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ABSTRACT: Beauty baryons are being observed in large numbers in the LHCb detector.
The rich kinematic distributions of their multibody decays are therefore becoming access-
ible and provide us with new opportunities to search for CP violation. We analyse the
angular distributions of some three- and four-body decays of spin-1/2 baryons using the
Jacob—Wick helicity formalism. The asymmetries that provide access to small differences
of CP-odd phases between decay amplitudes of identical CP-even phases are notably dis-
cussed. The understanding gained on processes featuring specific resonant intermediate
states allows us to establish which asymmetries are relevant for what purpose. It is for in-
stance shown that some CP-odd angular asymmetries measured by the LHCD collaboration
in the Ay, = Ay — pr KTK~ decay are expected to vanish identically.



1 Introduction

Despite of production rates somewhat smaller than that of mesons, beauty baryons are
now being observed in significant numbers in the LHCb detector. They have therefore
started to offer complementary means to test the standard model. The search for new
sources of CP violation is an especially relevant direction in which they could provide new
opportunities. Incidentally, a first hint of CP violation could just have been observed in the
Ay = pr 7w~ channel [1]. Using angular momentum conservation through the Jacob—
Wick helicity formalism, we aim at determining what angular asymmetries can be expected
in specific beauty baryon decays as well as how they relate to the underlying dynamics and
its discrete symmetry properties. By discussing the case of spin-1/2 baryon decays, this
paper extends Ref. [2] that focused on the case of spin-0 particles. Most of our results also
apply to the decay of any spin-1/2 state.

A violation of CP, sourced in the standard model or beyond, manifests itself through
relative CP-odd phases—also called weak phases—between decay amplitudes. They can be
accessed through interferences in which CP-even—or strong—phases originating from the
absorptive parts of amplitudes can also appear. The most common interferences take the
following form:

Re{A7A>} = |[A7As| Re {eiA(Sm'HA(PH}
= | A7 As| (cos Ad1a cos Apia — sin Adyz sin Aprz),

where Ay and Ad respectively denote CP-odd and CP-even phase differences. The second
CP-odd term can be extracted by combining CP-conjugate processes, through rate asym-
metries notably. It provides sensitivity to small differences of weak phases, a sensitivity
which is however conditioned on the presence of relative strong phases. Some other inter-
ferences take the

Im{A] Ay} = |ATAs| (sin Ady2 cos Apig + cos Adye sin Agi)

form. The second CP-odd term extracted by combining CP-conjugate processes is again
sensitive to small weak phase differences, but does not vanish in the absence of relative
strong phases. Studying this second type of interferences is therefore particularly relevant
in cases where small strong phases are expected. Measuring both types of interferences can
also lead to a better understanding of strong phases which are difficult to compute when
they result from nonperturbative dynamics.

Beside rate asymmetries already mentioned, differential distributions can serve to ac-
cess various interference terms. Exploiting the distributions of decay products instead of
decay rates can also be advantageous when the production cross sections of CP-conjugate
particles differ—as they generally do in pp collisions—and production rate asymmetries
are not precisely known. It is useful to define motion reversal T (often called naive time
reversal), a transformation that reverts momentum and spin three-vectors. Indeed, the
motion reversal properties of differential distributions determine which type of amplitude
interferences they give access to: T-even observables provide access to the Re{A}A;} in-



terferences, T-odd observables to the Im{AfA;} ones. Let us focus somewhat on the T-
odd observables which thus yield sensitivity to small differences of CP-odd phases between
amplitudes having small or vanishing relative CP-even phases. In a Lorentz-invariant form,
T-0dd variables only appear proportional to a completely antisymmetric €,,,,, contraction
of four independent four-vectors. In processes involving only spinless external states, they
can thus only be constructed when at least five external particles are involved, like in four-
body decays. In processes involving spinning particles, T-odd variables can in principle
also be constructed through the antisymmetric contraction of both momentum and spin
four-vectors. They constitute qualitatively different observables. Unlike momenta, the spin
vectors of stable particles are however practically unmeasurable in the context we are inter-
ested in. So we will refrain from considering as observables the €,,,, contractions in which
they appear (that give rise to triple products like s - (p; X p;) in a specific frame). Only
angular distributions that derive from measured final-state momenta will be awarded that
status. Final-state spins will be altogether disregarded and summed over. The polarisation
of the decaying particle can however be considered as resulting from the production process
since it is determined by production amplitudes. In the decay of spinning particles, the
angular distributions of decay products can then be viewed as providing access to combin-
ations of production and decay amplitudes. This is to be contrasted with the decays of
spinless particles where they provide direct access to decay amplitudes.

From this more practical point of view, here is how spinning particles offer new oppor-
tunities to search for small differences of CP-odd phases between decay amplitudes that
have identical—potentially vanishing—CP-even phases. As a matter of fact, T-even angu-
lar distributions still provide access to small CP-odd phase differences only in the presence
of relative CP-even phases. The latter can however appear in the production amplitudes, as
angular distributions now give access to an entwined combination of production and decay
amplitudes. Such strong phases in production amplitudes would manifest themselves as a
nonvanishing T-odd polarisation component, which we will denote P,. As a result, certain
imaginary parts of decay amplitude interferences become accessible through T-even angular
distributions, in terms proportional to this T-odd polarisation component of the decaying
particle. In particular, there are not enough independent external-particle four-momenta in
three-body decays to form an antisymmetric €,,,, contraction. One must necessarily rely
on at least one spin four-vector to form a T-odd variable. As will be illustrated below with
final-state spins summed over, the imaginary parts of decay amplitude interferences then
only appear in terms proportional to the decaying particle polarisation. A positive signal
of CP violation in one of the corresponding asymmetries could thus be sourced either in
decay amplitudes or in production ones, leading, in the latter case, to a mismatch between
the polarisation of the initial particle and minus the polarisation of its antiparticle. Such
an effect is not expected to be sizeable when the strong interaction which conserves CP
dominates the production process. Without assuming it is altogether absent, one would
have to rely on a comparison between the expected and measured patterns of asymmetries
to discriminate between these two possibilities. The patterns expected for decays through
specific resonant intermediate states are presented below.

On the other hand, all the T-odd angular distributions can no longer serve to isolate
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Figure 1. The eight three- and four-body decays considered in this paper. The superscripts to
particles’ labels specify their spins.

small differences of CP-odd phases between decay amplitudes of identical CP-even phases.
The T-odd angular distributions that appear proportional to P, no longer give access
to imaginary parts of decay amplitude interferences. Sensitivity to hypothetical CP-odd
phase differences through these terms then actually relies on the presence of nonvanishing
CP-even phase differences between the corresponding decay amplitudes. A systematic
and blind construction of T-odd-CP-odd asymmetries, as performed in Ref.[2] for the
decay of spinless particles, is nevertheless possible. We stress this procedure can still be
utilized experimentally to cover the unexpected or in situations where complicated patterns
of interferences are not described precisely enough. One would however need to rely on
specific results such as the ones presented here for selected resonance structures to establish
whether a given T-odd angular asymmetry yields sensitivity to CP-odd phase differences
between production or decay amplitudes.

Aside from CP violation, one can in principle measure all prescribed independent con-
tributions to the angular distributions and thereby gain further understanding about the
process under scrutiny. Our tables establish the necessary link between kinematic distri-
butions and the dynamics encoded in amplitudes. The precision achieved will obviously
depend on the collected statistics, but note the determination of each asymmetry or mo-
ment exploits the statistical power of the full data sample. This is to be contrasted with
a fit in which additional free parameters worsen the precision to which all of them can be
determined (see e.g. Ref.[3]).

2 Angular distributions

The following four- and three-body decays (depicted in Fig. 1) will be considered:

01/2 s q1/23/2 gl __y 11/290 31/241/2,

— 11/220 3040,

0L/2 —y q1/23/2 pl _, 11/290 1.
N a1/2,3/2 o 11/2 20 b07

where the superscripts of particle labels specify their spins. Examples of such processes
include the Ay — AJA) — prpuTp~, Ay - Ap — prn KTK~, Ay, - N*K; — prKj
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Figure 2. Reference frames defined according to the Jackson convention [4] where axes in the two
daughter restframes are (anti)aligned. The azimuthal angles ¢, that are not apparent are defined
in the usual way: measured from the x4 p axes such that the yq.p axes have ¢, = +7/2. Note the
a, b particles’” momenta are pictured in the 0 particle restframe, while the 1,2 and 3,4 ones in the
a and b restframes, respectively.

decays which were studied by the LHCb collaboration in the recent Refs. [5-7], or the
Ay — A(X)y — p K/rvy processes discussed in Refs. [8-12]. Standard-model predictions
relying on factorization for some charmless multibody hadronic b-baryon decays have been
discussed in Ref. [13]. T-odd-CP-odd asymmetries are estimated to reach approximately
the twenty-percent level in A, — N(1440)K~ or E, — Y TK, the percent level in the
Ap — N(1440)K*~ or £, — LT K*~, and the sub-percent level in A, — An") or Ay — Ag
which are dominated by one single penguin amplitude. In Ref.[14], it was argued that
new-physics contributions parametrized by effective operators (arising, e.g., from Z’ or
R-parity-violating supersymmetry) could be significantly larger. Additionally, the rate
asymmetry in A, — Ay was also estimated to reach at most the percent level in Ref. [10].

The helicity formalism of Jakob and Wick [15] will be employed, following the so-called
Jackson convention [4] for the definition of the various reference frames (see Fig.2). The
spins of final-state particles will be summed over. On the other hand, a nonvanishing polar-
isation of the initial spin-1/2 baryon will be considered. Although experimental datasets
never isolate perfectly one single resonant intermediate state, the interferences between
them lie beyond the scope of this work. Neither will topologies like

<< o< <

be considered.

A first (@,y,z) system of axes is defined in the restframe of the initial—mother—
particle 0. When the production of the latter preserves parity, its polarisation vector is
orthogonal to the production plane (see Sec. V of Ref. [15]). To take advantage of this fea-
ture, the z axis is taken parallel to the normal of the production plane. So is a transversity
frame obtained.! Particles a and b are respectively produced at polar angles § and = — @

! Alternatively, a helicity frame could have been obtained with z aligned to particle 0’s momentum in
the laboratory frame (see Refs. [16-18] for some results obtained in such a frame).



from that z axis. With the spin vector of particle 0 pointing exactly in the z direction,
no dependence on the azimuthal angle ¢ of particle a is generated. The direction of the x
axis is therefore chosen arbitrarily in the plane perpendicular to the z axis.

Two other systems of axes are defined in the restframes of the a and b daughters, as
so-called helicity frames. The second one will only be relevant for four-body decays. The
(Ta, Ya, Za) System is obtained by a R(¢,6,0)” Euler rotation? of the initial (x,y, 2) one,
followed by a suitable boost in the z, direction (parallel to particle a’s momentum in the
mother restframe). A R(¢ + 7,7 — 6,0)7 rotation followed by a boost in the z; direction
is required to obtain the (xp,ys, zp) system. Its axes are parallel or antiparallel to the
(Ta, Ya, Za) ONES.

The following assumptions will be made in the main text and relaxed in Appendix A:

e The production of particle 0 preserves parity, so that its polarisation (if any) is aligned
with the z axis. One therefore has P, = 0 = P, in the density matrix for particle

01/2;
+1/2 —-1/2
(m m,)_l +1/2 ( 1+P, P,—1iP,
PO =5 1\ P +iP, 1-P,
where m[()/) is the component of particle 0’s spin along the z axis.

e When appearing as a final-state particle, in the three-body decays we consider, the
b! vector is taken massless so that it has no A, = 0 zero helicity state (and the Ay
amplitudes defined below are absent).

e The b — 31/241/2 decay preserves parity, so that its helicity amplitudes satisfy

| My (=A3, =A0)[* = [My(+X3, +2a)[*.
e The 3Y/2 and 41/2 particles arising from the b' vector decay are massless and therefore
have opposite helicities: A3 = —A4.

In each four-body process considered here, for the b' decay, there is therefore one single
independent combination of squared helicity amplitudes:

either  |My(1/2,—1/2)* + |My(=1/2,1/2)]*, or |My(0,0)[*.

They will be absorbed into the definition of the My helicity amplitudes for the parent
0 — ab decay. We will also absorb in the My’s the |M,(+1/2,0)|? 4+ |M,(—1/2,0)|?
combination of a!/23/2 — 11/220 amplitudes and define the

— ‘Ma(+1/270)’2 — ‘Ma(_1/270)|2
“ T I ML(+1/2,0)F + [Ma(—1/2,0)]2

2A R(¢,0,x) transformation is the succession of three elementary rotations around the z, y, and z
axes: R.(d)Ry(0)R-(x). In the so-called Jacob—Wick convention, the (Zq,¥Ya, 2q) frame is obtained by a
R(¢,0,—¢)" rotation of the (z,y, z) one.



asymmetry parameter which violates parity P. It is therefore expected to vanish if the
corresponding decay proceeds through the strong interaction, like in the A(1520) — pK
example of a®/2 — 11/220 decay. The helicity combinations allowed for the a,b system are
(Aas Ap) = (£1/2,0), and (£1/2, £1) for a spin-1/2 particle a'/2, as well as (+3/2,41) for

3/2

a spin-3/2 particle a®/“. We will denote the corresponding amplitudes as

Ay = My(£1/2,0), By = My(£1/2,£1),  Ci= My(£3/2,£1).

As opposed to the rates of the four-body decays featuring b! as an intermediate particle, the
three-body ones in which it appears in the final state will only contain interferences between
amplitudes of identical \y. Note also that a massless b! vector produced onshell can only
have Ay, = +1. The A4 amplitudes therefore vanish in that case. As already mentioned, this
will be assumed in the main text for the three-body 01/2 — a/23/2 p1 — 11/290 p! decays.
Finally, beyond the narrow width approximation for particles a and b, the Ay, By, Cy as
well as «, amplitudes have a non-trivial dependence on the (12) and (34) invariant masses
which we will respectively denote m, and my.

The various contributions to the dI'/d2 angular distributions of the final-state particles
for the processes depicted in Fig.1 are given in Table 1-8. The overall normalisation is
chosen such that the

/dQ _ /dcos@ / dcosé, 71dC089b / / d(ba dqﬁb
2 2

angular integration simply yields the sum of the allowed amplitudes squared. In case all
the six of them are present, one would then get

dar
[958 = 1AL + 14 + 1B, +1B_P +1C P +[C- P

Here, again, the dependence on the m,; invariant masses is kept implicit.

Some of the angular distributions we obtained have already been presented elsewhere,
sometimes partially only. Table 1 agrees with the Table 1 of Ref.[19]. Table 5 agrees with
Eq. (7) of Ref. [11]. The terms in Table 6 that are not proportional to a,, only match Eq. (15)
of Ref. [11], provided ws and wg defined there are respectively multiplied by factors of +P,.
The relative sign between these By C. and B_C_ interferences can be understood given
the d’ L -a(0) = (= 1)/\_“di7)\(9) symmetry relations between Wigner matrices (see Eq. (A1)
of Ref.[15]). Note also a relative complex conjugation of the amplitudes defined here and
there, as well as the use of the Jacob—Wick convention there which leads to expressions
identical to the ones we obtain with the Jackson convention for the terms compared when
@A is set to 0 there. Both Table 7 and the Ay dependence of Table 3 agree with Eq. (16)
and (21) of Ref. [20], obtained with P, = +1

3 Discrete symmetry properties

To establish the parity P and motion reversal T transformation properties of the various
contributions to the differential distributions displayed in Table 1-8, let us define our
kinematic variables and axes in terms of physical momenta.



+3/2 |AL? + A sin2 6,

+3/4 B4 |* +|B_? 1+ cos2 6,
+3/2 A2 —|A_? o cosf,  sin?6,
+3/4 B4 > — |B_|? Qg cosf, 1+ cos?6,
—3/2v/2 Re{A3B_} —Re{A*B,} a, sin 6, sin 20, cos(¢q + op)
+3/2 |A 2 —|A_? P, cosf sin? 6,
-3/4 B> —|B_|? P, cosf 1+ cos? O,
—3/2v2 Re{A%B;} —Re{A* B_} P, sinf sin 260, oS ¢y
+3/2 |A 2+ |A_? aq P, cos® cos, sin?0,
-3/4 |B4|* + |B_|? aq P, cos® cos@, 1+ cos®fy
—3/2v/2 Re{A%B_} +Re{A*By} a, P, cosf sind, sin 20, cos(dq + dp)
—3/2v/2 Re{A%B.}+Re{A*B_} a, P, sinf cosb, sin 26, Ccos ¢y
-3 Re{A% A_} o, P, sin® sinf, sin? 6, oS g
—3/2 Re{B*B_} o, P, sinf sinf, sin? 6, cos(¢a + 2¢)
+3/2v2 Im{A%B.}+Im{A*B_} P, sinf sin 26, sin ¢y,
—-3/2/2 Im{A5B_} —Im{A*B,} a P. cosf sinb, sin 26, sin(¢q + dp)
+3/2v2 Im{A5By} —Im{A*B_} a, P. sinf cosf, sin 26, sin ¢y,
-3 Im{A% A_} og P, sin® sinf, sin? 6, sin ¢,
-3/2 Im{B%}B_} a, P, sinf sind, sin? 6y, sin(gq + 2¢p)
—-3/2v2 Im{A}B_} +Im{A*B,} a, sinf,  sin26, sin(¢q + ¢)

Table 1. Various contributions to the angular distribution of the 0%/2 — a!/2p! — 11/220 31/241/2
process, with conventions and assumptions specified in the text. Each line corresponds to a term of
different angular dependence (most of them being independent). The separation in columns is only
meant to ease the comparison between the various factors appearing in each term. The four blocks
distinguish terms whose combinations of angular and polarisation dependence have different parity
and motion reversal transformation properties. They are respectively P—evenfT—even, P-odd-T-
even, P—evenfT—odd, and P-odd-T-odd.

In the restframe of particle 0, let us assume that the production plane is defined by the
momenta py and pg of two of the particles involved. One can then construct the (z,y, 2)
frame as

ba PbA X PB
,’1}:77 2277 y:zXCL'
lpal [pa X pB|
The z axis is thus a P-even—T-even pseudovector, while & and y are both P-odd-T-odd
vectors. The (x4, Ya, Zq) system is then obtained as

_p1+p2 _ R X 2Zq _ Ya X Zq
a — 7 . | ya — 1 wa TR
|p1 + p2| |2 X 24 1Ya X Zal
where p; and p2 are the momenta of particles 1 and 2 in particle 0’s restframe. It follows

that both z, and y, are P-odd-T-odd vectors while x, is a P-even—T-even pseudovector.



+3/8 |BL2+|B_> +3|Cy > +3|C_|? 1+ cos? 6,

—3v/2/3/4 Re{A%C} +Re{A*C_} sin 26, sin20,  cos(pg + ¢Pp)
+3/4 |AL?+ A (1+3cos®6,) sin? 6,
-3v3/4 Re{BjC_} +Re{B*Cy} sin? 0, sin20,  cos(2¢q + 2¢p)
+9/8 |BL2+|B_> = |CL* = |C_|? cos? 0, 1+ cos? 6y
—3/8  5|BL*=5|B_>=3|C.P +3|C_] aa cos 0, 1+ cos? 6y
-3/4 AP — A2 Qg (5—9cos?,)cosf, sin?8,
+3v/2/3/4 Re{A%C,} —Re{A*C_} Qg (1—3cos?f,)sinf, sin20,  cos(¢q + ¢p)
+3/4/2 Re{A4% B_} — Re{A* B} Qg (1 —9cos?6,)sinf, sin26, cos(¢q + dp)
+9v/3/4 Re{BiC_} —Re{B*C}} Qg sin? 6, cos 8, sin?6,  cos(2¢p, + 2¢)
+9/8 3|BL? =3 |B_> = [CL*+|C_]* aq cos® O, 1+ cos? 6y
-3/8 |BL > = |B_|> = 3|C4 > +3|C_|? P, cosf 1+ cos? 6,
—3v/2/3/4 Re{A%LCL} —Re{A*C_} P, cosf sin 260, sin 26, cos(pq + dp)
+3/4 A > —1A4_)? P, cos  (1+3cos?6,) sin? 6,
+3/3/4 Re{B%iC_} —Re{B*Cy} P, cosf sin? 0, sin20,  cos(2¢q + 2¢p)
-9/8 |BL> = |B_>+|Ci 2 —|C_|? P, cosf cos? 0, 1+ cos? 6y
+3v3/4 Re{BiC:} —Re{B*C_} P, sinf sin 260, 1+ cos? 6, COS g
-3/4v2 Re{A%B,} — Re{A* B_} P, sinf (14 3cos?6,) sin 26, cos ¢y,
—3y/2/3/4 Re{A%C_} —Re{A*C,} P, sinf sin? 0, sin260,  cos(2¢q + ¢p)
+3/8  5|Bi|*+5|B_|*+3|Cs* +3|C_* au P. cosf cos b, 1+ cos? 6,
—3/4 AL+ A ag P, cosf (5—9cos?8,)cosf, sin?6,
+3v/2/3 /4 Re{A%C} +Re{A*C_} aq P, cosf (1—3cos’6,)sinf, sin26, cos(¢g + Pp)
+3/4v/2 Re{A%B_} + Re{A* B, } aq P, cosf (1—9cos?8,)sinf, sin26, cos(¢g + Pp)
—9\/3/4 Re{BiC_} + Re{BiC’Jr} a, P, cosf sin? 6, cos 6, sin?0,  cos(2¢, + 2¢)
—9/8 3B+ 3|B_*+|CL*+|C_|* aq P. cosf cos® b, 1+ cos? 6y
+3/4v/2 Re{A% B} + Re{A* B_} ag P, sinf (5—9cos?6,)cosf, sin20, oS ¢y
-3v3/4 Re{B%iC;} +Re{B*C_} ag P, sinf (1—3cos?6,)sinf, 1+ cos?6, COS g
+3/2 Re{A* A_} aq P, sin@ (1—9cos?6,)sinf, sin?6, COS g
+3/4 Re{B}B_} ag P, sinf (1—9cos?0,)sinf, sin%260,  cos(da + 2¢p)
+9/4 Re{CiC_} o, P, sinf sin3 6, sin?6,  cos(3pg + 2¢)
+9,/2/3/4 Re{A%C_} + Re{A* C}} aqg P, sinf sin? 6, cos 6, sin20,  cos(2¢, + dp)
+3v/2/3/4 Im{A%Cy} 4+ Im{A*C_} cosf sin 20, sin20,  sin(¢q + ¢p)
+3v3/4 Im{B;C_} +Im{B*C,} cosf sin? 6, sin?6,  sin(2¢, + 2¢p)
-3v3/4 Im{B;C} +Im{B*C_} sin 6 sin 20, 1+ cos? 6, sin ¢q
+3/4V/2 Im{A% B} + Im{A* B_} sing (14 3cos?6,) sin 26, sin ¢y
—3v/2/3/4 Im{A* C_} +Im{A* C} sin @ sin? 0, sin20,  sin(2¢4 + @)

-34/2/3/4 Im{A5Cy} —Im{A*C_} Qg cosf (1—3cos?f,)sinf, sin26, sin(¢q + ¢p)

TIEEIIYEEEEEE

+3/4v/2 Im{A%B_} —Im{A* B, } Qg cosf (1—9cos?f,)sinf, sin26, sin(¢q + ¢p)
-9v/3/4 Im{B%C_} —Im{B*C.} Qg cosf sin? 6, cos 6, sin?@,  sin(2pq + 26)
—3/4/2 Im{A%5 By} —Im{A*B_} g sinf (5—9cos?0,)cosf, sin26, sin ¢y
+3v3/4 Im{B;Cy} —Im{B*C_} Qg sinf (1 —3cos?6,)sinf, 1+ cos?6by sin ¢q
+3/2 Im{A% A_} Qg sin@ (1 —9cos?6,)sinf, sin6, sin ¢q
+3/4 Im{B} B_} Qq sin@ (1 —9cos?6,)sinf, sin?0,  sin(¢, + 2¢p)
+9/4 Im{C%C_} Qq sin 0 sin3 0, sin?0,  sin(3¢q + 26)
+9v/2/3 /4 Im{A3C_} —Im{A*C} Qg sin 6 sin? 6, cos 8, sin260,  sin(2¢4 + ¢p)
+3v/2/3/4 Im{A45Cy} —Im{A*C_} sin 26, sin 20, sin(¢g + ¢p)
-3v3/4 Im{B:C_} —Im{B*C,} sin? 0, sin 0,  sin(2¢, + 2¢p)
—3v/2/3/4 Im{A% Cy} + Im{A*C_} Qg (1—3cos?0,)sinf, sin20,  sin(dq + ¢p)
+3/4v/2 Im{A% B_} + Im{A* B, } Qg (1 —9cos?6,)sinf, sin26, sin(¢q + ¢p)
+9v3/4 Im{B;C_} +Im{B*C, } Qq sin? 0, cos 0, sin20,  sin(2¢q + 2¢p)

Table 2. Same as Table 1, for the 0/2 — ¢3/2p! — 11/220 31/241/2 process where particle @ has
spin 3/2 instead of 1/2.



+3 |AL P+ AP cos? 6,

+3/2 |B4+|” +|B_? sin2 6,
+3 |AL ]2 —|A_? Qg cosf, cos’fy
+3/2 |B4|* — |B_|? q cosf, sin? 6
+3/v/2 Re{A%B_} —Re{A*B,} aq sinf, sin26, cos(p, + Pp)
+3 |AL 2 —|A_? P, cosf cos? 0
-3/2 B> —|B_| P, cosf sin? 6,
+3/v2 Re{A% By} —Re{A*B_} P, sinf sin 260, Ccos ¢y
+3 AL > +14_)? g P. cos® cosf, cos?b,
-3/2 |B4|* + |B_|? g P. cos® cosf, sin?0,
+3/vV2 Re{A*B_}+Re{A* B} «a, P. cosf sinf, sin20, cos(¢,+ o)
+3/vV2 Re{A*Bi}+Re{A*B_} «a, P, sinf cosf, sin26, cos ¢y,
—6 Re{A% A_} a, P, sinf sinf, cos?0, cos ¢q
+3 Re{B}B_} aq P, sinf sinf, sin?60, cos(¢q + 2¢p)
—-3/v2 Im{A%B.}+Im{A*B_} P, sinf sin 26, sin ¢y,
+3/v/2 Im{A5B_} —Im{A*B.} o« P. cosf sinf, sin26, sin(¢,+ ¢p)
—3/V2 Im{A5B+} —Im{A*B_} o« P, sinf cosf, sin26, sin ¢y,
—6 Im{A% A_} a, P, sinf sinf, cos®6, sin @,
+3 Im{B%} B_} aq P, sinf sinf, sin?6, sin(¢, + 2¢p)
+3/v2 Im{A%*B_} +Im{A*B.} a, sinf, sin20, sin(¢q + op)

Table 3. Various contributions to the angular distribution of the 0'/2 — a!/2p* — 11/220 3040
process, with conventions and assumptions specified in the text. Each line corresponds to a term of
different angular dependence (most of them being independent). The separation in columns is only
meant to ease the comparison between the various factors appearing in each term. The four blocks
distinguish terms whose combinations of angular and polarisation dependence have different parity
and motion reversal transformation properties. They are respectively P—evenfT—even, P-odd-T-
even, P—evenfT—odd, and P-odd-T-odd.

Similar conclusions hold for (@, yp, 2p) = (—%a, Ya, —2a). The polar  and azimuthal ¢
angles can be obtained from the equalities:
cosf = z- zg, sinf = +v/1 — cos? 0, cos¢ = (2 X zq) Y, sing = —(2 X zq) - @,
which establish that cos 6 is a P-odd-T-odd kinematic variable, while sin 6, cos ¢, and sin ¢
are P-even—T-even. Moreover, defining the P-even—T-even pseudovectors
D1 X p2 ~ DP3 X P4

a_|P1><P2|’ b_|P3><p4”
where pg and p4 are the momenta of particles 3 and 4 in particle 0’s restframe, one can
further write

(0 =MNg - zaa) COS g = —Mgq * Ya, sin ¢g = Mg - Tq,
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+3/4 |By >+ |B_|> +3|Cy > +3|C_? sin2 6,

+3/2/3/2 Re{A% Cy} + Re{A*C_} sin 26, sin 26,  cos(¢a + ¢p)
+3/2 A2+ A (1+3cos?6,)  cos?6,
+3/3/2 Re{B}C_} + Re{B*C,} sin? 0, sin? 6, cos(2¢, + 2¢)
+9/4 |BL >+ |B_|* = |C > = |C_|? cos? sin? 6,
—3/4  5|By[*=5|B_*=3|C. P +3|C_|* aa cosf, sin2 6,
-3/2 |A 2 — A Qg (5 —9cos?6,)cosf, cos?0,

—3/2/3/2 Re{A*Cy} —Re{A*C_} Qg (1 —3cos?0,)sinf, sin20, cos(dg + dp)
-3/2V2 Re{A% B_} — Re{A* B.} Qg (1 —9cos?8,)sinb, sin20, cos(¢q + ¢p)
—9\/5/2 Re{BiC_} —Re{B*C,} Qg sin? @, cos 6, sin? 6 cos(2¢4 + 2¢)

+9/4 3B =3B = |CL P+ |C_|* aq cos® 0, sin? 6,
—-3/4 |BL|? = |B_|* =3|Cy > +3|C_|? P, cosf sin? 6,
+3v/2/3/2 Re{A1C} —Re{A*C_} P, cosf sin 26, sin 26, cos(dq + ¢p)
+3/2 AL P — A P, cosf (14 3cos?8,)  cos? 6,
—-3v/3/2 Re{BiC_} —Re{B*C4} P, cosf sin? 4, sin? 6y cos(2¢4 + 2¢p)
—9/4 |BL? = |B_*+|Cy > —|C_)? P, cosf cos? 0, sin? 6,
+3/3/2 Re{B}Cy} —Re{B*C_} P, sinf sin 26, sin? 6, COS ¢q
—|—3/2\/§ Re{A% B} — Re{A* B_} P, siné (14 3cos?d,) sin 26y, cos ¢y
+3v/2/3/2 Re{A* C_} — Re{A*C4} P, sinf sin® 4, sin 20, cos(2¢4 + ¢p)
+3/4  5|BiP+5|B_*+3|CL*+3|C_|* au P. cosf cos b, sin? 6,
-3/2 A2+ AP aq P, cos® (5—9cos?,)cosb, cos®0,

—3v/2/3/2 Re{A%Cy} +Re{A*C_} ag P, cos® (1—3cos?6,)sinf, sin20, cos(¢q+ o)
—3/2\/5 Re{A% B_} + Re{A* B, } ag P, cos® (1—9cos?0,)sinf, sin20, cos(¢q+ dp)
+9v3/2 Re{BiC_} + Re{B*C4} ag, P, cosf sin? @, cos 6, sin? 6, cos(2¢q + 2¢p)

-9/4 3IBi* +3|B_ + |[CL 4+ |C_]* a4 P. cosf cos® 0, sin? 6,
-3/2V2 Re{A%B;} +Re{A*B_} aq, P, sinf (5—9cos?6,)cosf, sin26, cos ¢y,
—3V3/2 Re{B}C1}+Re{B*C_} ag, P, sinf (1—3cos?0,)sinf, sin?6, oS ¢q
+3 Re{A* A_} aq P, sinf (1—9cos?6,)sinf, cos®6, COS g
-3/2 Re{B;{B_} aq P, sinf (1 —9cos?6,)sinf, sin®6, cos(¢q + 20p)
—9/2 Re{CiC_} o, P, sinf sin® 0, sin? 0y cos(3¢q + 2¢p)

-9v/2/3/2 Re{ALC_} +Re{A* C,} ag P, siné sin2 6, cos 6, sin 260, cos(2¢, + ¢p)

—3./2/3/2 Im{A*C;} +Im{A*C_} P. cosf sin 26, sin26,  sin(dq + ¢p)
—3/3/2 Im{B{C_} +Im{B*Cy} P, cos¥ sin® 0, sin? 0, sin(2¢, + 2¢)
—3/3/2 Im{B%C,} +Im{B*C_} P, sin6 sin 20, sin? 6, sin ¢q
—3/2V/2 Im{A% B} +Im{A*B_} P, sinf (14 3cos?d,) sin 260, sin ¢y,

+34/2/3/2 Im{A%3C_} + Im{A* Cy} P, siné sin® 4, sin 20, sin(2¢, + ¢p)

+3v/2/3/2 Im{A%Cy} —Im{A*C_} aq P, cos® (1 —3cos?0,)sinf, sin20, sin(¢g + o)
-3/2V2 Im{A%B_} —Im{A* B} aq P, cos® (1 —9cos?8,)sinf, sin26, sin(¢g + o)
+9v/3/2 Im{B%C_} —Im{B*C,} o P, cosé sin? @, cos 6, sin? 6y, sin(2pq + 2¢%)
+3/2\/§ Im{A% B} —Im{A*B_} ag P, sinf (5—9cos?6,)cosf, sin26, sin ¢y,
+3v/3/2 Im{B*C;} —Im{B*C_} aq P, sinf (1—3cos?6,)sinf, sin’f, sin ¢

+3 Im{A}A_} aq P, sinf (1 —9cos?0,)sinf, cos®0, sin ¢g
-3/2 Im{B}B_} ag P, sinf (1—9cos?0,)sind, sin?60, sin(¢, + 2¢p)
-9/2 Im{C3C_} aq P, sinf sin® @, sin? 6, sin(3dq + 2¢%)

-91/2/3/2 Im{A%C_} —Im{A*Cy} aq P, sinf sin® @, cos 6, sin 20, sin(2¢, + ¢p)

—3/2/3/2 Im{A%C;} —Im{A* C_} sin 26, sin 26,  sin(@q + ¢p)
+3v/3/2 Im{B*C_} —Im{B*C,} sin? 0, sin? 6, sin(2¢q + 2¢)

+3v/2/3/2 Im{A%C,} +Im{A*C_} Qg (1 —3cos?0,)sinf, sin20, sin(dg + ¢p)
—3/2\/§ Im{A%B_} +Im{A* B} Qq (1 —9cos?0,)sinf, sin20, sin(¢p, + dp)
—9v/3/2 Im{B{C_} +Im{B*Cy} g sin? 6, cos 6, sin? 0, sin(2¢q + 2¢y)

Table 4. Same as Table 3, for the 01/2 — ¢3/2p! — 11/220 30940 process, where particle a has spin

3/2 instead of 1/2.
~11 -



+ B4+ B
+ B~ B[ aq

cos 6,

— [By' = |B-f?
- |B+|2+|B,|2 aq P,

P,

cos @

cosf cosb,

Table 5. Contributions to the angular distribution of the three-body 0'/2 — a!/2p! — 11/220 p!
decay, under the conventions and assumptions specified in the text. The four blocks distinguish
terms whose combinations of angular and polarisation dependence are respectively P-even T-even
and P-odd-T-even. A third block, which receives no contributions here, includes P-even-T-odd
decay terms in the subsequent tables of this series.

+1/2 |By>+|B_|? (14 3cos®6,)

+3/2 IC4 )2+ |C_ sin? 6,

-1/2 |B+|* — |B_|? Qg (5 —9cos? 6,) cos O,

+3/4 IC )2 —|C_? Qg sin 6, sin 26,

+v3 Re{BiC;} —Re{B*C_} P, sin® sin 260, coS ¢
~-1/2 |B|* — |B_|? P, cosf (1 +3cos?6,)

+3/2 ICL P —|C_ P, cosf sin? 6,

—V/3 Re{BiC+} +Re{B*C_} o, P, sinf (1- 3cos?0,)sinf, cos ¢,
+1/2 |B+|*+ |B_|? aq P, cos® (5—9cos?6,)cosb,

+3/4 ICL >+ |C_ a, P, cosf sin 6, sin 26,

-3 Im{B%C,} +Im{B*C_} P, sinf sin 26, sin ¢,
+v3 Im{BiC:} -Im{B*C_} «a, P, sinf (1—3cos’®6,)sinf, sing,

Table 6. Same as Table 5, for the 01/2 — @3/2p! — 11/220 p! process, where particle a has spin

3/2 instead of 1/2.

+ AL A

+ AP = AP o cos O,

+ AP - A P, cosf

-2 Re{A%A_} «, P. sinf sinf, cose,
+ JAPHA)? as P cosf cosb,

-2 Im{A%A_} «a, P. sinf sinf, sing,

Table 7. Same as Table 5, for the 01/2 — /269 — 11/220 50 process, where particle b has spin 0

instead of 1.
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+1/2 AP+ AP (14 3cos?6,)
-1/2 AP = A a, (5 —9cos?,) cos b,

+1/2 AL —|A_)? cos 6 (14 3cos? ;)
+ Re{ATA_} a4 sinf (1 —9cos?6,)sinf, cospq
—1/2 AP +]A_? a, P. cosf (5—9cos?by,)cosby,

+ Im{ATA_} o P. sinf (1 —9cos?0,)sinf, sing,

Table 8. Same as Table 7, for the 01/2 — @3/26% — 11/220 b0 process, where particle a has spin
3/2 instead of 1/2.

and similarly for a <+ b. This shows that cos ¢, and cos ¢, are P-odd-T-odd variables,
while sin ¢, and sin ¢y are P-even—T-even. With Pp1 and P3, the momenta of particle 1 and
3, respectively measured in the particle a and b restframes, one can define

cosﬁa:zm‘g—i’, sinf, = +v/1 — cos20,,

and similarly for a <+ b and 1 <> 3, demonstrating that both cosf,; and sin6,; are P-
even-T-even variables. Finally, the P-odd-T-odd character of the z vector implies that
among the polarisations components

Py = (s-x), Py=(s-y), P, =(s-z),

P, and P, are P-oddfT—even, while P, is P-even-T-odd. Their values are fixed by particle
0’s production amplitudes and, in general, depend on the production kinematics which is
disregarded here.
To summarize, for our definition of frames, we have thus identified three P-odd-T-odd
kinematic variables:
cosf, cos¢,, and cos oy,

while cos ¢, sin @, cos g, sin ¢, p, as well as mg, which are necessary to fully specify the
final-state kinematics, are all P-even—T-even. The contributions to the angular distribu-
tions we displayed in Table 1-8 have been grouped according to their P and T transforma-
tion properties. In Table 1-4 relating to four-body decays, the angular distributions of the
contributions in the first and third blocks are P-even-T-even while that of the second and
fourth ones are P-odd-T-odd. The second and third blocks moreover include contributions
proportional to the P-even-T-odd polarisation P,. As a result, the four blocks distinguish
contributions whose combinations of angular and polarisation dependence are respectively
P—evenfT—even, P—oddfT—even, P—evenfT—odd, and P-odd-T-odd. In three-body decays,
there are not enough independent four-momenta to form T-odd €uvpo P Py D p] contrac-
tions. One must necessarily involve a spin four-vector. In Table 5-8, all terms proportional
to imaginary parts of decay amplitude interferences therefore come proportional to P,.
They thus appear in P-even-T-odd blocks, and there are no fourth P-odd-T-odd ones.
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The 0Y/2 — a!/2p* — 11/220 p! decay relating to Table 5 does moreover not contain any
term proportional to the imaginary part of decay amplitude interferences when b' is mass-
less (an assumption relaxed in Appendix A).

4 Asymmetries

As mentioned in the introduction, due to the presence of a T-odd polarisation component
P., both T-odd and T-even angular asymmetries can potentially serve to access imaginary
parts of decay amplitude interferences.

4.1 T-odd angular asymmetries

In the spirit of Ref. [2], T-odd-CP-odd angular asymmetries could be constructed system-
atically as

AR - — /dQ (;j; - 1{3;) sign {fj(cos 0) fr(cosb,) fi(cosby) sin (mqﬁa + ngp + 072T> }
for fo(x) = 1, fi(x) = z, fo(x) = 322 — 1, etc. which could be chosen as Legendre poly-
nomials and various j, k, [, m,n, o combinations of integers satisfying j +m 4+ n + o € 2Z
with o € {0, 1}. Contributions not explicitly listed in the various tables of this paper could
appear in the interferences of amplitudes featuring a and b intermediate states of various
spins or different topologies. It was also noted in Ref. [2] that distinguishing regions in the
Mg invariant mass integration could be useful when resonances are identified, and that
pairings of final-state particles different from the a = (12), b = (34) ones could increase the
sensitivity to phase differences between amplitudes of different resonance structures. Un-
derstanding the origin of the various angular distribution components is however required
to determine whether a symmetry violation observed arises from the decay or production,
given the lack of decoupling between the two parts of the process.

This understanding we gained in the previous section allows us to be more specific. In
both four-body processes featuring a spin-1/2 intermediate resonance a, under the assump-
tions stated, there is actually one single T-odd angular distribution that provides access
to CP-odd phase differences between decay amplitudes, without requiring CP-even phase
between neither decay nor production amplitudes. The corresponding term is displayed in
the fourth blocks of Tables 1 and 3. By relying on the

1 dar' | .
T /dQE sign{cos Oy sin(¢g + ¢p)

asymmetry, or on the analogue moment, one gets access to the (Im{ A% B_}+Im{A* B, })a,
combination of decay amplitudes. Then combining the CP-conjugate 0 — 1234 and
0 — 1234 processes to form A} yields sensitivity to small differences in the CP-odd
phases between the Ay B_ or A_By amplitudes. It is maximal when they have identical
CP-even phases. In both four-body processes featuring a spin 3/2 intermediate resonance
a, one could moreover employ on the

1dl'  1dl
AN = /dQ (FdQ - f‘dQ) sign{cos 0, cos Oy sin(¢pq + ¢p) }
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1dl’  1dr¢
4000 4
Aso = /dQ (F QT dQ) sign{sin(2¢, + 2¢3)}

1dr 1dr
4021 1dr B
Alto = /dQ (I‘ O T dQ) sign{(3 cos 20, — 1) cos Oy sin(¢, + ®p)}

1dl’  1dr¢
010 14
ALY = /dQ (F QT dQ) sign{cos 0, sin(2¢, + 2¢) }

asymmetries (see Tables 2 and 4). Note the latter two as well as A}y come propor-

3/2 5 11/220 dJecay preserves

tional to the asymmetry parameter o, which vanishes if the a
parity, as A(1520) — pK does, being mediated by the strong interaction. A sign{(1l —
9 cos? 0,) cos O sin(¢p,+¢p) } asymmetry which is not independent of the sign{cos 8 sin(¢,+
ép)} and sign{(3cos? 6, — 1) cosfysin(¢p, + ¢»)} ones has not been listed.

Let us also comment on the classical A asymmetry, based on sign{sin(¢, + @)},
which changes sign where the antisymmetry contraction of the four independent external
particle momenta €,,,,, i ph p§ p] does. Its use for studying CP violation in the decay of
Ay and Z;, baryons was advocated in Ref. [21]. We however stress that, contrarily to the
four-body decay of spinless particles where it can play a significant role, it vanishes in the
four four-body decays considered here, under the assumptions stated. Examining Table 9—
12 where these assumptions are relaxed, one realises such an asymmetry only appears
proportional to the o asymmetry parameters in the 01/2 — q1/2:3/2 pb 5 11/220 31/241/2
decays. Even in such processes, its presence is therefore seen to require parity violation in
the b* — 31/24Y/2 daughter decay (which would for instance be absent in electromagnetic
Jhp — €10~ decays).

Following Refs. [16-18], the LHCD collaboration measured the four

1 dr

T /dQ 10 sign{ cos @, , sin®,p }
asymmetries in the A, — Ay — pm KTK~ decay [6]. The original definitions of those
so-called special angles are easily seen to be equivalent to:

Ng - T . Na Y
b=t g, = e Y
cos e sin . 27
and similarly for a <+ b. Using (z,y,2)? = R(¢,0,0)(xa, Ya, 2a)”,

cosfcos¢p —sing sinfcoso\ (x4
= | cosfsing cos¢ sinfsing Ya | »

N e 8

—sin 6 0 cos 0 Za

as well as (x,y,2)" = R(r + ¢, m — 0,0)(xp, Yp, 25)" , one derives

cos 6 cos ¢ sin ¢, + sin ¢ cos ¢ _cosfsin ¢sin ¢, — cos @ cos ¢q
V/1 — sin? ¢, sin2 0 V/1 —sin2 ¢, sin2 0
cos 0 cos ¢ sin ¢y, — sin ¢ cos ¢y, ) cos 0 sin ¢ sin ¢, + €os ¢ cos ¢y,
, sin &, =
V/1 — sin? ¢y sin? 0 V/1 —sin? ¢y sin% @

CcOS (Pa = s sin (I)a

)

cos P, =
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Such angular dependences do not appear in Table 3. We therefore stress that these four
asymmetries vanish identically in the 01/2 — a/2p* — 11/220 31/241/2 process, when A, is
produced by the strong interaction which preserves parity. Referring to Table 1, we note
the same conclusion would also hold in 0Y/2 — @'/2p! — 11/220 31/241/2 processes like
Ay — AJip — prut . Relaxing the assumptions of our main text, Tables 9 and 11 in
Appendix A inform us that, in both processes, asymmetries or moments based on cos ®,
and sin ®, are respectively sensitive to the Im{A% A_}a,P, and Im{A% A_}«,P, combin-
ations of production and decay amplitudes. In the 01/2 = q1/2pt — 11/2 90 31/2 41/2 decay,
cos @, and sin ®;, asymmetries respectively provide access to (Im{A* B} —Im{A* B_})
apP; and (Im{A% By} —Im{A*B_}) ayP,. They however vanish identically in the
01/2 = a1/2p! — 11/220 3040 case.

4.2 T-even angular asymmetries

With a nonvanishing T-odd polarisation component P, produced by absorptive parts in
the production amplitudes, one could also search for CP-odd phase differences between
decay amplitudes that have identical strong phases through T-even angular asymmetries.
In the four-body processes featuring an intermediate resonance a of spin 1/2, this is for
instance possible with the

1dlI 1drl
001 i i
Ao = /d < = ) sign{cos 0 sin(¢y) },

1dr 1dr
Lol - _ +
AL — /dQ <FdQ I‘dQ) sign{cos 0 cos Oy sin(¢g + ¢p)},

1dl’  1dr
A0 tal ldly . :
AL = /dQ <FdQ f‘dQ) sign{cos 6, cos Oy sin(¢p) },

1dr 1dr
000 e _ i i
100 /d <1’\ dQ 1?\ dQ) Slgn{81n(¢a)}7

1dI'  1dr¢
4000 Ldb
AV = /dQ <F o T dQ) sign{sin(¢q + 2¢) },

asymmetries (see Tables 1 and 3). Only the first of these is not proportional to the asym-
metry parameter «g, on top of P,. Many more of such asymmetries can be constructed in
the case a is of spin 3/2 and we refer the reader to the third blocks of Tables 2 and 4. The
third blocks of Tables 6 to 8 are relevant for three-body processes (Table 5 has no such
block). It is worth stressing here that the polarisation of the Ay’s observed to decay to a
J/¢A final state in the LHCDb detector has been constrained to be smaller than 20% at the
2.70 level [5].

In principle, the above asymmetries could also be nonvanishing in the presence of CP
violation in the production process, combined with strong phase differences between decay
amplitudes. This is not expected to happen when the production process is dominated
by the strong interaction but could also be checked experimentally by measuring various
asymmetries. Since CP violation in production would cause |P;| to take slightly different
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values in the two conjugated processes, all the above asymmetries could potentially be non-
vanishing. Moreover, the T-0dd angular asymmetries giving access to terms proportional
to P, (in the second blocks of our tables) would then be nonvanishing even in the absence
of CP-even phase differences between decay amplitudes. In this sense, our tables would
allow to interpret the patterns observed in the measurement of various asymmetries.

5 Summary

We have studied the angular distributions of some three- and four-body decays of spin-
1/2 states, focusing on the discrete symmetry transformation properties of the different
contributions. Some CP-odd asymmetries discussed in the literature have been shown to
vanish identically in the decay chains considered. Special attention has been devoted to the
two types of angular asymmetries that could serve to access small differences of CP-odd
phases between decay amplitudes of identical CP-even phases. The first ones are T-odd
angular asymmetries that are not proportional to a T-0dd initial-state polarisation com-
ponent P,. The second ones are T-even angular asymmetries proportional to P,. The
latter do obviously not appear in the decay of spinless particles and are, on the other
hand, the only way to access imaginary parts of decay amplitude interferences in the three-
body decays of spinning particles (with unmeasured final-state spins). Conversely, it was
stressed that some T-odd angular asymmetries only give access to the imaginary parts
of production—and not decay—amplitude interferences. The T-0dd angular asymmetries
sensitive to imaginary parts of production amplitude interferences could serve to verify the
assumption of CP conservation in production, without relying on nonvanishing differences
of CP-even phases between either production or decay amplitudes. So eventually, compar-
ing the measured patterns of asymmetries with the expectations provided here for specific
resonant intermediate states could allow to decrypt the dynamical nature of the process
scrutinized.
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A Appendix

We present below the distributions obtained by relaxing the hypotheses made in the main
text. When parity is violated in the production of particle 0, its P, and P, polarisation
components can be nonvanishing. In three-body decays with a massive vector b! appearing
in the final state, the AL amplitudes for which A\, = 0 can also be nonvanishing. Moreover,
in the b! — 31/241/2 decay, parity violation and massive 3,4 fermions respectively produces
terms proportional to:

_ My (+1/2, —1/2)]? — [My(-1/2,+1/2)|?

= ., and
P TIM,(+1/2,—12)2 + [My(—1/2,+1/2))2
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My (+1/2,+1/2)]% + [My(=1/2, ~1/2)[?
P TIMy(+1/2, —1/2) 2 + [My(—1/2, +1/2) 2

Tables 9 to 16 respectively extend Tables 1 to 8 with these additional contributions to
the kinematic distributions. There, we used the (pm,l—t’y,Pz)T = R(d),@,O)T(Pw,Py,PZ)T
polarisations along the x4, ya, and z, directions:

P, cosfcos¢ cosfsing —sinf\ [P,
~y = —sing cos ¢ 0 P,
P, sinfcos¢ sinfsing cos6 P,

Referring to Section 3 where the discrete symmetry properties of the different quantities
above were derived, one sees that ]53; is P-even—T-odd while Py and PZ are both P-odd-T-

even.
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Table 9. All contributions to 01/2 — a'/2p! — 11/220 31/241/2 angular distribution which appear when the assumptions leading to Table 1 are
relaxed, so that Py, P, oy or up defined in the text are nonvanishing. We have defined (I:’,;,Py,ﬁ’z) = R(¢,0,0)T (P, Py, P,).
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2 sin 26, sin Gy, — (1 — 2m,) (1 — 3cos? Ga) sin 0, sin 20y,

Table 10. Same as Table 9, for the 01/2 — a3/2p! — 11/220 31/241/2 process in which particle a
has spin 3/2 instead of 1/2. This table generalises Table 2.
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Table 11. All contributions to 0/2 — a'/2p' — 11/220 3949 angular distribution which appear with the assumptions leading to Table 3 are
relaxed, so that P, and P, are nonvanishing. We have defined (P,, Py, P,) = R(¢,0,0)T(P,, P, P,).
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+3/2//2 (Re{A1 By} —Re{A"B_})P, + (Im{A1 B} + Im{A"B_})P, sin ¢y (1+3cos? 0, ) sin 26,
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—3/2 Re{B%B_}P, — m{B.B_}P, sin (¢a +260) (1 - 9cos? 0, ) sin b, sin? G,
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Table 12. Same as Table 11, for the 0'/2 — ¢3/2b! — 11/220 3040 process, in which particle a has
spin 3/2 instead of 1/2. This table generalises Table 4.
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Table 13.  All contributions to 01/2 — a'/2b! — 1/220 p! angular distribution which appear
when the assumptions leading to Table 5 are relaxed, so that Ay, P, P, defined in the text are

nonvanishing.
+1/2 (1442 = [AP = [BL? + B[+ 3|C4 " = 3IC_17) P+ (JA4 P + |A_]” + | B> + B +3|C4[” + 3|C_?)
+3/2 (31442 = 3|4 +3 (B4 =3B~ |C4 P +[C_P) + (3[A4 P+ 3|A_[* = 3|Bo* = 3[B_* — [C4 " = |C_|*) P. cos® aay
+3/2 (1447 = 1A = B4 + B[ = [C4]* + |C-*) P+ (JA+ P + |A-P + By +|B-[* = |C+ > — [C- ) cos?
~1/2 (5144 = 5|AP +5(By > = 5|B_|* = 3|C4 +31C_ ") + (5|44 + 5[4 = 5B =5 [B_" = 3[C4 " = 3|C_P) P.  cosbua
+V3 (Re{B5C.} + Re{B*C_}) P, + (Im{B1C}} —Im{B*C_}) B, cosdy (1 —3cos?8,)sinb,a,
- Re{A* A_}P, —Im{A* A_}P, cos ¢, (1 —9cos?0,)sinbya,
-2V/3 (Re{B%C}} —Re{B*C_}) P+ (Im{B%C;} + Im{B*C_}) Py €OS ¢q cos 0, sin 0,
+V3 (Re{B;C1} +Re{B*C_}) P, — (Im{B*C}} —Im{B*C_}) P, sing, (1 —3cos?6,)sinb,a,
- Re{A4A_}P, + Im{A* A_}P, sing, (1 —9cos?8,)sinbyaq
—2V3 (Re{B;C1} —Re{B*C_}) P, — (Im{B*C4+} + Im{B*C_}) P, Sin ¢q cos 0, sin 0,

Table 14. Same as Table 13, for the 01/2 — a3/2p1 — 11/220 p! process, in which particle a has
spin 3/2 instead of 1/2. This table generalises Table 6.

(1A = AP ) Bt (1AL +1A-)

(AP = 1A P) + (144 4 1A ) P 05 0
+2 Re{AiA,}Px — Im{AiA,}Py cos g sinf,aq
+2 Re{AiA,}Py + Im{A’j_A,}]BI sin ¢, sinf,0q

Table 15. All contributions to 01/2 — a'/2p9 — 11/2 20 0 angular distribution which appear when
the assumptions leading to Table 7 are relaxed, so that P,, P, defined in the text are nonvanishing.
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—1/2 (1AL = [AP) + (14 + 1A 2. (5— 9c0s? 0 ) cos facra

+1/2 (JALP = [AP )P+ (JAL P +1A-P) (1+3cos?0,)
— Re{AiA_}pm — Im{A*JrA_}]sy COS Oq (1 — 9 cos? 9a> sin 0,0,
- Re{Aj_A,}]ay + Im{AiA,}fN’x sin ¢ (1 — 9 cos? 9a) sin Oy,

Table 16. Same as Table 15 for the 01/2 — ¢3/2p0 — 11/290 10 process, in which particle @ has
spin 3/2 instead of 1/2. This table generalises Table 8.
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