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Abstract

For systems of unstable particles that mix with each other, an approximation of
the fully momentum- dependent propagator matrix is presented in terms of a sum
of simple Breit–Wigner propagators that are multiplied with finite on-shell wave
function normalisation factors. The latter are evaluated at the complex poles of the
propagators. The pole structure of general propagator matrices is carefully analysed,
and it is demonstrated that in the proposed approximation imaginary parts arising
from absorptive parts of loop integrals are properly taken into account. Applying the
formalism to the neutral MSSM Higgs sector with complex parameters, very good
numerical agreement is found between cross sections based on the full propagators
and the corresponding cross sections based on the described approximation. The
proposed approach does not only technically simplify the treatment of propagators
with non-vanishing off-diagonal contributions, it is shown that it can also facilitate
an improved theoretical prediction of the considered observables via a more precise
implementation of the total widths of the involved particles. It is also well-suited
for the incorporation of interference effects arising from overlapping resonances.
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1 Introduction

As a consequence of electroweak symmetry breaking, particles with the same quantum
numbers of the electric charge and colour can mix with each other. This is reflected
in their propagators contributing to production or decay processes in particle physics.
Beyond lowest order those propagators receive contributions from all possible mixings
with other particles, such that the propagators of the system of particles that can mix
with each other are of matrix-type. Since the involved particles are in general unstable,
a proper treatment of imaginary parts is necessary. The mass of an unstable particle
is determined from the real part of the (gauge-invariant) complex pole [1–4], while the
imaginary part yields the total decay width of the particle. The eigenstates associated
with the masses obtained from the complex poles of the propagator matrix in general
differ from the interaction eigenstates that contribute at lowest order.

As an example, in the Standard Model (SM) the neutral interaction eigenstates aris-
ing from the SU(2)I and U(1)Y gauge groups mix with each other to form the mass
eigenstates photon, γ, and Z. Higher-order contributions lead to a mixing between these
states, giving rise to a γ−Z propagator matrix. In a renormalisable gauge, the (would-be)
Goldstone boson as an unphysical degree of freedom does not vanish, and mixing contri-
butions with this unphysical scalar particle need to be taken into account as well. In the
quark sector of the SM the relation between the interaction and the mass eigenstates is
encoded in terms of the CKM matrix [5,6]. The additional states in models of physics be-
yond the SM (BSM) usually follow the same pattern, i.e. interaction eigenstates mix with
each other to form mass eigenstates, and the propagators of the latter are of matrix-type
as a consequence of mixing contributions at higher orders (in some cases it can also be
convenient to derive loop-corrected mass eigenstates directly from lowest-order interaction
eigenstates, avoiding the introduction of lowest-order mass eigenstates). In particular, ex-
tended Higgs sectors usually contain several neutral Higgs states that can mix with each
other. If CP-conservation is assumed, CP-even and CP-odd states can only mix among
themselves. In the general case where the possibility of CP-violating interactions affect-
ing the Higgs sector is taken into account, non-vanishing mixing contributions can occur
between all neutral Higgs bosons of the model. Examples are general two-Higgs-doublet
models, the Higgs sector of the minimal supersymmetric extension of the SM (MSSM), as
well as the Higgs sectors of non-minimal supersymmetric models. Similarly, propagator
mixing between vector resonances can occur for instance for the Kaluza–Klein excitations
of the Z-boson and the photon (Z ′ and A′, respectively), which can have similar masses
and have a large mixing with each other [7]. New, possibly nearly degenerate vector
bosons can also arise in extended gauge symmetries and theories with a strongly coupled
sector, e.g. composite Higgs models. For the case of the mixing of two Z ′-like vectors, see
e.g. Ref. [8]. An example involving mixing with a new fermion is the mixing between the
top quark t and a top partner t′ [9].

In order to properly treat external particles in physical processes, the correct on-shell
properties of in- and outgoing particles have to be ensured. While the S-matrix theory is
formulated only for stable in- and outgoing states [10], in practical applications one often
needs to deal with the case of unstable external particles. The proper normalisation of
external particles requires in particular that all external particles are on their mass shell,
that their residues are equal to one, and that the mixing contributions with all other
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particles vanish on-shell at the considered order. This requirement holds independently
from the specific renormalisation scheme that has been adopted for a certain calculation.
In case the renormalisation conditions of the chosen scheme do not impose the proper
normalisation of external particles, the correct on-shell properties need to be established
via UV-finite wave function normalisation factors (“Z-factors”). In the case of unstable
particles, finite-width effects have to be taken into account, and more generally imaginary
parts arising from the absorptive parts of loop integrals need to be properly treated. A
further complication arises if CP-violating effects are taken into account, since in this case
the presence of complex parameters yields an additional source of imaginary parts. In the
SM the different sources of imaginary parts affect for instance the renormalisation of the
CKM matrix from the two-loop level onwards, see e.g. the discussion in Ref. [11] and ref-
erences therein. In the MSSM with complex parameters the corresponding effects arising
from absorptive parts of loop integrals and complex model parameters enter predictions
for physical observables in the chargino and neutralino sector already at the one-loop
level, see Refs. [12–14].

In the present paper we demonstrate that on-shell wave function normalisation fac-
tors, evaluated at the complex poles, are well suited for approximating the full mixing
propagators also off-shell. In order to achieve this, the elements of the propagator matrix
are expressed in terms of simple Breit–Wigner propagators that are multiplied with wave
function normalisation factors. We show for various examples that this approximation
works very well in practice. In fact, besides very significant technical simplifications our
approach also has conceptual advantages.

Concerning technical simplifications, the evaluation of the propagator matrix for a
given value of the external momentum squared requires the full momentum dependence
of all contributing diagonal and off-diagonal self-energies. In our approximation based on
wave function normalisation factors that are evaluated at the complex poles, on the other
hand, the only momentum dependence that needs to be taken into account is the one of
the simple Breit–Wigner propagators. We emphasize that our approach goes significantly
beyond a simple “effective coupling”-type approximation where all external momenta at
the loop level are neglected. While the latter approximation would disregard the impor-
tant absorptive parts of the loop functions, those contributions are taken account in our
approach through the evaluation of the Z-factors at the complex poles. We will demon-
strate in particular that expanding the full propagators around all of their complex poles
indeed results in the sum of Breit–Wigner propagators in combination with on-shell Z-
factors. Approximating the full propagator matrix in this simple and convenient way has
several conceptual advantages. In particular, the formulation in terms of Breit–Wigner
propagators and Z-factors facilitates the implementation of a more precise total width
than the width obtained from the imaginary part of the complex pole with self-energies
evaluated at the same order. Furthermore, for states with masses that are nearly degen-
erate (i.e. the difference between the masses of the two states is of the same order as the
sum of the total widths of the two states) the mixing becomes resonantly enhanced and
the resonances overlap, see e.g. Refs. [7–9, 15–17]. In such a case a single-pole approxi-
mation is not applicable [7, 8, 16]. Instead, the contributions from the relevant complex
poles of the propagators have to be taken into account. The approximation of the prop-
agator matrix in terms of on-shell wave function normalisation factors evaluated at the
complex poles and Breit–Wigner propagators allows the implementation of interference
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contributions using the prescription of Ref. [16].

We perform in this paper a careful treatment of imaginary parts and analyse the pole
structure of matrix-type propagators in detail. While in the no-mixing case every element
of an (n × n) propagator matrix has a single pole, we will demonstrate that in general
every single element of an (n×n) propagator matrix (diagonal and off-diagonal) by itself
has n poles. This fact makes the association of the (loop-corrected) mass eigenstates with
the propagator poles non-trivial. We will show that in principle all permutations of the
n propagator poles with the n mass eigenstates are physically equivalent. For practical
purposes, however, it is important to make a choice that leads to numerically stable and
well-behaved results.

To be specific, in the following we use the language of the Higgs sector of the MSSM
with complex parameters. In this case CP-violating effects entering at the loop level
give rise to a mixing between the lowest-order mass eigenstates h,H,A, which are CP-
eigenstates (h,H are CP-even states, while A is a CP-odd state). The (3 × 3) mixing
between the neutral Higgs states is the smallest type of propagator mixing that exhibits
the qualitative features of general (n× n) propagator matrices. Furthermore, the MSSM
example is well-suited to emphasise the distinction between interaction eigenstates (in this
case the component field of the two Higgs doublets, e.g. φ1 and φ2), lowest-order mass
eigenstates (h,H,A) and loop-corrected mass eigenstates, which in the MSSM case are
called h1, h2, h3. The MSSM case also illustrates the possibility of mixing with other spin
states (γ, Z) and with unphysical degrees of freedom (G). An important feature of models
like the MSSM is the fact that the masses are predicted from the input parameters of the
model, which makes the need for an appropriate assignment of mass eigenstates with
propagator poles particularly apparent. The generalisation of our results to other models,
cases with (n× n) mixing for n > 3 and other spin states should be straightforward.

The paper is organised as follows. After reviewing aspects of higher-order contri-
butions and mixing effects in a system of three scalar states in Section 2, we derive the
pole structure of the propagator matrix and resulting relations between the wave function
normalisation factors in Section 3. An analytical derivation of the multi-Breit–Wigner ap-
proximation of the full propagators is given in Section 4. We perform a detailed numerical
comparison of the two approaches in Section 5 before we conclude in Section 6.

2 Loop-level mixing of scalar propagators

In a system of n particles which have the same conserved quantum numbers in general a
non-trivial mixing between the different states will occur. While at lowest order the mass
matrix given in terms of the interaction eigenstates can be diagonalised in order to obtain
the mass eigenstates, at the loop level momentum-dependent self-energy corrections enter.
These contributions give rise to a momentum-dependent (n×n) propagator matrix which
is in general non-diagonal. The physical masses that are associated with the loop-corrected
propagator matrix need to be determined from the (complex) poles of the propagator
matrix.

While the case of (2 × 2) mixing provides the minimal setup for studying such a
propagator structure, the issue of how to associate the mass eigenstates with the n poles
of the propagator matrix becomes fully apparent only from the (3×3) case onwards. The
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case of (3× 3) mixing captures all relevant aspects of the pole structure and permutation
of the states so that the conclusions can be generalised for larger mixing systems.

For illustration and definiteness we use in this paper the language and the formalism
of the neutral Higgs sector of the MSSM with CP-violating mixing, i.e. for the three lowest-
order mass eigenstates i, j, k = h,H,A and their mixing into the loop-corrected mass
eigenstates ha, a = 1, 2, 3. Since the analytic discussions in Chapters 2-4 do not rely on
any model-dependent relations of the MSSM, the results can be transferred also to scalar
sectors of other models by replacing h,H,A by a different set of i, j, k, and analogously ha
by a general Xa, where the generalisation to the case of mixing among more than three
particles should be straightforward. Upon incorporation of the appropriate spin structure,
the results can also be generalised to the case of mixing propagators of vector bosons or
fermions.

The Higgs propagators in the MSSM in fact receive contributions from the mixing
with the longitudinal components of the neutral gauge bosons Z and γ. While the Z-
boson propagator contributes to the diagonal elements of the Higgs propagator matrix
at the two-loop level, the photon enters in those elements only at the four-loop level.
Besides the mixing with the longitudinal component of the Z boson, also the mixing with
the unphysical (would-be) Goldstone boson G needs to be taken into account. Instead of
considering a (6 × 6) propagator matrix of the states {h,H,A,G,Z, γ}, we focus on the
full mixing contributions of the physical Higgs fields, i.e. we treat the case of a (3 × 3)
propagator matrix (which would generalise to (n × n) for the case of n physical scalar
fields). For the (3 × 3) propagator matrix of physical Higgs fields, higher-order effects
from the inversion of the matrix of the irreducible 2-point vertex functions are taken into
account. In contrast, we treat the mixing contributions with the gauge bosons and the
(would-be) Goldstone boson in a strict perturbative expansion up to the desired order.
It should be noted that Higgs–G/Z mixing contributions already appear at the one-loop
level in processes with external Higgs bosons, see e.g. Refs. [12, 14, 18, 19], and therefore
need to be included in order to obtain a complete one-loop result for processes of this
kind. For contributions to the propagator matrix with an incoming and outgoing Higgs
boson the mixing contributions with G and Z enter from the order of (Σ̂i,G/Z)2 onwards,
which is of subleading two-loop order. For our numerical analysis below, see Sect. 5, we
will use use the program FeynHiggs [20–23], where dominant two-loop corrections and
leading higher-order contributions are incorporated in the irreducible self-energies. Since
sub-leading two-loop contributions that are of the same order as the mixing contributions
with G and Z [15] are neglected in this analysis, we include no further corrections beyond
the (3× 3) propagator matrix of the physical Higgs fields in this case.

In this section we introduce the relevant quantities and fix our notation for the
propagator matrix and the wave function normalisation factors, see Refs. [13, 15, 18, 19,
24–29]. In Sect. 3 we will analyse the pole structure of propagator matrices of unstable
particles.

2.1 Propagator matrix and the effective self-energy

As explained above, we use the case of the MSSM with complex parameters in order to
illustrate propagator mixing between three physical scalar fields. If CP were assumed to
be conserved in the MSSM, the CP-violating self-energies would vanish, Σ̂hA = Σ̂HA = 0,
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so that only the two CP-even states h and H would mix with each other. Our treatment
corresponds to the case where non-zero phases from complex parameters are taken into
account. Hence all renormalised self-energies Σ̂ij(p

2) of the Higgs bosons i, j = h,H,A are
in general non-vanishing, so that the matrix M of mass squares consists of the tree-level
masses m2

i on the diagonal and renormalised self-energies on the diagonal and off-diagonal
entries. Expressed in terms of the lowest-order mass eigenstates h,H,A, which are also
CP eigenstates, the matrix takes the form

M(p2) =

m2
h − Σ̂hh(p

2) −Σ̂hH(p2) −Σ̂hA(p2)

−Σ̂Hh(p
2) m2

H − Σ̂HH(p2) −Σ̂HA(p2)

−Σ̂Ah(p
2) −Σ̂AH(p2) m2

A − Σ̂AA(p2)

 . (1)

The renormalised irreducible 2-point vertex functions

Γ̂ij(p
2) = i

[
(p2 −m2

i )δij + Σ̂ij(p
2)
]

(2)

can be collected in the 3× 3 matrix Γ̂hHA in terms of M as

Γ̂hHA(p2) = i
[
p21−M(p2)

]
. (3)

Finally, the propagator matrix ∆hHA equals, up to the sign, the inverse of Γ̂hHA,

∆hHA(p2) = −
[
Γ̂hHA(p2)

]−1

. (4)

Accordingly, the matrix inversion yields the individual propagators ∆ij(p
2) as the the (ij)

elements of the 3× 3 matrix ∆hHA(p2),

∆hHA =

∆hh ∆hH ∆hA

∆Hh ∆HH ∆HA

∆Ah ∆AH ∆AA

 . (5)

The off-diagonal entries (for i 6= j) result in:

∆ij(p
2) =

Γ̂ijΓ̂kk − Γ̂jkΓ̂ki

Γ̂iiΓ̂jjΓ̂kk + 2Γ̂ijΓ̂jkΓ̂ki − Γ̂iiΓ̂2
jk − Γ̂jjΓ̂2

ki − Γ̂kkΓ̂2
ij

. (6)

All 2-point vertex functions Γ̂(p2) depend on p2 via Eq. (2). Here we do not write the
p2-dependence explicitly for the purpose of a simpler notation, but the full p2-dependence
is implied also below. The solutions of the diagonal propagators, ∆ii, can be expressed in
the following compact way:

∆ii(p
2) =

Γ̂jjΓ̂kk − Γ̂2
jk

−Γ̂iiΓ̂jjΓ̂kk + Γ̂iiΓ̂2
jk − 2Γ̂ijΓ̂jkΓ̂ki + Γ̂jjΓ̂2

ki + Γ̂kkΓ̂2
ij

(7)

=
i

p2 −m2
i + Σ̂eff

ii (p2)
, (8)
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where the effective self-energy is introduced,

Σ̂eff
ii (p2) = Σ̂ii(p

2)− i
2Γ̂ij(p

2)Γ̂jk(p
2)Γ̂ki(p

2)− Γ̂2
ki(p

2)Γ̂jj(p
2)− Γ̂2

ij(p
2)Γ̂kk(p

2)

Γ̂jj(p2)Γ̂kk(p2)− Γ̂2
jk(p

2)
. (9)

It contains the diagonal self-energy, Σ̂ii (which exists already at 1-loop order), and the
mixing 2-point functions (whose products only contribute to Σ̂eff

ii from 2-loop order on-
wards). Hence, replacing the pure self-energy Σ̂ii by the effective one, Σ̂eff

ii , includes also
the 3× 3 mixing contributions to the diagonal propagator in Eq. (8) while preserving for-
mally the structure of the propagator as in the unmixed case. In the limit of no mixing,
the second term in Eq. (9) vanishes.

The composition of Σ̂eff
ii in terms of the unmixed and the mixing contributions in

Eq. (9) can be written in the alternative way [13,30,31]

Σ̂eff
ii (p2) = Σ̂ii(p

2) +
∆ij(p

2)

∆ii(p2)
Σ̂ij(p

2) +
∆ik(p

2)

∆ii(p2)
Σ̂ik(p

2) (10)

for i, j, k all different. Eq. (10) represents the sum of the diagonal and off-diagonal self-
energies involving a Higgs boson i where the off-diagonal contributions are weighted by
the ratios of the respective off-diagonal and the diagonal propagators. This expression
follows from Eq. (9) with the help of the equality

∆ij

∆ii

= − Γ̂ijΓ̂kk − Γ̂jkΓ̂ki

Γ̂jjΓ̂kk − Γ̂2
jk

= − Σ̂ij (Dk + Σ̂kk)− Σ̂jkΣ̂ki

(Dj + Σ̂jj) (Dk + Σ̂kk)− Σ̂2
jk

, (11)

where the shorthand

Di(p
2) = p2 −m2

i (12)

has been used, analogously for j ↔ k, and Σ̂ij = −iΓ̂ij from Eq. (2) with i 6= j (for the
special case of (2×2) mixing, this relation can be directly read off from Eqs. (44-46) given
below).

2.2 On-shell wave function normalisation factors

2.2.1 Complex poles

The complex poles M2
a, where a = 1, 2, 3, are determined as solutions of the equations

p2 −m2
i + Σ̂eff

ii (p2) = 0, (13)

with i = h,H,A, see Sect. 3 below. While the propagators have poles for p2 =M2
a, it is

interesting to note that the ratios of off-diagonal and diagonal propagators

R
(a)
ij :=

∆ij(p
2)

∆ii(p2)

∣∣∣∣
p2=M2

a

, (14)

stay finite at the complex poles M2
a, a = 1, 2, 3.
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2.2.2 Ẑ-matrix for on-shell properties of external particles

Higgs bosons appearing as external particles in a process need the appropriate on-shell
properties for a correct normalisation of the S-matrix. In the hybrid on-shell/DR renor-
malisation scheme [15], the masses are renormalised on-shell, but the DR renormalisation
conditions for the fields and tan β [15],

δZDR
H1

= −Re
[
Σ
′(div)
HH (m2

H)
]
α=0

, (15)

δZDR
H2

= −Re
[
Σ
′(div)
hh (m2

h)
]
α=0

, (16)

δ tan βDR =
1

2
(δZDR

H2
− δZDR

H1
), (17)

do not ensure proper on-shell properties of the Higgs bosons. In fact, the loop-corrected
mass eigenstates h1, h2, h3, which occur as external, on-shell, particles e.g. in decay pro-
cesses, are a mixture of the lowest order states h,H,A. Thus, finite wave function nor-
malisation factors need to be introduced in order to guarantee that the mixing vanishes
on-shell and that the propagators of the external particles have unit residue.

These so-called Z-factors for a neutral Higgs boson i = h,H,A on an external line are
obtained from the residue of the propagators at the complex poleM2

a, a = 1, 2, 3, [25,27]

Ẑa
i := ResM2

a

{
∆ii(p

2)
}
. (18)

Expanding Σ̂eff
ii (p2) around the complex pole p2 = M2

a, one obtains the diagonal propa-
gator

∆ii(p
2) =

i

p2 −m2
i + Σ̂eff

ii (p2)
=

i

p2 −M2
a

· 1

1 + Σ̂eff′
ii (M2

a) +O(p2 −M2
a)
. (19)

Performing the limit p2 →M2
a yields the residue of Eq. (18),

Ẑa
i =

1
∂
∂p2

i
∆ii(p2)

∣∣∣∣
p2=M2

a

=
1

1 + Σ̂eff′
ii (M2

a)
. (20)

Considering a diagram with the Higgs boson i on an external line, whose propagator has
three poles (see Sect. 3), there are three possibilities which residue to compute. If the
amputated Green’s function is evaluated at M2

a, the external i-line has to be multiplied

by
√
Ẑa
i for the correct S-matrix normalisation1. So the resulting mass eigenstate as an

outgoing particle is ha. Alternatively, if the Green’s function is evaluated at M2
b , it has

to be normalised by √
Ẑb
i =

1√
1 + Σ̂eff′

ii (M2
b)

(21)

1In order to avoid sign ambiguities, taking the square root of a Z-factor, which in general has two
solutions in the complex plane, refers here and in the following always to the principal square root, i.e. the
solution with a non-negative real part.
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to achieve the correct S-matrix element. For this choice, the external mass eigenstate is
hb. Moreover, the wave function normalisation factor for i− j mixing on an external on-

shell line at M2
a is composed of the overall normalisation factor

√
Ẑa
i times the on-shell

transition ratio

Ẑa
ij ≡ R

(a)
ij =

∆ij(p
2)

∆ii(p2)

∣∣∣∣
p2=M2

a

. (22)

Since ∆ii and ∆ij have – in the case of 3×3 mixing – 3 complex poles (see Sect. 3), any of

them can be chosen for the evaluation of Ẑi, Ẑij and Ẑik; in the considered example this

is M2
a. Correspondingly, Ẑj, Ẑji and Ẑjk will be evaluated at M2

b and Ẑk, Ẑki and Ẑkj at
M2

c where a, b, c are a permutation of 1,2,3, and i, j, k a permutation of h,H,A [18, 31].
For 2× 2 mixing, of course only the two indices involved in the mixing can be permuted.

All choices allowed by the mixing structure are generally possible because of the pole
structure of each propagator. However, they might not be equally numerically stable. If
the loop-corrected mass eigenstate ha contains only a small admixture of the lowest-order
state i, the propagator still has a pole atM2

a, but the contribution of i to ha is suppressed
at p2 6=M2

a.

In order to be definite, it is in any case necessary to define at which pole to evaluate
which normalisation and mixing Ẑ-factor. This choice corresponds to fixing an assignment
between the indices i, j, k of the lowest-order states and the indices a, b, c of the higher-
order mixed states and then using it consistently. The assignment (i, a), (j, b), (k, c), which
we label as scheme I, prescribes to evaluate Ẑi, Ẑij and Ẑik atM2

a. Once the indices have
been assigned we can clear up the notation by writing

Ẑa
∣∣
I

:= Ẑa
i , Ẑaj

∣∣
I

:= Ẑa
ij, Ẑbi

∣∣
I

:= Ẑb
ji , (23)

and accordingly for the other indices such that the first index always refers to a loop-
corrected mass eigenstate (a, b, c ∈ {1, 2, 3})2 and the second index to a lowest-order state
(i, j, k ∈ {h,H,A}). Note that Ẑai = Ẑbj = Ẑck ≡ 1 in the index scheme I defined above.
Once the index scheme has been specified, one can leave out the subscript I. For the
scheme-independence of physical results, see Sect. 3.2.

Furthermore, it is convenient [15] to arrange the products of the normalisation factors√
Ẑa and transition ratios Ẑaj as

Ẑaj =

√
ẐaẐaj (24)

(note the difference between Ẑaj and Ẑaj) into a non-unitary matrix:

Ẑ =


√
Ẑ1Ẑ1h

√
Ẑ1Ẑ1H

√
Ẑ1Ẑ1A√

Ẑ2Ẑ2h

√
Ẑ2Ẑ2H

√
Ẑ2Ẑ2A√

Ẑ3Ẑ3h

√
Ẑ3Ẑ3H

√
Ẑ3Ẑ3A

 . (25)

The Ẑ-matrix defined in Eq. (25) fulfils the on-shell conditions (unit residue and vanishing

2This index notation differs from the conventions in Refs. [13, 15,18,19,29].
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mixing), which can be written in the following compact form [13,18,19,30]:

lim
p2→M2

a

− i

p2 −M2
a

(
Ẑ · Γ̂hHA · Ẑ

T
)
hh

= 1, (26)

lim
p2→M2

b

− i

p2 −M2
b

(
Ẑ · Γ̂hHA · Ẑ

T
)
HH

= 1, (27)

lim
p2→M2

c

− i

p2 −M2
c

(
Ẑ · Γ̂hHA · Ẑ

T
)
AA

= 1, (28)

with vanishing off-diagonal entries. It is equally possible to begin with these equations
(26-28), i.e. to require unit residues and to demand vanishing mixing on-shell, to derive
the elements of the Ẑ-matrix whose solutions are given in Eqs. (20) and (22).

In Ref. [18] the evaluation at the full complex poles and the inclusion of imaginary
parts were introduced (see Eq. (35) below for the treatment of loop functions of complex
arguments). The evaluation at the complex poles leads to numerically more stable results
than the evaluation at real p2 = M2

ha
, as well as to the physically equivalent choices

of index assignments. The calculation of the Ẑ-factors of MSSM Higgs bosons can be
performed with the program FeynHiggs.

2.3 Use of Ẑ-factors for external states

The Ẑ-factors have been introduced for the correct normalisation of matrix elements with
external (on-shell) Higgs bosons ha, p

2 =M2
a. It should be noted that Ẑ does not provide

a unitary transformation between the basis of lowest-order states and the basis of loop-
corrected mass eigenstates. The fact that Ẑ is a non-unitary matrix is related to the
imaginary parts appearing in the propagators of unstable particles. Using the Ẑ-matrix,
one can express the one-particle irreducible (1PI) vertex functions Γ̂ha involving a loop-
corrected mass eigenstate h1, h2, h3 as an external particle as a linear combination of the
1PI vertex functions of the lowest-order states, Γ̂i:

Γ̂ha = ẐahΓ̂h + ẐaH Γ̂H + ẐaAΓ̂A + ... (29)

=

√
Ẑa

(
ẐahΓ̂h + ẐaH Γ̂H + ẐaAΓ̂A

)
+ . . . , (30)

where the ellipsis refers to additional terms arising from the mixing with Goldstone and
vector bosons, which are not described by the Ẑ-matrix. Thus, the overall normalisation

factor
√
Ẑa accounts for the particle ha appearing at an external line. In addition, the

factors Ẑai given in Eqs. (22) and (23) as ratios of propagators at p2 = M2
a describe the

transition between the states ha and i. The transition factor Ẑai occurs in a diagram
where ha is the external particle, but i directly couples to the vertex. All possibilities for
i = h,H,A need to be included for each ha, hence the sum arises. This is depicted in
Fig. 1 (cf. also Refs. [30, 32]). Conveniently, Eq. (30) can be written in matrix form for
all h1, h2, h3 as Γ̂h1

Γ̂h2

Γ̂h3

 = Ẑ ·

 Γ̂h
Γ̂H
Γ̂A

+ . . . . (31)
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p2 =M2
a

ha
Γ̂ha=

√
Ẑa

(
Ẑah

ha h
Γ̂h +

ẐaH

ha H
Γ̂H +

ẐaA

ha A
Γ̂A

)
p2=M2

a

+ . . .

Figure 1: Ẑ-factors for external Higgs bosons: The vertex function Γ̂ha is constructed from
vertex functions Γ̂i, i = h,H,A, the transition factors Ẑai and the overall normalisation factor√
Ẑa. The ellipsis refers to contributions from mixing with Goldstone and gauge bosons.

In this way, propagator corrections at external legs are effectively absorbed into the ver-
tices of neutral Higgs bosons. If Ẑ-factors are applied to supplement the Born result, only
non-Higgs propagator type corrections (such as mixing with the Goldstone and Z-bosons)
as well as vertex, box and real corrections need to be calculated individually.

2.4 Effective couplings

Since the Ẑ-matrix is not unitary, it does not represent a unitary transformation between
the {h,H,A} and the {h1, h2, h3} basis. However, it is not necessary to diagonalise the
mass matrix for the determination of the poles of the propagators. Hence there is a
priori no need to introduce a unitary transformation. Though, if a unitary matrix U
is desired for the definition of effective couplings, an approximation of the momentum
dependence of Ẑ is required. There is no unique prescription of how to achieve a unitary
mixing matrix as an approximation of the Ẑ-matrix, but a possible choice is the p2 = 0
approximation [15, 32]. As in the effective potential approach, the external momentum
p2 is set to zero in the renormalised self-energies Σ̂ij(p

2) → Σ̂ij(0) so that they become
real. Then U diagonalises the real matrix M(0). U can be chosen real and it transforms
the CP-eigenstates into the mass eigenstates,h1

h2

h3

 = U

h
H
A

 , U =

U1h U1H U1A

U2h U2H U2A

U3h U3H U3A

 , (32)

so that U2
aA quantifies the admixture of a CP-odd component inside ha [15]. The elements

of U can then be used to introduce effective couplings of the loop-corrected states ha to
any other particles X in terms of the couplings of the unmixed states i by the relation

CU
haX =

∑
i=h,H,A

UaiCiX . (33)

absorbing some higher-order corrections, but neglecting imaginary parts and the full mo-
mentum dependence of the self-energies. Hence, the application of U resembles the use of
Ẑ-factors in Eq. (29) for the purpose of implementing partial higher-order effects into an
improved Born result. Yet, the rotation matrix U introduced for effective couplings as a
unitary approximation is conceptually different from the Ẑ-matrix arising from propagator
corrections and introduced for the correct normalisation of the S-matrix.

10



2.5 Technical treatment of imaginary parts

In order to account for complex momenta and imaginary parts of self-energies, we employ
an expansion of the self-energies around the real part of the complex momentum,

p2 ≡ p2
r + ip2

i , (34)

Σ̂ij(p
2) ' Σ̂ij(p

2
r) + ip2

i Σ̂
′

ij(p
2
r), (35)

where Σ̂
′
ij(p

2) ≡ dΣ̂ij(p
2)

dp2 . This expansion enables the calculation of self-energies at complex

momentum in terms of self-energies evaluated at real momentum (e.g. by FeynHiggs). For
the inclusion of all products of real and imaginary parts, we do not expand the effective
self-energy from Eq. (9) directly according to Eq. (34). Instead, in the same way as in
Refs. [13,30,31], we expand all Γ̂ij(p

2) in Eq. (9) individually before combining them into

Σ̂eff
ii .

3 Pole structure of propagator matrices

In this section, we will first discuss in detail the solutions of the poles of the propagator
matrix depending on the mixing. Subsequently we will prove the equivalence of different
assignments between the lowest-order states and the loop-corrected mass eigenstates for
the physical Ẑ-matrix.

3.1 Determination of the poles

Imaginary parts of the self-energies lead to propagator poles in the complex momentum
plane. The Higgs masses are determined from the real part of the complex poles M2

of the diagonal propagators. Equivalently, the complex poles are obtained as the zeros
of the inverse diagonal propagators. Due to A−1 ∝ det [A]−1, det

[
A−1

]
= det [A]−1

and det [−A] = (−1)n det [A] for any n × n-matrix A, finding the roots of ∆−1(p2) is
equivalent to solving

− 1

det [∆hHA(p2)]
= det

[
Γ̂hHA(p2)

]
!

= 0, (36)

because of the relation between ∆hHA and Γ̂hHA from Eq. (4)3. Then the loop-corrected
masses M are obtained from the real parts of the complex poles and the total widths Γ
from the imaginary parts via

M2 = M2 − iMΓ. (37)

In the following, the impact of higher-order and mixing contributions on the pole structure
of the propagators will be discussed.

3Explicitly, all roots of ∆hHA(p2)−1 are roots of det
[
∆hHA(p2)

]−1 ≡ det
[
−Γ̂hHA(p2)−1

]−1

=

−det
[
Γ̂hHA(p2)

]
.
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Lowest order At lowest order, the self-energy contributions in Eq. (2) are absent and
the matrix Γ̂ simply reads

Γ̂
(0)

hHA(p2) = i diag
{
Dh(p

2), DH(p2), DA(p2)
}
, (38)

where the shorthand of Eq. (12) has been used. The solutions of Eq. (36) are the three
tree-level masses m2

i .

Higher order without mixing Beyond tree-level, the self-energies are added at the
available order. Restricting them to the unmixed case, Σ̂ij = 0 for i 6= j, leads to

Γ̂
(no mix)

hHA (p2) = i diag
{
Dh(p

2) + Σ̂hh(p
2), DH(p2) + Σ̂HH(p2), DA(p2) + Σ̂AA(p2)

}
, (39)

so that
det
[
Γ̂

(no mix)

hHA (p2)
]

=
∏

i=h,H,A

(
Di(p

2) + Σ̂ii(p
2)
)

= 0 (40)

is achieved if p2 fulfils the following on-shell relation

p2 −m2
i + Σ̂ii(p

2) = 0 (41)

for any i = h,H,A. Thus, the full propagator matrix ∆ has three poles and each propa-
gator ∆ii(p

2) has exactly one pole p2 =M2
i that solves Eq. (41) in this case.

Higher order with 2 × 2 mixing If now the mixing between h and H is taken into
account, corresponding to the CP-conserving case, the matrix Γ̂ becomes block-diagonal
with the 2× 2 matrix Γ̂hH and the 2-point vertex function of A, which does not mix with
the other states:

Γ̂hHA(p2) =

(
Γ̂hH(p2) 0

0 Γ̂A(p2)

)
, (42)

det
[
Γ̂hHA(p2)

]
= det

[
Γ̂hH(p2)

]
· Γ̂A(p2) . (43)

For a closer look at the relation between the roots of the determinant and the roots of
the inverse propagator, we write down the propagators and the effective self-energy of the
{h,H} system explicitly. They follow from Eqs.(6), (7) and (9) by setting Σ̂hA = Σ̂HA = 0
or equivalently from the inversion of the 2× 2 submatrix Γ̂hH :

∆ii(p
2) =

i
[
Dj(p

2) + Σ̂jj(p
2)
]

[
Di(p2) + Σ̂ii(p2)

] [
Dj(p2) + Σ̂jj(p2)

]
− Σ̂2

ij(p
2)

=
i

p2 −m2
i + Σ̂eff

ii (p2)
, (44)

∆ij(p
2) =

−iΣ̂ij(p
2)[

Di(p2) + Σ̂ii(p2)
] [

Dj(p2) + Σ̂jj(p2)
]
− Σ̂2

ij(p
2)
, (45)

Σ̂eff
ii (p2) = Σ̂ii(p

2)−
Σ̂2
ij(p

2)

Dj(p2) + Σ̂jj(p2)
. (46)
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Comparing the inverse diagonal propagators with the determinant of the submatrix Γ̂hH ,
we find for i, j ∈ {h,H} , i 6= j,

1

∆ii(p2)
=

i

Dj(p2) + Σ̂jj(p2)
det
[
Γ̂hH(p2)

]
. (47)

Eq. (47) reveals that both inverse diagonal propagators, 1/∆hh and 1/∆HH , are propor-
tional to the determinant of Γ̂hH , which has two zeros. As opposed to the unmixed case,

both zeros of det
[
Γ̂hH(p2)

]
are poles of each of the diagonal propagators ∆hh,∆HH . The

lowest-order states eigenstates h and H are mixed into the loop-corrected mass eigen-
states h1 and h2 with the loop-corrected masses Mh1 ,Mh2 . The corresponding poles
p2 =M2

h1
,M2

h2
solve

p2 −m2
i + Σ̂eff

ii (p2) = 0 (48)

for p2 =M2
ha

in any combination of i = h,H and a = 1, 2, where the effective self-energy
is given in Eq. (46). In the 2 × 2 mixing system, it is convenient to choose Mh1 ≤ Mh2 .
As for the nomenclature in the 2× 2 case, the lighter mass eigenstate h1 is often denoted
as h and the heavier one as H because both are CP-even states. It should be noted that
both roots of Γ̂hH ,M2

h1
andM2

h2
, are also complex poles of the off-diagonal propagators

∆hH(p2) ≡ ∆Hh(p
2) due to

1

∆ij(p2)
=

−i
Σ̂ij(p2)

det
[
Γ̂hH(p2)

]
. (49)

Since in this case A does not mix with h and H, the third pole M2
A solely solves

M2
A −m2

A + Σ̂AA(M2
A) = 0, (50)

but no other combination of A and ha satisfies the on-shell condition. MA is the loop-
corrected mass of the (mass and interaction) eigenstate A.

Higher order with 3× 3 mixing Now we turn to the case where complex MSSM pa-
rameters lead to CP-violating self-energies Σ̂hA, Σ̂HA. Thus, all three neutral Higgs lowest-
order and CP-eigenstates h,H,A mix into the loop-corrected mass eigenstates h1, h2, h3,
which have no longer well-defined CP quantum numbers, but are admixtures of CP-even
and CP-odd components. In this framework, Γ̂hHA is a full 3× 3 matrix with the deter-
minant

det[Γ̂hHA] = −i
[
(Dh + Σ̂hh)(DH + Σ̂HH)(DA + Σ̂AA) + 2Σ̂hHΣ̂HAΣ̂hA

− (Dh + Σ̂hh)Σ̂HA − (DH + Σ̂HH)Σ̂hA − (DA + Σ̂AA)Σ̂hH

]
, (51)

where we dropped the explicit p2-dependence of each term for an ease of notation. Com-
paring Eq. (51) with the diagonal and off-diagonal propagators from Eqs. (7) and (6),
respectively, we see that their inverse is proportional to the determinant of Γ̂hHA:

1

∆ii

=
det
[
Γ̂hHA

]
(Dj + Σ̂jj)(Dj + Σ̂jj)− Σ̂2

jk

, (52)

1

∆ij

=
det
[
Γ̂hHA

]
Σ̂jkΣ̂ki − Σ̂ij(Dk + Σ̂kk)

. (53)
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From Eq. (52) we conclude that all three roots p2 = M2
ha
, a = 1, 2, 3, of det

[
Γ̂hHA(p2)

]
are complex poles of each of the three diagonal propagators ∆ii, i = h,H,A. This means
that

M2
ha −m

2
i + Σ̂eff

ii (M2
ha) = 0 (54)

holds for any combination of i and a in the presence of 3× 3 mixing. Moreover, Eq. (53)
implies that also the off-diagonal propagators have as many poles as the determinant has
zeros, namely three in the case of CP-violating mixing. In the unmixed case, Σ̂eff

ii = Σ̂ii

and each propagator has exactly one pole so that there is a unique mapping between i
and a, see Eq. (41). On the other hand, for the general mixing case it is not unique how to
relate the mass eigenstates to the interaction eigenstates. An assignment will be needed
for the definition of on-shell wave function normalisation factors in Sect. 2.2.

3.2 Index scheme independence of the Ẑ-matrix

As discussed above, the pole structure of the full propagators provides the freedom at
which pole to evaluate which Ẑ-factor, or equivalently which loop-corrected mass eigen-
state index (a, b, c) to assign to a lowest-order mass eigenstate index (i, j, k). We denote
two choices for such index schemes by

I ↔ (i, a), (j, b), (k, c), (55)

II ↔ (j, a), (i, b), (k, c). (56)

This initial ambiguity, however, results in physically equivalent results. Using properties
of ratios of diagonal and off-diagonal propagators and exploiting relations at a complex
pole (for details, see Ref. [31]), we are able to show that

1 + Σ̂eff′
jj (M2

a)

1 + Σ̂eff′
ii (M2

a)
=

(
∆ji(p

2)

∆jj(p2)

)2

p2=M2
a

. (57)

This equality provides a transformation between scheme I (where i and a are associated,
hence Ẑai ≡ 1) and scheme II (where j and a are matched):

Ẑai|I =

(√
ẐaẐai

)
I

=
1√

1 + Σ̂eff′
ii (M2

a)

=
1√

1 + Σ̂eff′
jj (M2

a)

∆ji

∆jj

∣∣∣∣
p2=M2

a

=

(√
ẐaẐai

)
II

= Ẑai

∣∣∣∣
II

. (58)

While the values of Ẑa and Ẑai depend on the choice of the index mapping, Eq. (58) ensures
that the elements of the Ẑ-matrix, which appear in physical processes, are invariant under
the choice of a, b, c as a permutation of 1, 2, 3. We also tested this relation numerically
for various parameter points and always found agreement within the numerical precision.
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4 Breit–Wigner approximation of the full
propagators

The Ẑ-factors depend on the momentum p2 in a twofold way. On the one hand, the
propagator factors Di(p

2) = p2−m2
i give rise to an explicit p2-dependence. On the other

hand, the self-energies Σ̂ij(p
2) depend on the momentum as well, but away from thresholds

their p2 dependence is not particularly pronounced. In this chapter, we will develop
an approximation of the full mixing propagators with the aim to maintain the leading
momentum dependence, but to greatly simplify the mixing contributions by making use
of the on-shell Ẑ-factors.

4.1 Unstable particles and the total decay width

In the context of determining complex poles of propagators, we now briefly discuss reso-
nances and unstable particles, see e.g. Refs. [33–37]. Stable particles are associated with a
real pole of the S-matrix, whereas the self-energies of unstable particles develop an imag-
inary part, so that the pole of the propagator is located within the complex momentum
plane off the real axis. For a single pole, the scattering amplitude A can be schematically
written near the complex pole M2

a in a gauge-invariant way as

A(s) =
R

s−M2
a

+ F (s), (59)

where s is the squared centre-of-mass energy, R denotes the residue, while F represents
non-resonant contributions. The mass Mha of the unstable particle ha is obtained from
the real part of the complex pole M2

a = M2
ha
− iMhaΓha , while the imaginary part gives

rise to the total width. Accordingly, the expansion around the complex poleM2
a leads to

a Breit–Wigner propagator with a constant width,

∆BW
a (p2) :=

i

p2 −M2
a

=
i

p2 −M2
ha

+ iMhaΓha
. (60)

In the following, we will use a Breit–Wigner propagator of this form to describe the
contribution of the unstable scalar ha with mass Mha and total width Γha in the resonance
region.

4.2 Expansion of the full propagators around the com-

plex poles

Eqs. (52) and (53) imply for 3 × 3 mixing that each propagator ∆ii,∆ij has a pole at
M2

1,M2
2 andM2

3. Because of this structure, an expansion of the full propagators near one
single pole is not expected to yield a sufficient approximation. Instead, we will perform an
expansion of the full propagators around all of their complex poles. The final expression
obtained from combining the contributions from the different poles will constitute a main
result of the present paper.
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4.2.1 Expansion of the diagonal propagators

We begin with an expansion of ∆ii(p
2) in the vicinity ofM2

a as in Eq. (19), where the first
factor equals the definition of the Breit–Wigner propagator of the state ha, and the second
factor corresponds to Ẑa in scheme I where i and a are associated indices. On top of that,

Ẑa
∣∣
I

= Ẑ
2

ai as defined in Eq. (24), and the elements of the Ẑ-matrix are independent of
the index scheme (see Eq. (58)). Thus, the following scheme-independent approximation
holds for p2 'M2

a:

∆ii(p
2) ' ∆BW

a (p2) Ẑa
∣∣
I

= ∆BW
a (p2) Ẑ

2

ai. (61)

In this approach, the mixing contributions are summarised in the on-shell Z-factor eval-
uated at M2

a. In contrast, the leading momentum dependence is contained in the Breit–
Wigner propagator parametrised by the loop-corrected mass Mha and the total width
Γha from the complex pole. In addition, ∆ii(p

2) has a second pole at M2
b because

p2 −m2
i + Σ̂eff

ii (p2) = 0 holds also at p2 = M2
b . Analogously, we can expand Σ̂eff

ii around
M2

b and obtain for the diagonal propagator

∆ii(p
2) =

i

p2 −m2
i + Σ̂eff

ii (p2)
(62)

' i

p2 −m2
i + Σ̂eff

ii (M2
b) + (p2 −M2

b) · Σ̂eff′
ii (M2

b)
(63)

=
i

(p2 −M2
b) ·
[
1 + Σ̂eff′

ii (M2
b)
] . (64)

Formally, 1

1+Σ̂eff′
ii (M2

b)
has the structure of the definition of a Ẑ-factor from Eq. (20), but

in the index scheme II where b is assigned to i, whereas Eq. (61) has been obtained in
scheme I with the (i, a) assignment. Using the relation (58), we can rewrite Eq. (64) as

∆ii(p
2) ' ∆BW

b (p2) · 1

1 + Σ̂eff′
ii (M2

b)
(65)

= ∆BW
b (p2) · 1

1 + Σ̂eff′
jj (M2

b)

(
∆ji

∆jj

)2

p2=M2
b

(66)

= ∆BW
b (p2) ·

(
Ẑb Ẑ

2
bi

) ∣∣∣∣
I

(67)

= ∆BW
b (p2) · Ẑ

2

bi, (68)

where the Ẑ-factors in Eq. (67) are expressed in the same scheme as in Eq. (61). Hence,
in the vicinity of p2 ' M2

b , the diagonal propagator ∆ii can be approximated by the

Breit–Wigner propagator of hb weighted by the square of Ẑbi that ensures the coupling
to the incoming fields as Higgs boson i, propagation as the mass eigenstate hb and the
coupling to the outgoing fields again as Higgs boson i. In the same manner, ∆ii can be
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expanded around the third complex pole, M2
c , yielding

∆ii(p
2) ' i

(p2 −M2
c) ·
[
1 + Σ̂eff′

ii (M2
c)
] (69)

' ∆BW
c (p2) · 1

1 + Σ̂eff′
kk (M2

c)

(
∆ki

∆kk

)2 ∣∣∣∣
p2=M2

c

(70)

= ∆BW
c (p2) · Ẑ

2

ci. (71)

Thus, close to one of the complex poles (e.g. M2
a), the dominant contribution to the

full propagator ∆ii can be approximated by the corresponding Breit–Wigner propagator

(∆BW
a ) multiplied by the square of the respective Ẑ-factor, (Ẑ

2

ai). However, close-by poles
may cause overlapping resonances. In order to include this possibility and to extend the
range of validity of the Breit–Wigner approximation to a more general case, we take the
sum of all three Breit–Wigner contributions into account:

∆ii(p
2) ' ∆BW

a (p2) Ẑ
2

ai + ∆BW
b (p2) Ẑ

2

bi + ∆BW
c (p2) Ẑ

2

ci =
3∑

a=1

∆BW
a (p2) Ẑ

2

ai. (72)

4.2.2 Expansion of the off-diagonal propagators

We proceed similarly for the off-diagonal propagators, which also have three complex

poles so that we can expand the propagators around them. Note that Ẑai =
√
Ẑa and

Ẑaj =
√
ẐaẐaj as defined in Eq. (24). Starting at p2 ' M2

a, we express the Ẑ-factors in
scheme I,

∆ij(p
2) =

∆ij(p
2)

∆ii(p2)
∆ii(p

2) ' ẐajẐ
2

ai ∆
BW
a (p2) = ẐajẐai ∆

BW
a (p2), (73)

Next, we approximate ∆ij near p2 =M2
b :

∆ij(p
2) =

∆ji(p
2)

∆jj(p2)
∆jj(p

2) ' ẐbiẐ
2

bj ∆BW
b (p2) = ẐbiẐbj ∆BW

b (p2). (74)

For p2 'M2
c , we switch to a scheme where the indices i and c belong together. Thereby

we can write

∆ij(p
2) =

∆ij(p
2)

∆ii(p2)
∆ii(p

2) ' ẐcjẐ
2

ci ∆
BW
c (p2) = ẐcjẐci ∆

BW
c (p2), (75)

which is expressed in terms of scheme-invariant Ẑ-factors. Finally, we take the sum of
Eqs. (73)-(75) to obtain

∆ij(p
2) '

3∑
a=1

Ẑai ∆
BW
a (p2) Ẑaj. (76)

This sum is illustrated diagrammatically in Fig. 2.

17



i j
'

i h1 j
+
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Figure 2: Diagrammatic illustration of the full mixing Higgs propagators compared to the
Breit–Wigner propagators where the Ẑ-factors encode the transition between the interaction
and the mass eigenstates.

Eq. (76) represents the central result of this section, covering also the diagonal prop-
agators in the special case of i = j. It shows how the full propagator can be approximated
by the contributions of the three resonance regions, expressed by the Breit–Wigner propa-
gators ∆a(p

2), a = 1, 2, 3, reflecting the main momentum dependence. The mixing among
the Higgs bosons is comprised in the Ẑ-factors which are evaluated on-shell. Nonetheless,
even a part of the momentum dependence of the self-energies is accounted for because
the derivation of Eq. (72) is based on a first-order expansion of the momentum-dependent
effective self-energies. Furthermore, the Ẑ-factors serve as transition factors between the
loop-corrected mass eigenstates ha and the lowest-order states i (although Ẑ is not a uni-
tary matrix transforming the states into each other). Pictorially, ∆ij is a propagator that
begins on the state i and ends on j while mixing occurs in between. Also on the RHS
of Fig. 2 and Eq. (76) the propagator in the ha-basis begins with i and ends on j. Thus,
the coupling to the rest of any diagram connected to the propagator is well-defined. In
between, each of the ha can propagate, and the correct transition is ensured by Ẑai and
Ẑaj. All three combinations are visualised in Fig. 2.

If CP is conserved and only h and H mix, or if two states are nearly degenerate and
their resonances widely separated from the remaining complex pole, the full 3× 3 mixing
is (exactly or approximately) reduced to the 2 × 2 mixing case. Then the off-diagonal
Ẑ-factors involving the unmixed state vanish or become negligible so that some terms in
Eq. (76) approach zero.

Beyond that, if no mixing occurs among the neutral Higgs bosons, all off-diagonal full
propagators as well as the off-diagonal Ẑ-factors vanish and each diagonal full propagator
consists of only a single Breit–Wigner term where the Ẑ-factor is based on the diagonal
self-energy instead of the effective self-energy. Thus, Eq. (76) covers all special cases of
the a priori 3× 3 mixing among the neutral Higgs bosons.

4.2.3 Amplitude with mixing based on full or Breit–Wigner
propagators

In a physical process where neutral Higgs bosons can appear as intermediate particles,
all of them need to be included in the prediction, see Fig. 3 and Ref. [13]. The Higgs
part of the amplitude then contains a sum over the irreducible vertex functions Γ̂Xi (for a
coupling of Higgs i at the first vertex X) and Γ̂Yj (for a coupling of Higgs j at the second
vertex Y ) times the fully momentum-dependent mixing propagators,

A =
∑

i,j=h,H,A

Γ̂Xi ∆ij(p
2) Γ̂Yj . (77)
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Figure 3: Contributions from the full mixing propagators ∆ij(p
2) for i, j = h,H,A to a generic

amplitude (cf. Ref. [13]). If the Ẑ-factor approach is applied, each of the 9 full propagators
needs to be approximated by the sum of the three corresponding Breit–Wigner diagrams as
shown in Fig. 2.

Applying Eq. (76), the amplitude in Eq. (77) can be approximated by the sum over Breit–
Wigner propagators multiplied by on-shell Z-factors, in agreement with Ref. [13],

A '
∑

i,j=h,H,A

Γ̂Xi

[
3∑

a=1

Ẑai ∆
BW
a (p2) Ẑaj

]
Γ̂Yj (78)

=
3∑

a=1

( ∑
i=h,H,A

ẐaiΓ̂
X
i

)
∆BW
a (p2)

( ∑
j=h,H,A

ẐajΓ̂
Y
j

)
(79)

=
3∑

a=1

Γ̂Xha ∆BW
a (p2) Γ̂Yha . (80)

The first bracket in Eq. (79) represents Γ̂Xha , i.e., the vertex X connected to the mass
eigenstate ha as for an external Higgs boson in Eq. (30). Subsequently, the second bracket
is equal to the coupling of ha at vertex Y , Γ̂Yha . As opposed to Sect. 2.3, the ha is not
on-shell here, but a propagator with momentum p2 between the vertices X and Y , rep-
resented by the Breit–Wigner propagator ∆BW

a (p2). So the Ẑ-factors are not only useful
for the on-shell properties of external Higgs bosons, but they can also be used as an on-
shell approximation of the mixing between Higgs propagators. This will be investigated
numerically in Sect. 5.

4.3 Calculation of interference terms in the Breit–

Wigner formulation

In Eq. (76), the Breit–Wigner propagators are combined such that they approximate a
given full propagator. Conversely, we will now separate the ha part from the contribution
of the other mass eigenstates in the amplitude with Higgs exchange between the vertices
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X and Y :

Aha ≡ Γ̂Xha ∆BW
a (p2) Γ̂Yha =

∑
i,j=h,H,A

Γ̂Xi Ẑai ∆
BW
a (p2) Ẑaj Γ̂Yj , (81)

i.e. the exchange of the state ha coupling with the mixed vertices Γ̂ha from Eq. (30) as for
an external Higgs.

Γ̂Xha
ha

Γ̂Yha

= Γ̂Xh
Ẑah Ẑah

hah h
Γ̂Yh + +

ha

Ẑah ẐaH

h H
Γ̂Xh Γ̂YH

ha

Ẑah ẐaA

h A
Γ̂Xh Γ̂YA

+ +
ha

ẐaH Ẑah

H h
Γ̂XH Γ̂Yh +

ha

ẐaH ẐaH

H H
Γ̂XH Γ̂YH

ha

ẐaH ẐaA

H A
Γ̂XH Γ̂YA

+ +
ha

ẐaA Ẑah

A h
Γ̂XA Γ̂Yh +

ha

ẐaA ẐaH

A H
Γ̂XA Γ̂YH

ha

ẐaA ẐaA

A A
Γ̂XA Γ̂YA

=
∑

i,j=h,H,A
Γ̂Xi

Ẑai Ẑaj

hai j
Γ̂Yj

Figure 4: Diagrammatic representation of the contribution Aha from Eq. (81) of ha (a = 1, 2, 3)
to the amplitude A. The blue lines labelled by ha denote the Breit–Wigner propagator ∆BW

a (p2),
and the green lines labelled by i, j = h,H,A denote lowest order propagators of h,H,A.

In order to calculate the squared amplitude as a coherent sum, all contributions of
h1, h2, h3 are summed up first before taking the absolute square,

|A|2coh =

∣∣∣∣ 3∑
a=1

Aha
∣∣∣∣2 . (82)

On the contrary, the incoherent sum is the sum of the squared individual amplitudes,
which misses the interference contribution,

|A|2incoh =
3∑

a=1

∣∣∣∣Aha∣∣∣∣2 . (83)

Thus, an advantage of the Breit–Wigner propagators is also the possibility to conveniently
discern the interference of several resonances from their individual contributions in a
squared amplitude

|A|2int = |A|2coh − |A|2inccoh =
∑
a<b

2 Re
[
AhaA∗hb

]
. (84)
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In contrast, the squared amplitude based on the full propagators

|Afull|2 =
∣∣∣ ∑
i,j=h,H,A

Γ̂Xi ∆ij(p
2) Γ̂Yj

∣∣∣2 (85)

does not allow for a straightforward determination of the pure interference term.

5 Numerical comparison in the MSSM with
complex parameters

After the analytical considerations so far, we will now compare the full propagators with
their approximation as a combination of Breit–Wigner propagators and Ẑ-factors numer-
ically. For definiteness, we will evaluate the propagators in the MSSM with complex
parameters. We use FeynHiggs-2.10.2 4 [20–23] for the numerical evaluation of Higgs
masses, widths and mixing properties. In order to investigate the applicability of the
expansion of the full propagators in one or all three resonance regions, we will first use
as input a complex squared momentum around the three complex poles. For the later
application to physical processes where the squared momentum equals the centre-of-mass
energy s, we will also evaluate the propagators at p2 = s near the real parts of the complex
poles. In Sect. 5.2 we choose a scenario where all three Higgs bosons are relatively light
so that we can study their mutual overlap. As a test of the Ẑ-factor approximation, we
work in a scenario with large mixing between H and A in Sect. 5.3.

5.1 The MSSM with complex parameters at tree level

In this section we fix the notation for the different particle sectors of the MSSM with
complex parameters, following Ref. [15].

Sfermion sector The mixing of sfermions f̃L, f̃R within one generation into mass eigen-
states f̃1, f̃2 is parametrised by the matrix

M2
f̃

=

(
M2

f̃L
+m2

f +M2
Z cos 2β(I3

f −Qfs
2
W ) mfX

∗
f

mfXf M2
f̃R

+m2
f +M2

Z cos 2βQfs
2
W

)
, (86)

Xf := Af − µ∗ ·
{

cot β, f = up-type
tan β, f = down-type.

(87)

The trilinear couplings Af = |Af |eiφAf , as well as µ = |µ|eiφµ , can be complex. These
phases enter the Higgs sector via sfermion loops starting at one-loop order. Diagonalising
M2

f̃
for all f̃ separately, one obtains the sfermion masses mf̃1

≤ mf̃2
.

4The additional contributions contained in more recent versions are not essential for the numerical
comparison carried out here.
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Gluino sector The gluino g̃a, a = 1, 2, 3, has a mass of mg̃ = |M3|, where M3 =
|M3| eiφM3 is the possibly complex gluino mass parameter. Since the gluino does not
directly couple to Higgs bosons, the phase φM3 enters the Higgs sector only at the two-
loop level, but has an impact for example on the bottom Yukawa coupling already at
one-loop order.

Neutralino and chargino sector At tree-level, mixing in the chargino sector is gov-
erned by the higgsino and wino mass parameters µ and M2, respectively. In the neutralino
sector it additionally depends on the bino mass parameter M1. The charginos χ̃±i , i = 1, 2,

as mass eigenstates are superpositions of the charged winos W̃± and higgsinos H̃±, with
the mass matrix,

X =

(
M2

√
2MW sβ√

2MW cβ µ

)
. (88)

Likewise in the neutralino sector, the neutral electroweak gauginos B̃, W̃ 3 and the neutral
Higgsinos h̃0

d, h̃
0
u mix into the mass eigenstates χ̃0

i , i = 1, ..., 4. The mixing is encoded in
the gaugino mass matrix Y ,

Y =


M1 0 −MZcβsW MZsβsW
0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ
MZsβsW −MZsβcW −µ 0

 . (89)

The gaugino mass parameters M1 and M2 as well as the higgsino mass parameter can in
principle be complex. However, only two of the phases are independent, and a frequently
used convention is to set φM2 = 0.

Higgs sector The MSSM requires two complex scalar Higgs doublets with opposite
hypercharge YH1,2 = ±1,

H1 =

(
h0
d

h−d

)
=

(
vd + 1√

2
(φ0

1 − iχ0
1)

−φ−1

)
(90)

H2 =

(
h+
u

h0
u

)
=

(
φ+

2

vu + 1√
2
(φ0

2 + iχ0
2)

)
. (91)

A relative phase between both Higgs doublets vanishes at the minimum of the Higgs
potential, and the possible phase of the coefficient of the bilinear term in the Higgs
potential can be rotated away. Hence, the Higgs sector conserves CP at lowest order, and
the 4× 4 mass matrix of the neutral states Mφφχχ becomes block-diagonal. The neutral
tree level mass eigenstates are obtained by a diagonalisation of Mφφχχ:

h
H
A
G

 =


−sα cα 0 0
cα sα 0 0
0 0 −sβn cβn
0 0 cβn sβn



φ0

1

φ0
2

χ0
1

χ0
2

 ,

(
H±

G±

)
=

(
−sβc cβc
cβc sβc

)(
φ±1
φ±2

)
, (92)

where we introduced the short-hand notation sx ≡ sinx, cx ≡ cosx. For later use we
define tβ ≡ tan β. The mixing angle α is applied for the CP-even Higgs bosons h,H; βn for
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the neutral CP-odd Higgs A and Goldstone boson G, and βc for the charged Higgs H± and
the charged Goldstone boson G±. The minimum conditions for VH lead to β = βn = βc
at tree level. At higher orders, however, tan β is renormalised whereas the mixing angles
α, βn and βc are not renormalised. The masses of the CP-odd and the charged Higgs
bosons are at tree level related by

m2
H± = m2

A +M2
W . (93)

At lowest order, the Higgs sector is fully determined by the two SUSY input parameters
(in addition to SM masses and gauge couplings) tan β and mH± (or, for conserved CP ,
equivalently mA).

Higher-order corrections Higher-order corrections in the MSSM Higgs sector are very
relevant. Particles from other sectors contribute via loop diagrams to Higgs observables,
in particular the trilinear couplings Af , the stop and sbottom masses, and in the sub-
leading terms the higgsino mass parameter µ. Thus, beyond the lowest order, the Higgs
sector is influenced by more parameters than only MH± (or MA) and tan β. We adopt
the hybrid on-shell and DR-renormalisation scheme defined in Ref. [15].

5.2 Scenario with three light Higgs bosons

For the numerical evaluation of the propagators, we work in the Mmod+
h scenario [38]. In

this example, we fix the variable parameters

µ = 200 GeV,

MH± = 160 GeV,

tan β = 50, (94)

and choose for the complex phase φAt = π/4 to allow for CP-violating mixing. This
parameter choice is not meant to be the experimentally viable; in fact it has been experi-
mentally ruled out by searches for H,A→ ττ . The purpose is rather to provide a setting
for illustration with nearby, but resolvable resonances so that the test of the Breit–Wigner
approximation is not limited to well separated poles. These parameter values result in
the following complex poles:

M2
1 = (15791− 70i) GeV2, M2

2 = (16202− 525i) GeV2, M2
3 = (17388− 385i) GeV2.

(95)

All of the loop-corrected masses obtained from the real parts of the complex poles listed
above are relatively light:

Mh1 = 125.7 GeV, Mh2 = 127.3 GeV, Mh3 = 131.9 GeV (96)

so that the mass differences are of the order of – but not smaller than – the total widths
from the imaginary parts of the complex poles, Γh1 = 0.6 GeV, Γh2 = 4.1 GeV, Γh3 =
2.9 GeV. The phase of At induces CP-violating mixing, and the on-shell mixing properties
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are reflected by the Ẑ-matrix obtained with FeynHiggs,

Ẑ =

 0.95− 0.04i 0.34 + 0.09i −0.05− 0.05i
0.05− 0.05i 0.02 + 0.03i 0.99− 0.02i
−0.35− 0.09i 0.94− 0.05i −0.006− 0.003i

 , (97)

which indicates that h1 couples mostly h-like, h2 mostly A-like and h3 mostly H-like.
Thus, the contribution of ha to ∆ij, i.e.

∆ij

∣∣∣
ha

(p2) = Ẑai ∆
BW
a (p2) Ẑaj, (98)

is only significant if the product ẐaiẐaj is not suppressed. In this case, we can already
estimate that, for example, h3 hardly contributes to ∆AA.

We have analysed all propagators ∆ij around M2
1,M2

2 and M2
3 as well as for real

momenta. In the following, we show and discuss a selection of these cases.

5.2.1 Propagators depending on complex momenta

The analytical derivation of Eq. (76) builds on the expansion of the full propagators around
the complex poles, and the on-shell condition in Eq. (54) holds exactly only at complex
momentum. Therefore, we evaluate the self-energies and propagators around the complex
poles. Fig. 5 displays ∆hh(p

2) for p2 = 0.5M2
1 ... 1.5M2

1. In particular, Fig. 5(a) shows
Re [∆hh], and Fig. 5(b) shows Im [∆hh] versus the ratio x1 = p2/M2

1 such that x1 = 1
corresponds to the complex pole p2 =M2

1. The black line (labelled by ∆ full) represents
the fully momentum-dependent mixing propagator from Eq. (8). Since the three poles
do not have the same ratio between the real and imaginary parts, scaling x1 does not
run into M2

2 and M2
3. ∆hh has a pole at x = 1 and a second peak at x ' 1.1 which

is close to the real part of M2
3. This structure is very precisely reproduced by the sum∑3

a=1 Ẑ
2

ah ∆BW
a (p2) according to Eq. (72) – as can be seen from the red dotted line (labelled

as
∑

BW · Z), which lies directly on top of the black solid line.

In order to understand which of the Breit–Wigner propagators and Ẑ-factors domi-
nate at which momentum, the individual contributions are shown by the dashed curves.

The blue line (labelled by h1) represents the contribution of h1 to ∆hh, i.e., Ẑ
2

1h ∆BW
1 (p2).

It clearly displays the pole at x = 1, but strongly deviates from the full propagator at

momenta away fromM2
1. The orange line (labelled by h2) represents Ẑ

2

2h ∆BW
2 (p2). Since

Ẑ2h is small in this scenario, the contribution of h2 to ∆hh is numerically suppressed,

but a tiny share is visible. The green line (labelled by h3) stands for Ẑ
2

3h ∆BW
3 (p2) and it

contributes significantly to ∆hh near M2
3 because Ẑ3h = −0.35− 0.09i is sizeable in this

scenario. So we notice that none of the individual Breit–Wigner propagators multiplied
by the appropriate Ẑ-factors suffices to approximate the full propagator, which has three
complex poles. On the other hand, the sum of all three Breit–Wigner propagators times
Ẑ-factors yields an accurate approach to the full mixing. This holds for the real and the
imaginary part.

Having discussed the example of a diagonal propagator, we will now assess whether
the Ẑ-factor approximation succeeds also for off-diagonal propagators. For instance, Fig. 6
depicts ∆HA versus x2 = p2/M2

2 such that x = 1 matches p2 =M2
2 where the propagator
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Figure 5: Diagonal propagator ∆hh(p2) depending on the complex momentum p2 around M2
1

with p2/M2
1 = 0.5...1.5. (a) real part, (b) imaginary part. The full propagator ∆hh (black,

labelled by ∆ full) is compared to the sum of Breit–Wigner propagators weighted by Ẑ-factors
according to Eq. (72) (red dotted, labelled by

∑
BW·Z). The individual contribution of ha, i.e.

Ẑ
2
ah∆BW

a , is shown for h1 (blue, long-dashed), h2 (orange, dashed) and h3 (green, short-dashed).

diverges. As above, owing to the different ratio between the real and imaginary part of
each complex pole, scaling x2 does not run intoM2

1 andM2
3, but ∆HA peaks close to their

real parts. As in Fig. 5, the black line representing the full propagator and the red, dotted
line representing the sum of Breit–Wigner propagators according to Eq. (76) agree very
well. Additionally, one can see the individual Breit–Wigner shapes. Because the products
of the relevant Ẑ-factors, here ẐaHẐaA, are non-negligible for all a = 1, 2, 3, each Breit–
Wigner propagator is important in the approximation of both the real part (Fig. 6(a)) and
the imaginary part (Fig. 6(b)) of ∆HA. The other diagonal and off-diagonal propagators
in this scenario which are not displayed here have an equally good agreement between the
full calculation and the approximation.

5.2.2 Propagators depending on the real momentum p2 = s

The calculation of the propagators at and around the complex poles together with the
evaluation of the self-energies at complex momenta according to Eq. (35) was needed
to fulfil the assumptions of the approximation. However, in collider processes, the Higgs
propagator might appear for example in the s-channel of a 2→ 2 scattering process where
the squared momentum equals the square of the centre-of-mass energy s. Therefore here
we will check the Breit–Wigner approximation around the real parts of the complex poles.

Fig. 7(a) shows Re [∆hh] in the range
√
p2 'Mh1 ,Mh2 ,Mh3 of the three loop-corrected

masses given in Eq. (96). The propagator has a pronounced peak aroundMh1 and a smaller
and broader one at Mh3 . Again, the approximation (red, dotted) defined in Eq. (72) meets

the full propagator (black) very precisely. The contribution of h1 multiplied by Ẑ
2

1h of
O(1) dominates near Mh1 . At Mh3 the Breit–Wigner shape of h3 is dominant although

multiplied only by Ẑ
2

3h = (−0.35 − 0.09i)2, but also the tail of ∆BW
1 is relevant. The
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Figure 6: Off-diagonal propagator ∆HA(p2) depending on the complex momentum p2 around
M2

2 with p2/M2
2 = 0.5...1.5. (a) real part, (b) imaginary part. Labelling as in Fig. 5.

resonance of h2 is strongly suppressed by the small Ẑ2h. The described behaviour is anal-
ogous in Re [∆HH ] (not shown here), where the strongest peak around Mh3 is dominated
by the h3-contribution and the second peak near Mh1 by the h1-contribution, whereas the
h2 component is negligible. Also in this case, the tails of the propagators of the relevant
mass eigenstates extend also to the other resonance regions. Fig. 7(b) visualises Re [∆AA]
with a broad peak at Mh2 . The black curve of the full propagator is again directly under-
neath the red, dotted curve of the Breit–Wigner approximation, which in this case stems
nearly entirely from h2 because of Ẑ2A ' 1. Within ∆AA, the contribution of h1 only
has a minor impact, which can be seen as a small kink in Fig. 7(b). Although ∆BW

1 (p2)
gets close to its pole, the resonance of h1 is strongly suppressed by the small Ẑ-factor
Ẑ1A = 0.05(1 + i). As we anticipated above from the structure of Ẑ in Eq. (97), ∆BW

3 is a
negligible component of ∆AA for this parameter point.

So far we have seen that the Breit–Wigner formulation combined with on-shell Ẑ-
factors accurately reproduces the momentum dependence of the full diagonal and off-
diagonal propagators by adding the contributions from all resonance regions. If all reso-
nances are sufficiently separated (not shown in this example) or if all but one contributing
products of Ẑ-factors are negligible, a single Breit–Wigner term is enough to approximate
the full propagator in one of the resonance regions. In the general case, however, all
Breit–Wigner terms need to be included. Even if the peaks are not located very close to
each other compared to their widths, the tail of one resonance supported by a substantial
product of Ẑ-factors can leak into another resonance region.

5.3 Scenario with large mixing

While the scenario in the previous section was characterised by three relatively similar
masses, we now choose a setting with quasi degenerate heavy states h2 and h3. In Sect. 5.2
we considered the Mmod+

h -scenario with the standard value of µ = 200 GeV in combination
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Figure 7: Diagonal propagators ∆hh(p2) ((a)) and ∆AA(p2) ((b)) depending on the real
momentum p2 = s around

√
s 'Mh1 , Mh2 , Mh3 . Labelling as in Fig. 5.

with the phase φAt = π/4, leading to a moderate mixing predominantly between h and A.
In Ref. [38] it was suggested to choose also different values, µ = ±200,±500,±1000 GeV.
So in addition to the choice above, we now apply the following modification of the pa-
rameters in Eq. (94):

µ = 1000 GeV,

MH± = 650 GeV,

tan β = 20. (99)

This results in the complex poles

M2
1 = (15797−0.2i) GeV2, M2

2 = (415336−1673i) GeV2, M2
3 = (415554−1857i) GeV2,

(100)
and therefore in similar masses of the heavy Higgs bosons,

Mh1 = 125.33 GeV, Mh2 = 644.47 GeV, Mh3 = 644.63 GeV . (101)

There is a large mixing betweenH andA, visible in the Ẑ-factors evaluated with FeynHiggs,

Ẑ '

1.01 0 0
0 1.15− 0.27i −0.47− 0.66i
0 0.49 + 0.65i 1.13− 0.28i

 . (102)

In the scenario in Sect. 5.2, Ẑ is approximately unitary,

Ẑ · Ẑ
†
∣∣∣
Eq. (94)

'

 1 −0.1i 0.2i
0.1i 1 0
−0.2i 0 1

 ' 1. (103)
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On the contrary, in the present scenario with µ = 1000 GeV, the product Ẑ · Ẑ
†

deviates
strongly from 1:

Ẑ · Ẑ
†
∣∣∣
Eq. (99)

'

1 0 0
0 2 −1.7i
0 1.7i 2

 . (104)

Hence it is useful to examine whether the Breit–Wigner propagators with Ẑ-factors still
yield a viable approximation of the fully momentum-dependent propagators in this sce-
nario with large mixing.

5.3.1 Propagators depending on complex momenta

Due to the large difference between Mh1 and Mh2 ' Mh3 , the propagators ∆hh, ∆hH

and ∆hA are strongly suppressed around M2
2. Fig. 8(a) shows Re [∆HH ] for complex

momentum aroundM2
2. The full calculation (black) and the Breit–Wigner approximation

(red, dotted) are in very good agreement with each other although the curves do not lie
directly on top of one another as in the scenario of Sect. 5.2. The two heavy states h2

and h3 with a mass difference of less than 0.2 GeV and total widths of Γh2 = 2.6 GeV

and Γh3 = 2.9 GeV are too close to be resolved. Ẑ
2

2H∆h2 (orange) and Ẑ
2

3H∆h3 (green)
contribute with similar magnitude, but opposite signs so that the result differs strongly
from the single terms. Indeed, only their sum provides a reliable approximation. A
comparable situation is shown in Fig. 8(b) for Re [∆HA].
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Figure 8: Real parts of (a) the diagonal propagator ∆HH(p2) and (b) the off-diagonal prop-
agator ∆HA(p2) depending on the complex momentum p2 around M2

2 with p2/M2
2 = 0.5...1.5.

Labelling as in Fig. 5.

5.3.2 Propagators depending on the real momentum p2 = s

Fig. 9 shows the same selection of propagators as in Fig. 8, but in this case evaluated at
real momentum. The approximation from Eq. (76) leads to a good agreement between
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the propagators in the full mixing calculation (black) and the Breit–Wigner formulation
(red, dotted), displayed for Re[∆HH ] in Fig. 9(a) and for Re[∆HA] in Fig. 9(b). While
the h1-part (blue) is negligible due to the much lower mass Mh1 , h2 (orange) and h3

(green) both contribute substantially because their complex poles are very close to each
other. These comparisons show that the Breit–Wigner approximation is also applicable
in scenarios of quasi-degenerate states and a strong resonance-enhanced mixing. We note,
however, that the agreement between the full propagators and those with on-shell mixing
factors is slightly less accurate here than in the scenario with moderate, nearly unitary
mixing.

Δ full

∑BW·Z

h1

h2

h3

640 642 644 646 648 650

-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

s [GeV]

R
e[
Δ

H
H
][
G

eV
-
2
]

(a)

Δ full

∑BW·Z

h1
h2
h3

640 642 644 646 648 650
-0.0006

-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

s [GeV]

R
e[
Δ

H
A
][
G

eV
-
2
]

(b)

Figure 9: Real parts of (a) the diagonal propagator ∆HH(p2) and (b) the off-diagonal propa-
gator ∆HA(p2) depending on the real momentum p2 = s around

√
s ' Mh2 , Mh3 . Labelling as

in Fig. 5.

5.3.3 Comparison of Ẑ-factors with effective couplings

The effective coupling approach mentioned in Sect. 2.4 makes use of the unitary, real U-
matrix instead of the Ẑ-matrix. However, U is not evaluated at the complex pole, but at
p2 = 0 (see Sect. 2.4) and it does not comprise the imaginary parts of the self-energies. We
compare the effective coupling approach based on the matrix U with the Ẑ-factor approach
which does take the imaginary parts into account, but cannot be directly interpreted as
a unitary transformation between the states of the different bases.

Based on Ẑ- and U-factors from FeynHiggs, Fig. 10 displays in the scenario of Eq. (99)
real parts of ∆HH and ∆HA at real momentum around Mh2 ' Mh3 , calculated as a fully
momentum-dependent mixing propagator (black), using the Ẑ-matrix approach (red, dot-
ted) defined in Eq. (76), i.e. ∆Z

ij(p
2) '

∑3
a=1 Ẑai ∆

BW
a (p2) Ẑaj, and the U-matrix variant

(grey, dashed) in the p2 = 0 approximation as

∆U
ij(p

2) '
3∑

a=1

Uai(p
2 = 0) ∆BW

a (p2) Uaj(p
2 = 0). (105)
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The black curves in Fig. 10 representing the full propagators are identical to those shown
in Fig. 9. While in Fig. 10(a) the curve representing the approximation in terms of Ẑ-
factors is almost identical to the curve of the full ∆HH (with a relative deviation at the
peak of 0.8%), the approximation in terms of U-factors differs from the full result by
up to 14%. In Fig. 10(b), not even the shape of ∆HA is correctly approximated by the
approach using the U-matrix whereas the approach using the Ẑ-matrix comes close to
the full ∆HA (up to the small deviations that can be seen in the plots).

This analysis indicates that the Ẑ-factors combined with Breit–Wigner propagators
are well-suited to describe the Higgs propagators including their mixing also in scenarios
with close-by resonances and strong mixing. This approach captures the leading mo-
mentum dependence and adequately accounts for the imaginary parts. In contrast, the
combination of U-factors and Breit–Wigner propagators is – despite its unitary nature –
incomplete with respect to the mixing effects in the resonance region and regarding the
significance of imaginary parts.

5.4 Breit–Wigner and full propagators in cross sec-

tions

As an application of the derivations above, we calculate a cross section with Higgs ex-
change. We study the example process bb → h,H,A → τ+τ−, where the intermediate
Higgs bosons are once represented by the full mixing propagators ∆ij and once by Breit–

Wigner propagators multiplied by Ẑ-factors. In order to disentangle this investigation
from other higher-order effects, we restrict the Higgs-fermion-fermion vertices to the tree-
level and do not include the emission of real particles in the initial or final state, but focus
on the propagator corrections.

For the implementation of the full propagator method, we extended a FeynArts
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Figure 10: Comparison of the full propagators (black, solid) with the Breit–Wigner approx-
imations based on the U-matrix (grey, dashed) and Ẑ-matrix (red, dotted) for real parts of
the diagonal propagator ∆HH(p2) (a) and the off-diagonal ∆HA(p2) (b) depending on the real
momentum p2 = s around

√
s 'Mh2 , Mh3 .
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model file. New scalars ij are introduced that correspond to the full propagator ∆ij(p
2)

and couple to the first vertex as the interaction eigenstate i and to the second vertex as
j. Those propagators are used in the FormCalc calculation supplemented by self-energies
from FeynHiggs incorporating corrections up to the two-loop level and the full momentum
dependence at the one-loop level.

Considering only mixing between h and H at this point, we choose as a CP-conserving
scenario the Mmax

h -scenario [39,40] with tan β = 50, MH± = 153 GeV, but we modify it by
setting Af3 = 2504 GeV. As before, this scenario has been selected for illustration purposes
and it is not meant to be phenomenologically viable. An outcome of this parameter
choice are large off-diagonal Z-factors Ẑ12 ' 0.65 + 0.29i, Ẑ21 ' −0.64 − 0.29i, and
Ẑ11 ' 0.85− 0.22i, Ẑ22 ' 0.84− 0.23i. The masses of the CP-even Higgs bosons are very
close to each other, Mh1 = 126.20 GeV and Mh2 = 127.55 GeV, while the widths obtained
from the imaginary part of the complex poles are Γh1 = 0.94 GeV and Γh2 = 1.21 GeV.
Despite its large width of ΓA = 3.58 GeV, the third neutral Higgs boson does not overlap
significantly with the other two resonances due to the mass of Mh3 = 119.91 GeV, and no
mixing with the other two states occurs because we are considering here the CP-conserving
case of real parameters.

Mh =126.20 GeV

MH =127.55 GeV

G h = 0.94 GeV

G H =1.21 GeV

modified Mh
max scenario:

tanΒ = 50
MH + = 153 GeV

Dij 3 � 3
DBW × Z
DBW × Z no Int
DBW × Z h
DBW × Z H
DBW × Z A

122 124 126 128 130
0

100000

200000

300000

400000

s̀ @ GeVD

Σ̀
@p

b
D

ΣHbb ->Τ + Τ -L with propagator mixingˆ

Figure 11: The partonic cross section σ̂(bb→ τ+τ−) in a modified Mmax
h -scenario with tanβ =

50 and MH± = 153 GeV. The cross section is calculated with the full mixing propagators (blue,
solid), approximated by the coherent sum of Breit–Wigner propagators times Ẑ-factors with the
interference term (red, dashed) and the incoherent sum without the interference term (grey, dot-
dashed). The individual contributions mediated by h1 (light blue), h2 (green) and h3 (purple)
are shown as dotted lines.

Fig. 11 shows the partonic cross section σ̂(bb → h,H,A → τ+τ−) as a function of
the centre-of-mass energy

√
ŝ, where ŝ = (pb + pb)

2 is the squared sum of the momenta
of the b- and b-quarks in the initial state. The calculation based on the full propagators
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(represented by the blue, solid line) is in very good agreement with the cross section
based on the coherent sum of the h1, h2, h3 contributions of the Breit–Wigner propagators
multiplied with Ẑ-factors (red, dashed) according to Eq. (82). Both curves lie on top of
each other and contain two peaks originating from h1 (light blue, dotted) and h2 (green,
dotted). The resonances of h1 and h2 partly overlap as the mass difference is of the order
of the total widths, but the two peaks can still be distinguished. The h3 contribution
peaks at a lower mass in this scenario, but for completeness it is also shown (purple,
dotted). The incoherent sum |h1|2 + |h2|2 + |h3|2 (grey, dash-dotted) from Eq. (83) clearly
overestimates the full cross section as a consequence of the missing interference term that
turns out to be destructive in this case. It is taken into account in the full calculation
and in the coherent sum of Breit–Wigner propagators with Ẑ-factors. For the efficient
calculation of interference terms of quasi degenerate resonances, see e.g. Refs. [16,41].

While the comparison in Fig. 11 is restricted to the case of 2 × 2-mixing due to a
scenario with real parameters, the agreement of the cross section σ̂(bb→ h,H,A→ τ+τ−)
calculated with the full or Breit–Wigner propagators can be seen also in a scenario with
complex parameters in Fig. 12. For the numerical evaluation, we choose a scenario with
large mixing defined in Eq. (99), i.e. the Mmod+

h scenario with µ = 1000 GeV and the
phase φAt = π/4 where we vary MH± and tβ.

We investigate the relative deviation ε between the cross section σfull based on the
full propagators and the cross section σBWẐ

coh based on the coherent sum of Breit–Wigner

propagators with Ẑ-factors, where the total widths are obtained from the imaginary parts
of the complex poles, ΓIm, defined in Eq. (108),

ε =
σBWẐ

coh (φAt)

σfull(φAt)
− 1. (106)

Fig. 12 reveals that both methods agree very well, with a maximum deviation of ±2%
around MH± = 500 GeV, tan β = 28 and of about 0.8% along the green band from
this parameter point to larger values of MH± and lower values of tβ. Otherwise the
two calculations lead to the same results within 0.1%. Hence the use of Breit–Wigner
propagators is suitable also for phenomenological applications such as the calculation of
cross sections even in a scenario with complex parameters and large, CP-violating mixing.
A phenomenological investigation of such a scenario will be addressed in a forthcoming
publication [42,43].

5.5 Impact of the total width

This section addresses the impact of the precise value of the total width. So far, we have
obtained the Higgs widths from the imaginary part of the complex poles as in Eq. (37)
in order to consistently compare with the full propagator mixing. If the self-energies in
Σ̂eff
ii are calculated at the one-loop level, the total width extracted from a complex pole

of ∆ii is then a tree-level width. Correspondingly, partial two-loop contributions to the
imaginary parts of the self-energies give rise to partial one-loop corrections of the decay
width. However, two-loop self-energies evaluated at p2 = 0, as they are approximated
in FeynHiggs, do not contribute to the imaginary part of the pole so that the width
determined from the imaginary part of the complex pole remains at its tree-level value.
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Figure 12: Relative difference ε in % between cross sections based on the full propagator
mixing and the Breit–Wigner approximation with Ẑ-factors using the total width ΓIm from the
imaginary part of the complex pole: the partonic cross section σ̂(bb̄→ τ+τ−) via neutral Higgs
bosons in the Mmod+

h scenario with µ = 1000 GeV, φAt = π/4.

Corrections to Higgs boson decays in the MSSM at and beyond the one-loop level are
known and have been found to be important, see e.g. Refs. [19,25,44,45]. Thus, the sum
of the partial decay widths into any final state X of a Higgs boson ha,

Γtot
ha =

∑
X

Γ(ha → X), (107)

leads to a more accurate result for its total width than from the imaginary part of the
corresponding complex pole,

ΓIm
ha = −Im[M2

a]/Mha , (108)

even if M2
a is based on self-energies at the same order as used for the calculation of

Γtot
ha

as in Eq. (107). FeynHiggs contains the partial Higgs decay widths and their sum
at the leading two-loop order. Having checked the compelling agreement between the
full propagators and the Breit–Wigner propagators with the width from the imaginary
part of the complex pole in the previous sections, now we implement the total width
from FeynHiggs into the Breit–Wigner propagators in order to obtain the most precise
phenomenological prediction.

In the modified Mmax
h scenario, the higher-order corrections have a significant impact

on the Higgs decay widths so that Γtot
h1

= 2.55 GeV and Γtot
h2

= 3.24 GeV are much larger
than the widths obtained from the imaginary part of the complex pole. This affects the
order of magnitude of the cross-section σ̂

(
bb→ τ+τ−

)
and the structure of the resonances,

as can be seen in Fig. 13. The coherent sum of Breit–Wigner propagators including the
interference term (red, dashed) and the incoherent sum without the interference term
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Figure 13: Effect of the total width as an input for Breit–Wigner propagators: The partonic
cross section σ̂(bb→ τ+τ−) in the same modifiedMmax

h -scenario as in Fig. 11 with tanβ = 50 and
MH+ = 153 GeV. The Breit–Wigner propagators with the total widths from the imaginary part
of the complex pole including (red, dashed) and excluding (grey, dash-dotted) the interference
term (as in Fig. 11) are compared with the Breit–Wigner propagators where the total widths
are obtained from FeynHiggs. The corresponding results are shown including (black, solid) and
excluding (black, dotted) the interference term.

(grey, dash-dotted) using ΓIm from the imaginary parts of the complex poles are the same
as in Fig. 11. In contrast, the total widths Γtot

FH obtained from FeynHiggs as the sum of
higher-order partial widths are implemented into the Breit–Wigner propagators in the
cross section based on the coherent sum of all ha-contributions (black, solid) and the
incoherent sum (black, dotted).

The large increase in the widths from ΓIm
ha

to Γtot
ha

has a very significant effect in Fig. 13,
since the resonant behaviour is smeared out by the larger widths. As a consequence, the
separate resonances are less pronounced, and the cross section is suppressed. Here, the
incoherent sum without the interference term again overestimates the cross-sections. In
addition, it lacks the two-peak structure. This observation emphasizes the importance of
including the total width at the highest available precision and to take the interference
term into account. One can also see that two resonances might be too close to be resolved
if they are smeared by large widths.

6 Conclusions

We have shown that the momentum-dependent propagator matrices of systems of unstable
particles that mix with each other can be accurately approximated by a combination of
Breit–Wigner propagators and wave function normalisation factors, where the latter are
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evaluated at the complex poles of the propagator matrix. For illustration, we have applied
this approach to the example of the neutral Higgs bosons of the MSSM with complex
parameters, where the CP-violating interactions give rise to a 3 × 3 mixing between the
lowest-order mass eigenstates h,H,A and the loop-corrected mass eigenstates h1, h2, h3

(further mixing contributions with unphysical Goldstone bosons and vector bosons can
be incorporated separately up to the considered order in perturbation theory). In the
special case of CP-conservation the mixing between the physical Higgs bosons is reduced
to a 2× 2 mixing between the states h and H.

Analysing the pole structure of propagator matrices, we have shown that for the
case of 3× 3 mixing each entry of the propagator matrix has three complex poles, while
for the 2 × 2 mixing case each entry of the propagator matrix has two complex poles.
Consequently, a single-pole approximation is not sufficient to approximate the momentum
dependence of the full propagators. In particular for close-by states with sizeable widths,
the different resonance regions may overlap.

We have derived in a process-independent way how the full propagators can be ex-
panded around all of their complex poles. This approximation results in the sum of
Breit–Wigner propagators of the corresponding resonances, weighted by wave function
normalisation factors which encompass the relation between the lowest-order mass eigen-
states and the loop-corrected mass eigenstates. As a key result, we have demonstrated
that wave function normalisation factors that have been derived to ensure the correct
on-shell properties of external particles in physical processes at their (in general complex)
poles are a useful tool also for describing off-shell propagators, i.e. including momentum
dependence. It has been shown that the momentum dependence of the full propaga-
tors can be accurately approximated by simple Breit–Wigner propagators. The complex
wave function normalisation factors properly incorporate the imaginary parts of the self-
energies arising from absorptive parts of loop integrals, which in contrast are neglected in
effective coupling approaches where the contributing self-energies are evaluated at vanish-
ing external momentum. In our numerical analysis we have found very good agreement
between the approximation presented in this paper and the full propagators.

The formalism of Breit–Wigner propagators and on-shell wave function normalisation
factors has several appealing advantages in describing the propagators of unstable particles
that mix with each other. It avoids the momentum-dependent evaluation of self-energies
and thereby significantly simplifies and accelerates the calculation of higher-order contri-
butions. Besides, it enables the separation of the individual resonant contributions of the
mass eigenstates ha within a given process and the straightforward calculation of their in-
terference term. Moreover, the Breit–Wigner propagator turns into a δ-distribution in the
limit of a vanishing width, thus facilitating the separate calculation of the production and
decay of an intermediate unstable particle by means of the narrow-width approximation
and its generalisation to the case of overlapping and interfering resonances. In addition,
the Breit–Wigner formulation allows the implementation of a more precise total width by
incorporating important higher-order effects from the partial widths that are not included
in the imaginary part of the complex pole with self-energies evaluated at the same per-
turbative order as for the partial widths. This feature is very useful for phenomenological
predictions of processes involving the exchange of unstable particles, benefitting from the
use of quantities computed at the highest available order in perturbation theory.

The explicit calculations presented in this paper have been performed in the MSSM,
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but the introduced method itself can be easily extended to the cases of particles with non-
zero spin and mixing among more than three particles, such as, for example, in different
models with a non-minimal scalar sector or new vector resonances.

Acknowledgements

We thank Alison Fowler for her contributions at an early stage of this work. E.F. thanks
the DESY theory group where most of this work was carried out. The work of E.F.
was partially supported by the German National Academic Foundation. The work of
G.W. is supported in part by the Collaborative Research Centre SFB 676 of the DFG,
“Particles, Strings and the Early Universe”, and by the European Commission through
the “HiggsTools” Initial Training Network PITN-GA-2012-316704.

References

[1] S. Willenbrock and G. Valencia, “On the definition of the Z boson mass,” Phys.
Lett. B259 (1991) 373–376.

[2] A. Sirlin, “Theoretical considerations concerning the Z0 mass,” Phys. Rev. Lett. 67
(1991) 2127–2130.

[3] R. G. Stuart, “Gauge invariance, analyticity and physical observables at the Z0
resonance,” Phys. Lett. B262 (1991) 113–119.

[4] H. G. J. Veltman, “Mass and width of unstable gauge bosons,” Z. Phys. C62
(1994) 35–52.

[5] N. Cabibbo, “Unitary Symmetry and Leptonic Decays,” Phys.Rev.Lett. 10 (1963)
531–533.

[6] M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory of
Weak Interaction,” Prog. Theor. Phys. 49 (1973) 652–657.

[7] G. Cacciapaglia, A. Deandrea, and S. De Curtis, “Nearby resonances beyond the
Breit-Wigner approximation,” Phys. Lett. B682 (2009) 43–49, arXiv:0906.3417
[hep-ph].

[8] J. de Blas, J. Lizana, and M. Perez-Victoria, “Combining searches of Z’ and W’
bosons,” JHEP 1301 (2013) 166, arXiv:1211.2229 [hep-ph].

[9] A. Pilaftsis, “Resonant CP violation induced by particle mixing in transition
amplitudes,” Nucl. Phys. B504 (1997) 61–107, arXiv:hep-ph/9702393 [hep-ph].

[10] R. Eden, P. Landshoff, D. Olive, and J. Polkinghorne, The Analytic S-Matrix.
Cambridge University Press, 1966.

36

http://dx.doi.org/10.1016/0370-2693(91)90843-F
http://dx.doi.org/10.1016/0370-2693(91)90843-F
http://dx.doi.org/10.1103/PhysRevLett.67.2127
http://dx.doi.org/10.1103/PhysRevLett.67.2127
http://dx.doi.org/10.1016/0370-2693(91)90653-8
http://dx.doi.org/10.1007/BF01559523
http://dx.doi.org/10.1007/BF01559523
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1016/j.physletb.2009.10.090
http://arxiv.org/abs/0906.3417
http://arxiv.org/abs/0906.3417
http://dx.doi.org/10.1007/JHEP01(2013)166
http://arxiv.org/abs/1211.2229
http://dx.doi.org/10.1016/S0550-3213(97)00469-0
http://arxiv.org/abs/hep-ph/9702393


[11] D. Espriu, J. Manzano, and P. Talavera, “Flavor mixing, gauge invariance and wave
function renormalization,” Phys. Rev. D66 (2002) 076002, arXiv:hep-ph/0204085
[hep-ph].

[12] A. Fowler and G. Weiglein, “Precise Predictions for Higgs Production in Neutralino
Decays in the Complex MSSM,” JHEP 1001 (2010) 108, arXiv:0909.5165
[hep-ph].

[13] A. Fowler, Higher order and CP-violating effects in the neutralino and Higgs boson
sectors of the MSSM. PhD thesis, 2010.

[14] A. Bharucha, A. Fowler, G. Moortgat-Pick, and G. Weiglein, “Consistent on shell
renormalisation of electroweakinos in the complex MSSM: LHC and LC
predictions,” JHEP 05 (2013) 053, arXiv:1211.3134 [hep-ph].

[15] M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, “The
Higgs boson masses and mixings of the complex MSSM in the
Feynman-diagrammatic approach,” JHEP 02 (2007) 047, arXiv:hep-ph/0611326.

[16] E. Fuchs, S. Thewes, and G. Weiglein, “Interference effects in BSM processes with a
generalised narrow-width approximation,” Eur. Phys. J. C75 (2015) 254,
arXiv:1411.4652 [hep-ph].
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