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We perform a benchmark study of the step scaling procedure for the ratios of renormalization

constants extracted from position space correlation functions. We work in the quenched ap-

proximation and consider the pseudoscalar, scalar, vectorand axial vector bilinears. The pseu-

doscalar/scalar cases allow us to obtain the non-perturbative running of the quark mass over a

wide range of energy scales – from around 17 GeV to below 1.5 GeV – which agrees well with

the 4-loop prediction of continuum perturbation theory. Wefind that step scaling is feasible in

X-space and we discuss its advantages and potential problems.
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Step scaling in X-space: running of the quark mass Krzysztof Cichy

1. Introduction

One of the non-perturbative renormalization schemes that can be used on the lattice is the coor-
dinate space (X-space) scheme [1, 2, 3, 4]. In this proceeding, we report shortly on our benchmark
study of combining this scheme with the step scaling technique [5, 6, 7]. A more complete de-
scription of this study is given in Ref. [8]. The step scalingtechnique allows to reliably connect the
high energy regime where perturbation theory (PT) can be safely applied to the low energy regime
of large volume simulations where hadron matrix elements are evaluated. It consists in performing
several simulations at different lattice spacing and volumes, starting at the coarse, large volume
level and repeating the procedure until the high energy regime of the theory is reached. In the
X-space scheme, the renormalization condition is imposed on correlation functions in coordinate
space at very short distances (around 0.01-0.1 fm) comparedto the physical extent of the simulated
box (an order of magnitude larger). This allows to use infinite volume PT to translate results from
the X-space to theMS scheme. The X-space scheme has certain appealing properties with respect
to e.g. the RI-MOM scheme, in particular it is gauge invariant and hence no gauge fixing is needed.

Our study is performed in the quenched approximation, henceour results can be compared
with continuum perturbation theory settingNf = 0. We choose the standard Wilson plaquette
gauge action, using the CHROMA software [9] to generate gauge field configurations. The valence
quarks are twisted mass (TM) fermions [10, 11, 12], automatically O(a)-improved by tuning the
hopping parameterκ to its critical value, such that the PCAC quark mass vanishes[11, 13].

2. X-space renormalization scheme and step scaling

Here, we shortly summarize the main ideas of the X-space renormalization scheme. We con-
sider flavour non-singlet correlation functions of two operators of the form

CΓ(X)≡ 〈OΓ(X)OΓ(0)〉, (2.1)

whereOΓ(X) = ψ̄(X)Γψ(X), Γ = {1,γ5,γµ ,γµγ5} ≡ {S,P,V,A}. The renormalization condition is
imposed in the chiral limit,

lim
a→0

〈OX
Γ (X)OX

Γ (0)〉
∣

∣

X2=X2
0
= 〈OΓ(X0)OΓ(0)〉

free,massless
cont , (2.2)

with four-vectors denoted by capital letters, e.g.X = (x,y,z, t) andX2 ≡ x2 + y2+ z2+ t2. Thus,
the renormalized operator isOX

Γ (X,X0) = ZX
Γ (X0)OΓ(X), whereX0 is the renormalization point,

chosen to satisfya≪
√

X2
0 ≪ Λ−1 to keep discretization effects under control and to ease contact

to perturbation theory (Λ is a low-energy scale of the order of a few hundred MeV).
We subtract tree-level cut-off effects by computing the ratio of the tree-level lattice and con-

tinuum correlators,∆Γ(X). The corrected correlation function isC′
Γ(X) =CΓ(X)/∆Γ(X). Renor-

malization constants (RCs), at the scaleµ = 1/
√

X2
0 , are given by

ZX
Γ (X0) =

√

CΓ(X0)
free
cont

C′
Γ(X0)

=

√

CΓ(X0)
free
lat

CΓ(X0)
. (2.3)

In the end, we want to compare with the running of RCs in theMS scheme, which can be accom-
plished by converting the X-space RCs using 4-loop conversion formulae [14].

To investigate the running of RCs, we use the step scaling method [5, 6, 7]. We define the step
scaling function as

ΣX
Γ (µ ,2µ) = lim

a→0

ZX
Γ (2µ ,a)

ZX
Γ (µ ,a)

, (2.4)
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Step scaling in X-space: running of the quark mass Krzysztof Cichy

step 32/64 24/48 16/32 8/16

1 β = 9.50(7) β = 9.00 β = 8.62(7) β = 7.90(13)
2 β = 8.62(7) β = 8.24(6) β = 7.90(13) β = 7.18(2)
3 β = 7.90(13) β = 7.56(11) β = 7.18(2) β = 6.61(2)

Table 1: Results of our matching procedure. Each entry contains the appropriate value of matchingβ and
its error, which is propagated to account for mismatching effects. β = 9.00 is the starting point and hence
has no associated uncertainty.

with µ = 1/
√

X2
0 and where the lattice spacinga as an argument ofZX

Γ indicates that it was reg-
ularized on the lattice. Such defined step scaling function has a well-defined continuum limit that
we want to find on the lattice.

We perform three steps of the step scaling procedure, allowing us to link non-perturbatively the
scales between around 1.5 GeV and 17 GeV. For the estimation of ΣX

Γ (µ ,2µ), we need two sets of
lattices, with spatial extentsL and 2L. We look at 3 kinds of points in X-space:(x/a,x/a,x/a,x/a),
(x/a,x/a,x/a,0) and(x/a,x/a,0,0) (where 0 is at different positions, with respective correlators
averaged over them). We refer to them as points of type IV, IIIand II, respectively. We only exclude
points of type I,(x/a,0,0,0), known to be affected by very large cut-off effects.

3. Ensembles for step scaling

An important step to carry out the step scaling programme is to have a set of gauge ensembles
matched to one another in terms of the physical volume. Such matching can be done in terms of
an effective renormalized coupling, which we define following Creutz [15]. The details of this
procedure can be found in Ref. [8]. Here, we only show the finalresult in Tab. 1. Each row of this
table containsβ values such that the physical volumes are matched, e.g. the volume of aβ = 9.50,
L/a = 64 lattice is the same as the one ofβ = 7.90, L/a = 16. The physical volumes of lattices
in the second (third) row are a factor of 2 (4) larger than the ones of the first row. We note that
uncertainty in matching is propagated to the final results for the step scaling function, see below.

Knowing the matched values ofβ , the last step before computing the appropriate X-space
correlation functions is to tune the PCAC mass to zero to achieve maximal twist. The resulting
values of theκ parameter are shown in Tab. 2, which is a summary of all our generated ensembles
(apart from the ones only used for matching). We also show thevalues of the lattice spacings for
all ensembles. Atβ = 6.61, we can express the value of the lattice spacing in terms ofther0 value.
Using the parametrization of Ref. [16], we findr0/a= 12.76 for thisβ . Together with our chosen
value ofr0 = 0.48(2) fm, we getaβ=6.61 = 0.0376(16) fm and using the results of the matching
procedure, this provides scale setting for all the ensembles.

4. Procedure

We now summarize our procedure:

1. Compute the relevant correlation functions in X-space, at 3 values of the valence quark mass.

2. Extrapolate the correlators to the chiral limit, linearly in aµ .

3. Apply the tree-level correction to the correlators.

4. Use the chirally extrapolated and tree-level corrected values of correlators to compute the
step scaling function.
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β a [fm] L/a T/a κ nr of confs step

9.50 0.00235(10) 64 128 0.137032 200 40
32 128 200 40

9.00 0.00314(13) 48 96 0.138060 200 40
24 96 200 40

8.62 0.00470(20) 64 128 0.138976 200 40
32 128 200 40
16 64 200 40

8.24 0.00627(26) 48 96 0.140016 200 40
24 96 200 40

7.90 0.00941(39) 64 128 0.141173 200 40
32 128 200 40
16 64 200 40
8 32 1000 40

7.56 0.01254(52) 48 96 0.142512 200 40
24 96 200 40

7.18 0.01881(78) 32 128 0.144324 200 40
16 64 200 40
8 32 1000 40

6.61 0.03763(157) 16 64 0.148162 200 40
8 32 1000 40

Table 2: Summary of ensembles used for step scaling: inverse bare coupling β , lattice spacing in fm (with
its uncertainty), lattice size, criticalκ , number of generated configurations, number of heatbath updates
between saved configurations.

5. Extrapolate to the continuum, using the fitting ansatz

ΣΓ(µ ,2µ ,a)corrected= ΣΓ(µ ,2µ)cont+c1a2, (4.1)

ΣΓ(µ ,2µ ,a)non−corrected= ΣΓ(µ ,2µ)cont+c2a2, (4.2)

i.e. a combined fit linear ina2, using only three finest lattice spacings, in total six data points
and three fitting parameters,ΣΓ(µ ,2µ)cont, c1 andc2. To estimate the systematic uncertainty
from the fitting ansatz, we also extend this fit to a quadratic one in a2 and incorporate the
coarsest lattice spacings of each step. In certain cases, when the cut-off effects in the non-
corrected step scaling function are too large, we only consider the corrected one.

6. Convert from the X-space to theMS renormalization scheme.

7. Calculate systematic uncertainties from non-ideal matching and the uncertainties ofΛ(0)
MS

=

238(19) MeV [5] andr0 = 0.48(2) MeV. The former are accessed from numerical estimates
of the derivative of the step scaling function with respect to β and the latter from explicit
computations atΛ(0)

MS
= 219 and 257 MeV orr0 = 0.46 or 0.5 fm.

We note that we also investigated finite volume effects, concluding that they are negligible (well
beyond statistical errors) for our choice ofx/a values that always satisfy the conditionx/L = 1/8.
The only counterexample is when we consider the pair of volumes 8/16 and therefore, we only use
the data from it for an estimate of systematics (the preferred fit only uses 3 finest lattice spacings).
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µ 2µ point ΣMS
P (µ,2µ) ΣMS

S (µ,2µ)
[GeV] [GeV] type lattice lattice
1.478 2.956 IV 1.0995(104)(66)(33)(13)(37) 1.1134(121)(56)(37)(13)(37)
1.706 3.413 III 1.1027(91)(19)(36)(10)(29) 1.1210(115)(6)(41)(11)(29)
2.090 4.180 II 1.1012(101)(33)(49)(8)(23) 1.1337(140)(13)(52)(8)(23)
2.956 5.911 IV 1.0787(81)(31)(21)(4)(16) 1.0856(90)(27)(21)(5)(16)
3.413 6.826 III 1.0743(72)(18)(19)(4)(14) 1.0846(90)(14)(18)(4)(14)
4.180 8.360 II 1.0691(78)(22)(23)(3)(12) 1.0961(109)(1)(22)(3)(12)
5.911 11.822 IV 1.0721(57)(22)(3)(2)(9) 1.0728(71)(30)(3)(2)(9)
6.826 13.651 III 1.0736(57)(35)(4)(2)(9) 1.0802(73)(8)(5)(2)(9)
8.360 16.719 II 1.0571(65)(24)(5)(2)(8) 1.0755(91)(1)(7)(1)(8)

Table 3: Step scaling functionΣP/S(µ ,2µ), from PP/SS correlators. We show the scale change, the type
of points used and our continuum-extrapolated result translated to theMS scheme. The uncertainties are:
statistical, from the fitting ansatz, from matching, fromΛ(0)

MS
and fromr0.

µ 2µ point ΣMS
V (µ,2µ) ΣMS

A (µ,2µ)
[GeV] [GeV] type lattice lattice
1.478 2.956 IV 0.9918(103)(1)(15)(2)(1) 0.9931(86)(30)(9)(2)(1)
1.706 3.413 III 0.9968(108)(6)(22)(2)(1) 0.9987(87)(20)(16)(2)(1)
2.090 4.180 II 1.0127(99)(15)(24)(1)(1) 0.9683(69)(61)(23)(1)(1)
2.956 5.911 IV 1.0061(87)(10)(6)(1)(1) 1.0039(70)(12)(6)(1)(1)
3.413 6.826 III 1.0122(92)(2)(10)(1)(0) 1.0092(74)(19)(8)(1)(0)
4.180 8.360 II 1.0273(85)(22)(12)(1)(0) 0.9848(59)(60)(8)(1)(0)
5.911 11.822 IV 1.0017(69)(12)(0)(1)(0) 1.0009(58)(6)(2)(1)(0)
6.826 13.651 III 1.0103(77)(12)(2)(1)(0) 1.0085(63)(27)(3)(1)(0)
8.360 16.719 II 1.0125(73)(14)(8)(1)(0) 0.9823(52)(53)(1)(1)(0)

Table 4: Step scaling functionΣV/A(µ ,2µ), from AA/VV correlators. We show the scale change, the type
of points used and our continuum-extrapolated result translated to theMS scheme. The uncertainties are:
statistical, from the fitting ansatz, from matching, fromΛ(0)

MS
and fromr0.

5. Results and discussion

The results of the step scaling procedure outlined in the previous section are given in Tab. 3
for the pseudoscalar (PP) / scalar (SS) correlators and in Tab. 4 for the vector (VV) / axial vector
(AA) ones, together with the decomposition of all the uncertainties. This decomposition shows
that the most important source of uncertainty is the statistical one, with typically the one from the
fitting ansatz or from the matching as the second most important one. The comparison with 4-loop
Nf = 0 continuum perturbation theory [17, 18], or the exact valueof 1 for the VV/AA case, is given
in Tab. 5. In most cases, the agreement between our lattice results extrapolated to the continuum
limit and PT is satisfactory. However, we observe some regularities depending on the type of points
that we consider, e.g. for the SS case, points of type II(IV) tend to lie above(below) the PT result
and points of type III tend to agree best with PT. This suggests systematically different cut-off
effects for these kinds of points, which indicates that the X-space approach could be improved by
better understanding of hypercubic artefacts.

The full running of the step scaling function is shown in Fig.1 for the PP/SS case and in
Fig. 2 for VV/AA. The running obtained from the SS correlatoris well reproduced, particularly
for points of type IV/III. Points of type II are approx. 1-σ above the continuum curve. In the
PP running, we observe a possible tendency that the step scaling function is below its continuum
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µ 2µ ΣMS
P/S(µ,2µ) ΣMS

P (µ,2µ) ΣMS
S (µ,2µ) ΣMS

V/A(µ,2µ) ΣMS
V (µ,2µ) ΣMS

A (µ,2µ)
[GeV] [GeV] 4-loop PT lattice lattice exact lattice lattice
1.478 2.956 1.1318(68) 1.0995(133) 1.1134(144) 1.0 0.9918(104) 0.9931(92)
1.706 3.413 1.1206(56) 1.1027(104) 1.1210(126) 1.0 0.9968(110) 0.9987(91)
2.090 4.180 1.1080(44) 1.1012(120) 1.1337(152) 1.0 1.0127(103) 0.9683(95)
2.956 5.911 1.0919(31) 1.0787(91) 1.0856(98) 1.0 1.0061(88) 1.0039(71)
3.413 6.826 1.0866(27) 1.0743(78) 1.0846(94) 1.0 1.0122(93) 1.0092(77)
4.180 8.360 1.0802(23) 1.0691(85) 1.0961(112) 1.0 1.0273(89) 0.9848(85)
5.911 11.822 1.0713(18) 1.0721(62) 1.0728(78) 1.0 1.0017(70) 1.0009(58)
6.826 13.651 1.0682(16) 1.0736(68) 1.0802(74) 1.0 1.0103(78) 1.0085(69)
8.360 16.719 1.0643(15) 1.0571(70) 1.0755(92) 1.0 1.0125(75) 0.9823(74)

Table 5: Comparison of lattice results for the step scaling functionΣP/S/V/A(µ ,2µ), with continuum 4-loop
perturbation theory or the exact value of 1 for VV/AA. The errors of the lattice result were combined in
quadrature.
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Figure 1: Running of step scaling function in the PP/SS case (running of the quark mass). The black symbols
correspond to continuum perturbation theory (with an uncertainty related to the uncertainty ofΛ(0)

MS
). The

reference scale isµref = 16.719 GeV. The three rightmost points are the starting points for our step scaling
procedure and hence have no errors. To the left of these, there are three groups of three points, corresponding
to the three step scaling steps and the three types of points.The rightmost point of each group corresponds
to points of type II, the middle one to type III and the leftmost to type IV.

value. This happens for all types of points, but the result isalways within 1-σ of the continuum
result even in the last step. Although this can only be a statistical fluctuation, this observation
should be investigated further. The computation of “running” for the VV/AA case serves as a
cross-check of the method, since the continuum value of 1 is known exactly. Again, we observe
good agreement with this result for points of type III and IV.However, for type II, deviations from
1 are increasing when decreasing the energy scale, with a final 2-2.5-σ discrepancy in the last step,
above (below) 1 for VV (AA). This systematic effect strenghtens the conclusion that hypercubic
artefacts should be understood more. This can be done using techniques similar to those of Ref. [19]
(fitting of hypercubic artefacts) or by computing the leading order corrections ofO(a2g2) in lattice
perturbation theory.

In conclusion, we investigated, for the first time, the step scaling technique using the coordi-
nate space renormalization scheme. We performed a feasibility study in the quenched approxima-
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Figure 2: Running of step scaling function in the VV/AA case. The blacksolid line is the exact result of
1.0. The reference scale isµref = 16.719 GeV. The three rightmost points are the starting points for our
step scaling procedure and hence have no errors. To the left of these, there are three groups of three points,
corresponding to the three steps of step scaling and to the three types of points. The rightmost point of each
group corresponds to points of type II, the middle one to typeIII and the leftmost to type IV.

tion, thus reducing the computational cost to a tractable level. Carrying out three steps of the step
scaling, we evaluated the running of the renormalization constants of the pseudoscalar and scalar
densities, as well as of the vector and axial vector currents, finding rather good agreement with
continuum perturbation theory. In this way, we demonstrated that the X-space method can pro-
vide reliable results. However, we also conclude that better understanding of hypercubic artefacts
will be very important for futher advancement of the method,in particular for its reliable use with
dynamical fermions.
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