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Abstract

Can the cosmological dynamics responsible for settling down the present values of
the Cabibbo-Kobayashi-Maskawa matrix be related to electroweak symmetry break-
ing? If the Standard Model Yukawa couplings varied in the early universe and started
with order one values before electroweak symmetry breaking, the CP violation associ-
ated with the CKM matrix could be the origin of the matter-antimatter asymmetry.
The large effective Yukawa couplings which lead to the enhanced CP violation can
also help in achieving a strong first-order electroweak phase transition. We study in
detail the feasibility of this idea by implementing dynamical Yukawa couplings in the
context of the Froggatt–Nielsen mechanism. We discuss two main realizations of such
a mechanism, related phenomenology, cosmological and collider bounds, and provide
an estimate of the baryonic yield. A generic prediction is that this scenario always fea-
tures a new scalar field below the electroweak scale. We point out ways to get around
this conclusion.
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1 Introduction

The origin of the highly hierarchical structure of the Standard Model Yukawa couplings
remains an open question. This is the so-called flavor problem. While many models and
mechanisms have been advocated to explain this, the cosmological dynamics behind it has
so far not been addressed. This has several interesting ramifications. One first interesting
question in this respect is to investigate the possible interplay with electroweak symmetry
breaking. Can the physics responsible for settling down the present values of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix be related to the dynamics of electroweak symmetry
breaking?

There are many different aspects of this question. One is to check whether a model in
which the new physics responsible for flavor arises at the TeV scale can still be compatible
with all experimental constraints. This is a direction which has already been vastly explored.
The next step we want to take is to investigate whether the dynamics in the early universe at
electroweak scale temperatures can naturally lead to Yukawa couplings of order one before
the EW phase transition. This question is of high interest for two reasons. First it can lead to
a first-order electroweak phase transition [1]. Second, it results in sufficient CP violation from
the CKM matrix for electroweak (EW) baryogenesis [2]. As a result, the baryon asymmetry
of the universe (BAU) can be generated during the electroweak phase transition (EWPT), in
a process known as electroweak baryogenesis (EWBG). In the Standard Model, EWBG fails.
On the one hand, CP violation is suppressed by the quark masses and is way too small [3–5].
On the other hand, the Higgs is too massive, which results in a crossover transition [6] with
no departure from thermal equilibrium.

Our motivation in this series of papers is to show that the interplay between Higgs
and flavor dynamics can naturally provide all conditions for successful EWBG. We already
showed in Ref. [1] in a model independent formulation that the variation of Standard Model
Yukawa couplings induced during the EW phase transition leads to drastic modifications
of the phase transition. Yukawa couplings which decrease from ∼ O(1) to their present
values during the EWPT can create a thermal barrier between the symmetric and broken
phase minima and hence make the EWPT strongly first-order. The origin of the BAU
could therefore be closely linked to the flavor puzzle and the mechanism explaining the large
hierarchy in the SM fermion masses. In fact, we also show in Ref. [2] how the variation of
SM Yukawa couplings during the EWPT naturally gives the correct amount of CP violation
for EW baryogenesis. A very interesting aspect of this framework is that it can circumvent
usual CP violation limits. One generic constraint on EW baryogenesis is that any new source
of CP violation needed to explain the BAU will typically be constrained by Electric Dipole
Moment (EDM) bounds or leads to observable EDMs in the near future. In our scenario of
time-dependent CP-violating source, we circumvent this usual constraint.1

We are therefore interested in exploring the model building conditions which favour such
a scenario of variable CKM matrix during the EW phase transition. This should be done in
the various classes of models which address the flavor problem. Two main classes of models
of flavor hierarchies are Froggatt–Nielsen models and Randall-Sundrum (RS) models. This
paper is about the Froggatt–Nielsen case. The RS case is presented in [8].

1In the same spirit, EWBG using the SM strong CP violation from the dynamical ΘQCD parameter was
advocated in [7].
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In the Froggatt–Nielsen mechanism, the effective Yukawa couplings of the SM fermions
depend on the vacuum expectation value (VEV) of an exotic scalar field [9]. It was pointed
out by Berkooz, Nir and Volansky that the CP violation associated with the CKM matrix
could be large enough to explain the BAU if the VEV of the exotic Higgs — and hence
the effective Yukawa couplings — were large at the start of the EWPT [10]. However this
scenario was not explored further.

The aim of this paper is to analyse this scenario, incorporating the dynamics of the
Froggatt–Nielsen scalar field(s). We include the physics which actually leads to the variation
of the Yukawas, which we ignored in [1] and go through all experimental and cosmological
constraints.

The order of the paper is as follows. In section 2 we introduce the Froggatt–Nielsen
mechanism. In section 3 we present two classes of models that realize the dynamics of
Yukawa couplings at the EW scale. The details of each class of models are presented in
Section 4 and 5. We discuss the CP violation and baryonic yield in Section 6 and conclude
in Section 7. Some derivations are moved to the Appendix. In particular, experimental
constraints are presented in Appendices B and C. We also argue in Appendix D that our
qualitative conclusions are expected to hold in general and do not depend on the specific
form of the scalar potential which we chose for illustration and simplicity.

2 Froggatt–Nielsen mechanism

The Froggatt–Nielsen (FN) mechanism was proposed as a possible explanation for the mys-
terious hierarchy in the observed fermion masses [9]. While there is a plethora of implemen-
tations of this mechanism in the literature, the question of the dynamics and cosmology of
this mechanism has not been addressed. In this paper, we want to study this question, in
particular whether this dynamics could viably happen at the electroweak scale (while it is
typically assumed that this mechanism occurs at much higher scales).

The main idea of the FN mechanism is that SM fermions carry different charges under a
new flavor symmetry, which is spontaneously broken by the VEV of a new scalar field 〈S〉,
the so-called flavon field. Together with the flavon, a relatively large number of vector-like
quarks are introduced to communicate the breaking of the flavor symmetry. The flavon field
as well as all new quarks carry a Froggatt-Nielsen charge. The Yukawa couplings of the SM
quarks are then generated by chain-like tree-level diagrams in which the difference in FN
charge of the SM quarks is saturated by a number of insertions of the flavon field. Once
the flavon obtains a VEV, the Yukawa couplings of the SM quarks are generated and are of
order (Y 〈S〉/M)n where n is the difference in FN charge, Y is an order one coupling between
the new quarks and the flavon and M is the typical mass of a vector-like quark. We define
the scale of new physics as Λs = M/Y .

The hierarchy in the SM Yukawa couplings is then given by the different powers of the
ratio 〈S〉/Λs. We implement the mechanism with an exotic global symmetry U(1)FN and a
FN scalar S which we choose, without loss of generality, to have charge QFN(S) = −1 under
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the FN symmetry. We make a typical choice of FN charges for the SM quarks

Q3 (0), Q2 (+2), Q1 (+3),

U3 (0), U2 (+1), U1 (+4), (1)

D3 (+2), D2 (+2), D1 (+3),

where Qi is the SM quark doublet, Ui (Di) is the right handed up (down) type quark and
the subscripts denote generation [10]. This gives interactions of the form:

L = ỹij

(
S

Λs

)ñij
QiΦ̃Uj + yij

(
S

Λs

)nij
QiΦDj , (2)

where Φ is the SM Higgs boson, Φ̃ = iσ2Φ∗, yij are dimensionless couplings, assumed to be
O(1) and nij and ñij are chosen in such a way as to form singlets under U(1)FN. The scalar S
obtains a VEV, 〈S〉 ≡ vs/

√
2, breaking the symmetry and resulting in Yukawa interactions

between the SM Higgs and fermions. Defining

εs ≡
〈S〉
Λs

=
vs√
2Λs

, (3)

one obtains Yukawa interactions of the form

L = ỹijε
ñij
s QiΦ̃Uj + yijε

nij
s QiΦDj +H.c. (4)

Fermion masses are generated when the SM Higgs gains a VEV, 〈Φ〉 = (0 vφ/
√

2)T with
vφ = 246 GeV. Rotating to the mass basis for the quarks (see Appendix A), the masses are

related to the effective Yukawa couplings by mf = yfeffvφ/
√

2. For the FN charges above,
one finds the effective Yukawa couplings to be

yteff ∼ 1, yceff ∼ ε3s, yueff ∼ ε7s,

ybeff ∼ ε2s, yseff ∼ ε4s, ydeff ∼ ε6s. (5)

Similarly one finds the pattern of CKM matrix elements

|Vus| ∼ |Vcd| ∼ εs, |Vcb| ∼ |Vts| ∼ ε2s, |Vub| ∼ |Vtd| ∼ ε3s. (6)

The observed quark masses and mixing can therefore be accommodated with

εs ∼ 0.2 today. (7)

The explanation of the fermion mass hierarchy in the FN mechanism does not depend on
the value of Λs, only on the ratio εs = 〈S〉/Λs. If εs was of order 1 rather than 0.2 we would
not observe any hierarchical structure and all Yukawas would be O(1). We are interested in
the possibility that

εs ∼ O(1) before the EW phase transition, (8)

as motivated by EWBG [1,2]. As will be soon clear, this requirement imposes Λs not to be
much higher than the TeV scale. In this case, there are obviously experimental constraints
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on Λs that we discuss in Appendix B. For reasons of simplicity, in this paper, we restrict
ourselves to the FN mechanism applied to the quark sector.

We now write the scalar fields as

Φ =
1√
2

(
G1 + iG2

〈φ〉+ φ+ iG3

)
, S =

〈σ〉+ σ + iρ√
2

, (9)

where the Gi are the would be Goldstone bosons eaten by the W and Z, 〈φ〉 is the real
constant Higgs background expectation value and h is the SM Higgs field. Similarly, 〈σ〉 is
the real constant flavon background and σ and ρ are the real and imaginary components of
the flavon field S.2 We denote their masses mσ and mρ respectively. If σ is the only source of
global U(1)FN symmetry breaking, the associated Goldstone boson ρ will lead to long range
interactions between the quarks via the Yukawa couplings of eq. (4). We therefore assume
explicit breaking of the U(1)FN symmetry3

V (S) ⊃ −µ2
sS
†S + λs(S

†S)2 − A2(SS + S†S†) . (10)

Minimization of the above potential gives the relations

v2
s ≡ σ2

min = (µ2
s + 2A2)/λs, m2

σ = 2µ2
s + 4A2 = 2λsv

2
s , m2

ρ = 4A2. (11)

In the above discussion we have ignored the contribution of Φ, but this can trivially be
included. We assume the mass hierarchy

mρ > mσ , (12)

which is viable provided µ2
s < 0 in eq. (11). We derive in Section B constraints from flavor

physics. Assuming (12), the contributions of ρ to the Wilson coefficients can be smaller than
those of σ and we derive constraints on mσ only. This is a conservative choice. Assuming
instead mρ < mσ (see [11]) would lead to the same constraints on mρ and, by construction,
stronger constraints on mσ, modulo some cancellations. The short summary of Appendix B,
see eqs. (94-97), is the typical constraint

mσΛs & (a few TeV)2 . (13)

As we mentioned earlier, Λs is related to the mass scale of the new FN quarks which are a
crucial part of the FN mechanism. In this paper, we do not include these new fermions in
our analysis as they are not expected to play any relevant role. In fact, these FN fermions,
which carry the same quantum numbers as the SM quarks, are vector-like. The flavon VEV
will enter the off-diagonal entries of the vector-like quark mass matrix, but this will not
change the overall FN scale Λs as we only consider VEVs up to Λs (in this range their T = 0
one-loop corrections are not expected to be significant). Besides, we consider temperatures
TEW � Λs, hence their thermal effects are also negligible. They will therefore play no role
in the dynamics of the EW phase transition and do not introduce any new source of CP
violation relevant for EW baryogenesis. On the other hand, searches at ATLAS and CMS
put a bound closely approaching the TeV scale, Λs & 1 TeV [12–17].

2To avoid notational clutter, from now on will always use σ and φ whether we refer to the background
value or the field excitation, but it should be clear from the context. The minimum of the potential at T = 0
will be denoted by (φ, σ) = (vφ, vs).

3The last term in (10) could for instance be generated from the U(1)FN invariant terms µSY (Y †SS +
Y S†S†) where Y is another scalar carrying charge −2 under U(1)FN acquiring a VEV.
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Figure 1: The behaviour of the fields for the two main realizations of the mechanism. The flavor
symmetry first breaks to a minimum with large effective Yukawa couplings. The VEV of (one of)
the flavons decreases during the subsequent EWPT, suppressing the Yukawa couplings.

3 Realizing the dynamics of Yukawa couplings at the

electroweak scale

The challenge for implementing a model of varying SM Yukawa couplings at the EW scale
that leads to successful EW baryogenesis comes from the tension between two requirements.
On the one hand, we need the VEV of the flavon to vary from a value of order O(Λs) to a
value of order O(Λs/5) during the EWPT, as to induce the Yukawa coupling variation from
values of order one to their present values. As we will see, this implies, for a typical two-field
scalar potential, a small flavon mass, below the EW scale. On the other hand, in the simplest
minimal flavon model, flavor constraints such as (13) impose the flavon to be in the multi
TeV range, as shown explicitly in Appendix B. This tension can be evaded if the flavon
is super light, below 100 eV, however this requires a severe tuning of the quartic coupling
between the Higgs and the flavon. We are therefore led to consider slightly less simplistic
models and we will show that rather minimal models may display the desired properties.

• Models A. The first model (A-1) we consider for pedagogical reasons is similar to
the one proposed in [10]. There is a single FN scalar S, with the mass of its real
component, σ, below the Kaon mass, mσ < MK . The combination of flavor and
cosmological constraints is satisfied for Λs & 1012 GeV. The VEV σ is close to the
mediator scale Λs before the phase transition. The Yukawa couplings of order unity
before the phase transition will give the required CP violation and lead to the strong
first-order phase transition. The fields will change in the following way during the
electroweak phase transition

φ : 0→ vφ σ : Λs → Λs/5. (14)

The steps of the phase transitions are illustrated in figure 1. This minimal model
leads to ridiculously small quartic couplings for the flavon, not stable under radiative
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corrections. We therefore consider some variation of this model, A-2, inspired by the
construction of Ref. [18] which enables to evade flavor constraints and therefore to
bring Λs down to the TeV scale with unsuppressed quartic couplings.

• Models B

Since the difficulties in Models A come from the flavor constraints, we next consider
a model with two FN scalars where only one gets a VEV today while the second one
acquires a VEV at early times but has no VEV today. In this case, the first field
S (with real component σ) is responsible for today’s Yukawas while the second one
X (its real component being denoted χ) provides the CP violation needed for EW
baryogenesis through its Yukawa couplings. The VEV χ is close to the mediator scale
Λχ before the phase transition which leads to Yukawa couplings of order unity before
the EWPT.

Generally, it is not easy in a one-field model to devise a potential that leads to symmetry
restoration at low temperatures. However, it is relatively easy in models with two scalar
fields that display a two-stage phase transition. The simplest way to realize this in
the current context is to couple the field χ to the Higgs while the VEV of the field σ
hardly changes. During the EW phase transition, the fields change in the approximate
following way

φ : 0→ vφ σ : Λs/5→ Λs/5 χ : Λχ → 0. (15)

We will consider the two cases corresponding to two choices of FN charges for X,
QFN(X) = −1/2 (model B-1) and QFN(X) = −1 (model B-2).

In summary, models B-1 and B-2 are the two viable examples we provide in the FN frame-
work, realizing the possibility of varying quark Yukawa couplings during the electroweak
phase transition, from values of order 1 in the EW symmetric phase to small values in the
EW broken phase. We give the details below on how this works as well as phenomenological
bounds and signatures associated with these models.

4 Models A: A single flavon

4.1 Tree level potential

We begin with a renormalizable tree-level potential for Φ and S given by

V = µ2
φΦ†Φ + λφ(Φ†Φ)2 + µ2

sS
†S + λs(S

†S)2 + λφs(Φ
†Φ)(S†S). (16)

In terms of the dynamical field components the potential becomes

V =
µ2
φ

2
φ2 +

λφ
4
φ4 +

λφs
4
φ2σ2 +

µ2
s

2
σ2 +

λs
4
σ4. (17)

It is convenient to rewrite the above potential in the form

V =
µ2
φ

2
φ2 +

λφ
4
φ4 +

λs
4

(
σ2 − Λ2

s

[
1− Cφ

2

v2
φ

])2

− λsΛ
4
s

4

[
1− Cφ

2

v2
φ

]2

, (18)
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where C is dimensionless. The parameters are related by

µ2
s = −λsΛ2

s, (19)

λφs =
2CΛ2

s

v2
φ

λs. (20)

From the latter form of the potential one sees that for φ = 0 there is a minimum at σ =
Λs, while for φ = vφ there is a minimum at σ = Λs

√
1− C ≡ vs. In the baryogenesis

mechanism discussed above, we require σ to move from Λs to approximately
√

2Λs/5 during
the electroweak phase transition. To achieve this simply requires C ≈ 0.92.

The above Lagrangian contains five parameters. However, after setting the Higgs mass
mφ = 125 GeV, the electroweak VEV vφ = 246 GeV and C ≈ 0.92 as discussed above, we
are left with two free parameters which we take to be λs and Λs.

Stability of the tree level potential requires

λφ > 0, λs > 0, λφs > −2
√
λsλφ , (21)

while a minimum at vφ 6= 0 (vs 6= 0) requires µ2
φ < 0 (µ2

s < 0). The VEVs are related by

µ2
φ + λφv

2
φ +

λφs
2
v2
s = 0, (22)

µ2
s + λsv

2
s +

λφs
2
v2
φ = 0. (23)

The second derivatives of the potential are given by

m2
φφ ≡

∂2V

∂φ2
= µ2

φ + 3λφφ
2 +

λφs
2
σ2, (24)

m2
σσ ≡

∂2V

∂σ2
= µ2

s + 3λsσ
2 +

λφs
2
φ2, (25)

m2
φσ ≡

∂2V

∂φ∂σ
= λφsφσ. (26)

This gives a mass matrix in the (φ σ) basis(
m2
φφ m2

φσ

m2
φσ m2

σσ

)
, (27)

with eigenvalues

m2
φ(σ) =

1

2

(
m2
σσ +m2

φφ + (−)
√

(m2
φφ −m2

σσ)2 + 4m4
φσ

)
. (28)

At the stationary point (vφ, vs) these are simply

m2
φ(σ) = λφv

2
φ + λsv

2
s + (−)

√
(λφv2

φ − λsv2
s)

2 + (λφsvφvs)2, (29)
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where we will associate mφ with the SM Higgs, mφ = 125 GeV. We write the mixing between
the fields φ and σ into the physical states φ

′
and σ

′
in the usual way(

φ
′

σ
′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
φ
σ

)
, (30)

where the mixing angle is given by

tan 2θ =
λφsvφvs

λφv2
φ − λsv2

s

. (31)

The mixing angle will be negligibly small in our model, so we will not distinguish between φ
and φ

′
and σ and σ

′
below. To ensure (vφ, vs) is a minimum, we require a positive determinant

of the mass matrix at this point. This is achieved for

λ2
φs < 4λsλφ . (32)

Using the relation (20) between λs and λφs, this translates into

λφs <
2v2

φλφ

CΛ2
s

= 1.7× 10−20

(
λφ

0.13

)(
0.92

C

)(
1012 GeV

Λs

)2

, (33)

λs <
v4
φλφ

C2Λ4
s

= 5.6× 10−40

(
λφ

0.13

)(
0.92

C

)2(
1012 GeV

Λs

)4

. (34)

According to (34) we are always in the regime in which

λsv
2
s � λφv

2
φ (35)

such that m2
σ ' 2λsv

2
s . Using this and eqs. (20) and (33), one finds

mσ <
2
√
λφεsv

2
φ

CΛs

= 9 eV

(
λφ

0.13

)1/2(
εs
0.2

)(
0.92

C

)(
1012 GeV

Λs

)
, (36)

which can also be written as

mσΛs <

(
λφ

0.13

)1/2(
εs
0.2

)(
0.92

C

)
× 10−2 TeV2 , (37)

This inequality is incompatible with (13) which follows from the meson oscillation con-
straints if mσ > mK . Therefore, a weak scale flavon leading to Yukawa variation during the
EW phase transition seems incompatible with flavour constraints, assuming the simple scalar
potential (16). An ultra light flavon (mσ < mK) is however compatible with flavour and
cosmological constraints as discussed in Appendix B, provided that Λs & 1012 GeV. In this
case, the bounds (33) and (34) lead to extremely small quartic couplings. This essentially
rules out this model as a reasonable illustration of naturally varying Yukawa couplings during
the EW phase transition. Nevertheless, for the sake of illustration, we will proceed to study
the phase transition for this tuned model to show how the desired cosmological evolution
can be realized (notice that in Ref. [10] the effect of varying Yukawas on the nature of the
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EW phase transition was not discussed and the quoted cosmological bound on Λs was also
different).

We note that the root of the problem comes from equation (32) which forces the flavon
to be light to have an impact on Yukawa variation during the EW phase transition. A way
out would be to modify the flavon potential (16), for example if the running of λs induces
a minimum for σ at a parametrically larger value, O(TeV), than the EW scale. We do not
pursue this here but come back to this point in our conclusion.

4.2 The phase transition

The computation of the high temperature effective scalar potential is described in Ref. [1].
We include all quark species as strongly coupled fermions can qualitatively change the nature
of the phase transition. The dependence on φ and σ enters through the φ and σ dependent
masses of the fermions and Higgs bosons and the φ dependent W± and Z boson masses.
The fermion masses are of the form

mfi(φ, σ) =

∣∣∣∣yi( σ√
2Λs

)ni φ√
2

∣∣∣∣ , (38)

where ni depends on the choice of Froggatt–Nielsen charges, yi is a dimensionless coupling.
We assume the charge assignments above, i.e.

ni=t,b,c,s,u,d = {0, 2, 3, 4, 7, 6}, (39)

for the top, bottom, charm, strange, up and down quarks. For simplicity, we ignore the σ
and φ dependent mixing of the electroweak quark eigenstates.

We calculate the critical temperature, Tc, defined as the temperature at which the min-
ima at φ = 0 and φ 6= 0 are degenerate. The critical VEV φc is the value of φ at the second
minimum at Tc. Successful EWBG requires a strong first-order phase transition, charac-
terised by φc/Tc & 1. We first set all yi 6=t = 1. This results in a strong first-order phase
transition with φc/Tc = 1.5. The large effective Yukawas increase the strength of the phase
transition as extensively discussed in Ref. [1].

We next set the Yukawa couplings in the symmetric phase to

yi=t,b,c,s,u,d = {0.99, 0.60, 0.93, 0.34, 1.0, 0.43}, (40)

which returns the observed fermion masses at T = 0. We now find a crossover. This shows
the sensitivity of the phase transition strength to the Yukawa couplings. In particular the
strength of the phase transition is most sensitive to the bottom quark Yukawa. The reason
is simply that the index nb = 2 is the smallest after the top, this leads to fewer factors of√

2 suppressing the effective Yukawa at σ = Λs than for the other quarks.
The short summary of this analysis is that the strength of the phase transition mainly

depends on what happens to the bottom quark yukawa and it increases with yb (we assume
like in all FN models that the top quark yukawa is not controlled by the VEV of the FN
field).

We have also tried modifying the potential so that σ starts off at different values. In
general, the larger the starting point for σ, the larger the effective Yukawas and the stronger

10



Figure 2: Parameter space of the low scale scenario A-2 discussed in section 4.3 for εs = 0.14.
The limits come from the CHARM beam dump experiment [19–21], searches for Υ → γ + Inv.
at BABAR [22], Υ → γgg at BABAR [23] and CLEO [24, 25] and limits on K → π + Inv. from
E949 [26, 21]. We also show the projected sensitivity of SHiP [27]. Limits from BBN [28, 29],
SN1987A [28, 30], Υ → γµµ [31, 25], B → K + Inv. [21], B → Kµµ [21, 32], B → Kππ [33] and
K → πµµ [34,21] are too weak to appear on the plot. The enhanced coupling of σ to b quarks from
eq. (41) increases the sensitivity to Υ decays and also modifies induced couplings to γγ, gg, pions
and nucleons compared to the usual scenario of a light scalar mixing with the SM Higgs [32,21,28].

the phase transition. Note that due to mixing effects, the Yukawa couplings do not necessarily
have to take the values given in eq. (40), an O(1) cancellation could reduce the eigenvalue
associated with the b quark at T = 0 compared to T = 100 GeV (the indices ni should also
be considered approximate as we are ignoring mixing effects).

In conclusion, flavor constraints on this most minimal model have pushed us into a tuned
regime of parameter space where Λs � vφ and λφs, λs � 1. The values for the quartic
couplings (33) and (34) are clearly untenable. We kept this example as a pedagogical step
and now go on to explore more natural possibilities.

4.3 Scenario with disentangled hierarchy and mixing sectors

Recently, a scenario was proposed, which allows one to disentangle the sector responsible
for the hierarchy of masses and the sector responsible for the observed mixing angles [18].
The scenario is far from minimal as it introduces a separate ‘flavon’ for each quark. In this
construction, the SM fermions are not charged under some new horizontal symmetry, but
the light flavons responsible for the mass hierarchy are. In the Yukawa coupling, the charge
of the light flavon is canceled by the charge of some other scalar part of the sector controlling
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the flavor violation. The aligned structure in this latter sector is such that, effectively, the
flavon only couples to the mass eigenstates. Assuming such a construction can be made, the
limits on the mass hierarchy sector are then greatly relaxed as each flavon couples to the
individual mass eigenstates only. Such a scenario is also amenable to Yukawa variation. The
high dimensionality of the scalar potential on the other hand precludes a simple analysis of
the phase transition. For simplicity, we consider only the variation of a single flavon and
hence a single Yukawa coupling in this section. The scenario is then almost identical to the
discussion of model A-1 but can occur for a much smaller Λs scale (hence a higher mσ). The
main advantage of such a scenario is that we can avoid the huge separation of scales and
extremely small couplings required in the previous model A-1 example. However, we shall
see that other experimental limits already severly constrain this scenario.

To illustrate the low scale mechanism, let us consider the variation of the bottom Yukawa
only through the term

L ⊃ yb√
2

(
σ√
2Λs

)2

φbb, (41)

where the bottom quarks are in the mass eigenstate basis. Though this scenario is no longer
constrained by flavor physics, it unavoidably leads to a light flavon which mixes with the
SM Higgs. It is therefore constrained by light scalars searches. The parameter space for
εs = 0.14 is shown in figure 2.

Given that the value of εs, defined in (3), is required to explain the bottom quark mass
only and not the CKM mixing angles, we have greater freedom in its choice. We will consider
different possibilities for εs and hence yb. Like in model A-1, once the scale Λs, the final
VEV vσ (or equivalently εs) is set, the need for Yukawa variation is taken into account and
a mass mσ is chosen, we can then solve for λs, λsφ and sin θ. Given Λs and vσ there is a
maximum mσ for which a consistent solution is possible. Below this two possibilities for λs
(and hence λsφ and sin θ) exist. In our analysis we take the smaller choice. The larger choice
corresponds to values close to the stability bound (34) and hence represents only a small,
fine tuned, area of parameter space. The area in which a given mσ cannot be consistently
achieved is also indicated in figure 2.

The coupling yb is set by our choice of εs and the observed bottom quark mass. Different
choices of εs can lead to different phase transition strengths. This is shown in figure 3. We
see that phase transitions with φc/Tc ≈ 0.7 (1.0) can be achieved with εs = 0.14 (0.12). Note
that due to possible stability issues with the potential for large Yukawa couplings, we have
assumed the effective Yukawa coupling saturates at σ = Λs and we only search for minima
in the region 0 ≤ σ ≤ 1.2Λs and 0 ≤ φ ≤ 300 GeV. Outside this region we assume higher
dimensional operators stabilise the potential. (For εs = 0.12, the instability scale at T = 0
is safely at φ = 1200 GeV along σ = Λs. But for εs = 0.11, the T = 0 one loop potential
runs away to infinity along the φ direction at σ = Λs, with no barrier present. Hence we do
not consider smaller values for εs.)

The summary of this analysis is that only a very light flavon can escape all constraints:

mσ . 1 GeV and Λs . O(10 TeV) . (42)

We cannot set εs smaller than 0.12 as this would require too large yb to obtain the correct
bottom quark mass with a stable potential. On the one hand, the instability at large field
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Figure 3: Left: The effective potential at the critical temperature, in the low scale scenario
discussed in section 4.3, for Λs = 10 TeV, mσ = 0.03 GeV, εs = 0.12, yb = 1.7, λφs = 10−6.3,
λs = 1.6 × 10−10. We find a strong first-order phase transition with φc ' Tc = 144 GeV. Right:
Strength of the phase transition for different choices of εs (and hence yb). As expected larger values
of yb lead to stronger phase transitions. Note the area between 0.03 GeV . mσ . 0.3 GeV is ruled
out by CHARM.

values in the scalar potential scales as y4
b . On the other hand, increasing Λs (as required

by experimental constraints) pushes us to smaller λs, λsφ and mσ. From Eq. (41), radiative
corrections to the scalar mass from a b quark loop integrated to the FN scale are expected to
be ∆m2

σ ∼ (mb/(4πεs))
2, hence the small masses required to be consistent with experimental

constraints are in a tuned regime.
Note that to obtain a massive pseudo-Nambu-Goldstone Boson we have explicitly broken

U(1)FN as discussed in section 2. The remnant Z2 should now also be explicitly broken in
order to avoid domain walls. As this scenario is already highly constrained, we do not pursue
this further here, but note that the issue is absent in models B which we shall discuss in
Section 5.

4.3.1 Exotic Higgs decays

In this model, the Higgs can decay into the flavon with the partial width

Γ(φ→ σσ) =
λ2
φsv

2
φ

32πmφ

√
1− 4m2

σ

m2
φ

. (43)

From the combination of ATLAS and CMS data, the Higgs signal yield is µ = 1.09±0.11 [35].
In terms of the SM Higgs width, this limits the total width to Γφ . 1.15 ΓSM

φ , assuming
no new contributions to the production cross section. In the parameter space of interest to
us here, we may ignore the final state masses. We then find a limit on the portal coupling
λφs . 0.011. Other experimental results are currently more constraining (in the allowed
areas of figure 2, we find λφs . 10−3.)
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Another possible decay is φ→ bbσ with the width

Γ(φ→ bbσ) =
ε2s|yb|2
256π2

m3
φ

Λ2
s

. (44)

Using the relation between mb, yb and εs, this implies the branching fraction

Br(φ→ bbσ) = 1.1%

(
0.1

εs

)2(
1 TeV

Λs

)2

. (45)

Such decay channel is weakly constrained.
In conclusion, Model A-2 is a testable possibility realizing varying Yukawas at the EW

scale. It relies on the specific mechanism recently presented in Ref. [18] in which EW scale
flavons do not lead to low energy flavor violating effects. However, as is clear from figure 2,
the example we have considered here is severely constrained by other experimental searches
and the required light flavon mass is not stable under radiative corrections. This construction
has not yet been fully explored and it would be interesting to see alternative complete explicit
implementations.

5 Models B: Two Froggatt–Nielsen field models

Having presented the challenges associated with single flavon models where the flavon VEV
varies during the EW phase transition, we now move on to a model with two Froggatt–Nielsen
scalars, carrying either different or the same FN charges. The first scalar S generates the
Yukawa hierarchy today while the second one X has a negligible VEV at low temperatures
but develops a VEV at early times and plays a role during the EW phase transition. As
we will see, this is quite a generic situation. The main advantage of such a scenario is that
we can avoid the huge separation of scales and extremely small scalar quartic couplings
required in the previous model A-1 without the need for disentangling the Yukawa hierarchy
and mixing sectors like in A-2. Equation (2) now becomes

L = ỹij

(
S

Λs

)ñij
QiΦ̃Uj + yij

(
S

Λs

)nij
QiΦDj

+ f̃ij

(
X

Λχ

)m̃ij
QiΦ̃Uj + fij

(
X

Λχ

)mij
QiΦDj +H.c., (46)

where fij and f̃ij are dimensionless couplings, also assumed to be O(1) while mij and m̃ij

are chosen to form singlets under U(1)FN. We assume either 〈X〉 = 0 or 〈X〉 � Λχ today,
but we will consider cosmological histories with non-negligible 〈X〉 below. We also define

εχ ≡
〈X〉
Λχ

=
vχ√
2Λχ

, (47)

and the new scalar field reads

X =
χ+ iη√

2
. (48)
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In this setup, the scalar S no longer has a large impact on the nature of the EWPT nor
does it induce large CP-violating sources, as its VEV does not vary significantly during the
EWPT. It is therefore just a spectator during the EWPT. In this case, there is no longer
any tension with flavor constraints and we expect mσ ∼ 1 TeV. The main cosmological actor
whose VEV is varying during the EWPT is instead χ which is therefore expected to be light,
below the EW scale. Since χ has a negligible VEV today, this is no longer in conflict with
flavor constraints.

The details of this mechanism depend on the FN charge of X. If X and S carry the same
charge (model B-2), the model appears to be more minimal but it is also more constrained
by meson oscillations, as discussed in Appendix C. If QFN(χ) = −1/2 (model B-1) then
meson oscillation constraints are considerably relaxed (from Λχ & 2 TeV to Λχ & 700 GeV)
but the model features twice as many FN fermions which are also constrained by the LHC.

5.1 Models B-1: QFN(χ) = −1/2

5.1.1 Tree level potential

Consider the scalar potential

V = µ2
φΦ†Φ + λφ(Φ†Φ)2 + µ2

sS
†S + λs(S

†S)2 + µ2
χX
†X + λχ(X†X)2

+ λφs(Φ
†Φ)(S†S) + λφχ(Φ†Φ)(X†X) + λχs(X

†X)(S†S) (49)

+ µ̃χs(X
†X†S +H.c.).

For simplicity we assume negligible mixing between S and Φ and also assume only negligible
changes of vs during the EWPT. We also only consider renormalisable interactions, which
are sufficient to illustrate our mechanism. We explain in Appendix D how corrections to
the potential from dimension-6 operators do not qualitatively change our conclusions. Note
the µ̃χs term together with non-zero vs results in a mass splitting between the real and
imaginary components of X (we could also include an explicit breaking but it is superfluous
here). Again we ignore the effect of the pseudoscalar, which is anyway expected to have only
negligible effects on the effective potential.

It should be noted that a choice of FN charge −1 for X would allow for terms such
as S†S†SX in the Lagrangian, resulting in a too large VEV for χ for the mechanism to be
consistent with flavor constraints, unless such terms are tuned away. The choice of FN charge
−1/2 for X ensures a Z2 symmetry is present both in eq. (49) and in the effective Yukawa
sector (X being odd and all other fields even). Later we shall see that a scenario with an
exact Z2 symmetry and 〈χ〉 = 0 is highly constrained by its dark matter phenomenology.
We shall therefore consider explicit breaking of the Z2 below; as a result χ will gain a small
VEV and become unstable. However, for purposes of illustration it is simpler to consider
the exact Z2 case first, and only later introduce a small breaking, once the phenomenological
issues have been identified.

Starting from (49), we redefine the µφ and µχ parameters to absorb the contribution from
vs to the quadratic φ and χ terms. The relevant part of the scalar potential for our analysis
of the phase transition then becomes

V =
µ2
φ

2
φ2 +

λφ
4
φ4 +

µ2
χ

2
χ2 +

λχ
4
χ4 +

λφχ
4
φ2χ2. (50)
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Figure 4: Left: the potential at the critical temperature for vχ = Λχ = 1 TeV, λχ = 10−4 and
λφχ = 10−2 (mχ = 14 GeV) displaying two minima. We find φc = 174 GeV and Tc = 133
GeV giving a strong first-order phase transition with φc/Tc = 1.3. Right: same as left but with
λχ = 10−3.4, λφχ = 10−0.8 (mχ = 137 GeV), which yields φc = 235 GeV, Tc = 79 GeV and
φc/Tc = 3.0. Note the saddle point between the two minima generally moves towards the origin as
we increase λφχ.

For φ = 0 we require a minimum at χ = vχ 6= 0, while for φ = vφ we require a minimum at
χ = 0.4 The VEV conditions are

µ2
χ + λχv

2
χ = 0, (51)

µ2
φ + λφv

2
φ = 0. (52)

We also require µ2
χ, µ

2
φ < 0 and µ2

χ + λφχv
2
φ > 0. Thermal effects will make (φ, χ) ≈ (0, vχ)

the global minimum of the potential at temperatures above the EWPT. The global minimum
at zero temperature should be (φ, χ) = (vφ, 0). This imposes the constraint

λχ < λφ

(
vφ
vχ

)4

= 4.7× 10−4

(
1 TeV

vχ

)4

. (53)

This constraint is modified by one-loop effects, which we take into account when scanning
over the parameter space of the model below. The mass of χ at the global minimum is given
by

m2
χ = µ2

χ +
λφχv

2
φ

2
= −λχv2

χ +
λφχv

2
φ

2
, (54)

from which we see choices of λφχ > 2λχv
2
χ/v

2
φ are required to make this mechanism viable.

An important remark here is that mχ cannot be higher than the EW scale. This is a generic
prediction of models of varying Yukawas in the Froggatt–Nielsen context, as we further
discuss in Appendix D.

4Note that vχ denotes the tree level minimum in the χ direction at φ = 0, not the T = 0 minimum.
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Figure 5: Parameter space of the model for vχ = Λχ = 1 TeV and fi 6=t = 1. Black lines are
contours of, from top to bottom, φc/Tc = 3, 2, 1.5, 1. Colored areas are excluded. The orange
area indicates a phase transition starting from χ . 0.94Λχ, for which there may be insufficient
CP violation, εCP . 10−10 (using the naive estimate from the Jarlskog invariant). In the red and
green shaded regions, the EW vacuum is not the global minimum (for the red shaded region there
is a deeper minimum than the EW one along the χ axis, for the green shaded area, m2

χ < 0 at
the EW minimum, indicating there is a deeper minimum away from both the φ and χ axes). At
points close to this limit, the phase transition occurs to a minimum away from the φ axis, which
leads to drastically weaker phase transitions for mχ . 10 GeV. In the blue shaded area, the signal
yield of the Higgs at the LHC is changed due to φ→ χχ decays (see section 5.1.3). White area to
the left is allowed due to the small coupling. The area to the right is allowed because the decay is
kinematically disallowed.

5.1.2 The phase transition

We fix Λχ = 1 TeV throughout this section and explore the strength of the phase transition
for different choices of λχ and λφχ, for now we fix fi 6=t = 1. Examples of the potential at
the critical temperature are shown in figure 4. A scan over the parameter space, showing
regions returning a strong first-order phase transition, is shown in figure 5.

We now describe the dependence of the phase transition strength on the various param-
eters. First we note that the phase transition becomes stronger for λχ closer to the limit of
eq. (53), as the two T = 0 minima approach degeneracy. For values

λφχ ≥ −2
µ2
φ

v2
χ

= 1.56× 10−2

(
TeV

vχ

)2

(55)

the determinant of the mass matrix at (φ, χ) = (0, vχ) is positive and there is a tree level
barrier between the two minima. Thermal effects can also lead to a strong first-order phase
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Figure 6: Strength of the phase transition as a function of the Yukawa couplings for a choice of
parameters. The calculation is repeated without the daisy correction, showing the daisy correction
plays a subdominant role here in strengthening the phase transition (see related discussion in [1]).

transition for smaller values of λφχ. As we increase λφχ for fixed λχ, the saddle point of
the potential — the minimum barrier height between the two minima — moves toward the
origin and the strength of the phase transition weakens.

Large values of λφχ also push the location of the minimum on the χ axis toward the
origin. The reason is the contribution of λφχχ

2/2 to the Higgs mass and hence to the T = 0
one-loop potential (the renormalization conditions used for the T = 0 one-loop effective
potential preserve the position of the EW minimum but not the position of the tree-level
(φ, χ) = (0, vχ) minimum [36]). Starting from smaller values of χ also means a suppression
of CP violation. Note the T = 0 one-loop effects also modify the bound from eq. (53). We
identify two regions of parameter space shown in figure 5, one corresponds to mχ ∼ 60− 70
GeV and the other one correspond to mχ between a few GeV and 20 GeV. So we typically
deal with a light scalar χ.

As we discussed previously, fermions with decreasing Yukawa couplings can also create
thermal barriers, but in contrast with Model A, this is happening only in the restricted region
of parameter space corresponding to small quartic couplings of χ. We show the effect on
the strength of the phase transition in figure 6. As expected, the phase transition becomes
stronger as we increase the size of the dimensionless couplings fi. The strongest effect comes
again from the b quark, as its effective Yukawa carries the lowest index, n = 4, and hence is
the least suppressed as χ decreases. Overall, the effect of the Yukawas is suppressed because
of our choice of FN charge −1/2 for X, compared with the case with charge −1. The choice
of charge which gives us the accidental Z2 symmetry also doubles all the indices controlling
the Yukawa couplings compared with the case for charge −1 and hence suppresses the effect
of the Yukawas.

We now move to discuss phenomenological implications of this model. These are linked
to the light scalar state χ. The other flavon is heavier, at the TeV scale and will be more
difficult to probe. On the other hand, FN models also display new vector-like fermions which
would appear here at the TeV scale and can be searched for. Note that in the case where
both flavons have the same FN charge (model B-2), there will be one set of new fermions
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and Λs ∼ Λχ ∼ 1 TeV. While in the case where they have different charges (model B-1),
there will be a doubling of the fermion states, so this model is less minimal.

5.1.3 Exotic Higgs decay φ→ χχ

In most of the allowed parameter space, the Higgs can decay into a χχ. The partial width
is given by

Γ(φ→ χχ) =
λ2
φχv

2
φ

32πmφ

√
1− 4m2

χ

m2
φ

. (56)

As for the Higgs decay discussed in Section 4.3.1, we apply the constraint Γφ . 1.15 ΓSM
φ ,

which we show in figure 5. This limit is independent of the decay mode of χ (even if χ is
stable on collider scales this limit is stronger than the direct constraint on invisible Higgs
decays from vector boson fusion production [37]).

5.1.4 Explicit Z2 breaking

We have so far discussed the Z2 symmetric case. However, if the Z2 is exact then χ is stable
and it cannot satisfy dark matter constraints as shown in Appendix E. We have therefore to
consider explicit Z2 breaking for χ. For instance, we take the T = 0 potential for χ

V = a3χ+
m2
χ

2
χ2 +

b

3
χ3 +

λχ
4
χ4, (57)

where nonzero a or b mean the Z2 symmetry is broken. We wish to introduce a small
breaking, in order not to run into conflict with flavor constraints. A non-zero b typically
results in a minimum deeper than the EW one at approximately

〈χ〉 ≈ −b±
√
b2 − 4λχµ2

2λχ
. (58)

Hence if |b| & 2
√
λχmχ ∼ 0.1 GeV, we have a deep minimum at 〈χ〉 & mχ√

λχ
∼ 1 TeV. This

VEV is both too large to be consistent with flavor constraints and also outside the domain
of validity of our effective field theory. We therefore set b . 2

√
λχmχ and consider non-zero

a instead. A small a results in a minimum at

〈χ〉 ≈ − a3

m2
χ

≡ vχa. (59)

(We include a subscript a to distinguish this small T = 0 VEV with the large VEV vχ present
before the EWPT). Once χ gains a VEV it mixes with the SM-like Higgs with mixing angle

θ ≈ λφχvχa
λφvφ

≈ 3× 10−2 × λφχ
(

vχa
1 GeV

)
. (60)

The non-zero VEV for χ introduces new contributions at tree and loop level to the Wilson
operators resulting in meson oscillations. We have checked that for a scale Λχ ∼ 1 TeV,
VEVs as high as vχa ∼ 100 GeV for mχ ∼ 10 GeV are not in conflict with the constraints
from the UTfit colllaboration [38,39].
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5.1.5 Decays of χ

The nonzero vχa allows χ to decay. This can happen either through its mixing with the
Higgs, or directly through its Yukawa type interactions. Taking into account that the decay
into tc is kinematically forbidden, we find the leading decay rate is χ → cc. The leading
contribution arises from the coupling

L = f̃32

(
X

Λχ

)2

Φc′Lt
′
R +H.c.→ Re[U32∗

u W 22
u f̃32]

vχavφ√
2Λ2

χ

χcc, (61)

where we have explicitly denoted the flavor basis with primes and U32
u and W 22

u are entries of
the rotation matrices which bring the up-type quarks into the mass basis (see Appendix A).
Numerically we find W 22

u ∼ 1 and U32
u ∼ ε2s. Hence the above coupling is of the order

L ∼ 10−6f̃32

( vχa
1 GeV

)(1 TeV

Λχ

)2

χcc ≡ f cχχcc. (62)

Provided it is kinematically allowed, the decay rate into charmed mesons is approximately

Γ(χ→ cc) ≈ 3

8π
(f cχ)2mχ

(
1− 4m2

D

m2
χ

)3/2

≈ 10−12 GeV
( mχ

10 GeV

)( vχa
1 GeV

)2
(

1 TeV

Λχ

)4

. (63)

We impose the conservative requirement that it should not be abundantly produced to avoid
any dilution of the baryon asymmetry, so we impose an early decay:

Γχ & H(T = mχ) =
1.66
√
g∗m

2
χ

MPl

≈
(

mχ

10 GeV

)2

× 10−17 GeV, (64)

which is easy to achieve given the decay rate into cc. From eq. (64) we find

cτχ . 1 m×
(

10 GeV

mχ

)2

, (65)

meaning χ can decay at displaced vertices.

5.1.6 Top quark decays

The interactions of χ also induce exotic decays for the top quark, t→ cχ and t→ cχχ. The
corresponding partial widths are

Γ(t→ cχ) ≈
|f̃32|2v2

χav
2
φmt

64πΛ4
χ

= |f̃32|2
(

vχa
1 GeV

)2(
1 TeV

Λχ

)4

× 1.3× 10−8 GeV , (66)

Γ(t→ cχχ) ≈
|f̃32|2v2

φm
3
t

12288π2Λ4
χ

= |f̃32|2
(

1 TeV

Λχ

)4

× 2.5× 10−6 GeV . (67)

We have ignored the final state masses in both expressions and suppressed the O(1) entries
of the rotation matrices. Comparing with the top quark width Γt = 1.4 GeV [40–42],
we see the exotic branching fractions are highly suppressed. We now discuss how these
phenomenological predictions are altered when considering QFN(χ) = −1.
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5.2 Models B-2: QFN(χ) = −1

The scalar potential up to dimension four operators is now given by

V = µ2
φΦ†Φ + λφ(Φ†Φ)2 + µ2

sS
†S + λs(S

†S)2 + µ2
χX
†X + λχ(X†X)2

+ λφs(Φ
†Φ)(S†S) + λφχ(Φ†Φ)(X†X) + λχs(X

†X)(S†S) + µ̃χs(X
†X†SS +H.c.) (68)

+ m̃χs(X
†S +H.c) + λ̃χs(S

†S†SX +H.c.) + ...

where the dots indicate further Z2 breaking terms. This symmetry is broken by the Froggatt–
Nielsen Yukawa operators with odd exponents for the flavon. Therefore, in contrast with
model B-1, even if we remove those terms by enforcing a Z2 symmetry in the scalar potential,
they would be regenerated at loop level. We will assume these Z2 breaking operators are
kept small to avoid phenomenologically unacceptably large VEVs for X. In this case, we
return to the same tree level potential as for model B-1. The phase transition proceeds in a
similar way. However, the smaller powers in the exponents controlling the size of the effective
Yukawas ensure these are larger than the effective Yukawas in model B for the same values of
χ. Hence the phase transition is strongly first-order for larger areas of parameter space. This
also increases the CP violation. This is shown in figures 7 and 8. Note that the choice Λχ = 1
TeV is in tension with the constraints from Meson oscillations (see Appendix C). Here we
keep Λχ = 1 TeV to allow easy comparison with Model B-1. We checked that strong phase
transitions are also possible for Λχ = 5 TeV but at the cost of choosing much smaller quartic
couplings. The constraints from the Higgs decay and stability of the potential (for fi 6=t = 1)
remain the same, but overall, Model B-2 is under higher experimental pressure than Model
B-1. One could study variants of these models by changing the FN charge assignments of
the quarks, which can help alleviating the Meson oscillation constraints.

5.2.1 Decays of χ

There is now no Z2 symmetry in the Yukawa sector preventing χ from decaying. The leading
contribution again comes from rotating the χt′c′ coupling into the mass basis

L = f̃32

(
X

Λχ

)
t′Lc
′
R +H.c.→ Re[U32∗

u W 22
u f̃32]

vφ
2Λχ

χcc. (69)

Following a similar analysis to Section 5.1.5 above, we find a decay rate

Γ(χ→ cc) ≈ 10−5 GeV
( mχ

10 GeV

)(1 TeV

Λχ

)2

. (70)

This implies that χ decays promptly on collider and cosmological scales for typical parameter
choices.

5.2.2 Exotic top decay t→ cχ

The coupling leading to exotic top decays t → cχ is now less suppressed: vφ/(2Λχ)χcLtR
due to the larger flavor charge of X compared to model B-1. The decay rate is given by

Γ(t→ cχ) ≈ |f̃32|2
128π

(
vφ
Λχ

)2

mt = |f̃32|2
(

1 TeV

Λχ

)2

× 2.6× 10−2 GeV. (71)
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Figure 7: Same parameter scan as in figure 5 but for model B-2 with QFN(X) = −1. We obtain
strong first-order phase transitions for smaller values of mχ than in model B-1, due to a larger
effect from the varying Yukawa couplings.

Comparing again to the measured top width Γt = 1.4 GeV [40–42], we see that ∼ O(1)%
branching fractions into the exotic state are now possible and therefore in the reach of LHC
experiments [43]. However, the final state would not necessarily be easy to distinguish from
background as, from eq. (70), χ decays promptly to jets (cc). We leave a more detailed study
for further work.

6 CP violation and the baryonic yield

The main motivation for this work is ultimately a natural setup for EW baryogenesis. We
have identified models in which Yukawa couplings can vary by values of order 1 during the
EW phase transition. This not only can impact the nature of the EWPT but also generates
large CP violating sources. Calculation of the baryon asymmetry produced during a first-
order EW phase transition is intricate. It requires solving diffusion equations in front of the
bubble wall after identification of the CP-violating source terms [44]. This has been done in
the supersymmetric context where the CP-violating source comes from the chargino mass
matrix. However it has never been analysed in the context of a varying CKM matrix. We
carry out a detailed comprehensive derivation in [2] and refer to this paper for more details.
For this work, it is enough to present a simplified estimate of the baryon asymmetry based
on the corresponding calculation in the one-flavor case.

The CP violation in EW baryogenesis arises from the change of the mass matrix along
the bubble wall in the first-order EWPT. In principle, this is a purely kinematic effect since
particles with different mass profiles will experience the wall as a potential barrier that they
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Figure 8: Strength of the phase transition as a function of the Yukawa couplings (as in figure 6 but
now for QFN(X) = −1). The effective Yukawa couplings are now larger for given values of fi and
χ than for QFN(X) = −1/2 which results in stronger phase transitions when compared to figure 6.
However, for fi 6=t & 1.6, the T = 0 effective potential is unstable in the φ direction along χ = Λs,
with no barrier present, which rules out such large couplings.

have to surpass. In the case of fermions, this effect can even depend on the helicity of the
particle and violate CP. This requires that the Higgs coupling to the particle (that produces
its mass term) violates CP in the first place.

In the one-flavor case, a mass term of the form

m = |m| exp(iθ) , (72)

leads to the following source of CP violation in the semi-classical Boltzmann equation

1

4
(θ′|m|2)′ . (73)

This is the well-known CP-violating source found in the one-flavor model in the semi-classical
force approach [45–47]. In the case of several flavors, the matter is much more complicated.
In particular, the case of chargino or neutralino driven electroweak baryogenesis in the MSSM
was the topic of long debate in the literature (see [48–51] and references therein). To simplify
the discussion, we will neglect off-diagonal terms in the particle densities in the following.
This is for example a good approximation when there is a sizable mass splitting between
the eigenvalues of the system. Then, fast flavor oscillations will erase the impact of the
off-diagonal elements in the Green’s function (in the basis where the masses are diagonal).
It is also a good approximation in the limit where fast scatterings erase off-diagonal densities
quickly. Still, mixing is important in the forces, and one of the dominant mixing sources is
of the form [52–54,2]

Im
[
W †
qm
†′′mWq

]
ii
, (74)

where m denotes the mass matrix of fermion in question, Wq is the unitary matrix that
is used to diagonalize m†m and a prime denotes the derivative with respect to the spatial
coordinate across the wall. This expression generalizes the one-flavor source in eq. (73).
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Type CPV source φc/Tc lw Tc η/ηobs

One-flavor case (73) ∆θ = 0.2 1.6 6 ' 1.0
Two-flavor case (74) and (75) arg(ctt) = π/2 1.0 8 ' 2.6

Table 1: The baryon asymmetry for two benchmark points corresponding to two different CP-
violating sources. The relevant parameters are the Higgs VEV during the phase transition φc, the
wall thickness lw and the CP-violating complex phase.

In the present model of Froggatt–Nielsen type, the CP violation arises from the interplay
of several flavors. For example, the mass matrix of the top-charm sector resembles

m = vφ

(
cttε

0 ctcε
1

cctε
2 cccε

3

)
. (75)

The VEV ε constitutes the source of breaking of the FN symmetry. For the time being we
assume it to be real-valued. The coefficients cab are complex constants. In particular, the
complex coefficients can give rise to CP-violating sources in the transport equation according
to (74). In models A all entries are of order one in the symmetric phase, a sizable CPV source
results in the Boltzmann equations. Likewise, In models B the Yukawa couplings involving
the second FN field χ can lead to a large mixing source.

It is essential to have Yukawa couplings of order unity, ε ' 1, for sufficient CP violation
from the mass (75). This can be understood using an argument similar to the one given by
Jarlskog in the Standard Model. Due to the flavor structure, one can remove many of the
complex phases of the mass matrix (75) using a constant flavor basis change. In total, three
of the four phases can be removed and the remaining phase can be moved into one of the
four constants cab at will. This shows that if one of the constants vanishes, CP violation
is absent. In turn, the CP violation is suppressed by a rather large power of ε. Note that
this argument is not quite the same as for the Standard Model. In the present model, due
to the changing ε many combinations that are invariant under flavor basis changes can be
constructed that trivially vanish in the Standard Model due to m′ ∝ m. Hence, CP violation
can be present in a two-flavor system when Yukawa couplings are varying.

Besides, if the FN symmetry breaking VEV ε has a complex phase that is changing
during the phase transition, one single quark flavor can provide a very strong source of CP
violation according to (73). Again, one requires Yukawa couplings of order unity in this case
since otherwise the factor ε3 in the diagonal of (75) leads to too much suppression. In other
words, without ε ∼ 1 in the symmetric phase, the bottom quark would be too light to lead
to sufficient CP violation even with a changing phase across the wall.

In Table 1, we give some numerical results for the baryon asymmetry η/ηobs for the two
sources (74) and (73). The results for the mixing source are obtained by solving a diffusion
equation for two families of quarks. The full analysis of the baryon asymmetry will be given
in [2]. It is striking that the correct amount of baryon asymmetry is reproduced.

24



7 Discussion and Conclusion

The cosmology of flavor physics had so far not be studied. An important implication is the
possibility of exploiting dynamical Yukawa couplings for EW baryogenesis5. This can be done
in the several few scenarios addressing the flavor problem, namely Froggatt–Nielsen models,
Randall-Sundrum models and Composite Higgs models. This paper is a first investigation in
this direction, focusing on FN models as a benchmark scenario. The aim of this study was
to identify classes of FN models which can provide the dynamics leading to variable quark
Yukawa couplings during the EW phase transition while satisfying all experimental bounds.
The summary of our findings is the following:

In the first class of models, the flavon σ has to be ultra light, mσ . 1 GeV, to induce
Yukawa coupling variation during the EW phase transition which, as a result of this variation,
is first-order. The Yukawa coupling variation also induces large enough CP violation for
generating the baryon asymmetry of the universe. This model can be compatible with flavor
constraints if the alignment mechanism advocated in [18] is at work. However, there are
tuning issues related to the radiative corrections of the flavon mass.

In the second class of models, the tuning issues are alleviated. There are two scalar
flavons. One is heavy, σ, at the TeV scale, together with the heavy FN vector-like fermions,
and the other one, χ, is light, in the 10–70 GeV range. This light flavon has a sizable mixing
with the Higgs. The Higgs can decay φ → χχ where the leading decay of χ is χ → cc̄.
Another specific signature of this model is the exotic top quark decay t→ cχ. Because the
FN scale is low, Λs ∼ 1 TeV, new fermions at the TeV scale are expected. LHC searches
for vector-like FN quarks are thus an important test of this model. In this second class
of models, the region of parameter space where the Yukawa variation is responsible for the
first-order phase transition is rather limited. In most of the parameter space, the first-order
phase transition comes from a tree level barrier in the (φ, χ) scalar potential. The Yukawa
variation during the EWPT coming from the χ field is on the other hand responsible for
large CP-violating sources guaranteeing a large enough baryon asymmetry.

In conclusion, the main generic prediction is the existence of a light (below EW scale)
additional scalar with observable signatures at the LHC. This follows from the requirement
that the flavon VEV should vary by a value of order the FN scale (at least TeV as imposed
by flavor constraints) when the Higgs acquires its VEV, for a successful impact on EW
baryogenesis. This demands a rather flat potential in the flavon direction, in order for the
flavon VEV to change by a value of order Λs ∼ TeV, when the Higgs acquires a VEV of
order vφ. This light flavon is the main obstacle in our constructions as it typically clashes
with flavour constraints. The requirement of the light flavon comes from our equation (32)
which follows from our simple assumption for the form of the Higgs-Flavon scalar potential.

We do not think that the presence of this light flavon is a generic prediction of models
of varying Yukawas at the EW scale. For instance, in the context of Randall–Sundrum
models where the origin of the fermion mass hierarchy is of a very different nature, varying
Yukawas correlated with the EW phase transition turn out to be easier to implement (i.e.
less constrained by experiments) and in fact quite natural [8]. In this case, the flavon (played
by the radion/dilaton in [8]) has its own dynamics which induces EW symmetry breaking in

5An obvious other direction of research would be to apply the idea in the leptonic sector and consider
implications for leptogenesis.
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such a way that the Higgs mass parameter is proportional to the flavon VEV. This enables
the possibility to have Yukawa coupling variation during the EW phase transition compatible
with flavour constraints as the flavon is parametrically heavier than the Higgs, in the TeV
range. It will be interesting to investigate other realizations of varying Yukawas during the
EW phase transition along this line, as they are flavor motivated incarnations of the EW
baryogenesis mechanism.
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A Flavon couplings in the mass basis

In this appendix we clarify the transformations between the flavor and mass basis.

A.1 Interactions with one flavon field

We begin with the flavon couplings

L ⊃ ỹij

(
S

Λs

)ñij
Q′iΦ̃U

′
j + yij

(
S

Λs

)nij
Q′iΦD

′
j +H.c., (76)

where we now explicitly denote quark fields in the flavor basis with primes. After symmetry
breaking the couplings become

L ⊃ vφ√
2

(
1 +

φ

vφ
+ ñij

σ

vs

)
ỹijε

ñij
s u′Liu

′
Rj (77)

+
vφ√

2

(
1 +

φ

vφ
+ nij

σ

vs

)
yijε

nij
s d′Rid

′
Lj +H.c. (78)

Defining Yij ≡ yijε
nij
s and Ỹij ≡ ỹijε

ñij
s , we can diagonalize the Yukawa coupling matrices as

in the SM [55]

(Yu)
2 = U †uỸ Ỹ

†Uu, (Yu)
2 = W †

uỸ
†Ỹ Wu, (79)

(Yd)
2 = U †dY Y

†Ud, (Yd)
2 = W †

dY
†YWd, (80)

where Uu/d and Wu/d are unitary matrices and Yu and Yd are diagonal. Consequently one
also has

Yu = U †uỸ Wu, Yd = U †dYWd. (81)

The CKM matrix is given by
VCKM = U †uUd. (82)

Applying the transformations

u′L = UuuL, u′R = WuuR, d′L = UddL, d′R = WddR, (83)
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we diagonalize the mass terms and Higgs couplings and obtain

L ⊃ mi
uuLiuRi

(
1 +

φ√
2

)
+mi

ddLidRi

(
1 +

φ√
2

)
+H.c. , (84)

where mi
u = Y i

uvφ/
√

2 and mii
d = Y i

dvφ/
√

2. In the mass basis the flavon interactions be-
come [56]

L ⊃ 1√
2

vφ
vs
σ
(
uLU

†
u(ñỸ )WuuR + dLU

†
d(nY )WddR

)
+H.c. , (85)

where (ñỸ )ij = ñijỸij and (nY )ij = nijYij. Note the matrices which rotate the Yukawa
couplings to bring us into the mass basis also rotate the flavon couplings. However, because
of the nij factor, these rotations do not bring the flavon couplings into a diagonal form. The

flavon couplings, Cu ≡ (vφ/vs)U
†
u(ñỸ )Wu and Cd ≡ (vφ/vs)U

†
d(nY )Wd can be approximated

by

Cij
u = (1 + δij[ñij − 1])εñijs

vφ
vs
, (86)

Cij
d = (1 + δij[nij − 1])εnijs

vφ
vs
. (87)

In this approximate form the factors nij do not appear in the off-diagonal couplings [11].
The rotation helps to reduce the magnitude of these entries. To see intuitively why this
occurs, note that, if all nij were the same, the rotation would bring the flavon couplings into
diagonal form, erasing these entries.

A.2 Higher order interactions

The original Lagrangian also contains higher order flavon interactions. These are particu-
larly important for model B, in which the χ flavon has a suppressed VEV. After symmetry
breaking, the interactions with no vχ insertions become

L ⊃ vφ√
2

(
uLU

†
u(F̃χñ)WuuR + dLU

†
d(Fχn)WddR

)
+H.c. , (88)

where the rotation now acts on the matrices with entries

(F̃χñ)ij = f̃ij

(
χ√
2Λχ

)m̃ij
, (89)

(Fχn)ij = fij

(
χ√
2Λχ

)mij
. (90)

Hence the dimension of the interaction is also mixed when going from the flavor to the quark
mass basis.

B Experimental Constraints on a light flavon

The nature of the constraints on the flavon σ depends on whether it is heavier or lighter
than the neutral kaon K. We denote mσ > MK (mσ < MK) the heavy (light) scalar case.
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Figure 9: Diagram contributing to neutral meson oscillations. The number of 〈S〉 insertions
depends on the FN charges of the quarks. Each VEV insertion leads to a suppression of order
εs = 〈S〉/Λs.

B.1 Heavy scalar case, mσ > MK

The off diagonal terms allowed by the FN charges in the Yukawa couplings generate the
CKM mixing. They also lead to tree level flavor changing neutral currents (FCNCs) such
as neutral meson oscillations as shown in figure 9. For example, consider the terms relevant
for K −K oscillations

L =

(
S

Λs

)5

Q2LΦD1R +

(
S

Λs

)5

Q1LΦD2R +H.c.

→ ε4s
vφ

2Λs

σ
(
sRd+ dLs+ dRs+ sRd

)
, (91)

where the second line is generated after spontaneous symmetry breaking, L and R are the
usual left and right projection operators and we have suppressed the O(1) coefficients. Such
terms induce Wilson coefficients at tree level which contribute to the effective Hamiltonian

H = Csd
2 (sLd)2 + C̃sd

2 (sRd)2 + Csd
4 (sLd)(sRd) +H.c. (92)

The Wilson coefficients are given by

Csd
2 =

(
ε4svφ

2Λsmσ

)2

, C̃sd
2 =

(
ε4svφ

2Λsmσ

)2

, Csd
4 =

(
ε4svφ

2Λsmσ

)2

. (93)

Limits on these Wilson coefficients have been derived by the UTfit collaboration [38] (we
use the updated limits presented in [39]). The most stringent constraint is set on Im[Csd

4 ]
and reads |Im[Csd

4 ]| . 3.8× 10−18 GeV−2. This gives a limit√
Λsmσ & 10 TeV ( from Im[Csd

4 ] ). (94)

The other constraints are√
Λsmσ & 2.4 TeV ( from Re[Csd

4 ] ), (95)√
Λsmσ & 6.7 TeV ( from Im[Csd

2 ] ), (96)√
Λsmσ & 1.7 TeV ( from Re[Csd

2 ] ). (97)
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Figure 10: Left: Primakoff process. Right: inelastic scattering mediated through the effective
Yukawa. Similar diagrams exist with the electron replaced by a quark and photons replaced with
gluons for both processes.

The limits on Csd
2 also apply to C̃sd

2 , so similar limits apply to other choices of Yukawas, but
we do not quote them here. We have also ignored renormalization group evolution which
will mix the various Wilson coefficients below the scale of mσ. From the discussion above
we can see however, that there is a broadly applicable constraint,

√
Λsmσ & few TeV, for

O(1) Yukawas, even if some of the dimensionless coefficients are smaller than unity, which
may lower some of the individual bounds. Limits of

√
Λsmσ & few TeV are also obtained

from Wilson coefficients contributing to B −B and D −D mixing [38,39].

B.2 Light scalar case, mσ < MK

We now consider the possibility mσ < MK . Again, σ will mediate tree level neutral me-
son oscillations. A simple estimate of the resulting constraint is obtained by replacing the
propagator

1

q2 −m2
σ

→ 1

m2
K

, (98)

as q2 � m2
σ. The constraint eq. (94) now becomes

Λs & 108 GeV ( Im[Csd
4 ] ). (99)

Again, the other mixing effects give similar constraints. So we take

Λs & 108 GeV (100)

as a bound from neutral meson oscillations in the light scalar case.
We now turn our attention to cosmological constraints. We saw in Section 4.1, eq. (36),

that for σ to change from Λs to 0.2Λs during the EWPT, this requires

mσ .

√
λφv

2
φ

Λs

, (101)

i.e. mσ . 0.2 MeV for Λs & 108 GeV. After the EWPT, loops of SM quarks generate a term
in the Lagrangian of the form

L ∼ σ

Λs

FµνF
µν . (102)
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This induces a decay of the flavon s→ γγ, which is the only decay channel open for such a
light scalar. The decay rate is given by

Γ(σ → γγ) ∼ m3
σ

Λ2
s

. (103)

Limits on light scalars interacting with and decaying to photons have been derived in refs. [57,
58, 29]. The cosmological evolution of the σ number density in our scenario proceeds as
follows. Above the EWPT σ comes into thermal abundance through scatterings such as tc↔
σφ. Once the top gains mass at the EWPT, this process rapidly drops out-of-equilibrium.
The dominant interactions are then the Primakoff process (both gluon and photon initiated)
and inelastic scattering mediated through the effective Yukawa of σ, yeff ∼ mq/Λs, shown in
figure 10. Above T ∼ ΛQCD the gluon initiated Primakoff process has a rate

ΓA ∼
αsT

3

Λ2
s

for T & ΛQCD, (104)

where αs is the strong fine structure constant. Hence the Primakoff process drops out of
equilibrium at a temperature

TFO ∼ 0.1 GeV

(
Λs

108 GeV

)2

. (105)

Below T ∼ ΛQCD, the rate is rapidly suppressed by the falling initial state nucleon or pion
abundance and the confinement of color charge. The photon initiated Primakoff process is
slightly weaker above ΛQCD but is not suppressed below it.

Above T ∼ ΛQCD the gluon initiated inelastic scattering process has a rate

ΓB ∼ αs

(
mb

Λs

)2

T for T & ΛQCD , (106)

and comes into equilibrium at a temperature

TEQ ∼ 100 GeV

(
108 GeV

Λs

)2

. (107)

Below T ∼ ΛQCD, the rate is rapidly suppressed by the massive propagator, the falling initial
state nucleon or pion abundance and the confinement of color charge. Again there is also
a slightly weaker photon initiated process, which is now also suppressed below T ∼ ΛQCD,
because of the falling initial state abundance.

Combining these estimates with the mass relation (101) means that in our scenario σ al-
ways freezes out at TFO � mσ. Hence the limits of ref. [29] apply (the additional interactions
in this scenario result in a larger freeze-out abundance, YFO, which work to make the limits
stronger, compared to the case considered in [29], in which the only interaction considered
is the photon initiated Primakoff effect). Light scalars decaying to photons can e.g., disturb
BBN by changing nB/nγ, decrease the effective number of neutrinos by preferentially heating
the electron/photon bath, distort the CMB, lead to excess extragalactic background light
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Figure 11: One loop diagram leading to Bs −Bs oscillations for QFN(X) = −1.

and alter the ionization history of primordial hydrogen. Applying the constraints derived by
the detailed study in [29] shows that our light scalar is constrained to a region of parameter
space where

Λs & 1012 GeV and mσ . 100 eV . (108)

For even lighter scalars, mσ . 1 eV, there are also bounds from long range forces [59], but
we do not consider this range of parameter space here.

C Constraints on a second FN field with negligible

VEV today

C.1 Constraints on Λχ for QFN(X) = −1 (Model B-2)

In model B, if the second scalar χ has zero (or negligible) VEV vχ today, the above tree level
constraints do not apply. We therefore examine now the loop level constraints. The limits
on the χ sector are weakened as VEV insertions are replaced by loop factors.

We first examine the constraints for QFN(X) = −1, assuming again a mass splitting
arising from a source of explicit symmetry breaking, giving mχ < mη. At one-loop level,
Bs−Bs oscillations come from the exchange of χ and η, as depicted in figure 11. The integral
is effectively regulated by η (if mη > Λχ, we should simply cut-off the integral at Λχ). The
contribution to the Cbs

2 Wilson coefficient is estimated to be

|Cbs
2 | ≈

(
vφ

2Λ2
χ

)2{
1

(4π)2

(
1

2

m2
χ +m2

η

m2
χ −m2

η

Log

[
m2
χ

m2
η

]
− 1

)}
, (109)

where the term in the curly brackets comes from the loop integral. Note that, as required,
this term approaches zero as mχ → mη. The contribution from the integral typically takes on
values ∼ 0.01. The constraint on the Wilson coefficients reads |Cbs

2 | < 3.8×10−12 GeV−2 [39].
This gives us a constraint

Λχ & 2 TeV ( from |Cbs
2 | ). (110)

After rotation to the mass basis (see Appendix A.2), one finds that a similar one-loop process
also contributes to K −K oscillations. Taking into account the suppression of the coupling
by ∼ ε3s from the rotation, one finds a similar limit as in eq. (110). Another important
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constraint comes from D−D oscillations at tree level. The reason is that the rotation from
the flavor into the mass basis leads to a coupling

f̃32
vφ

2Λχ

χt′Lc
′
R → f̃32

vφ
2Λχ

U32∗
u W 21

u χcLdR + f̃32U
31∗
u W 22

u

vφ
2Λχ

χdLcR. (111)

Numerically we find the typical suppression of the coupling from the rotation is ∼ ε4s. Com-
paring to the experimental constraint, |Ccu

2 | < 1.6× 10−13 GeV−2 [39], one finds a limit√
Λχmχ & 500 GeV ( from |Ccu

2 | ). (112)

Note the qualitative different form of this limit means it particularly constraining on this
scenario. The limit can be weakened if there is an accidental cancellation in the rotation, or
if the pseudoscalar mass is close to mχ. We must assume one (or both) of these in order to
have Λχ ∼ 1 TeV with mχ ∼ 10 GeV in model B-2. (The presence of a light pseudoscalar is
expected to have only negligible effect of the analysis of the phase transition.) Numerically
a cancellation in the rotation at the ∼ 10 % level is sufficient. Alternatively this constraint
can be evaded if X couples only to the bottom type quarks, or if the pattern of charges
is altered so that there are no single power of X coupling to up type quarks [11]. In both
cases that strength of the phase transition is not expected to be altered much, but the χ and
exotic top decays, discussed above, will be weakened (or possibly non-existent for the top).

At two-loop level we have a contribution to the Cbd
2 Wilson coefficient, which is con-

strained to be |Cbd
2 | < 2.7 × 10−13 GeV−2 [39]. We approximate the two loop contribution

to the Wilson coefficient as

|Cbd
2 | ≈

(
vφ

4Λ4
χ

)2{
1

(16π)2
Λ4
χ

}
. (113)

Taking the integral to be cut-off at Λχ, we find a constraint

Λχ & 1.5 TeV ( from |Cbd
2 | ). (114)

The three-loop diagram contributing to D −D oscillations gives a weaker bound. However,
there is a dangerous four-loop integral contributing to K −K oscillations. This leads to a
constraint

Λχ & 2.5 TeV ( from |Csd
4 | ). (115)

Given some of these constraints can be suppressed by the dimensionless couplings, we take
a general constraint Λχ & 1 TeV for QFN(X) = −1 in our analysis of this scenario.

C.2 Constraints on Λχ for QFN(X) = −1/2 (Model B-1)

The constraints are even more relaxed for QFN(X) = −1/2 as the Wilson coeffcients are
generated at higher loop level. Bs−Bs oscillations now occur at three-loop level, as depicted
in figure 12. By cutting off the loop integrals at Λχ, the contribution to the Cbs

2 Wilson
coefficient is estimated as

|Cbs
2 | ≈

(
vφ

25/2Λ4
χ

)2{
1

(16π)3
Λ4
χ

}
, (116)
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Figure 12: Analagous diagram to figure 11 but for QFN(X) = −1/2. The lowest level diagram
occurs at three loop and leads to Bs −Bs oscillations.

where the term in the curly brackets is our estimate of the tree-loop contribution. The
constraint on the Wilson coefficient reads |Cbs

2 | < 3.8 × 10−12 GeV−2 [39], leading to the
constraint

Λχ & 250 GeV ( from |Cbs
2 | ). (117)

When rotating the χ4bL
′
s′R interaction into the mass basis, one also obtains a χ4sLdR inter-

action suppressed by a factor ∼ ε3s. Taking into account the limits on the relevant Wilson
coefficient, one finds

Λχ & 700 GeV ( from Im[Csd
4 ] ). (118)

We have also checked that the higher loop order diagrams for the Wilson coefficients do not
constrain Λχ more stringently for QFN(X) = −1/2.

D Effects of higher dimensional terms in the scalar po-

tential

In this section we look whether any modification to our scalar potential will affect our
conclusions. We illustrate this in the context of Models B where the arguments can be
simply explained, however we expect similar statements in Models A.

The main conclusion of this work is that a light scalar, either σ or χ is needed. To show
that this general conclusion does not depend on the specific form of the scalar potential, we
add a higher dimensional operator to the potential of Model B-1,

V =
µ2
φ

2
φ2 +

λφ
4
φ4 +

λφχ
4
φ2χ2 +

µ2
χ

2
χ2 +

λχ
4
χ4 +

1

8f 2
χ6. (119)

We want the flavon to have a VEV at the Froggatt–Nielsen scale before EW symmetry
breaking, vχ = Λχ, and zero VEV after EW symmetry breaking. This sets the relations

µ2
χ + λχv

2
χ +

3v4
χ

4f 2
= 0, (120)

µ2
φ + λφv

2
φ = 0. (121)
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Figure 13: Parameter space for model B including the higher dimensional operator χ6/f2 and
choosing λχ to be negative. The shaded areas are disallowed as inequality (122) is violated. Large
contributions to mχ (shown by the dashed lines) can only be achieved by a fine tuning between
the quartic coupling λχ and the χ6 interaction controlled by f . The additional free parameter λφχ
tends to give the dominant contribution to m2

χ as in the scenario without f .

(from now it is understood that vχ = Λχ denotes the initial flavon VEV). An additional
condition to obtain the VEV variation is that the EW minimum is deeper than the vχ
minimum and similarly, the vχ minimum should be deeper than the stationary point at the
origin. This gives a condition

0 > −λχv4
χ −

1

f 2
v6
χ > −λφv4

φ. (122)

This shows that, outside of fine tuning between the λχ and f 2 parameters, both terms wedged
in the inequality are at most ∼ O(λφv

4
φ), i.e. EW scale. The mass of the flavon is given by

m2
χ = µ2

χ +
λφχv

2
φ

2
= −λχv2

χ −
3v4

χ

4f 2
+
λφχv

2
φ

2
. (123)

The first and third terms can give positive contributions and their sum must be larger than
the negative contribution from the second term. Avoiding excessive fine tuning in eq. (122)
implies that the first two terms in eq. (123) are at most ∼ O(λφv

2
φ). Hence mχ is at most

EW scale. The situation is illustrated in figure 13, which shows the parameter space in
the λχ—f plane. Achieving a contribution to mχ ∼ 10 GeV requires already quite a bit of
tuning between λχ and f .

We now ask if our argument can be generalised to incorporate other possible dimension
six operators. The obvious possibilities are

φ2χ4, φ4χ2, φ6. (124)
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• The φ2χ4 contributes neither to the potential at the two minima, nor to the mass term,
and therefore has no effect on our above conclusions.

• The φ4χ2 term does not contribute to the potential at the two minima, but it con-
tributes a factor ∼ v4

φ/f
2
2 to m2

χ. Again, this is at most EW scale, if we demand
the UV completion scale f2 to lie above the EW scale. Hence our conclusions remain
unchanged.

• The φ6 term does not contribute tom2
χ but it does contribute to V at the EW minimum.

It can make the EW minimum deeper and therefore alleviate tuning for larger choices
of |λχv4

χ| and v6
χ/f

2. However, its contribution to V is ∼ v6
φ/f

2
3 , which is again at most

the EW scale, and this term does not change our conclusions.

We expect similar conclusions to hold for model A. However, because the flavon in model
A retains a VEV at the EW minimum, it is more difficult to provide a clear analytical
argument showing that higher dimensional operators in the potential do not help increasing
the flavon. We have not found areas of parameter space, when including higher dimensional
operators ,which give a large flavon mass, mσ & v2

φ/Λs. Again this can be understood as a
consequence of requiring a flat potential in the σ direction, in order for the flavon VEV to
change by a value of order ∼ Λs, when the Higgs acquires a VEV of order ∼ vφ.

E Exact Z2 Symmetry: ruled out by Dark Matter con-

straints

In Model B-1, there is a Z2 symmetry associated with the scalar potential of the second FN
field χ. If the Z2 is exact then χ is stable and we show here that this leads to unacceptable
dark matter phenomenology. The leading annihilation channel for χ is through the Higgs
portal [62], which is by now highly constrained [63–66]. Cross sections may be found in
ref. [66]. In our discussion we use the approximation s ≈ 4m2

χ at freeze out. The required
relation between λφχ and mχ for Higgs portal DM is met by eq. (54) at only one point, at
mχ ≈ 50 GeV, as shown in figure 14. (The resonance region is slightly broader than in our
approximation when the thermal average of the cross section is properly taken into account.
The peak just below the W mass is also lower if the thermal average is performed and misses
the model B λφχ – mχ relation by a greater extent than what is shown in figure 14 [66]).
This point is ruled out by constraints from direct detection [60, 61] and the limit on the
Higgs width [35]. Indeed apart from the resonant regime — in which our model will lead
to a subdominant contribution of χ to the DM abundance — the model with an exact Z2

symmetry is ruled out up to a mass mχ ≈ 380 GeV. For masses away from the resonance
and below 380 GeV the χ abundance either overcloses the universe or leads to DM-nucleon
scattering above the direct detection constraint. (The χ-nucleon scattering cross section
scales as λ2

φχ, while the abundance scales as λ−2
φχ , so an approximate estimate of the region

excluded by direct detection can be found by finding mass regions where the usual Higgs
portal DM is still allowed [64], this is shown on the right panel of figure 14.) For much of
the parameter space we either require a breaking of the Z2 symmetry or new annihilation
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Figure 14: Left: the black lines show eq. (54), the relation between mχ and λφχ for model B. The
upper line corresponds to λχ = 10−3.4 and the lower line to λχ = 10−4.2, which approximately spans
the parameter space leading to strong first-order phase transitions. The red region is ruled out by
the Higgs signal strength measurement as described in section 5.1.3. The blue region is ruled out
by the measured DM abundance in the exact Z2 case. Right: The approximate spin independent
χ-nucleon scattering cross section for model B in the exact Z2 case, areas above the yellow line are
ruled out by LUX (2016) [60,61].

channels for χ in order to avoid overclosure. In our analysis we only retain the case with
explicit breaking of the Z2 symmetry.
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