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Abstract

In this note, I describe the space of vacua V of four dimensional N = 4 SYM
on R

4 with gauge group a compact simple Lie Group G as a stratified space. On
each stratum, the low energy effective field theory is different. This language
allows one to make precise the idea of moving in the space of vacua V. A
particular subset of the strata of N = 4 SYM can be efficiently described using
the theory of sheets in a Lie algebra. For these strata, I study the conjectural
action of S-duality. I also indicate some benefits of using such a language
for the study of the available space of vacua V on the boundary of GL twisted
N = 4 SYM on a half-space R3×R

+. As an application of boundary symmetry
breaking, I indicate how a) the Local Nilpotent Cone arises as part of the
available symmetry breaking choices on the boundary of the four dimensional
theory and b) the Global Nilpotent Cone arises in the theory reduced down to
two dimensions on a Riemann Surface C. These geometries play a critical role
in the Local and Global Geometric Langlands Program(s).
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1. Introduction

A natural question that arises when studying S-duality of N = 4 SYM is whether
symmetry breaking followed by duality is the same as duality followed by symmetry
breaking. One motivation for this note is to answer this question in the affirmative
for a class of phases of N = 4 SYM for arbitrary G. More accurately, I show that the
nested family of S-duality conjectures that interchange phases of N = 4 with gauge
group G and the phases of N = 4 SYM with gauge group G∨ are such that symmetry
breaking followed by duality lands one in the same phase of the same theory as does
duality followed by symmetry breaking. Here, G and G∨ are such that their root data
are related by Langlands/Goddard-Nyuts-Olive duality.

To achieve this, I use the natural stratification on the moduli space of vacua
V. This makes the statement (encapsulated as Proposition 3.1) much clearer and
amenable to further extensions. A second motivation is to show that two important
Geometric objects, the Local Nilpotent Cone and the Global Nilpotent Cone arise as
part of the available choice of symmetry breaking patterns for the GL twisted theory
on a half space.

In the study of non-perturbative dynamics of Supersymmetric Quantum Field
Theories, the existence of a moduli space of vacua in the full quantum theory has
often played an important role [Sei2]. One particular example of such a moduli space
is that of the Coulomb Branch[SW1,SW2,Sei3]. It is defined to be the moduli space
of vacua in which the low energy theory is described by interacting abelian vector
multiplets. For the N = 4 theory, this happens to be the only vacuum moduli space.
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The idea of a Coulomb Branch has also played an important role in several closely
associated subjects like the study of TQFTs arising from Supersymmetric Quantum
Field Theories. For example, the Coulomb Branch plays an important role in the
relationship between Donaldson-Witten TQFT and Seiberg-Witten TQFT [MW]. In
Section 4, we study its role in another 4d TQFT, namely the one arising from GL
twist of N = 4 SYM.

In its varied appearances, the fact that the Coulomb Branch is a stratified space
is often left implicit. In this note, I want to make the stratification very explicit.
For this purpose, it becomes necessary to depart from what has become standard
terminology. We will reserve the letter G for the compact group and use GC to
denote its complexification and assign g to be the associated complex Lie algebra.

In the standard terminology that is used in the study of moduli spaces of vacua,
no difference is retained between the following two objects

• The space of VEVs V for scalar fields which is actually r copies of the space of
semi-simple adjoint (G-) orbits in the Lie Algebra g, where r is the number of
adjoint scalars.

• The parameter space of labels for semi-simple adjoint orbits. This is the same as
(h/W )r, where r is the number of adjoint scalars and h is the Cartan subalgebra
of g. This follows from the standard theory of adjoint orbits [CM] applied to
semi-simple orbits. Equivalently, this is the space of Chiral Invariants B whose
co-ordinates are the Weyl Invariant polynomials on h. For example, if g is of
Cartan type An, the space B is parameterized by gauge invariant polynomials
built out of the scalars Tr(Φ2

i ), T r(Φ
3
i ), . . . T r(Φ

n+1
i ).

Both V and B are usually called Coulomb Branches. For the purposes of this note,
it will be important to distinguish between the above two and we will do so from this
point. So, let us denote the space of VEVs by V and the parameter space of Invariant
Polynomials as B. I will reserve the word space of vacua for the former while using
the terms chiral invariants or Coulomb branch to denote the latter. As we will see,
there is value in talking about orbits even in the case where only semi-simple orbits
are involved. The relationship between the two is 1:1 when one considers a VEV
which is a semi-simple orbit. But, the value in remembering the orbit information
is that it is much easier to read the unbroken gauge group on an arbitrary stratum
of V from the orbit than it is from the space of invariant polynomials. In principle,
one can retrieve the same information by considering strata in h/W and deducing the
Weyl group of the unbroken Gauge Group from the stratum in h/W that one is in
(see Sec 2.3 below).

The strata of V are described in Section 2 using the language of adjoint orbits,
especially that of sheets in the complex lie algebra. In order to keep this note short, I
have avoided introducing these subjects in great detail. Such an introduction can be
found in [CM] [DGE] and in [BCD] where the theory of sheets is used in a different
context. The theory itself was introduced in [BK].
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2. Bulk Symmetry Breaking and the Strata of V
We can restrict to the case where the gauge group G is compact and simple. When
G is semi-simple, the following analysis can be done for each simple factor.

Now, the bosonic part of the action for the N = 4 theory on R
4 is

S =
1

g2YM

∫

dx4 Tr

(

1

2
FµνF

µν +DµφiD
µφi +

1

2

6
∑

i,j=1

[φi, φj]
2

)

(1)

where µ = 0, 1, 2, 3 are the spacetime indices and i, j = 1 . . . 6 are R-symmetry
indices. The scalars φi transform in the six dimensional representation of so(6). We
are interested in the space of Lorentz invariant vacua of the N = 4 theory with a
so(6)R symmetry. The so(6)R symmetry that emerges in the IR is generically different
from the so(6)R of the UV theory with gauge group G. The scalar potential in the
Lagrangian is quadratic and it admits a family of solutions. Upto gauge invariance,
this space of vacua V can be identified with the space of adjoint orbits in the lie algebra
g subject to the condition [φi, φj]

2 = 0. Since gauge symmetry is a redundancy in
the theory, one identifies an entire adjoint orbit of the VEV 〈φi〉 to be one single
vacuum. Now, the condition [φi, φj]

2 = 0 implies that the adjoint orbit has to be
abelian. Usually, this is taken to mean the VEV 〈φi〉 is valued in a semi-simple orbit.
It is technically possible to find non-semi-simple orbits that are abelian but we will
not consider them here. The discussion so far was concerning the classical moduli
space of vacua. One of the remarkable features of the N = 4 theory is that the scalar
potential is not quantum corrected [Sei1]. This implies that the moduli space of vacua
persists in the quantum theory.

While this note is focused on just the moduli space of vacua of 4dN = 4 SYM with
gauge group G, the broader statements describing the space of vacua as a stratified
space apply directly to theories with lower SUSY and the description that follows is
likely to be of added value in this larger context.

2.1. General Properties of a Stratification of V
Before delving into a detailed study of the strata, it is helpful to outline what general
properties should be obeyed by a stratification of V. Let V = ⊔αi

Vαi
be a decomposi-

tion of the V into strata Vαi
for a partially ordered set αi. Associated to each stratum

is an unbroken gauge group Gαi
which encodes the massless degrees of freedom and

a collection of W-bosons Wαi
which encodes the part of the Gauge symmetry that

was Higgsed. The partial order on the set αi encodes the possible Higgsing patterns.
For example, if a stratum Vα1

can be reached by symmetry breaking from Vα2
, then

we say that α1 < α2 in the partial order.
On general physical grounds, it is natural to demand the following properties hold

for the decomposition

(A) The low energy effective field theory (EFT) varies smoothly along a fixed stra-
tum Vα. In other words, no new massless gauge fields appear as we move in a
fixed stratum.
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(B) If there exists two distinct strata Vα,Vβ such that their unbroken gauge groups
Gα, Gβ can be further Higgsed to a common gauge group Gγ corresponding to
a stratum Vγ, then the two different ways of landing on the stratum Vγ yield
the same set of W-bosons Wγ (upto any EM dualities of the low energy theory
on Vγ).

When the UV theory has a Lagrangian, a stratification obeying the above prop-
erties is provided by the ordinary Higgs mechanism. We will call this the “natural
stratification” of V. In these cases, it also follows that the condition (B) implies con-
dition (A). But, the idea of a moduli space of vacua is often useful in studying theories
with no known UV Lagrangians and in such cases, it is not a priori clear as to what
the analogues of W-bosons are and if (a version of) condition (B) can automatically
imply condition (A). So, it may be useful to think of them as two separate conditions.

2.2. Alignment of VEVs

For generic VEVs for the six scalars, the gauge group is broken to U(1)rank(G). But, we
want to study vacua at non-generic values of the VEV. To reach the other interesting
vacua, one immediately realizes that the scalar VEVs have to obey certain alignment
conditions 1. So, henceforth, we will concentrate only on those vacua of N = 4
that obey some alignment condition that allows some non-abelian gauge group to
remain. In fact, we will be even more restrictive. First, it is convenient to combine
the six scalars into the three complex scalars. These scalar VEVs are now semi-simple
elements in the complex lie algebra. So, from the nature of the scalar potential, we
conclude that the space of vacua V is identified with three copies of the space of semi-
simple adjoint orbits. We call a vacuum of N = 4 an aligned vacuum if the VEVs
are all valued in the same sheet of the complex lie algebra (the notion of a sheet is
recalled in the Section below). While it would be extremely interesting to study the
action of S-duality on the entire set of vacua, we restrict ourselves only to the set of
aligned vacua in the rest of the note.

2.3. The Strategy : Strata of V and B using Sheets

Our strategy for describing the aligned vacua of N = 4 SYM is the following. Every
semi-simple G orbit in the compact real form of g can be mapped to a corresponding
semi-simple GC-orbit in the g2. And both of these can be mapped to strata in the
space of Weyl invariant polynomials (h/W ) by computing the characteristic poly-
nomial. When the characteristic polynomial does not factorize, we are on the top

1This is similar to the appearance of a condition for vacuum alignment in MSSM where VEVs of
the two scalar fields in the theory should be aligned for U(1)EM to remain unbroken after Electroweak
symmetry breaking. Such an alignment is energetically favored by the quartic part of the potential
for scalars in MSSM. In the present context, there is no quartic term. So, we are just choosing to
restrict ourselves to this subset of the vacua.

2This property does not extend to other orbits in the complex lie algebra. For example, while
there are nilpotent orbits in the complex lie algebra for the GC action, there are no analogs in the
compact case.
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stratum of h/W . When eigenvalues start to repeat, then the characteristic polyno-
mial would factorize accordingly and one lands on lower strata of h/W . This map
from semi-simple orbits to strata in h/W is many to one. In fact, it is infinitely many
to one. If we change the eigenvalues of the semi-simple element (corresponding to
changing masses of W-bosons), we would be changing the semi-simple orbit. But,
as long as the pattern of eigenvalues remains identical, we would land on the same
stratum of h/W when we compute the characteristic polynomial. So, looking to label
phases by semi-simple orbits themselves would not be a wise idea. Instead, we want
to identify the different phases of the physical theory by finding a way to label the
strata in h/W .

This is where the theory of sheets turns out to be of use. While there are an infinite
number of semi-simple orbits in a Lie algebra, there are only a finite number of sheets
containing semi-simple orbits. The theory of sheets concerns adjoint orbits (for the
GC action) in the complex lie algebra. Specifically, a sheet is a union of adjoint orbits
of the same dimension. We are concerned here with sheets that have semi-simple
elements in them and these are called Dixmier sheets [DGE,BCD]. Associated to
every Dixmier sheet is a Levi subalgebra m that centralizes any semi-simple element
in the sheet. Under the adjoint quotient map (the eigenvalues map), each Dixmier
sheet is mapped to a distinct stratum in h/W . This parameterization of strata in h/W
by the centralizing Levi is very convenient for the purpose of the physical question at
hand. The unbroken gauge group associated to a fixed stratum in h/W is precisely the
compact form of the Levi subalgebra associated to the stratum in h/W by the theory
of sheets. When such a procedure is carried out for every adjoint scalar that has
acquired a non-zero VEV, one would go from describing a stratum in B to a stratum
of V. In terms of stratification theory, the resulting stratification of V (where strata
are labeled by the unbroken gauge group) is an example of an isotropy/orbit-type
stratification [Mat,DK].

One would go in the other direction in the following way. Let B be the space of
chiral invariants of the phase of theory in which the gauge group G is broken down to
U(1)rank(G). Let BM be the space of chiral invariants of the phase of the theory with
unbroken gauge group M where M has a non-trivial semi-simple part. Now, BM can
be identified with the space of W (Mop)-invariant polynomials, where W (Mop) is the
Weyl group of the semi-simple part of Mop where Mop is the opposite Levi subalgebra
to M . Here, “opposite Levi” is taken to mean that if Π ⊂ Σ is the subset of simple
of roots corresponding to the Levi M , then Mop has Σ \ Π as its set of simple roots.
And BM is a particular stratum in B. Two extreme cases are when M = U(1)rank(G),
where we have BM = B and when M = G where we have that BM is the “0” stratum
of B. But, this method is not always transparent when it comes to identifying the
unbroken gauge group. For example, when the unbroken gauge group is of type B
or C, knowing just the Weyl group of the unbroken Gauge Group is not sufficient to
determine the unbroken gauge group. So, it is a lot more convenient to just study
the strata of V.

As recalled above, the sheets that contain semi-simple orbits are called Dixmier
sheets in Lie theory. From the physical perspective, each Dixmier sheet corresponds
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to a particular choice for what the unbroken Gauge Group is. For example, if the
VEV 〈φi〉 is valued in the principal Dixmier sheet, then the unbroken gauge group is
U(1)rank(G). On the other extreme, if the VEV 〈φi〉 = 0, we are in the case with no
symmetry breaking and the gauge group is G. We will call the stratum of V where
the Gauge Group is U(1)rank(G) to be the lowest stratum of V and the stratum with
gauge group G the top stratum of V.
Remark 2.1. It must be noted here that the idea of thinking about the space of vevs
(upto gauge equivalence) as a stratified space is, by itself, not new. For example,
see the review by L. Michel [Mic] and Section 9 of Slansky’s report [Sla] where this
language is discussed in great detail. The theories most directly relevant to these works
are GUT models where there is one preferred vacuum in the quantum theory once the
UV theory is fixed. The language of orbits allows for a discussion of the available
choices for this vacuum in a way that does not depend too much on the detailed form
of the Higgs potential in the UV theory. The context of the present work is vastly
different. One is talking of special Quantum Field Theories in which a moduli space
of vacua has survived in the quantum theory (the potential remains quadratic) and it
makes sense to move (ie change the VEV in the UV theory and thereby change the
RG flow from the UV to the IR) in the moduli space of vacua.

3. S-duality

Fix M to be the subgroup of G that arises as the unbroken gauge group in one of the
phases of the Gauge Theory. By ordinary Higgs mechanism, we mean the symmetry
breaking deformation of the N = 4 theory triggered by a VEV of the lie algebra
valued scalar 〈φ〉.
Proposition 3.1. (“Duality of Strata”) The action of S-duality and that of ordi-
nary Higgs Mechanism triggered by a VEV for the scalar 〈φi〉 commute. Equivalently,
the strata of V in the theory with gauge group G are in a natural one to one corre-
spondence with the strata V∨ of the dual theory with gauge group G∨.

Proof. The symmetry breaking is triggered by a semi-simple element in the lie algebra
g. The unbroken gauge group in this case is a compact group M whose associated
complex lie algebra m is a Levi subalgebra of the Lie algebra g. There is a unique
Dixmier sheet associated with a choice of a Levi subalgebra. This Dixmier sheet is a
particular stratum in the complex lie algebra g consisting of a family of semi-simple
adjoint orbits that have a same unbroken gauge group. So, this also corresponds to a
particular stratum in V. Now, from the defining relationship between the root systems
of G∨ and G and the fact that Levi subalgebras are classified (upto conjugacy) by
proper subsets of the set of simple roots of the root system [BDS,Hum], we have that
for every m ⊂ g, it is true that m∨ ⊂ g∨. So, the Proposition follows.

Corollary 3.2. (Linguistic) For the phases in question, one can freely alternate be-
tween saying “dual of symmetry breaking” and “symmetry breaking in the dual theory”
from the point of view of identifying phases.
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It must be noted here that S-duality for N = 4 SYM is, by itself, still very much
a conjectural statement (see [GNO,EW,MO] for some of the original conjectures and
[Oli] for a review of this early period). Highly non-trivial evidence for the S-duality
conjecture has been collected over the years in the form of study of monopole moduli
spaces [Sen2,Sen1,Gib,Hit1] and in the study of partition functions [VW,Wu]. The
former can be interpreted in terms of behaviour of the one particle BPS spectrum on
the lowest stratum of V [SW1] while the latter concerns an observable computed in
the top stratum of V. For wider reviews with a special focus on the N = 4 theory,
see [Har,WY].

More recently, the defining relationship between the two groups G and G∨ was
interpreted as the S-duality between Wilson and ’t-Hooft operators in the top stratum
of V [Kap]. One could list numerous other pieces of evidence here. But, the idea
of listing a few is to observe that each piece of evidence is collected in a particular
stratum of V (or for a pair of strata, one each on G and G∨ sides). On the other hand,
Proposition 3.1 concerns how S-duality acts on the entire set of strata themselves.

It is instructive to see Proposition 3.1 in action by including several examples
below. The case where G is simply laced, the S-duality quite straightforward since
each phase is self-dual and what follows is merely a listing of the Levi subalgebras in
each case. We still list the Levi subalgebras since it is amusing to see the strata of
V written out. The algorithm that one uses to obtain the Levi subalgebras of g is
explained in Appendix A. In the non-simply laced cases, there are some non-trivial
maps. The case of G = G2, F4 especially leads to some intriguing maps between
the phases of the gauge theory. We label the phases only at the level of complex
lie algebras. The corresponding gauge algebras are associated to the compact real
forms of the complex lie algebra. Under S-duality, global data about the group like
π1(G) and Z(G) play an important role. When speaking of S-duality at the level of
groups, this data is critical. But, in everything that follows, we use methods that
are sensitive only to lie algebraic data. A finer study at the level of Groups (about
which we comment briefly below) would require that we keep track of π1(G) and
Z(G). In what follows, when we describe a particular stratum of V as “self-dual”, it
is to be understood as a statement at the level of lie algebras. And the residual Weyl
groups symmetries are not indicated but can be inferred from the data in the pair
(g,m). While m details the continuous gauge symmetries that remain, the residual
Weyl group symmetry is an indicator of the part of the continuous gauge symmetry
is “broken”.

3.1. Type A

In this case, the phases are self-dual. For example, in G = SU(5), the phases are

8



g m

A4 A4

A4 A3 + u(1)
A4 A2 + A1 + u(1)
A4 A1 + A1 + 2u(1)
A4 A1 + 3u(1)
A4 4u(1)

3.2. Type D

Here again, the phases are self-dual. Take as an example G = SO(8), g = D4

g m

D4 D4

D4 A
′

3 + u(1)
D4 A

′′

3 + u(1)
D4 D3 + u(1)
D4 A2 + 2u(1)
D4 3A1

D4 2A1 + 2u(1)
D4 2A

′

1 + 2u(1)
D4 2A

′′

1 + 2u(1)
D4 A1 + 3u(1)
D4 4u(1)

3.3. Types B,C

Langlands duality exchanges the types B and C. Even for the principal Dixmier
sheet, the semi-simple orbits of type B and type C are different orbits. And S-duality
exchanges the corresponding two phases. Further, Dixmier sheets in Types B and C
map to each other exactly under the S-duality map. Viewed purely from the point
of the view of the space of Chiral Invariants, S-duality leaves things “invariant”. So,
the non-trivial map between Dixmier sheets in type B to Dixmier sheets in type C
leading to a highly non-trivial exchange between the phases of the gauge theories
would be somewhat obscured if one is merely studying B. For example, we have in
G = SO(9), G∨ = Sp(10), the following phases.
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g m g∨ m∨

B4 B4 C4 C4

B4 A3 + u(1) C4 A3 + u(1)
B4 B3 + u(1) C4 C3 + u(1)

B4 Ã1 +B2 + u(1) C4 Ã1 + C2 + u(1)
B4 A2 + A1 + u(1) C4 A2 + A1 + u(1)
B4 A2 + u(1)2 C4 A2 + u(1)2

B4 Ã1 + Ã1 + u(1)2 C4 Ã1 + Ã1 + u(1)2

B4 B2 + u(1)2 C4 C2 + u(1)2

B4 A1 + Ã1 + u(1)2 C4 A1 + Ã1 + u(1)2

B4 Ã1 + u(1)3 C4 Ã1 + u(1)3

B4 A1 + u(1)3 C4 A1 + u(1)3

B4 u(1)4 C4 u(1)4

3.4. Types G2, F4

In [AKS], it was noted that S-duality for the theory with G = G2, F4 acts by a non-
trivial action on the top stratum of the space of invariants B (which corresponds to
the lowest stratum of V) while the theory on lowest stratum of B (which corresponds
to the top stratum of V) is self-dual. With the stratification at hand, we can now
study the action of S-duality on intermediate strata. In both these theories, there is
a non-trivial map between the intermediate strata even though we have a “self-dual”
theory on the top stratum of V. This is due to the fact that the long root and the
short root are exchanged under S-duality.

g m g∨ m∨

G2 G2 G2 G2

G2 A1 + u(1) G2 Ã1 + u(1)

G2 Ã1 + u(1) G2 A1 + u(1)
G2 2u(1) G2 2u(1)

g m g∨ m∨

F4 F4 F4 F4

F4 B3 + u(1) F4 C3 + u(1)
F4 C3 + u(1) F4 B3 + u(1)

F4 A2 + Ã1 + u(1) F4 A2 + Ã1 + u(1)

F4 Ã2 + A1 + u(1) F4 Ã2 + A1 + u(1)
F4 C2 + 2u(1) F4 B2(≃ C2) + 2u(1)

F4 A2 + 2u(1) F4 Ã2 + 2u(1)

F4 Ã2 + 2u(1) F4 A2 + 2u(1)

F4 A1 + Ã1 + 2u(1) F4 A1 + Ã1 + 2u(1)

F4 A1 + 3u(1) F4 Ã1 + 3u(1)

F4 Ã1 + 3u(1) F4 A1 + 3u(1)
F4 4u(1) F4 4u(1)
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3.5. Types E6,E7,E8

These are simply laced and it follows immediately that the Dixmier sheets map to
each other under S-duality.

g m

E6 E6

E6 D5 + u(1)
E6 A5 + u(1)
E6 A4 + A1 + u(1)
E6 D4 + 2u(1)
E6 A3 + A1 + 2u(1)
E6 A4 + 2u(1)
E6 2A2 + A1 + u(1)
E6 A3 + 3u(1)
E6 2A2 + 2u(1)
E6 A2 + 2A1 + 2u(1)
E6 A2 + A1 + 3u(1)
E6 3A1 + 3u(1)
E6 A2 + 4u(1)
E6 2A1 + 4u(1)
E6 A1 + 5u(1)
E6 6u(1)

g m

E7 E7

E7 E6 + u(1)
E7 D6 + u(1)
E7 D5 + A1 + u(1)
E7 A6 + u(1)
E7 A5 + A1 + u(1)
E7 A4 + A2 + u(1)
E7 A3 + A2 + A1 + u(1)
E7 D5 + 2u(1)
E7 D4 + A1 + 2u(1)
E7 A′

5 + 2u(1)
E7 A′′

5 + 2u(1)
E7 A4 + A1 + 2u(1)
E7 A3 + A2 + 2u(1)
E7 A3 + 2A1 + 2u(1)
E7 2A2 + A1 + 2u(1)
E7 A2 + 3A1 + 2u(1)
E7 D4 + 3u(1)
E7 A4 + 3u(1)
E7 (A3 + A1)

′ + 3u(1)
E7 (A3 + A1)

′′ + 3u(1)
E7 2A2 + 3u(1)
E7 A2 + 2A1 + 3u(1)
E7 4A1 + 3u(1)
E7 A3 + 4u(1)
E7 A2 + A1 + 4u(1)
E7 3A′

1 + 4u(1)
E7 3A′′

1 + 4u(1)
E7 A2 + 5u(1)
E7 2A1 + 5u(1)
E7 A1 + 6u(1)
E7 7u(1)
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g m

E8 E8

E8 E7 + u(1)
E8 D7 + u(1)
E8 E6 + A1 + u(1)
E8 D5 + A2 + u(1)
E8 A7 + u(1)
E8 A6 + A1 + u(1)
E8 A4 + A3 + u(1)
E8 A4 + A2 + A1 + u(1)
E8 E6 + 2u(1)
E8 D6 + 2u(1)
E8 D5 + A1 + 2u(1)
E8 D4 + A2 + 2u(1)
E8 A6 + 2u(1)
E8 A5 + A1 + 2u(1)
E8 A4 + A2 + 2u(1)
E8 2A3 + 2u(1)
E8 A4 + 2A1 + 2u(1)
E8 A3 + A2 + A1 + 2u(1)
E8 2A2 + 2A1 + 2u(1)
E8 D5 + 3u(1)

g m

E8 D4 + A1 + 3u(1)
E8 A5 + 3u(1)
E8 A4 + A1 + 3u(1)
E8 A3 + A2 + 3u(1)
E8 A3 + 2A1 + 3u(1)
E8 2A2 + A1 + 3u(1)
E8 A2 + 3A1 + 3u(1)
E8 D4 + 4u(1)
E8 A4 + 4u(1)
E8 A3 + A1 + 4u(1)
E8 2A2 + 4u(1)
E8 A2 + 2A1 + 4u(1)
E8 4A1 + 4u(1)
E8 A3 + 5u(1)
E8 A2 + A1 + 5u(1)
E8 3A1 + 5u(1)
E8 A2 + 6u(1)
E8 2A1 + 6u(1)
E8 A1 + 7u(1)
E8 8u(1)

Here, it is of interest to note that in the S-duality map between M-regular Surface
Operators in N = 4 SYM, similar Lie theoretic data (esp the duality between Levi
sub-groups in G and G∨) enters the picture [GW2].

3.6. A Group Analog of the Higgs Mechanism

A conscientious reader would have noted at this point that everything has really
been done only at the level of the Lie algebra3. The Gauge theory, on the other
hand, depends on the group G. One way in which the dependence on the Group can
be retrieved is by studying partition functions on compact four manifolds ([VW]).
Another way would be by detailed study of available extended defect operators. For
example, the spectrum of Line operators available in a gauge theory would encode the
dependence of the gauge theory on the Group (see, for example [GMN,AST]). For the
purposes of this note, it would be desirable to speak, directly, of a Higgs mechanism
using data that live in the Group (as opposed to passing to Lie algebraic data like 〈φi〉
in an intermediate step). A Group analog of the Higgs Mechanism is likely to reveal
the existence of other phases of N = 4 SYM which are not detectable by a study
of just the UV Lagrangian since invoking the UV Lagrangian would automatically
imply passing to Lie Algebraic data like 〈φi〉. Here, certain tools that extend the usual

3I thank Ashoke Sen for sharing some of his insights in this context. The speculations here (which
are my own) are as a partial response to some of his remarks.
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Wilson/’t-Hooft criteria that have been developed in [GK] may be of use. These tools
only use Group theoretic data to study properties of phases and one can presumably
extend these tools to theories with Coulomb phases (this is also mentioned in [GK]).
It might also be possible to extend the methods in such a way that one can use them
to detect the phases using purely Group data. But we do not attempt to present such
an extension here.

4. Geometric Langlands

In the gauge theory approach to Geometric Langlands initiated by Kapustin-Witten,
the starting point is the S-duality ofN = 4 SYM with gauge groupG andN = 4 SYM
with gauge group G∨. Then, we consider a specific topological twist of the theory.
This twist was first studied by Marcus and is now more commonly known as the GL
twist [Mar,KW]. The GL twist involves an embedding of the Spin(4)′ → Spin(4)×
Spin(6) which is such that 4 of Spin(6) ≃ SU(4) transforms as ((2, 1) ⊕ (1, 2)) of
Spin(4)′. As an embedding of Spin(4) ≃ SU(2) × SU(2) in Spin(6) ≃ SU(4), it is
the diagonal embedding. The six original scalars φi transform in the 6 of Spin(6).
After GL twist, the symmetry between the six scalars is broken. Four of the scalars,
which we take to be φ0, φ1, φ2, φ3, transform as the components of an adjoint valued
one form φ = φµdx

µ. In fact, one can build a complex gauge field A = A + iφ using
the gauge field Aµ and the scalar field φµ. The rest of the scalars combine to form an
adjoint valued complex scalar σ = (φ4 + iφ5)/

√
2, σ = (φ4 − iφ5)/

√
2. In the rest of

our discussion, we will always set σ to zero.
We recall the purely bosonic part of the topological action from [KW],

Stop = − 1

g2YM

∫

d4x
√
gTr

(

1

2
FµνF

µν + (Dφ)2
)

(2)

+
2

g2YM

∫

d4x
√
gTr

(

1

2
[σ̄, σ]2 −Dµσ̄D

µσ − [φµ, σ][φ
µ, σ̄]

)

−
(

t− t−1

g2YM(t+ t−1)

)
∫

M

Tr(F ∧ F )

where t ∈ CP
1 parameterizes the family of supersymmetries Qt that is important

for the GL twist and we have set the θ angle to zero. The path integral of the twisted
theory localizes on the space of solutions to the following systems of equations on
M4 = Σ× C (when σ = 0),

(F − φ ∧ φ+ tDφ)+ = 0 (3)

(F − φ ∧ φ− t−1Dφ)− = 0

D∗φ = 0

The topologically twisted theory continues to have a quantum moduli space of
vacua V. These vacua are invariant under the global symmetry Spin(4) of the twisted
theory which is a combination of the Lorentz and R-symmetries of the original theory.
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The considerations of the earlier Section that led us to identify the space of vacua V of
the theory on R4 with the space of adjoint semi-simple orbits persist in this twisted
case with the caveat that symmetry breaking using the scalar field φ is now very
different from symmetry breaking using the scalar σ. While both lead to low energy
theories with smaller gauge groups, their effect on the 4d TQFT is quite different. In
what follows, we actually consider giving VEVs to the scalars φ0, φ1, φ2, φ3.

While the S-duality of the physical N = 4 theory appears to treat the theory
with G and the theory with G∨ on a somewhat equal footing, the twisted theory
and the more refined S-duality map between extended defect operators introduces
an asymmetric setup. So, the setup of Kapustin-Witten can be best thought of as
leading, in part, to a pair of Geometric Langlands Conjectures, each one of which
treats the G and G∨ side in an asymmetric manner. This is important for us only
to the extent that we will now go ahead and pick one of the Geometric Langlands
Conjectures that follow and identify the G∨ side of this conjecture with the Galois
side of the correspondence and the G side with the Automorphic side.

In the setup of [KW], one studies the GL twisted N = 4 SYM theory on Σ × C
in a regime where the size of C is very small compared to the size of Σ. For many
purposes, the low energy theory in this case can be described as a 2d Sigma Model
with target space the Hitchin Moduli space MH(G,C). The Hitchin moduli space is
the space of solutions to the following equations on C [Hit2],

F − φ ∧ φ = 0 (4)

Dφ = 0

D⋆φ = 0

This dimensional reduction to the Hitchin sigma model was already studied in
[BJSV,HMS]. The Hitchin moduli space can be thought of as parameterizing partic-
ular classes of solutions to the four dimensional equations (3) that arise from pullbacks
of solutions to (4) on C and these constitute the vacua of the effective theory in two
dimensions.

Recall now that the Hitchin system has the structure of being a complex integrable
system. In particular, it has a map (called the Hitchin fibration)

µ : MH → H (5)

where H is usually called the Hitchin Base. The Hitchin Base H is a half-dimensional
subspace of MH and the generic fibers of µ are tori.

The Global Nilpotent cone NG is a geometrical object of critical importance in
the Global Geometric Langlands Program and it is defined in a really simple way
using the Hitchin fibration µ. We recall its definition here,

NG = µ−1(0) (6)

where 0 is the “zero” point of the base H of Hitchin’s fibration. The definition of the
Global Nilpotent cone is similar to that of the definition of the Local Nilpotent Cone
with the Hitchin fibration playing the role of the Adjoint Quotient Map.
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From its definition, it is obvious that the Global Nilpotent Cone is a brane in
the Hitchin Sigma Model. In fact, it is a Lagrangian brane [Lau,Fal,Gin2]. What
is not obvious is that there is a way to trace the Global Nilpotent Cone to a four
dimensional origin. Below, we will see that strata of the Global Nilpotent Cone do
have an origin in specific boundary conditions in four dimensions.

4.1. Boundary Symmetry Breaking

We now consider the GL-twisted theory on R3×R+ with a supersymmetric boundary
condition. It will turn out that the available choices of symmetry breaking at the
boundary of the GL twisted theory is larger than those available in the bulk. Let us
denote the entire set of boundary vacua to be V.

To study V, one has to first account for the fact that the asymmetry induced by
the GL twist on the six scalars φi is different from that induced by the presence of the
boundary which breaks the R-symmetry at the boundary down to SO(3)X×SO(3)Y .
One of these factors, say SO(3)X, can be embedded in the Spin(4) symmetry of the
twisted theory and a choice of such an embedding would constitute the identification
of a boundary condition in the twisted theory. So, to describe a boundary condition
in the N = 4 theory, it is natural to split the scalars into two triplets X and Y.
The triplet X transforms as the three dimensional representation of SO(3)X while
the triplet Y transforms as the three dimensional representation of SO(3)Y .

As we saw in earlier sections, the presence of a quadratic potential for the Higgs
fields prevents us from giving a nilpotent VEV in the bulk theory. However, the value
that the scalar can take at the boundary is not constrained by the form of the scalar
potential of the four dimensional field theory. In other words, the scalar can now be
valued in any adjoint orbit. In particular, it can be valued in a nilpotent orbit. So,
V includes nilpotent orbits while V does not. To be more precise, one can build a
single complex scalar from two of the three scalars that comprise the SO(3)X triplet
X and allow this complex scalar to take arbitrary nilpotent values on the boundary
of R3 × R+. It is this complex scalar that becomes a part of the Hitchin system on
C.

The chiral operators that parameterize B are not suited to detect these additional
choices precisely because they are all identically zero for every nilpotent orbit. In
more compact terminology, the entire Local Nilpotent Cone is the fiber over “0” of
the adjoint quotient map (i.e eigenvalues map). The image of the adjoint quotient
map is the ring of invariant polynomials and this space can be viewed as h/W and
the “0” of the space is the case where all the invariant polynomials are zero.

So, we takeaway that there is a valid topological boundary condition in the four
dimensional theory in which the scalar that enters the Hitchin system can take nilpo-
tent values at the boundary. Now, we compactify the theory by formulating it on
Σ×C, where Σ = R+×R. We dimensionally reduce on C and the effective theory in
two dimensions can be described using the Sigma model on Σ with target the Hitchin
moduli space MH(G,C). At the boundary of Σ, one has to prescribe a boundary
condition for the Sigma model. In the present case, we are interested in compactify-
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ing the boundary condition in four dimensions that involves giving nilpotent VEVs
to the scalar on the boundary. In the dimensional reduction, this boundary condition
(which can be thought of as a three dimensional modification of the four dimensional
theory) is reduced on C leading ultimately to a boundary condition in two dimen-
sions. Since the scalar in four dimensions was fixed to be a particular nilpotent orbit,
the reduction forces the scalar to take that nilpotent value globally over C. In other
words, the resulting brane in the Hitchin Sigma Model in two dimensions is the sub-
space of the solutions to Hitchin’s equations on C with Higgs field taking values in a
particular nilpotent orbit4. This is precisely a stratum of the Global Nilpotent Cone
in MH(G,C). If one varies the four dimensional boundary condition and allows the
scalar field to take values in arbitrary nilpotent orbits, then one can get all the strata
of the Global Nilpotent Cone as part of boundary condition(s) in two dimensions.
In its origin from four dimensions, when the scalar field is fixed to be a particular
nilpotent orbit, the resulting brane in the two dimensional theory is very similar to
the brane(s) supported on the fiber at a smooth point of the base H in that all of
these branes can be traced to the choice of a single boundary vacuum of the four
dimensional theory. The Electric and Magnetic Eigenbranes of Kapustin-Witten are
branes of this type [KW,Wit2]. It is also useful to note that the boundary conditions
that lead to strata of the Global Nilpotent Cone in the two dimensional theory are
available on both the Automorphic (G) and the Galois (G∨) sides of the correspon-
dence.

In this framework to study geometric Langlands (further enlarged and developed
to more detail by Witten and collaborators), the Local Geometric Langlands Program
is expected to be part of the higher dimensional theory while the Global Geometric
Langlands is obtained in the dimensionally reduced theory. In the mathematical
approaches to the program, both the Nilpotent Cones enter the picture in crucial
ways. I will not try to detail this in any way here but refer the reader to [Lau], [AG]
for the Global Nilpotent Cone, to [Gin1,Mir] for the Local Nilpotent Cone and to
[BZN] for a broader overview. In [BZN], a Betti version of the Geometric Langlands
Program has been introduced and this program is placed in a mathematical framework
that is intrinsically four dimensional in its origins. The appearances of Local and
Global Nilpotent Cones presented here are similar to how they appear in [BZN]
and further work incorporating these symmetry breaking choices into the setup of
[KW], [GW1,Gai] should make the connection precise. We note here that the Global
Nilpotent Cone on the Automorphic side has also been discussed in the context of
the Conformal Field Theory approaches to Geometric Langlands [Fre,Tes].

Finally, it must be noted that the strata of the Local Nilpotent Cone can arise in
other ways on the boundary of the four dimensional theory. For example, it can enter
through the Nahm pole boundary condition or via coupling to three dimensional N =
4 SCFTs which have vacuum moduli spaces given by strata in the Local Nilpotent

4Here, we are making an assumption that an analog of the vanishing theorems that would allow
one to pullback solutions to the Hitchin System on C to honest solutions of the four dimensional
equations holds when the scalar takes nilpotent values at the boundary. For the case where the
scalar is valued in the principal Dixmier sheet, this argument is presented in [KW]
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Cone(s). These two ingredients did not play any role in this note. For a complete
story, one however needs to take all of these possibilities in the four dimensionalN = 4
theory into account. One can also further enrich the story by including ramifications
at punctures on C along the lines of [GW2,Wit1].

Acknowledgements : I would like to thank Jacques Distler for detailed comments
on a draft version of this note. I would also like to thank David Ben-Zvi, Ashoke Sen
and Joerg Teschner for patient explanations.

A. Counting Levi Subalgebras

Let g be a complex semi-simple Lie Algebras and R the associated root system.
Classifying the Levi subalgebras of g can be turned into a combinatorial problem
involving R by a two step procedure. The first step is

Proposition A.1. (this is Prop 6.2 of [BC]) Let m1 and m2 be two Levi subalgebras
in g and R1 and R2 their associated root systems. Then, they are conjugate under G
if and only if R1, R2 are conjugate under the Weyl group.

In the mathematical literature, it has become standard terminology to name the
root systems arising from Levi subalgebras a parabolic subsystem of R [BC]. This
is potentially confusing since at no point in the discussion did we actually use a
parabolic subalgebra of g. But, we will adopt this terminology. Now, the second step
in classifying Levi subalgebras concerns these parabolic root systems.

Proposition A.2. (this is Prop 6.3 of [BC]) Two parabolic subsystems R1 and R2

are conjugate under the Weyl group W (g) if and only if their Dynkin diagrams are
identical except in the following cases

1. If R is of type D2n(n ≥ 2), then we have two non-conjugate systems of type
Ai1 +Ai2 + · · · where i1, i2, i3 . . . ik are odd integers that satisfy (i1 + 1) + (i2 +
1) + . . .+ (ik + 1) = 2n,

2. If R is of type E7, then there are two non-conjugate systems of type A3+A1, A5

and 3A1.

So, it follows that in a vast number of cases, the problem of finding Levi subalge-
bras g reduces to the problem of finding distinct sub-diagrams of the Dynkin diagram.
The exceptions to this are listed above in Proposition A.2. In these case, to denote
the Levi subalgebra completely, primes are introduced to distinguish the two distinct
Levis that share the same sub-diagram of the Dynkin diagram. This is the reason
for the appearance of primes in the labels for certain Levi subalgebras in the case of
g = D4, E7 in the main text.
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