Mellin convolution is defined by

A(z)⊗B(z) =

∫ 1

0

dz1

∫ 1

0

dz2δ(z − z1z2)A(z1)B(z2). (6.5)

Eqs. (6.1) and (6.2) are hypergeometric terms in N , which has been shown already in
Ref. [20] for K(1 − z), see also [6]. As we outlined in Ref. [16] the solution of systems
of differential equations or difference equations can always be obtained algorithmically
in the case either of those factorizes to first order. The transition to z-space is then
straightforward. In z-space also the analytic continuation to the other kinematic regions
is performed.

(ii) In a second set of cases, only the elliptic integrals K(r(z)) and K′(r(z)) contribute, with
r(z) a rational function. In transforming from z- to q-space, furthermore, no terms in the
solution emerge which cannot be expressed in terms of modular forms [62–73], except terms
∝ lnk(q), k ∈ N. This is the situation e.g. in Refs. [30, 35, 37]. We will show below that
here both the homogenous solution and the integrand of the inhomogeneous solution can
be expressed by Lambert–Eisenstein series [74, 75], also known as elliptic polylogarithms,
modulo eventual terms lnk(q). The remaining q-integral in the inhomogeneous term can
be carried out in the class of elliptic polylogarithms [76], see [37].
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(iii) In the cases presented in Section 3, the solutions depend both on the elliptic integrals
K(r(z)), E(r(z)) and K′(r(z)), E′(r(z)), see also Section 6.2. Both E(r(z)) and E′(r(z))
can be mapped to modular forms representing them by the nome q according to Eqs. (1.2,
1.3), powers of ln(q), and polylogarithms, like Li0(q) [93], and the η-factor given in Eq. (1.4).
These aspects lead to a generalization w.r.t. the cases covered by ii), since in a series of
building blocks the factor 1/ηk(τ) has to be split off to obtain a suitable modular form. This
factor is a q-Pochhammer symbol and also emerges in the q-integral in the inhomogeneous
solution.

Since the topic of analytic q-series representations is a very recent one and it is only on
the way to be algorithmized and automated for the application to a larger number of cases
appearing in Feynman parameter integrals, we are going to summarize the necessary definitions
and central properties for a wider audience in Section 6.1. Then we will show in Section 6.2
that in the case of the differential equations (2.14, 2.16) both the elliptic integrals K and E are
contributing, which implies the appearance of the additional η-factor (1.4). In Section 6.3 we
will then construct the building blocks for the homogeneous and inhomogeneous solutions of all
terms through polynomials of η-weighted Lambert–Eisenstein series, referring to the examples
(3.18, 3.19). Here we use methods of the theory of modular functions and modular forms.

6.1 From Elliptic Integrals to Lambert–Eisenstein Series

There are various sets of functions which can be used to express the complete elliptic integrals
and their inverse, the elliptic functions, which have been worked out starting with Euler [94],
Legendre [83] and Abel [46], followed by Jacobi’s seminal work [47,95] and the final generalization
by Weierstraß [96]9. We first present a collection of relations out of the theory of elliptic integrals,
their related functions and modular forms [62–64] for the convenience of the reader. They are
essential to derive integrals over complete elliptic integrals at rational arguments, which can be
represented in terms of elliptic polylogarithms. Later, we will consider the different steps for
a representation of the inhomogeneous solution based on the homogeneous solutions ψ3 and ψ4

given before.
We first summarize a series of properties of Jacobi ϑi and the Dedekind η functions in Sec-

tion 6.1.1, followed by the representation of the complete elliptic integrals of the first and second
kind by the parameters of the elliptic curve and by the Jacobi ϑi and the Dedekind η functions
in Section 6.1.2. Basic facts about modular functions and modular forms are summarized in
Section 6.1.3 for the later representation of the building blocks of the homogeneous and inho-
mogeneous solutions of the second order differential equations of Section 2. In Section 6.1.4 we
collect some relations on elliptic polylogarithms and give representations of η-ratios in terms of
modular forms weighted by a factor 1/ηk(τ) in Section 6.1.5. The modular forms are expressed
over bases formed by Lambert–Eisenstein series and products thereof.

6.1.1 The Jacobi ϑi and Dedekind η Functions

As entrance point we use Jacobi’s ϑi functions [95]. The ϑ functions possess q-series and product
representations10

9For q-expansions starting with the Weierstraß’ ℘ and σ functions see e.g. [97].
10In the literature different definitions of the Jacobi ϑ-functions are given, cf. [45], p. 305. We follow the one

used by Mathematica.
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ϑ1(q, z) =
∞∑

k=−∞

(−1)

(
k−1

2

)
q(k+1/2)2 exp[(2k + 1)iz] = 2q

1
4

∞∑
k=0

(−1)nqn(n+1) sin[(2n+ 1)z]

(6.6)

ϑ2(q, 0) ≡ ϑ2(q) =
∞∑

k=−∞

q(k−1/2)
2

(6.7)

ϑ3(q, 0) ≡ ϑ3(q) =
∞∑

k=−∞

qk
2

(6.8)

ϑ4(q, 0) ≡ ϑ4(q) =
∞∑

k=−∞

(−1)kqk
2

. (6.9)

The elliptic polylogarithms, introduced in (6.55, 6.58) below are also q-series, containing a specific
parameter pattern which allows to accommodate certain classes of q-series emerging in Feynman
integral calculations. The product representations associated to (6.7–6.9) read

ϑ2(q) = 2q
1
4

∞∏
k=1

(
1− q2k

) (
1 + q2k

)2
(6.10)

ϑ3(q) =
∞∏
k=1

(
1− q2k

) (
1 + q2k−1

)2
(6.11)

ϑ4(q) =
∞∏
k=1

(
1− q2k

) (
1− q2k−1

)2
. (6.12)

They are closely related to Euler’s totient function [104]

φ(q) =
∞∏
k=1

1

1− qk
, (6.13)

the first emergence of q-products, and to Dedekind’s η function [61].11

η(τ) =
q

1
12

φ(q2)
. (6.14)

One has12

ϑ2(q) =
2η2(2τ)

η(τ)
(6.15)

ϑ3(q) =
η5(τ)

η2
(
1
2
τ
)
η2(2τ)

(6.16)

11The ϑ and η functions, as well as their q-series, play also an important role in other branches of physics, as
e.g. in lattice models in statistical physics in form of Rogers-Ramanujan identities, see e.g. [43, 98, 99], perco-
lation theory [100], and other applications, e.g. in attempting to describe properties of deep-inelastic structure
functions [101]. In the latter case, the asymptotic behavior of Dedekind’s η function at x ∼ 1 seems to resemble
the structure function for a wide range down to x ∼ 10−5. It has a surprisingly similar form as the small-x
asymptotic wave equation solution [102], however, with a rising power of the soft pomeron [103].

12It is usually desirable to work with η-functions depending on integer multiples of τ only, cf. [68], which can
be achieved by rescaling the power of q.
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ϑ4(q) =
η2
(
1
2
τ
)

η(τ)
. (6.17)

In the following we will make use of series representations of both Jacobi ϑ- and Dedekind
η-functions. We list a series of important relations for convenience :

η(τ + n) = ei
πn
12 η(τ), n ∈ N (6.18)

η(τ) = q
1
12

∞∑
k=−∞

(−1)kq3k
2+k [105] (6.19)

η3(τ) = q
1
4

∞∑
k=−∞

(4k + 1)q4k
2+2k [47] (6.20)

η2(τ)

η(2τ)
=

∞∑
k=−∞

(−1)kq2k
2

[106] (6.21)

η2(2τ)

η(τ)
= q

1
4

∞∑
k=−∞

q4k
2+2k [106] (6.22)

η(2τ)5

η(τ)2
= q

2
3

∞∑
k=−∞

(−1)k(3k + 1)q6k
2+4k [107] (6.23)

η(τ)5

η(2τ)2
= q

1
12

∞∑
k=−∞

(6k + 1)q3k
2+k [107] (6.24)

η(τ)η(6τ)2

η(2τ)η(3τ)
= q

2
3

∞∑
k=−∞

(−1)kq6k
2+4k [108] (6.25)

η(2τ)η(3τ)2

η(τ)η(6τ)
= q

1
12

∞∑
k=−∞

q3k
2+k [108] (6.26)

η(τ)2η(6τ)

η(2τ)η(3τ)
= q

1
4

∞∑
k=−∞

(
q9k

2+3k − q(3k+1)(3k+2)
)
. [108] (6.27)

Many other identities hold and can be found e.g. in Refs. [68,69,108–114].

6.1.2 Representations of the Modulus and the Elliptic Integrals

For later use we consider also the structure of the differential equation of the Weierstraß’ function
℘(z) [96],

℘′2(z) = 4℘3(z)− g2℘(z)− g3 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) . (6.28)

The functions g2, g3, e1, e2 and e3 are given by

g2 = −4[e2e3 + e3e1 + e1e2] = 2[e21 + e22 + e23] (6.29)

g3 = 4e1e2e3 =
4

3
[e31 + e32 + e33] (6.30)

e1 + e2 + e3 = 0, (6.31)
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Figure 10: The elliptic curve for k = 0 (dashed blue line), k = 1/2 (dotted black lines), and k = 1/
√
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red lines.

and the following representation in terms of Jacobi ϑ functions holds:

e1 =
π2

12ω2

[
ϑ4
3(q) + ϑ4

4(q)
]

(6.32)

e2 =
π2

12ω2

[
ϑ4
2(q) + ϑ4

4(q)
]

(6.33)

e3 = − π2

12ω2

[
ϑ4
2(q) + ϑ4

3(q)
]
. (6.34)

Here Jacobi’s identity is implied by (6.31) with

ϑ4
3(q) = ϑ4

2(q) + ϑ4
4(q) . (6.35)

The r.h.s. of (6.28) parameterizes the elliptic curve

y2 = 4(x− e1)(x− e2)(x− e3) (6.36)

of the corresponding problem. Setting e1 − e2 = 1 for the purpose of illustration, the elliptic
curves corresponding to the module k is shown in Figure 10, choosing specific values.

The modulus k can be represented in terms of the functions ei by

k2 = z(x), (6.37)

cf. (3.8, 3.20). k and k′ =
√

1− k2 are given by

k =

√
e3 − e2
e1 − e2

=
ϑ2
2(q)

ϑ2
3(q)

≡
4η8(2τ)η4

(
τ
2

)
η12(τ)

(6.38)

k′ =

√
e1 − e3
e1 − e2

=
ϑ2
4(q)

ϑ2
3(q)

≡
η4(2τ)η8

(
τ
2

)
η12(τ)

, (6.39)

cf. (6.28), which implies the following relation for η functions

1 =
η8
(
τ
2

)
η8(2τ)

η24(τ)

[
16η8(2τ) + η8

(τ
2

)]
. (6.40)
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Further, one may express the elliptic integral of the first kind K by

K(k2) = ω
√
e1 − e3, with

√
e1 − e3 =

π

2ω
ϑ2
3(q) ≡

π

2

η10(τ)

η4
(
τ
2

)
η4(2τ)

, (6.41)

K′(k2) = − 1

π
K(k2) ln(q) . (6.42)

Sometimes one also introduces the Jacobi functions ω, ω′, η and η′, which are defined by

ω =
K√
e1 − e3

(6.43)

ω′ = i
K′√
e1 − e3

= ωτ =
ω

iπ
ln(q) (6.44)

η = − 1

12ω

ϑ′′′1 (q)

ϑ′1(q)
, (6.45)

with

ϑ
(k)
1 (q) = lim

z→0

dk

dzk
ϑ1(q, z). (6.46)

The function η′ can be obtained using Legendre’s identity (3.21) in the form

ηω′ − η′ω = i
π

2
. (6.47)

One obtains the following representations of the elliptic integrals of the second kind by

E(k2) =
e1ω + η√
e1 − e3

(6.48)

E′(k2) = i
e3ω

′ + η′√
e1 − e3

. (6.49)

Later on we will use the relation [115,116] for E

E(k2) = K(k2) +
π2q

K(k2)

d

dq
ln [ϑ4(q)] (6.50)

and the Legendre identity (3.21) to express E′,

E′(k2) =
π

2K(k2)

[
1 + 2 ln(q) q

d

dq
ln [ϑ4(q)]

]
. (6.51)

6.1.3 Modular Forms and Modular Functions

All building blocks forming the homogeneous solutions and the integrand of the inhomogeneous
solutions of the second order differential equations considered above can be expressed in terms
of η-ratios. They are defined as follows.

Definition 6.1. Let r = (rδ)δ|N be a finite sequence of integers indexed by the divisors δ of
N ∈ N\{0}. The function fr(τ)

fr(τ) :=
∏
d|N

η(dτ)rd , d,N ∈ N\{0}, rd ∈ Z, (6.52)
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is called η-ratio.
These are modular functions or modular forms; the former ones can be obtained as the ratio of
two modular forms. In the following we summarize a series of basic facts on these quantities
in a series of definitions and theorems needed in the calculation of the present paper, cf. also
Refs. [62–73].

Definition 6.2. Let

SL2(Z) =

{
M =

(
a b
c d

)
, a, b, c, d ∈ Z, det(M) = 1

}
.

SL2(Z) is the modular group.

For g =

(
a b
c d

)
∈ SL2(Z) and z ∈ C ∪∞ one defines the Möbius transformation

gz 7→ az + b

cz + d
.

Let

S =

(
0 −1
1 0

)
, and T =

(
1 1
0 1

)
, S, T ∈ SL2(Z).

These elements generate SL2(Z) and one has

Sz 7→ −1

z
, Tz 7→ z + 1, S2z 7→ z, (ST )3z 7→ z.

Definition 6.3. For N ∈ N\{0} one considers the congruence subgroups of SL2(Z), Γ0(N),
Γ1(N) and Γ(N), defined by

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z), c ≡ 0 (mod N)

}
,

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z), a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

}
,

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z), a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

}
,

with SL2(Z) ⊇ Γ0(N) ⊇ Γ1(N) ⊇ Γ(N) and Γ0(N) ⊆ Γ0(M), M |N .

Proposition 6.4. If N ∈ N\{0}, then the index of Γ0(N) in Γ0(1) is

µ0(N) = [Γ0(1) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
.

The product is over the prime divisors p of N .

Definition 6.5. For any congruence subgroup G of SL2(Z) a cusp of G is an equivalence class
in Q ∪∞ under the action of G, cf. [69].

Definition 6.6. Let x ∈ Z\{0}. The analytic function f : H→ C is a modular form of weight
w = k for Γ0(N) and character a 7→

(
x
a

)
if
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(i)

f

(
az + b

cz + d

)
=
(x
a

)
(cz + d)kf(z), ∀z ∈ H, ∀

(
a b
c d

)
∈ Γ0(N).

(ii) f(z) is holomorphic in H

(iii) f(z) is holomorphic at the cusps of Γ0(N), cf. [117], p. 532.

Here
(
x
a

)
denotes the Jacobi symbol [118].13 A modular form is called a cusp form if it vanishes

at the cusps.

Definition 6.7. A modular function f for Γ0(N) and weight w = k obeys

(i) f(γz) = (cz + d)kf(z), ∀z ∈ H and ∀γ ∈ Γ0(N)

(ii) f is meromorphic in H

(iii) f is meromorphic at the cusps of Γ0(N).

The q expansion of a modular function has the form

f ∗(q) =
∞∑

k=−N0

akq
k, for some N0 ∈ N.

Lemma 6.8. The set of functions M(k;N ;x) for Γ0(N) and character x obeying Definition 6.6
forms a finite dimensional vector space over C. In particular, for any non-zero function f ∈
M(k;N ;x) we have

ord(f) ≤ b =
k

12
µ0(N), (6.53)

cf. e.g. [63,68,120].
The bound (6.53) on the dimension has been refined, cf. e.g. [64, 66, 70, 121]14. The number of
independent modular forms f ∈ M(k;N ;x) is ≤ b, allowing for a basis representation in finite
terms.

For any η-ratio fr (6.52) one can prove that there exists a minimal integer l ∈ N, an integer
N ∈ N and a character x such that

f̄r(τ) = ηl(τ)fr(τ) ∈M(k;N ;x) (6.54)

is a modular form. All quantities which are expanded in q-series below will be first brought
into the form (6.54). In some cases one has l = 0. The form (6.54) is of importance to obtain
Lambert-Eisenstein series (Section 6.1.5), which can be rewritten in terms of elliptic polyloga-
rithms (Section 6.1.4).

Applying the following Theorem, one can find the η-ratios belonging to M(w;N ; 1).

Theorem 6.9. (Paule, Radu, Newman); [123,124].
Let fr be an η-ratio of weight w = 1

2

∑
d|N rd. fr ∈ M(w;N ; 1) if the following conditions are

satisfied

13For its efficient evaluation see e.g. [119].
14The dimension of the corresponding vector space can be also calculated using the Sage program by W. Stein

[122].
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(i)
∑

d|N drd ≡ 0 (mod 24)

(ii)
∑

d|N Nrd/d ≡ 0 (mod 24)

(iii)
∏

d|N d
rd is the square of a rational number

(iv)
∑

d|N rd ≡ 0 (mod 4)

(v)
∑

d|N gcd2(d, δ)rd/d ≥ 0, ∀δ|N .

If we refer to modular forms they are thought to be those of SL2(Z), if not specified otherwise.

6.1.4 Elliptic Polylogarithms

The elliptic polylogarithm is defined by [76]15

ELin;m(x; y; q) =
∞∑
k=1

∞∑
l=1

xk

kn
yl

lm
qkl. (6.55)

It appears in the present context, because it is a function which allows to represent the different
Lambert–Eisenstein series, cf. Section 6.1.5, spanning the η-ratios f̄r(τ). In the following we
briefly describe a few of its properties, which will be applied later on.

Sometimes it appears useful, cf. [37], to refer also to

En;m(x; y; q) =

{
1
i
[ELin;m(x; y; q)− ELin;m(x−1; y−1; q)], n+m even

ELin;m(x; y; q) + ELin;m(x−1; y−1; q), n+m odd.
(6.56)

The multiplication relation of elliptic polylogarithms is given by [76]

ELin1,...,nl;m1,...,ml;0,2o2,...,2ol−1
(x1, ..., xl; y1, ..., yl; q) =

ELin1;m1(x1; y1; q)ELin2,...,nl;m2,...,ml;2o2,...,2ol−1
(x2, ..., xl; y2, ..., yl; q), (6.57)

with

ELin,...,nl;m1,...,ml;2o1,...,2ol−1
(x1, ..., xl; y1, ...yl; q) =

∞∑
j1=1

...
∞∑
jl=1

∞∑
k1=1

...
∞∑
kl=1

xj11
jn1
1

...
xjll
jnll

yk11
km1
1

ykll
kmll

× qj1k1+...+qlkl∏l−1
i=1(jiki + ...+ jlkl)oi

, l > 0. (6.58)

For the synchronization of different elliptic polylogarithms w.r.t. the argument q, also the relation

ELin,...,nl;m1,...,ml;2o1,...,2ol−1
(x1, ..., xl; y1, ...yl;−q)

= ELin,...,nl;m1,...,ml;2o1,...,2ol−1
(−x1, ...,−xl;−y1, ...− yl; q) (6.59)

is used. In deriving representations in terms of Lambert–Eisenstein series, it often occurs that
the variable is not q but qm,m > 1,m ∈ N. Its synchronization to q is shown in Section 6.1.5.

The logarithmic integral of an elliptic polylogarithm is given by

ELin1,...,nl;m1,...,ml;2(o1+1),2o2,...,2ol−1
(x1, ..., xl; y1, ..., yl; q) =

15For a recent numerical representation of elliptic polylogartithms see [125].
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∫ q

0

dq′

q′
ELin1,...,nl;m1,...,ml;2o1,...,2ol−1

(x1, ..., xl; y1, ..., yl; q
′). (6.60)

Similarly, cf. [37]

En1,...,nl;m1,...,ml;0,2o2,...,2ol−1
(x1, ..., xl; y1, ..., yl; q) =

En1;m1(x1; y1; q)En2,...,nl;m2,...,ml;2o2,...,2ol−1
(x1, ..., xl; y1, ..., yl; q)

(6.61)

En1,...,nl;m1,...,ml;2(o1+1),2o2,...,2ol−1
(x1, ..., xl; y1, ..., yl; q) =∫ q

0

dq′

q′
En1,...,nl;m1,...,ml;2o1,...,2ol−1

(x1, ..., xl; y1, ..., yl; q
′) (6.62)

holds.
The integral over the product of two more general elliptic polylogarithms is given by∫ q

0

dq̄

q̄
ELim,n(x, qa, qb)ELim′,n′(x

′, qa
′
, qb
′
) =

∞∑
k=1

∞∑
l=1

∞∑
k′=1

∞∑
l′=1

xk

km
x′k

k′m′
qal

ln
qa
′l′

l′n

× qbkl+b
′k′l′

al + a′l′ + bkl + bk′l′
. (6.63)

Integrals over other products are obtained accordingly.

6.1.5 Representations in terms of η-Weighted Lambert–Eisenstein Series

We turn now to the basis representation of the modular forms ofM(k;N ;x), cf. Lemma 6.8. It
is given by the Eisenstein series [74, 75] for weight w = k and products of Eisenstein series of
total weight k. In the cases dealt with below products of two Eisenstein series turned out to be
sufficient. In more involved cases also products of more Eisenstein series might appear.

The Eisenstein series are defined by

G2k(z) =
∑

m,n∈Z2\{0,0}

1

(m+ nz)2k
, (6.64)

which can be rewritten in normalized form by

E2k(q) =
G2k(q)

2ζ2k
= 1− 4k

B2k

∞∑
n=1

n2k−1qn

1− qn
, (6.65)

with B2k the Bernoulli numbers. Eisenstein series are modular forms for k ≥ 2.

E2(q) = 1− 24
∞∑
n=1

nqn

1− qn
(6.66)

is not a modular form but one has

Lemma 6.10. The function E2(τ)−NE2(Nτ) is a modular form of weight w = 2 for the group
Γ0(N) with the trivial character x = 1.

The Eisenstein series are associated to the earlier Lambert series [74, 126–129] which are
defined by

∞∑
k=1

kαqk

1− qk
=
∞∑
k=1

σα(k)qk, σα(k) =
∑
d|k

dα, α ∈ N. (6.67)
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Eq. (6.65) can be obtained from (6.64) by applying the Lipschitz summation formula [130].
Finally, Eq. (6.67) can be rewritten in terms of elliptic polylogarithms, cf. Eq. (6.55), by

∞∑
k=1

kαqk

1− qk
=
∞∑
k=1

kαLi0(q
k) =

∞∑
k,l=1

kαqkl = ELi−α;0(1; 1; q). (6.68)

In the derivation often the argument qm, m ∈ N,m > 0, appears, which shall be mapped to the
variable q. We do this for the Lambert series using the replacement

Li0(x
m) =

xm

1− xm
=

1

m

m∑
k=1

ρkmx

1− ρkmx
=

1

m

m∑
k=1

Li0(ρ
k
mx), (6.69)

with

ρm = exp

(
2πi

m

)
. (6.70)

One has

∞∑
k=1

kαqmk

1− qmk
= ELi−α;0(1; 1; qm) =

1

mα+1

m∑
n=1

ELi−α;0(ρ
n
m; 1; q)) . (6.71)

Relations like (6.69, 6.71) and similar ones are the sources of the mth roots of unity, which
correspondingly appear in the parameters of the elliptic polylogarithms through the Lambert
series.

Furthermore, the following sums occur

∞∑
m=1

(am+ b)lqam+b

1− qam+b
=

l∑
n=1

(
l

n

)
anbl−n

∞∑
m=1

mnqam+b

1− qam+b
, a, l ∈ N, b ∈ Z (6.72)

and

∞∑
m=1

mnqam+b

1− qam+b
= ELi−n;0(1; qb; qa) =

1

an+1

a∑
ν=1

ELi−n;0(ρ
ν
a; q

b; q) . (6.73)

Likewise, one has

∞∑
m=1

(−1)mmnqam+b

1− qam+b
= ELi−n;0(−1; qb; qa)

=
1

an+1

{
2a∑
ν=1

ELi−n;0(ρ
ν
2a; q

b; q)−
a∑
ν=1

ELi−n;0(ρ
ν
a; q

b; q)

}
(6.74)

In intermediate representations also Jacobi symbols appear, obeying the identities(
−1

(2k) · n+ (2l + 1)

)
= (−1)k+l;

(
−1

ab

)
=

(
−1

a

)(
−1

b

)
. (6.75)

In the case of an even value of the denominator one may factor
(−1

2

)
= 1 and consider the case

of the remaining odd-valued denominator.
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We found also Lambert series of the kind

∞∑
m=1

q(c−a)m

1− qcm
= ELi0;0(1; q−a; qc) =

1

c

c∑
n=1

ELi0;0(ρ
n
c ; q−a; q) (6.76)

∞∑
m=1

(−1)m
q(c−a)m

1− qcm
= ELi0;0(1;−q−a; qc) =

1

c

c∑
n=1

ELi0;0(ρ
n
c ;−q−a; q), a, c ∈ N\{0}

(6.77)

in intermediate steps of the calculation.
For later use we also introduce the functions

Ym,n,l :=
∞∑
k=0

(mk + n)l−1qmk+n

1− qmk+n
= nl−1Li0(q

n) +
l−1∑
j=0

(
l − 1

j

)
nl−1−jmjELi−j;0(1; qn; qm)

(6.78)

Zm,n,l :=
∞∑
k=1

km−1qnk

1− qlk
= ELi0;−(m−1)(1; qn−l; ql) (6.79)

Tm,n,l,a,b :=
∞∑
k=0

(mk + n)l−1qa(mk+n)

1− qb(mk+n)

= nl−1qn(a−b)Li0
(
qnb
)

+ qn(a−b)
l−1∑
j=0

(
l − 1

j

)
mjnl−1−jELi−j;0

(
qm(a−b); qnb; qmb

)
,

(6.80)

keeping the q-dependence implicit. The functions Y, Z and T allow for more compact represen-
tations for a series of building blocks given below. Note that (part of) the parameters (x; y) of
the elliptic polylogarithms can become q-dependent.

6.2 The Emergence of E(r(z))

The solutions of the homogeneous part of the equations (2.14) and (2.16) needed the elliptic
integrals of the first and second kind. The question arises, whether one would also find solutions
based on the elliptic integral of the first kind only, as it was possible e.g. in the case of Ref. [35].
There the reason is that the sunrise integral can be written as an integral over 1/

√
y2 where y2

defines an elliptic curve. Let us first transform (2.14) and (2.16) into Heun equations with four
singularities setting t = x2

d2

dr2
F8a(t)−

(
1

t− 1
+

1

t− 9

)
d

dt
F8a(t) +

2(t− 3)

t(t− 1)(t− 9)
F8a(t) = 0, (6.81)

d2

dr2
F8b(t)−

(
1

t− 1
+

1

t− 1
9

)
d

dt
F8b(t) +

2
(
t− 1

3

)
t(t− 1)

(
t− 1

9

)F8b(t) = 0. (6.82)

One may now consult Refs. [131,132]16. In this form, both equations do not belong to the cases
for which the solution can be found as an integral over an algebraic curve, as one finds inspecting
the tables given in [131,132]. However, one may investigate the solution of differential equations
associated to (2.14, 2.16), which obey the conditions of [131, 132]. We found equations of this

16J.B. would like to thank S. Weinzierl for having pointed out these references to him.
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type, but needed an additional differential operator to map them back to the original equations.
The differentiation of an elliptic integral of the first kind will now imply that an elliptic integral
of the second kind is present, as already the well-known relation [45]

E(k2) = 2k2(1− k2)dK(k2)

dk2
+ (1− k2)K(k2) (6.83)

shows. In general, the derivative is for x, where k = k(x). One retains nonetheless the dependence
on E, which has no representation in terms of Lambert–Eisenstein series only, as we show in
Section 6.3.

We remark that in the case of the equal-mass sunrise and kite diagrams [30, 35, 37] one
obtains elliptic integrals of the first kind only. The reason for this consists in the direct dispersive
integral representation of the former and similarly for the kite integral. The solution obeys a
corresponding second order differential equation in accordance with [131,132].

6.3 The q-Series of the η-Ratio Representations of the Basic Building
Blocks

In the following we seek a series representations in the nome q (1.2) of the different building
blocks of the solutions (2.14–2.19). We will as widely as possible apply an algorithmic approach,
which is applicable to a wide class of systems emerging in calculations of Feynman integrals of
a similar type, i.e. being solutions of second order differential equations leading to solutions in
terms of (complete) elliptic integrals. In this context the theory of modular forms and modular
functions [62–67,70–73,120] plays a central role.

The different building blocks depend on the kinematic variable x, which we discussed first.
All contributing functions are mapped to modular forms f̄r, splitting off a factor 1/ηk(τ) if
necessary. They are obtained as polynomials of Lambert-Eisenstein series, and are mapped to
elliptic polylogarithms following Sections 6.1.5, 6.1.4.

6.3.1 The kinematic variable x

We consider the representation of one of the sets of homogeneous solutions ψ3,4(z(x)), with z(x)
given by (3.20) and set x = −x.

x = − 1

3y
(6.84)

maps the modulus

k2 = z(x) =
16x3

(1− x)3(1 + 3x)
, (6.85)

into

l2 = z(y) =
16y

(1− y)(1 + 3y)3
, (6.86)

obeying Legendre’s modular equation, cf. [62],

√
kl +

√
k′l′ = 1, (6.87)
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cf. [27, 28, 133, 134]. The nome qk = exp(−πK(k′2)/K(k2)) is the cube of the nome ql ≡ q =
exp(−πK(l′2)/K(l2)) and is obtained by a cubic Legendre-Jacobi transformation [135,136]17.

According to [27,28,133,134]

16y

(1− y)(1 + 3y)3
=
ϑ4
2(q)

ϑ4
3(q)

(6.88)

is solved by

y =
ϑ2
2(q

3)

ϑ2
2(q)

≡ − 1

3x
=

1

3x
. (6.89)

Both the expressions (6.88, 6.89) are modular functions. For definiteness, we consider the range
in q

q ∈ [−1, 1] which corresponds to y ∈
[
0, 1

3

]
, x ∈ [1,+∞[ (6.90)

in the following. Here the variable x lies in the unphysical region. However, the nome q has to
obey the condition (6.90). Other kinematic regions can be reached performing analytic continu-
ations.18

We would like to make use of the method of proving conjectured η-ratios by knowing a finite
number of terms in their q-series expansion. For this purpose, we refer to modular forms. In
general it will be therefore necessary to split off an η-factor from the respective quantity, such
that the η-ratio is analytic at the cusps, cf. v) in Theorem 6.9. We can achieve this by separating
off a common factor of

1

η12(τ)
. (6.91)

A basis in the corresponding spacesM(k;N ;x) is used to represent the corresponding quantities.
To give a first example we consider the η-representation for x. The associated η-ratio can be

represented in terms of Lambert–Eisenstein series at different powers of q as follows

x =
1

3

η4(2τ)η2(3τ)

η2(τ)η4(6τ)
=

1

3η12(τ)

{
1

16

(
1− 8

∞∑
n=1

n5(−1)nq2n

1− q2n

)
+

3

16

(
1 + 16

∞∑
n=1

n3(−1)nq2n

1− q2n

)

×

[
5 + 24

∞∑
n=1

(
nq2n

1− q2n
− 6nq12n

1− q12n

)]}
. (6.92)

Following (6.71) one obtains

x =
1

3η12(τ)

{
1

16

(
1− 8ELi−5;0(−1; 1; q2)

)
+

3

16

[
1 + 16ELi−3;0(−1; 1; q2)

]
×
{

5 + 24ELi−1;0(1; 1; q2)− 144ELi−1;0(1; 1; q12)
}}

. (6.93)

17This is, besides the well-know Landen transformation [45,137], the next higher modular transformation. There
exist even higher order transformations, which were derived in Refs. [136,138–141]. Also for the hypergeometric

function 2F1

[
1
r ,1−

1
r

1
; z(x)

]
there are rational modular transformations [142].

18Representations of this kind are frequently used working first in a region which is free of singularities, see
e.g. [143].
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One may synchronize the arguments to q using Eq. (6.73) and the products in (6.93) may be
formally collected using Eq. (6.57). For

x̃ = xη12(τ), (6.94)

both sides are modular forms, and the r.h.s. is expressed as a polynomial of Lambert series.
According to Lemma 6.8 they agree if the first b non-vanishing expansion coefficients of their
q-series agree. Here we have extracted the power of 1/η12(τ), to choose a factor often appearing.
It is also the minimal factor necessary.

6.3.2 How to find the complete q-series of the building blocks?

After having found an exact representation of the kinematic variable x in terms of an η-ratio
in Section 6.3.1, we are in the position to perform the variable transformation from x- to q-
space by series expansion at any depth. However, we still have to find the associated η-ratios
for the corresponding building blocks. An empiric way to derive the η-ratio would consist in
systematically enlarging an Ansatz using larger and larger structures (6.52) and to compare
their q-series to the one required for a sufficiently large number of terms according to Lemma 6.8,
after having projected on to a suitable modular form, cf. Section 6.1.3. This is a possible, but
time-consuming way. Quite a series of q-series expressions of η-ratios are, however, contained
in Sloan’s Online Encyclopedia of Integer Sequences [144], often with detailed references to the
literature, which one therefore should consult first. Lemma 6.8 will then allow to prove the
corresponding equality of the two modular forms comparing their q-series up to the necessary
number of non-vanishing expansion coefficients. All the relevant q-series needed in the following
could be found in this way.

6.3.3 The Ingredients of the Homogeneous Solution

Let us now construct the individual q-series of the further building blocks. The representation
of the elliptic integral of the first kind K(z) using (6.41, 6.67) is well-known

K(z) =
π

2

∞∑
k=1

qk

1 + q2k
=
π

i

∞∑
k=1

[
Li0
(
iqk
)
− Li0

(
−iqk

)]
=
π

4
E0;0(i; 1; q), (6.95)

cf. [144] A002654 by M. Somos, [145], and Ref. [68], Eq. (13.10). K′(z) is given by (6.42).
Another quantity, which enters the representation of E(k2) (6.50), can also be obtained in terms
of Lambert-series directly

q
ϑ′4(q)

ϑ4(q)
= −1

2
[ELi−1;0(1; 1; q) + ELi−1;0(−1; 1; q)] +

[
ELi0;0(1; q−1; q) + ELi0;0(−1; q−1; q)

]
−
[
ELi−1;0(1; q−1; q) + ELi−1;0(−1; q−1; q)

]
. (6.96)

We still need the following η-weighted q-series

1

K(k2)
=

2

πη12(τ)

{
5

48

{
1− 24ELi−1;0(1; 1; q)− 4

[
1− 24ELi−1;0(1; 1; q4)

]}

×

{
−1− 4

[
ELi0;0(−1; 1/q; q2)− 4ELi−1;0(−1; 1/q; q2) + 4ELi−2;0(−1; 1/q; q2)

]}
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− 1

16

{
5− 4

[
ELi0;0(−1; 1/q; q2)− 8ELi−1;0(−1; 1/q; q2) + 24ELi−2;0(−1; 1/q; q2)

−32ELi−3;0(−1; 1/q; q2) + 16ELi−4;0(−1; 1/q; q2)

]}
(6.97)

to express E(k2), Eq. (6.50). E′(k2) is then obtained by (3.21, 6.51).
Next we express the square root factor appearing in (3.18, 3.19), for which the following

representation in an η-ratio holds [144] A256637

√
(1− 3x)(1 + x) =

i√
3

η
(
τ
2

)
η
(
3τ
2

)
η(2τ)η(3τ)

η(τ)η3(6τ)

∣∣∣∣∣
q→−q

. (6.98)

The corresponding q-series is given by

√
(1− 3x)(1 + x) =

i√
3

{
1 +

54

7
[T2,1,3,1,12 + T2,1,3,5,12 − T2,1,3,7,12 − T2,1,3,11,12 − T2,2,3,1,12

−T2,2,3,5,12 + T2,2,3,7,12 + T2,2,3,11,12]−
26

7
[T6,1,3,1,4 − T6,1,3,3,4 + T6,2,3,3,4

−2T6,3,3,1,4 + 2T6,3,3,3,4 − T6,4,3,1,4 + T6,4,3,3,4 + T6,5,3,1,4 − T6,5,3,3,4
+2T6,6,3,1,4 − 2T6,6,3,3,4]− 8 [Y8,2,3 − Y8,6,3] + 5 [−Y12,1,3 − 2Y12,3,3

−Y12,5,3 + Y12,7,3]−
35

4
Y12,8,3 +

27

14
[T2,1,3,1,12 + T2,1,3,5,12 − T2,1,3,7,12

−T2,1,3,11,12 − T2,2,3,1,12 − T2,2,3,5,12 + T2,2,3,7,12 + T2,2,3,11,12]Y12,8,3

−13

14
[T6,1,3,1,4 − T6,1,3,3,4 + T6,2,3,3,4 − 2T6,3,3,1,4 + 2T6,3,3,3,4 − T6,4,3,1,4

+T6,4,3,3,4 + T6,5,3,1,4 − T6,5,3,3,4 + 2T6,6,3,1,4 − 2T6,6,3,3,4]Y12,8,3 + [−8Y4,3,3

−2Y8,2,3 + 2Y8,6,3]Y12,8,3 +
1

4
[−Y12,1,3 − 2Y12,3,3 − Y12,5,3 + Y12,7,3

+2Y12,9,3]Y12,8,3 + 10Y12,9,3 + T6,2,3,1,4

[
26

7
+

13

14
(−Y12,4,3 + Y12,8,3

+Y12,10,3)] +
3

2
Y24,2,3 +

3

8
Y12,8,3Y24,2,3 −

9

4
Y24,4,3 − 2Y4,3,3Y24,4,3

+
1

4
[Y12,1,3 + 2Y12,3,3 + Y12,5,3 − Y12,7,3 − 2Y12,9,3]Y24,4,3 + 3Y24,6,3

+
3

4
Y12,8,3Y24,6,3 −

9

4
Y24,8,3 − 2Y4,3,3Y24,8,3 +

1

4
[Y12,1,3 + 2Y12,3,3

+Y12,5,3 − Y12,7,3 − 2Y12,9,3]Y24,8,3 +
3

2
Y24,10,3 +

3

8
Y12,8,3Y24,10,3 −

3

2
Y24,14,3

−3

8
Y12,8,3Y24,14,3 +

9

4
Y24,16,3 + 2Y4,3,3Y24,16,3 −

1

4
[Y12,1,3 + 2Y12,3,3

+Y12,5,3 − Y12,7,3 − 2Y12,9,3]Y24,16,3 − 3Y24,18,3 −
3

4
Y12,8,3Y24,18,3

+Y4,1,3 [8Y12,8,3 + 2Y24,4,3 + 2Y24,8,3 − 2Y24,16,3 − 2Y24,20,3]

+Y12,11,3

[
5 +

1

4
(−Y12,4,3 + Y12,8,3 − Y24,4,3 − Y24,8,3 + Y24,16,3

+Y24,20,3)] +
9

4
Y24,20,3 + 2Y4,3,3Y24,20,3 −

1

4
[Y12,1,3 + 2Y12,3,3 + Y12,5,3
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−Y12,7,3 − 2Y12,9,3]Y24,20,3 + Y12,10,3

[
−35

4
+

27

14
(T2,1,3,1,12 + T2,1,3,5,12

−T2,1,3,7,12 − T2,1,3,11,12 − T2,2,3,1,12 − T2,2,3,5,12 + T2,2,3,7,12 + T2,2,3,11,12)

+
13

14
(−T6,1,3,1,4 + T6,1,3,3,4 − T6,2,3,3,4 + 2T6,3,3,1,4 − 2T6,3,3,3,4 + T6,4,3,1,4

−T6,4,3,3,4 − T6,5,3,1,4 + T6,5,3,3,4 − 2T6,6,3,1,4 + 2T6,6,3,3,4) + 8Y4,1,3 − 8Y4,3,3

−2Y8,2,3 + 2Y8,6,3 +
1

4
(−Y12,1,3 − 2Y12,3,3 − Y12,5,3 + Y12,7,3 + 2Y12,9,3

+Y12,11,3) +
3

8
(Y24,2,3 + 2Y24,6,3 + Y24,10,3 − Y24,14,3 − 2Y24,18,3 − Y24,22,3)

]
+Y12,4,3

[
35

4
+

27

14
(−T2,1,3,1,12 − T2,1,3,5,12 + T2,1,3,7,12 + T2,1,3,11,12

+T2,2,3,1,12 + T2,2,3,5,12 − T2,2,3,7,12 − T2,2,3,11,12) +
13

14
(T6,1,3,1,4

−T6,1,3,3,4 + T6,2,3,3,4 − 2T6,3,3,1,4 + 2T6,3,3,3,4 − T6,4,3,1,4 + T6,4,3,3,4

+T6,5,3,1,4 − T6,5,3,3,4 + 2T6,6,3,1,4 − 2T6,6,3,3,4)− 8Y4,1,3 + 8Y4,3,3 + 2Y8,2,3

−2Y8,6,3 +
1

4
(Y12,1,3 + 2Y12,3,3 + Y12,5,3 − Y12,7,3 − 2Y12,9,3) +

3

8
(−Y24,2,3

−2Y24,6,3 − Y24,10,3 + Y24,14,3 + 2Y24,18,3 + Y24,22,3)] + Y12,2,3

[
35

4

+
27

14
(−T2,1,3,1,12 − T2,1,3,5,12 + T2,1,3,7,12 + T2,1,3,11,12 + T2,2,3,1,12

+T2,2,3,5,12 − T2,2,3,7,12 − T2,2,3,11,12) +
13

14
(T6,1,3,1,4 − T6,1,3,3,4 − T6,2,3,1,4

+T6,2,3,3,4 − 2T6,3,3,1,4 + 2T6,3,3,3,4 − T6,4,3,1,4 + T6,4,3,3,4 + T6,5,3,1,4

−T6,5,3,3,4 + 2T6,6,3,1,4 − 2T6,6,3,3,4)− 8Y4,1,3 + 8Y4,3,3 + 2Y8,2,3

−2Y8,6,3 +
1

4
(Y12,1,3 + 2Y12,3,3 + Y12,5,3 − Y12,7,3 − 2Y12,9,3 − Y12,11,3)

+
3

8
(−Y24,2,3 − 2Y24,6,3 − Y24,10,3 + Y24,14,3 + 2Y24,18,3 + Y24,22,3)

]
−3

2
Y24,22,3 −

3

8
Y12,8,3Y24,22,3

}∣∣∣∣∣
q→−q

. (6.99)

The polynomials (x+ 1)(3x2 + 1) and (x− 1)2(3x+ 1) can be assembled using (6.93).
Let us also list the q-series for Jacobi’s η-function, cf. also [144] A000203

η = − 1

12ω

[
−1 + 24

∞∑
k=1

kLi0
(
q2k
)]

= − 1

12ω

ϑ
(3)
1 (q)

ϑ
(1)
1 (q)

, (6.100)

which is related to

ϑ
(3)
1 (q)

ϑ
(1)
1 (q)

= = −1 + 12 [ELi0;−1(1; 1; q) + ELi0;−1(−1; 1; q)] . (6.101)

38



6.3.4 The Inhomogeneity

The integral over the inhomogeneity (3.26) in the case of the homogeneous solutions ψ3,4(x) has
the following structure

I =
8∑

m=1

cm

∫
dx

x
Hn

0 (x)f̂m(x)ψ3,4(x), n ∈ {0, 1, 2, 3}, cm ∈ Q (6.102)

and

f̂m ∈
{

1

1± x
,

1

(1± x)2
,

1

1± 3x
,

1

(1± 3x)2

}
. (6.103)

For the functions fka

fka (x) =
1

(1− ax)k
, k ≥ 1, k, a ∈ N, (6.104)

the structure of x, Eq. (6.89), leads to the following symmetry

fka (−x) = fka (x)
∣∣
q→−q . (6.105)

For convenience we introduce the variable ξ,

ξ =
1

x
= 3y, ξ ∈]0, 1]↔ q ∈ [0, 1]. (6.106)

Under this change of variables the harmonic polylogarithms H~a(x) can be transformed using the
command TransformH of the package HarmonicSums [4–6,90,91].

One obtains the following η-ratios, cf. A187100, A187153 [144]

1

1− x
= − ξ

1− ξ
= −3

η2(τ)η
(
3
2
τ
)
η3(6τ)

η3
(
1
2
τ
)
η(2τ)η2(3τ)

(6.107)

1

1− 3x
= − ξ

3− ξ
= −

[
η(τ)η

(
3
2
τ
)
η2(6τ)

]3
η
(
1
2
τ
)
η2(2τ)η9(3τ)

, (6.108)

for which we get the representation in terms of an η-factor and elliptic polylogarithms using the
relations to Lambert–series given in Section 6.1.5.

1

1− x
=

1

η12(τ)

{
− 637

51840
[Y2,1,6 − Y2,2,6]−

49

46080
[Y3,1,6 + Y3,2,6] +

49

23040
Y3,3,6 +

91

360
Y4,1,3

− 721

1620
Y 2
4,1,3 +

721

103680
Y4,2,6 −

91

360
Y4,3,3 +

721

810
Y4,1,3Y4,3,3 −

721

1620
Y 2
4,3,3 −

721

103680
Y4,4,6

− 7

414720
[Y6,1,6 − Y6,2,6 − 2Y6,3,6 − Y6,4,6 + Y6,5,6 + 2Y6,6,6]−

119

144
Y12,1,3

− 7

1620
[Y4,1,3 − Y4,3,3]Y12,1,3 +

383

6480
Y 2
12,1,3 −

7

16
Y12,2,3 +

7

128
Y 2
12,2,3 +

67

51840
Y12,2,6

−119

72
Y12,3,3 −

7

810
[Y4,1,3 − Y4,3,3]Y12,3,3 +

383

1620
Y12,1,3Y12,3,3 +

383

1620
Y 2
12,3,3 −

7

16
Y12,4,3

39



+
7

64
Y12,2,3Y12,4,3 +

7

128
Y 2
12,4,3 −

67

51840
Y12,4,6 −

119

144
Y12,5,3 −

7

1620
[Y4,1,3 − Y4,3,3]Y12,5,3

+
383

3240
[Y12,1,3 + 2Y12,3,3 − Y12,7,3]Y12,5,3 +

383

6480
Y 2
12,5,3 −

67

25920
Y12,6,6

+
119

144
Y12,7,3 +

7

1620
[Y4,1,3 − Y4,3,3]Y12,7,3 −

383

3240
[Y12,1,3 + 2Y12,3,3]Y12,7,3

+
383

6480
Y 2
12,7,3 +

7

16
Y12,8,3 −

7

64
[Y12,2,3 + Y12,4,3]Y12,8,3 +

7

128
Y 2
12,8,3

− 67

51840
Y12,8,6 +

119

72
Y12,9,3 +

7

810
[Y4,1,3 − Y4,1,3]Y12,9,3 −

383

1620
[Y12,1,3 + 2Y12,3,3

+Y12,5,3 − Y12,7,3]Y12,9,3 +
383

1620
Y 2
12,9,3 +

7

16
Y12,10,3 −

7

64
[Y12,2,3 + Y12,4,3

−Y12,8,3]Y12,10,3 +
7

128
Y 2
12,10,3 +

67

51840
Y12,10,6 +

119

144
Y12,11,3 +

7

1620
[Y4,1,3 − Y4,3,3]

×Y12,11,3 −
383

3240
[Y12,1,3 + 2Y12,3,3 + Y12,5,3 − Y12,7,3 − 2Y12,9,3]Y12,11,3

+
383

6480
Y 2
12,11,3 +

67

25920
Y12,12,6 −

259

18
Z3,1,4 +

37

18
[Y12,1,3 + 2Y12,3,3 + Y12,5,3 − Y12,7,3

−2Y12,9,3 − Y12,11,3]Z3,1,4 +
63

4
Z3,1,12 −

9

4
[Y12,1,3 + 2Y12,3,3 + Y12,5,3 − Y12,7,3 − 2Y12,9,3

−Y12,11,3]Z3,1,12 +
117

5
Z2

3,1,12 +
259

18
Z3,3,4 −

37

18
[Y12,1,3 + 2Y12,3,3 + Y12,5,3

−Y12,7,3 − 2Y12,9,3 − Y12,11,3]Z3,3,4 +
63

4
Z3,5,12 −

9

4
[Y12,1,3 + 2Y12,3,3 + Y12,5,3

−Y12,7,3 − 2Y12,9,3 − Y12,11,3]Z3,5,12 +
234

5
Z3,1,12Z3,5,12 +

117

5
Z2

3,5,12 −
63

4
Z3,7,12

+
9

4
[Y12,1,3 + 2Y12,3,3 + Y12,5,3 − Y12,7,3 − 2Y12,9,3 − Y12,11,3]Z3,7,12

−234

5
[Z3,1,12 + Z3,5,12]Z3,7,12 +

117

5
Z2

3,7,12 −
63

4
Z3,11,12

+
9

4
[Y12,1,3 + 2Y12,3,3 + Y12,5,3 − Y12,7,3 − 2Y12,9,3 − Y12,11,3]Z3,11,12

−234

5
[Z3,1,12 + Z3,5,12 − Z3,7,12]Z3,11,12 +

117

5
Z2

3,11,12 −
4459

5760
Z6,1,1

+
7

810
Y12,9,3 [Y4,1,3 − Y4,3,3]

}
, (6.109)

1

1− 3x
=

1

η12(τ)

{
−2071

1170

[
Y 2
4,1,3 − 2Y4,3,3Y4,1,3

]
+

41

8190
[Y12,1,3 + 2Y12,3,3 + Y12,5,3 − Y12,7,3

−2Y12,9,3 − Y12,11,3]Y4,1,3 +
17

20
Y4,1,3 −

2071

1170
Y 2
4,3,3 +

5651

32760
Y 2
12,1,3 +

9

64

[
Y 2
12,2,3

+Y 2
12,4,3 + Y 2

12,8,3 + Y 2
12,10,3

]
+

5651

32760

[
4Y 2

12,3,3 + Y 2
12,5,3 + Y 2

12,7,3 + Y 2
12,11,3

]
+

162

5

[
Z2

3,1,12 + Z2
3,5,12 + Z2

3,7,12 + Z2
3,11,12

]
− 49

2880
[Y2,1,6 − Y2,2,6]

− 49

33280
[Y3,1,6 + Y3,2,6 − 2Y3,3,6] +

2071

74880
[Y4,2,6 − Y4,4,6]−

17

20
Y4,3,3

+
5711

2096640
[Y6,1,6 − Y6,2,6 − 2Y6,3,6 − Y6,4,6 + Y6,5,6 + 2Y6,6,6]−

41

8190
Y4,3,3 [Y12,1,3
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−Y12,11,3]−
1759

728
Y12,1,3 −

9

8
Y12,2,3 +

269

74880
[Y12,2,6 − Y12,4,6]−

41

4095
Y4,3,3Y12,3,3

+
5651

8190
Y12,1,3Y12,3,3 −

1759

364
Y12,3,3 +

9

32
Y12,2,3Y12,4,3 −

9

8
Y12,4,3 −

41

8190
Y4,3,3Y12,5,3

+
5651

16380
[Y12,1,3 + 2Y12,3,3]Y12,5,3 −

1759

728
Y12,5,3 −

269

37440
Y12,6,6 +

41

8190
Y4,3,3Y12,7,3

− 5651

16380
[Y12,1,3 + 2Y12,3,3 + Y12,5,3]Y12,7,3 +

1759

728
Y12,7,3 −

9

32
[Y12,2,3 + Y12,4,3 − 4]

×Y12,8,3 −
269

74880
Y12,8,6 +

41

4095
Y4,3,3Y12,9,3 −

5651

8190
[Y12,1,3 + 2Y12,3,3 + Y12,5,3

−Y12,7,3 − Y12,9,3]Y12,9,3 +
1759

364
Y12,9,3 −

9

32
[Y12,2,3 + Y12,4,3 − Y12,8,3]Y12,10,3

+
9

8
Y12,10,3 +

269

74880
Y12,10,6 −

5651

16380
[Y12,1,3 + 2Y12,3,3 + Y12,5,3

−Y12,7,3 − 2Y12,9,3]Y12,11,3 +
1759

728
Y12,11,3 +

269

37440
Y12,12,6 + 6 [Y12,1,3 + 2Y12,3,3

+Y12,5,3 − Y12,7,3 − 2Y12,9,3 − Y12,11,3]Z3,1,4 − 42Z3,1,4 −
1161

182
[Y12,1,3 + 2Y12,3,3

+Y12,5,3 − Y12,7,3 − 2Y12,9,3 − Y12,11,3]Z3,1,12 +
1161

26
Z3,1,12 − 6 [Y12,1,3 + 2Y12,3,3

+Y12,5,3 − Y12,7,3 − 2Y12,9,3 − Y12,11,3]Z3,3,4 + 42Z3,3,4 −
1161

182
[Y12,1,3 + 2Y12,3,3

+Y12,5,3 − Y12,7,3 − 2Y12,9,3 − Y12,11,3]Z3,5,12 +
324

5
Z3,1,12Z3,5,12 +

1161

26
Z3,5,12

+
1161

182
[Y12,1,3 + 2Y12,3,3 + Y12,5,3 − Y12,7,3 − 2Y12,9,3 − Y12,11,3]Z3,7,12

−324

5
[Z3,1,12 + Z3,5,12]Z3,7,12 −

1161

26
Z3,7,12 +

1161

182
[Y12,1,3 + 2Y12,3,3 + Y12,5,3

−Y12,7,3 − 2Y12,9,3 − Y12,11,3]Z3,11,12 −
324

5
[Z3,1,12 + Z3,5,12 − Z3,7,12]Z3,11,12

−1161

26
Z3,11,12 −

343

320
Z6,1,1

}
. (6.110)

For both (6.109) and (6.110) 38 Lambert–series of the kind (6.78, 6.79) contribute in our present
basis representation. If expanded in Li0(q

n) and the elliptic polylogarithms, many more functions
would appear. The expressions (6.99, 6.109) and (6.110) are rather large. Due to a large number
of relations between modular forms we can currently not exclude that these expressions can be
simplified. We leave this for a later study. Here our first goal has been to find valid representations
algorithmically in all cases.

Let us now turn to the harmonic polylogarithms appearing in the inhomogeneities. We first
change the measure for integral (6.102) to

dx

x
=
dq

q
J(q), with J =

d ln(x)

d ln(q)
. (6.111)

The Jacobian J(q) is given by

d ln(x)

d ln(q)
= −1 + E0;−1(ρ3; i; q) + E0;−1(ρ3;−i; q). (6.112)
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This is easy to see, since the relation

ln
[
ηb (aτ)

]
= b

[
a

12
ln(q)− 1

2a

2a∑
m=1

ELi0;−1;2(1; ρm2a; q)

]
, a, b ∈ N\{0} (6.113)

holds, which can be generalized to any η-ratio.
Integrating (6.112) one obtains

H0(x) = − ln (3q) + E0;−1;2(ρ3; i; q) + E0;−1;2(ρ3;−i; q). (6.114)

Since also other harmonic polylogarithms may occur in the inhomogeneities, let us briefly discuss
the next possible cases.

Similar to (6.112), one has

d ln(1 + x)

d ln(q)
= 4

[
E0;−1(−1; 1; q2)− E0;−1(ρ6; 1; q2)

]
−
[
E0;−1(−1; 1; q)− E0;−1(ρ6; 1; q)

]
−1 + 4E0;−1(ρ3;−1; q2) (6.115)

= −1 + E0;−1(−1;−1, q)− E0;−1(ρ6;−1; q) + E0;−1(ρ3;−i; q) + E0;−1(ρ3; i; q)

(6.116)

and

d ln(1− x)

d ln(q)
=

d ln(1 + x)

d ln(q)

∣∣∣∣
q→−q

. (6.117)

H−1(x) and H1(x) are obtained by integrating (6.115) and the relation (6.117)

H−1(x) = ln(1 + x) = − ln(3q)− E0;−1;2(−1;−1; q) + E0;−1;2(ρ6;−1; q)

−E0;−1;2(ρ3;−i; q)− E0;−1;2(ρ3; i; q) (6.118)

H1(x) = − H−1(x)|q→−q + 2πi, (6.119)

with

H0(ξ) = −H0(x), H1(ξ) = H1(x) +H0(x), H−1(ξ) = H−1(x) +H0(x). (6.120)

There are similar symmetry relations at higher weight. One also applies the shuffle algebra [81,88]
and it is therefore sufficient to calculate the q-representations for H0,1, H1,−1, H0,0,1, H0,1,1, H0,1,−1
and H1,1,−1 up to weight w = 3.

In (6.102) we first transform to ξ as the integration variable through which the HPLs H~a(x)
are replaced by

H~a(x) =
∑
n

anH~bn(ξ) + c~a, an, c~a ∈ C. (6.121)

By iteration, the different harmonic polylogarithms (2.20) are obtained as follows:

H0,~a(ξ) =

∫ ξ

0

dξ̄

ξ̄
H~a(ξ) =

∫ q

0

dq̄

q̄

d ln(ξ̄)

d ln(q)
H~a(ξ̄(q̄)). (6.122)

H1,~a(ξ) = −
∫ q

0

dq̄

q̄

d ln(1− ξ̄)
d ln(q̄)

H~a(q̄) (6.123)
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H−1,~a(ξ) =

∫ q

0

dq̄

q̄

d ln(1 + ξ̄)

d ln(q̄)
H~a(q̄), (6.124)

with H~a(q̄) = H~a(ξ̄(q̄) and

d ln(ξ̄)

d ln(q)
= −d ln(x)

d ln(q)
(6.125)

d ln(1− ξ̄)
d ln(q)

=
d ln(1− x)

d ln(q)
− d ln(x)

d ln(q)
(6.126)

d ln(1 + ξ̄)

d ln(q)
=

d ln(1 + x)

d ln(q)
− d ln(x)

d ln(q)
. (6.127)

To express the solution f9b(x) one needs to differentiate f8b(x),

ξ
d

dξ
f(ξ) = ξ

d

dξ

∫ q

0

dq̄

q̄

d ln(ξ)

d ln(q̄)
f̄(q̄) = f̄(q). (6.128)

For the solution of f10b(x), integrals of the type∫ ξ

0

dξ̄

ξ̄
[P (ξ̄)f(ξ̄)] =

∫ q

0

dq̄

q̄

d ln(ξ)

d ln(q̄)
[P · f ](q̄) (6.129)

are performed. Here, the integrand of (6.129) has to be expressed in terms of q.
In the case of (2.6), integrals of the kind∫

dq
qm lnn(q)

ηk(τ(q))
(6.130)

contribute. For k = 0 these integrals are given by polynomials of q and ln(q) and the integration
relations of the type Eq. (6.60) can be used.

Because of

1

η(τ)
=

1

q
1
12

∞∏
k=1

1

1− q2k
=

1

q
1
12

(
1 +

∞∑
k=1

q2k∏k
l=1(1− q2l)

)
=

1

q
1
12

∞∑
k=0

p(k)q2k, (6.131)

cf. [73,77], q-Pochhammer symbols are appearing, which requires a corresponding generalization
of the integration relation w.r.t. q. Here p(k) denotes the partition function. There is no (known)
finite rational closed form expression for p(n) [73], cf. also [146].

In Ref. [37], Eqs. (50, 69), only harmonic polylogarithms over the alphabet {0, 1} occurred,
which all could be expressed in terms of elliptic polylogarithms. However, the kinematic variable
in [37] is different from that in the present case. This implies different representations for the
harmonic polylogarithms in terms of q-series.

We finally remark that there is a multitude of equivalent representations of the q-series of a
modular form, which obey many relations.19 It would be worthwhile to find minimal representa-
tions. One criterion could be to minimize the number of elementary elliptic polylogarithms (6.55)
contributing. Still one would have to decide whether in this representation different arguments
are synchronized or not, bearing in mind that the latter step is straightforward and only needed
if the corresponding expression shall be integrated over q.

19M. Eichler stated [147] that there are five basic mathematical operations: addition, subtraction, multiplica-
tion, division and modular forms.
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7 Possible Extensions

In Section 4 we have obtained a representation of new iterative integrals containing also letters
which are impossible to be rewritten as integrals such that the next integration variable does only
appear in one boundary of this integral. In the present study only the complete elliptic integrals
were forming the new letters of this kind. Due to this, it is possible to express the corresponding
integrands in terms of η-weighted Lambert-Eisenstein series, given the type of inhomogeneities
are of the class as in the present examples. For other irreducible differential equations of order
o = 2 it may happen that we end up with 2F1 solutions which cannot be reduced to complete
elliptic integrals modulo some (ir)rational pre-factor.

In more general cases the 2F1 solutions will not appear but other higher transcendental so-
lutions might be found, obeying higher order differential equations, which are the result of the
corresponding integration-by-parts reductions [10]. They will usually have also definite inte-
gral representations and appear as new letters other than the ones which we mentioned before.
Whether or not a mathematical way exists to come up with an analogue to the case of the
elliptic polylogarithm will depend on the class of functions. In various cases the representation
of Section 4 will be the final one.

Still the case of the elliptic polylogarithm

ELin;m(x; y; q) =
∞∑
j=1

∞∑
k=1

xj

jn
yk

km
qjk

may get some generalizations in the case of Feynman integral calculations, as has been the case
before for the polylogarithms. The two summand terms

xj

jn
(7.1)

appearing are those of the generalized harmonic sums, i.e. the Mellin transforms of Kummer-
iterative integrals [148], connected with the nome term qjk. One may think of a cyclotomic
extension [4,5] in the sense of real valued representations, where the two infinite sums allow for
periodic gaps choosing summands of the kind

xl3

(l1j + l2)l3
, li ∈ N, l1, l3 > 0. (7.2)

Further extensions, which occurred in the non elliptic case, may be binomially weighted sums,
cf. [6]. Here, additional factors of the kind

1

(j + r)l
(

2j

j

) , 1

(j + r)l

(
2j

j

)
, 2r, l ∈ N (7.3)

may occur in (7.2).
A reliable guide to find new structures consists in analyzing the appearing integrals by ap-

plying dispersion relations [24, 149]. The cuts immediately relate to a series of relevant Landau
variables [150] of the problem, which are usually only revealed at a much later stage using dif-
ferential or difference equations directly to solve the same problem20. In higher order graphs

20While the dispersive technique can be applied to usual Feynman integral calculations directly, this is not the
case for diagrams containing local operator insertions [14, 15, 151, 152]. The latter short-distance representation
would need to be re-derived after having performed the cut of the corresponding usual Feynman diagram.
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one cannot exclude that hyperelliptic and Abel integrals [153] are going to appear at some level,
which are known to be multi-periodic compared to the double periodicity in the elliptic case; see
Ref. [154] for the corresponding theory. The corresponding integrals will require new classes of
functions for the analytic representations.

We finally mention that in Φ4 theory at eight loops more complicated structures are occurring
related to K3-surfaces21 [156], compared to those implied by elliptic curves.

8 Conclusions

A central problem in calculating higher loop Feynman integrals in renormalizable quantum field
theories consists in solving the differential equations obtained from the IBPs, which rule the
master integrals. In the present paper we have solved master integrals which correspond to irre-
ducible differential equations of second order with more than three singularities fully analytically.
They appear in the calculation of the QCD corrections to the ρ-parameter at 3-loop order in [39].
They form typical examples for structures which appear in solving IBP-relations for Feynman di-
agrams beyond the well understood case of singly factorizing integrals given as iterative integrals
over a general alphabet. The latter case has been already algorithmized completely in Ref. [16],
even not needing any special choice of basis. The second order structures can be mapped to 2F1

solutions under conditions presented in this paper. We have outlined the algorithmic analytic
solution in this case in terms of iterative integrals over partly non-iterative letters. Indeed this
holds even for much more general solutions than those of the 2F1 type. One is usually interested
in representing the analytic solution for a certain interval of a (dimensionless) kinematic variable
x ∈ R, e.g. for x ∈ [0, 1]. The solutions may have different singularities in this range, including
branch points. Yet piecewise analytic series expansions of the type

m∑
k=0

lnk(x)
∞∑
l=0

ak,l(x− b)l, b ∈ [0, 1],m ∈ N (8.1)

are possible, which overlap in finite regions allowing to obtain a very high accuracy by expanding
to a sufficient finite degree. The simple form of (8.1) is very appealing for many physics appli-
cations, despite the potentially involved structure described by the corresponding differential
equations.

The question arises whether one may find a fully analytic diagonalization of the integral de-
scribing the solution in the inhomogeneous case. If the 2F1 solutions can be mapped to complete
elliptic integrals using triangle group relations for the homogeneous solution and the inhomo-
geneity normalized by the Wronskian can be represented in terms of elliptic polylogarithms, the
inhomogeneous solution is given in terms of elliptic polylogarithms of the nome q, solving the
integral over the inhomogeneity. Also here, all necessary steps are known. The building blocks
appearing in the present case are not all of this type, due to which modifications are necessary.

In the present case, the kinematic variable x is determined from the rational function k2 =
z(x) appearing in the complete elliptic integral K(k2). A related, but different approach has
been followed in [35]. Our choice has the advantage to obey a mirror symmetry for x ↔ q by
sign change in deriving the q-forms of the harmonic polylogarithms. The kinematic variable
x is obtained applying a cubic elliptic transformation. Next, one has to derive the elliptic
integral representation of all factors appearing in the integrand of the inhomogeneous solution,
and in some cases further integrals and derivations of the inhomogeneous solution in the q-
representation. We map all building blocks to modular forms separating off a factor 1/ηk(τ) if

21K3 stands for ‘Kummer, Kähler and Kodaira’. The term has been introduced by A. Weil [155].
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necessary, and obtain analytic solutions in terms of η-weighted Lambert-Eisenstein series. As we
have shown, in the present case the emergence of the elliptic integral of the second kind, E(k2),
cannot be avoided in the solutions. This is one source of the η-factor mentioned. While the
multiplication relation (6.57) allows to form the final elliptic polylogarithms in case of ∀k = 0,
in general one obtains η-weighted elliptic polylogarithms. Because of the appearance of the q-
Pochhammer symbol in the denominator, the occurring q-integrals are not of the class of the
elliptic polylogarithms in general.

The main work went into the determination of elliptic polylogarithm representations of the
q-series for the different building blocks. In the present case we had also to represent a square
root term, which was possible using the structure of the rational function z(x). In this way
(functions of) Dedekind η-ratios are expanded into q-series trying to match them into linear
combinations of elliptic polylogarithms. This is done for the most elementary factors, building
the more complex ones using the relations (6.57). Here an essential issue is to prove the equality
of two q-series, which can be done mapping to modular forms and comparing a number of non-
vanishing coefficients up to the predicted bound.

We have referred to a special choice for a basis in representing the occurring modular forms in
M(k,N, x). In this way we were able to find the representation of every η-ratio for any modular
form completely algorithmically. This has been our main goal here. As it is well-known, there is
a very large number of relations between modular forms, which may be used to derive potentially
shorter representations. One possible demand would be to find a minimal representation in terms
of elliptic polylogarithms of e.g. the kind

ELim;n(x; y; qj),ELim;n(x; qk; qj), and ELim;n(ql; qk; qj), m, n, k, j, l ∈ Z, x, y ∈ C, (8.2)

referring to the class of elliptic polylogarithms which appeared in the present paper. To synchro-
nize the q-argument of the occurring elliptic polylogarithms is easily possible, but will usually
lead to a proliferation of terms.

We remark that the Mellin moments, in case of also elliptic contribution to the solutions con-
tribute, cf. [151], map for fixed values of the Mellin variable N to rational numbers and multiple
zeta values. Large amounts of moments can be calculated using the algorithm of Ref. [157], also
providing a suitable method to quantify the corresponding physical problem, cf. also [158].

For higher topologies we envisage extensions to more general structures, as has been briefly
discussed in Section 7. Structures of this kind are expected in solving differential equations
of higher than second order, which may arise from Feynman diagrams, in the ongoing adven-
ture to map out the mathematical beauty of the renormalizable quantum field theories of the
microcosmos as initiated by Stueckelberg [159] and Feynman [160].
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A 2F1 Solutions of Second Order Differential Equations

with more than three Singularities

In the following we describe an algorithm which allows to map an ordinary second order differ-
ential equation into 2F1 solutions. We are going to explain it referring to an extended example.
For this reason we consider the following homogeneous linear differential equation with rational
function coefficients

0 = 256 x (3x+ 10) (15x− 4) (x+ 4)
d2

dx2
S(x)

+
(
30240x3 + 164160x2 + 182784x− 25600

) d

dx
S(x)

+ 4725x2 + 17910x+ 6000 ≡ L[S(x)]. (A.1)

A hypergeometric solution of (A.1) is a closed form solution

S(x) = exp

(∫
r(x)dx

)(
r0(x) · 2F1

[
a1, a2
b1

; f(x)

]
+ r1(x) · 2F1

′
[
a1, a2
b1

; f(x)

])
, (A.2)

where r(x), r0(x), r1(x), f(x) ∈ Q(x) and a1, a2, b1 ∈ Q. The algorithm in [56] first tries to find
solutions of (A.1) of the form:

S(x) = exp

(∫
r(x)dx

)
· 2F1

[
a1, a2
b1

; f(x)

]
. (A.3)

If it finds no solutions of the form (A.3), then it tries to transform (A.1) to a simpler differential
operator L̃ and tries to find solutions of L̃ of the type (A.3), which then lead to solutions of
(A.1) of type (A.2).

If (A.1) has solutions of type (A.3), then there exists a Gauß hypergeometric differential
operator LB such that solutions of (A.1) can be obtained from solutions of LB via a change of
variables and an exp-product transformations. This means that

2F1

[
a1, a2
b1

;x

]
is a solution of LB and the change of variables x 7→ f(x) sends LB to an equation LfB with a
solution

2F1

[
a1, a2
b1

; f(x)

]
,

and the exp-product transformation sends LfB to an equation with solutions (A.3).
The operator (A.1) has four non-removable singularities at x = −4,−10/3, 0, 4/15 and no

removable singularities. The exponent-differences are 1/2, 1/4, 3/8, and 1/4 respectively. For
example at x = 0 there are formal solutions (power series solutions) x0 · (1 + 15

64
x + . . . ) and

x3/8 · (1 + 249
320
x+ . . . ), so the exponents are 0 and 3/8 and the exponent-difference is 3/8.

Section 3.3 in [56] gives relations between deg(f), exponent-differences of LB, and exponent-
differences of (A.1). If f(x) is a rational function, then sub-algorithm 3.2 in Section 3.4 in
[56] produces candidates LB’s compatible with those relations. The algorithm in [56] finds the
following candidates:

(e0, e1, e∞) =

(
3

16
,
1

4
,
1

4

)
, deg(f(x)) = 2
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(e0, e1, e∞) =

(
1

8
,
1

6
,
1

2

)
, deg(f(x)) = 3

(e0, e1, e∞) =

(
3

32
,
1

4
,
1

2

)
, deg(f(x)) = 4

(e0, e1, e∞) =

(
1

8
,
1

4
,
1

2

)
, deg(f(x)) = 5

(e0, e1, e∞) =

(
1

16
,
1

3
,
1

2

)
, deg(f(x)) = 6

(e0, e1, e∞) =

(
1

8
,
1

3
,
1

2

)
, deg(f(x)) = 15.

Here e0, e1, e∞ are the exponent-differences of a Gauß hypergeometric differential operator LB
at x = 0, x = 1, and x = ∞. They determine LB upto an exp-product transformation. The
deg (f(x)) of a rational function f(x) is the maximum of the degree of its numerator and degree
of its denominator. For (A.1), the algorithm finds six Gauß hypergeometric differential operators.
Then the algorithm loops over each case and tries to recover f(x) in (A.3).

The fourth case (e0, e1, e∞) = (1/8, 1/4, 1/2) and deg(f(x)) = 5 gives a Gauß hypergeometric
differential operator LB where

LB =
d2

dx2
+

3 (5x− 3)

8x (x− 1)

d

dx
+

33

256x (x− 1)
(A.4)

with an associated degree 5 for f(x). One can always compute formal solutions of differential
operators around a singular point. The algorithm in [56] chooses a true singularity of (A.1),
moves it to x = 0, and then computes formal solutions of (A.4) and (A.1) at x = 0. The point
x = 0 is a true singularity of (A.1). Formal solutions of (A.4) at x = 0 are

y1(x) = 2F1

 3
16
, 11
16

9
8

;x

 = x0
(

1 +
11

96
x+

1881

34816
x2 + . . .

)
(A.5)

y2(x) = x−
1
8 · 2F1

 1
16
, 9
16

7
8

;x

 = x−
1
8

(
1 +

9

224
x+

255

14336
x2 + . . .

)
. (A.6)

The exponents at x = 0 are 0 and −1/8, see (A.5) and (A.6). Formal solutions of (A.1) at x = 0
are

Y1(x) = x0
(

1 +
15

64
x+

3825

8192
x2 +

3905875

3670016
x3 + . . .

)
Y2(x) = x

3
8

(
1 +

249

320
x+

329697

204800
x2 +

774249529

196608000
x3 + . . .

)
.

After a change of variables transformation x 7→ f(x) and an exp-product transformation one
gets

Y1(x) = exp

(∫
r(x)dx

)
y1(f(x)) (A.7)

Y2(x) = exp

(∫
r(x)dx

)
y2(f(x)). (A.8)
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If one takes the quotients of formal solutions of Y1(x), Y2(x) of (A.1) and y1(x), y2(x) of (A.4),
then the effect of exp

(∫
r(x)dx

)
disappears:

Q(x) =
Y2(x)

Y1(x)
?
=
y2(f(x))

y1(f(x))
= q(f(x)), (A.9)

where

q(x) =
y2(x)

y1(x)
. (A.10)

This suggests f(x) = q−1(Q(x)), however, the quotients of formal solutions, (A.9) and (A.10),
are unique up to a constant. So, the correct equation is:

f(x) = q−1(c ·Q(x)) (A.11)

where c ∈ C∗ (here c ∈ Q∗). If one knows the value of c, then (A.11) gives a power series
expansion for f(x). That can be converted to a rational function provided that one has a degree
(bound) for f(x), which is 5. However, the value of c ∈ Q is unknown and there are infinitely
many candidates for c. If one chooses a suitable prime number p and works modulo p, then there
are a finite number of candidates for the unknown constant c. The algorithm in [56] chooses
p = 13 as the first suitable prime number and it loops over c = 1, . . . , p−1 and for each c tries to
recover f(x) modulo p from its series expansion (A.11) modulo p. If this succeeds for at least one
c, then the algorithm uses Hensel lifting techniques [161] to obtain f(x) modulo higher powers of
p. After that, it tries rational function and rational number reconstruction to find f(x) ∈ Q(x).
After five Hensel lifting steps, the algorithm finds

f(x) =
x3 (3x+ 10)2

(x+ 4) (3x2 + 4x− 2)2
. (A.12)

Note that deg (f(x)) = 5.
In order to find r(x) ∈ Q(x), one can use Section 3.7 of [56]. The algorithm in [56] finds

r(x) = − 45x4 + 330x3 + 690x2 + 300x+ 480

(16x+ 64) (3x+ 10) (3x2 + 4x− 2)x

and so

exp

(∫
r(x)dx

)
=

x3/8(3x+ 10)1/4

(x+ 4)3/16 (3x2 + 4x− 2)3/8
. (A.13)

In the last step, the algorithm in [56] forms solutions of (A.1) from solutions (A.5), (A.6) of
(A.4). Then (A.7) and (A.8):

Y1(x) = exp

(∫
r(x)dx

)
· 2F1

 3
16
, 11
16

9
8

; f(x)

 (A.14)

Y2(x) = exp

(∫
r(x)dx

)
· f(x)−

1
8 · 2F1

 1
16
, 9
16

7
8

; f(x)

 (A.15)

are solutions of (A.1) of type (A.3) with exp
(∫

r(x)dx
)

as in (A.13) and f(x) as in (A.12).
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Figure 11: The transformation of special 2F1 functions under the triangle group.

l d R f

A 2 1 4x(1− x)

B 2 (1− x)−1/6 1
4
x2/(x− 1)

C 2 (1− x)−1/8 1
4
x2/(x− 1)

D 2 (1− x)−1/12 1
4
x2/(x− 1)

E 2 (1− x/2)−1/2 x2/(x− 2)2

F 3 (1 + 3x)−1/4 27x(1− x)2/(1 + 3x)3

G 3 (1 + ωx)−1/2 1− (x+ ω)3/(x+ ω)3

H 4 (1− 8x/9)−1/4 64x3(1− x)/(9− 8x)3

Table 1: The functions R and f for the different hypergeometric transformations of degree d
depicted in Figure 11.

Remark A.1. The algorithm in [56] first simplifies the homogeneous parts of the differential
equations studied, cf. e.g. (2.14) and (2.16). Then it finds the hypergeometric solutions of the
simplified equations of type (A.3), and then uses this solutions to form the solutions of their
homogeneous parts of type (A.2).

Since the differential equation (A.1) has more than three singularities, the argument f(x) of
the 2F1 solution has to have singularities. The expression in 2F1 form has the advantage, that
various properties of Gauß’ hypergeometric functions can be used in subsequent calculations,
would not be known otherwise.

The parameters a, b, c of the solution are rational numbers and we will now investigate whether
it is possible to map the homogeneous solutions (A.14, A.15) into complete elliptic integrals,
which has been possible in all examples being discussed in Section 3.

We would like to finally discuss a series of 2F1 transformations in the case of the appearance
of special rational parameters a, b, c, illustrated by the graph, Figure 11, cf. [54,55,162].

If (a, b; c) and (a′, b′; c′) are the endpoints of an edge labeled l in the diagram, with the latter
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endpoint above the former, then

2F1

[
a, b
c

;x

]
= R(x) · 2F1

[
a′, b′

c′
; f(x)

]
(A.16)

for x sufficiently close to 0, where R, f are given in Table 1.
Here ω solves

ω2 + ω + 1 = 0 (A.17)

and d is the degree of f , the maximum of the degrees of the numerator and denominator. The
relations displayed in the above diagram can be used to map a wider class of 2F1 solutions to
elliptic solutions. In various cases also the other relation obeyed by 2F1 have to be applied and
one often ends up with complete elliptic integrals of the first and second kind, as in the cases
dealt with in the present paper.

B The Equal Mass Sunrise: from Kinematics to Elliptic

Polylogarithms

In the following we summarize the necessary variable transformations in the case of the equal
mass sunrise diagram, dealt with in Refs. [30, 35]. In the case of the kite diagram [37] the
treatment is analogous. The intention is to represent the result in terms of the variable q,
Eq. (1.3). In different problems the module k2 = z(x) will refer to different expressions. Even
dealing with the same case, different integration variables can be used, with consequences for
the form of x(q). The inhomogeneity N(x) will consequently have a different representation as a
function of q, despite the final results are expressed in elliptic polylogarithms. In particular, all
contributing functions, such as harmonic polylogarithms, may obtain a different representation
in q.

We briefly discuss the results of Refs. [30,35], adding in some cases a few details.

B.1 The treatment by Bloch and Vanhove, [30].

Bloch and Vanhove [30] perform a treatment comparable to [35], but with differences in the
definition of the variable t leading to a somewhat different expression for I(q), also finally leading
to elliptic polylogarithms. In obtaining their rational expressions of η functions they refer to the
work of R.S. Maier [142] and obtain

I(q) =
η(3τ)η5(τ)η4

(
3
2
τ
)

η4
(
1
2
τ
) . (B.1)

I(q) is of w = 3 and belongs to Γ0(3). We first transform (B.1) using the relation by M.D. Rogers
[163], Eq. (4.21), and obtain

I(q) =
η9
(
3
2
τ
)

η3
(
1
2
τ
) +

η9 (3τ)

η3 (τ)
. (B.2)

A generating function representation in q, using the first terms, is given in [144] A106402 which
finally yields

I(q) =
∞∑
k=1

k2
(

qk

1 + qk + q2k
+

q2k

1 + q2k + q4k

)
. (B.3)

51



This result is now transformed into a generalized Lambert series representation [74,126–128] by
using

L0(x) =
x

1 + x+ x2
= − i√

3

[
Li0(ρ3x)− Li0(ρ

2
3x)
]

(B.4)

with

I(q) =
∞∑
k=1

k2
[
L0(q

k) + L0(q
2k)
]
, (B.5)

where one has

Li0(αq
k) = ELi0;0(α; 1; q). (B.6)

Further logarithmic q-integrals, cf. (6.60), lead to higher weight elliptic polylogarithms. Eq. (B.5)
is closely related to corresponding expressions given in [35] to which we turn now.

B.2 The treatment by Adams et al., [35].

Choosing

τ = i
K(k′2)

K(k2)
=

1

iπ
ln(q), (B.7)

the integration variable t = m2y is obtained from the product of the modules squared

k2k′2 = − 16y

(1− y)3(9− y)
= 16

{
η
(
τ
2

)
η(2τ)

η(τ)2

}24

=

{
ϑ2(τ)ϑ4(τ)

ϑ3(τ)

}4

. (B.8)

in Ref. [35] while calculating the sunrise-integral. Eq. (B.8) is a modular function for Γ0(4) which
is inverted for y

y = −9

{
η(τ)η

(
3τ
2

)
η(6τ)

η
(
τ
2

)
η(2τ)η(3τ)

}4

, (B.9)

a modular function for Γ0(12). It is also the variable of the inhomogeneity, and in general of
harmonic polylogarithms and related functions, depending on the complexity of the problem.
The validity of (B.9) can be proven by applying a similar treatment as shown in Section 4. Note
that the cubic Legendre-Jacobi cubic transformation, cf. [28], cannot be used directly, unlike the
case in (6.88, 6.89).

The integrand of the special solution has been obtained by

I(q) = 3
√

3
η11(τ)η7(3τ)

η5
(
τ
2

)
η
(
3τ
2

)
η5(2τ)η(6τ)

. (B.10)

It is useful to consult Sloan’s on-line encyclopedia of integer sequences [144] for this example.
The corresponding solution has been given by D. Zagier in 2009 [164] by entry A214262 [144] for
the series22

I(q) = −3
√

3
∞∑
n=1

∑
d|n

(−1)d−1
(
−3

n/d

)
d2(−q)n, (B.11)

22It is interesting to note that this q-series is closely related to the series used by Beukers [165] in his series-
proof of the irrationality of ζ2 and ζ3 related through an Eichler integral [166]. Already his earlier proof based
on integrals [167] used functions playing a central role in the calculation of Feynman integrals.
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where
(
a
b

)
denotes the Legendre symbol [168]. The inner sum in (B.11) can be carried out

resulting in

I(q) = 3
√

3
∞∑
k=1

k2
qk

1 + (−q)k + q2k
. (B.12)

Note that somewhat different integrands I(q) appear in the treatment in Ref. [30] and [35], which
are related, however. The modular form (B.10) is of Γ0(12).

Next the q-dependent part of (B.12) is again transformed into the Lambert form, cf. (B.4),
and two integrals are performed to obtain special solution [35]:

Sspecial =

∫ q

0

dq1
q1

∫ q1

0

dq2
q2
I(q2) =

3

i

∞∑
k=1

(−1)k
[
Li2
(
ρ3(−q)k

)
− Li2

(
ρ−13 (−q)k

)]
(B.13)

≡ 3

π
E2;0(ρ3;−1;−q), (B.14)

where we have dropped a common pre-factor.
To be able to incorporate the inhomogeneity into the solution it is necessary to express the

harmonic polylogarithms depending on y as a function of q. The lowest weight HPLs are in this
case [35]

H0(y) = ln(−9q)− 4E0;−1;2(ρ3;−1;−q) (B.15)

H1(y) = 3
[
E1;0(−1; 1;−q)− E1;0(ρ6; 1;−q)

]
(B.16)

H0,1(y) = 3
[
E2;1(−1; 1;−q)− E2;1(ρ6; 1;−q)

]
−12

[
E0,1;−1,0;2(ρ3,−1;−1, 1;−q)− E0,1;−1,0;2(ρ3, ρ6;−1, 1;−q)

]
, etc. (B.17)

They are different to those obtained in the case presented in Section 6. In [35] only HPLs over
the alphabet {0, 1} occur. We note that the kinematic variable (B.9) does not lead to a mirror
symmetry like the one obtained in Section 6.3.3.

C A Series of Sums

In a recent paper [79] on the sunrise graph, which belongs to the context of the present paper,
several sum-representations were presented, which could not yet be calculated. In the following
we give the solutions for all single infinite sums in terms of polylogarithmic expressions with
root arguments, limited to at most Li2(z). They can be calculated with the techniques made
available in the package HarmonicSums.m, which were developed in the context of binomial
sums [6,16,169]23.

These sums may be represented referring to harmonic sums [7, 8] defined by

Sb,~a(N) =
N∑
k=1

(sign(b))k

k|b|
S~a(k), S∅(N) = 1; S~a(N)|N=0 = 0. (C.1)

We use the replacements for the poly-gamma functions [7]

S1(N) = ψ(N + 1) + γE (C.2)

23For similar investigations in the case of infinite sums see [170,171].
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Sk+1(N) =
(−1)k

k!
ψ(k)(N + 1) + ζk+1, k ∈ N, k ≥ 1 , (C.3)

with γE the Euler-Mascheroni number. Furthermore, single cyclotomic harmonic sums contribute
[5]. They are defined by

S{a,b,c}(N) =
N∑
k=1

(sign(c))k

(ak + b)|c|
, (C.4)

with

ψ

(
3

2
+ i

)
= 2S{2,1,1}(i) + γE (C.5)

as one example.

One obtains the following relations

s1(x) =
∞∑
i=0

i!(i+ 1)!

(2i+ 3)!
xi
[
− 8(1 + i)

(1 + 2i)(3 + 2i)
+ 2S1(i)− 2S1(2i) + ln(x)

]
=
i

2

√
4− x
x3

ln2

[
1

2

(
2 +

√
(−4 + x)x− x

)]
− i

(2(−4 + x)x2)
ln

[
1

2

(
2 +

√
(−4 + x)x− x

)]
×

{
3

[
−4
√

(4− x)x+
√

(4− x)3x+
√

(4− x)x3

]
− 2(4− x)

√
(4− x) ln(x)

−4(4− x)

√
4− x
x3

x2 ln

[
1

2

(
−
√

(−4 + x)x+ x
)]}

+
1

x3/2

{
2i
√

4− xζ2

+2
√
x (−2 + ln(x))− 2i

√
4− xLi2

[
1

2

(
2 +

√
(−4 + x)x− x

)]}
, 0 ≤ x < 1, (C.6)

s2(x) =
∞∑
i=0

i!(2 + i)!

3 + 2i)!
xi

{
2 (−5− 21i− 39i2 − 32i3 + 12i5 + 4i6)

(1 + i)2(2 + i)2(1 + 2i)2
+
π2

3

+
4(1 + 4i+ 2i2)

(1 + i)(2 + i)
S{2,1,1}(i) + 4S2

{2,1,1}(i)− 2S{2,1,2}(i) +

[
−2(1 + 4i+ 2i2)

(1 + i)(2 + i)

−4S{2,1,1}(i)

]
ln(x) + ln2(x) +

[
(2(1 + 4i+ 2i2)

(1 + i)(2 + i)
− 4S{2,1,1}(i) + 2 ln(x)

]
S1(i) + S2

1(i)

+
3

2
S2(i)− 2S2(2i)

}

=

√
π

24
x

{
−12 + π2

(
−2 + x−

√
(−4 + x)x

)
+ 3
√

(−4 + x)x ln2(2) + 3 ln(x)[−4

+(−2 + x) ln(x)]− 3
√

(−4 + x)x

[
−2 ln

[
1−

√
−4 + x

x

]
+ 2 ln

[
1 +

√
−4 + x

x

]]
×
[
ln(4x)− 2 ln

[
x−

√
(−4 + x)x

]]
+ ln

[
−2 + x−

√
(−4 + x)x

]
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× ln
[
−2 + x+

√
(−4 + x)x

]
− 12

√
(−4 + x)xLi2

[
1

2

(
2− x+

√
(−4 + x)x

)]}
(C.7)

s3(x) =
∞∑
i=0

i!(2 + i)!

(3 + 2i)!
xi

[
− 13 + 16i+ 4i2

(2 + i)(1 + 2i)(3 + 2i)
+ 2S1(i)− 2S1(2i) + ln(x)

]

=
1

x
√

(4− x)x

{
−2i(−2 + x)ζ2 + 2i(−2 + x) ln

[
1−
√
−4 + x−

√
x√

−4 + x+
√
x

]
ln

[√
−4 + x−

√
x√

−4 + x+
√
x

]
+
(

1− x

2

)
ln2

[√
−4 + x−

√
x√

−4 + x+
√
x

]
+
√

(4− x)x ln(x)− i(−2 + x) ln

[√
−4 + x−

√
x√

−4 + x+
√
x

]
ln(x)

−2

[√
(4− x)x+ i(2− x)Li2

[√
4− x+ i

√
x√

4− x− i
√
x

]]}
, 0 ≤ x < 1 . (C.8)

s4(x) =
∞∑
i=0

(2 + 2i)!

i!(2 + i)!

1

xi

{
− 6

(2 + i)2(1 + 2i)
+ 2ζ2 −

6 ln(x)

(2 + i)(1 + 2i)
+ ln2(x) + 4S2

1(i)

+

[
− 12

(2 + i)(1 + 2i)
+ 4 ln(x)− 8S1(2i)

]
S1(i) +

[
12

(2 + i)(1 + 2i)
− 4 ln(x)

]
S1(2i)

+4S2
1(2i) + 2S2(i)− 4S2(2i)

}

=
x

6
√
−4 + x

{
12
√
−4 + x+ π2

√
x
(
−2 + x−

√
(−4 + x)x

)
− 3(−2 + x)

√
x

×

[
ln

(
1− i

√
−1 +

4

x

)
− ln

(
1 + i

√
−1 +

4

x

)]2
+ 6(−2 + x)

√
x

[
− ln

(
1−

√
1− 4

x

)

+ ln

(
1 +

√
1− 4

x

)]
ln(x)− 3

√
−4 + x ln(x)(−4 + x ln(x))− 12(−2 + x)

√
x[

ln

(
1− i

√
−1 +

4

x

)
− ln

(
1 + i

√
−1 +

4

x

)]
ln

[
1

2

(
x−

√
(−4 + x)x

)]

+12(−2 + x)
√
xLi2

[
1

2

(
2− x+

√
(−4 + x)x

)]}
, x > 9 . (C.9)

s5(x) =
∞∑
i=0

i!(1 + i)!

(2 + 2i)!
xi

[
− 2

1 + 2i
+ 2S1(i)− 2S1(2i) + ln(x)

]

=
1√

(4− x)x

{
2i ln

[
1−
√
−4 + x−

√
x√

−4 + x+
√
x

]
ln

[√
−4 + x−

√
x√

−4 + x+
√
x

]
− i

2
ln2

[√
−4 + x−

√
x√

−4 + x+
√
x

]

−i ln

[√
−4 + x−

√
x√

−4 + x+
√
x

]
ln(x)− 2i

{
ζ2 − Li2

[√
4− x+ i

√
x√

4− x− i
√
x

]}}
, 0 ≤ x < 1 . (C.10)

s6(x) =
∞∑
i=0

i!

(2 + i)!

1

xi

[
1

1 + i
+ 2S1(i)− ln(x)

]
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= (1− x)x ln2

(
1− 1

x

)
− x ln(x)− x(1− x) ln

(
1− 1

x

)
(1− (1− x)x ln(x))

+x

[
1 + Li2

(
1

x

)]
, x ≥ 9 . (C.11)

s7(x) =
∞∑
i=0

(1 + 2i)!

i!(1 + i)!

1

xi

{
− 3 + 4i

(1 + i)2(1 + 2i)2
+
π2

3
+

[
− 1

(1 + i)(1 + 2i)
+ 2S1(i)

−2S1(2i) + ln(x)

]2
+ 2S2(i)− 4S2(2i)

}

=
1

6
√
−4 + x

{
−π2x

√
−4 + x− 3x

√
−4 + x ln2(x) + x3/2

{
π2 − 3

[
− ln

(
1−

√
1− 4

x

)

+ ln

(
1 +

√
1− 4

x

)]2
+ 6

[
− ln

(
1−

√
1− 4

x

)
+ ln

(
1 +

√
1− 4

x

)][
2 ln(2) + ln(x)

−2 ln
(
x−

√
(−4 + x)x

)]
+ 12Li2

[
1

2

(
2− x+

√
(−4 + x)x

)]}}
, x ≥ 9. (C.12)

s8(x) = −u1
∞∑
i=0

i!((1 + i)!)2

(3 + i)!(3 + 2i)!
xi+2 = −u1x

2

36
3F2

[
1, 1, 2
4, 5

2

;
x

4

]

= u1

{
−1

4
(4 + 7x)− i

√
4− x(2 + x)

2
√
x

ln

[√
−4 + x−

√
x√

−4 + x+
√
x

]
+

1− x
x

ln2

[√
−4 + x−

√
x√

−4 + x+
√
x

]}
,

where x ≡ u2/u1. (C.13)

The last sum does not form a genuine generalized hypergeometric function, but obeys a logarith-
mic representation. All the yet uncalculated double sums in [79] cannot be solved completely in
terms of iterative integrals, as has been checked by the algorithms used in [16], and will therefore
involve non-iterative integrals.

Note added.
After completion of the present paper the preprint [172] appeared. In this paper more special
cases, compared to those in the present paper, are considered, which allow representations in
terms of modular forms and powers of ln(q) only. The latter terms, appearing also in the present
case, are related to Eichler integrals [166] in [172].
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J. Kampé de Fériet, La fonction hypergëométrique,(Gauthier-Villars, Paris, 1937);
H. Exton, Multiple Hypergeometric Functions and Applications, (Ellis Horwood, Chichester,
1976);
H. Exton, Handbook of Hypergeometric Integrals, (Ellis Horwood, Chichester, 1978);
H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, (Ellis Hor-
wood, Chicester, 1985);
M.J. Schlosser, in: Computer Algebra in Quantum Field Theory: Integration, Summation
and Special Functions, C. Schneider, J. Blümlein, Eds., p. 305, (Springer, Wien, 2013)
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[106] C.F. Gauß, Werke, herausgegeben von der Königlichen Gesellschaft der Wissenschaften zu
Göttingen, (Dietrich, Göttingen, 1866).

[107] B. Gordon, J. Math. Oxford 12 (1961) 285.

[108] V.G. Kac, Adv. Math. 30 (1978) 85.

[109] I.G. Macdonald, Inventiones Math. 15 (1972) 91.

[110] J. Lepowsky, Adv. in Math. 27 (1978) 230.

[111] I.J. Zucker, J. Phys. A: Math. Gen. 20 (1987) L13; J. Phys. A: Math. Gen. 23 (1990) 117;

[112] Y. Martin, Trans. Am. Math. Soc. 348 (1996) 4825.

[113] K.S. Williams, Int. J. of Number Theory 8 (2012) 993.

64



[114] R.J. Lemke Oliver, Adv. Math. 241 (2013) 1;
B. Kendril, Pure and Applied Mathematics Journal 4 (2015) 178.
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(Paris, Imprimerie De Huzard-Courcier, 1828), 3, 1er Suppement, p. 65, 70.

65



[136] C.G.J. Jacobi, Astronomische Nachrichten (Schumacher) 6 (1827) Nr. 127; and [95], 1, 39.

[137] J. Landen, Phil. Trans. 65 (1775) 283;
C.F. Gauss, [106], Arithmetisch geometrisches Mittel, 3, 361.

[138] L.A. Sohnke, Journal für die reine und angew. Mathematik (Crelle) 16 (1836) 97.

[139] P. Joubert, Comptes Rendus 47 (1858) 337.

[140] L. Königsberger, Journal für die reine und angew. Mathematik (Crelle) 72 (1870) 176.

[141] A. Cayley, Phil. Trans R. Soc. Lond. 164 (1874) 379.

[142] R.S. Maier, J. Ramanujan Math. Soc. 24 (2009) 1 [arXiv:math/0611041].

[143] J. Gluza, A. Mitov, S. Moch and T. Riemann, JHEP 0907 (2009) 001 [arXiv:0905.1137
[hep-ph]].

[144] The on-line encyclopedia of integer sequences, founded by N.J.A. Sloane (1994),
https://oeis.org/?language=german.

[145] P.F. Byrd amd M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists,
(Springer, Berlin, 1954).

[146] G.H. Hardy and S. Ramanujan, Proc. Lond. Math. Soc. (2) 17 (1918) 75;
H. Rademacher, Proc. Lond. Math. Soc. (2) 43 (1937) 241; Ann. Math. 44 (1943) 416;
J.H. Brunier and K. Ono, Adv. Math. 246 (2013) 198.

[147] S. Singh, Fermat’s Letzer Satz, (Hanser Verlag, München, 1998), p. 209.

[148] E.E. Kummer, Journal für die reine und angewandte Mathematik (Crelle) 21 (1840) 74;
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