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We present a precise computation of the topological susceptibility χYM of SU(N) Yang-Mills
theory in the large N limit. The computation is done on the lattice, using high-statistics Monte
Carlo simulations with N = 3,4,5,6 and three different lattice spacings. Two major improvements
make it possible to go to finer lattice spacing and larger N compared to previous works. First,
the topological charge is implemented through the gradient flow definition; and second, open
boundary conditions in the time direction are employed in order to avoid the freezing of the
topological charge. The results allow us to extrapolate the dimensionless quantity t2

0 χYM to the
continuum and large N limits with confidence. The accuracy of the final result represents a new
quality in the verification of large N scaling.
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1. Introduction

One of the main successes of the large N limit of SU(N) Yang-Mills theories is the explanation
of the large mass of the η ′ meson. The solution is given through the Witten-Veneziano formula
[1, 2], which relates the mass of the η ′ meson to the topological susceptibility χYM in the pure
Yang-Mills theory

lim
N→∞

m2
η ′F

2
π

2Nf
= lim

N→∞
χYM with χYM =

∫
d4x〈q(x)q(0)〉YM , (1.1)

where Fπ is the pion decay constant, Nf the number of massless flavours and q= 1
32π2 εµνρσ TrFµνFρσ

is the topological charge density. The quantity on the right can only be computed directly on the
lattice, provided that one employs a correct definition of the topological charge density q.

Our main result is the large N and continuum limit extrapolation of χYM . We use the the-
oretically clean definition of χYM through the Yang-Mills gradient flow [3] and open boundary
conditions [4] in order to avoid the freezing of the topology. In this contribution we expand on the
results presented in Ref. [5] by discussing all the systematics involved in the computation of χYM

for each gauge group, and those coming from the continuum and large N extrapolations.

2. Observables

In the continuum, the composite fields we are interested in are the energy density et and the
topological charge density qt , defined as

et =
1
2

TrGµνGµν , qt =
1

32π2 εµνρσ TrGµνGρσ , (2.1)

where Gµν is built in terms of the gauge fields Bµ evaluated at positive gradient flow time t [3].
Using the gradient flow, correlators built out of the fields et and qt are finite and have a trivial

renormalization. In particular, the quantity χ t
YM

as defined in Eq. (1.1) has a finite and unambiguous
continuum limit, which is independent of t, and obeys the correct chiral ward identities to be
inserted in the Witten-Veneziano relation [6].

In order to compare the theories at different N, we need to define a common scale to be used to
express our results. In this sense, the reference scale t0 introduced in Ref. [3] for SU(3) is a good
choice, as it can be computed up to very high accuracy with a moderate cost. For general N, we
want this quantity to be constant at leading order in 1/N, so we generalize its definition to be

t2 〈et〉∣∣
t=t0

= 0.1125
(
N2−1

)
/N , (2.2)

such that it coincides with the value of 0.3 for SU(3).
The scale t0 will be used to express all our results in dimensionless units, while we use the

value of
√

t0 = 0.166 fm only as a reference, for the clarity of the presentation, to quote values for
the lattice spacing and lattice dimensions. From now on all the observables are computed at flow
time t = t0 unless stated otherwise.
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2.1 Lattice details

We consider SU(N) Yang-Mills gauge theory on the lattice with the standard Wilson plaquette
action and open boundary conditions in the time direction [4]. For each gauge group (N = 4, 5, 6),
we simulate at three different lattice spacings in a range between 0.096 fm and 0.065 fm and a
size of the spatial dimension of L ≈ 1.5 fm. The details of the ensembles are given in Table 1 of
Ref. [5].

Because of the use of open boundary conditions, the vacuum expectation value of the observ-
ables is extracted in a plateau region sufficiently far away from the boundaries. This region is
parametrized by the distance to the boundary d, so that the sum in the time direction is performed
from x0 = d to x0 = T −a−d. Considering this, the estimator for 〈et〉 in the lattice is given by

〈
et〉= a4

(T −2d)L3

T−a−d

∑
x0=d

〈
ēt(x0)

〉
with ēt(x0) = ∑

~x
et(~x,x0) , (2.3)

where et(~x,x0) is computed through the standard clover definition of the field strength tensor.
Concerning the topological susceptibility, we define its estimator in a similar way as in Ref. [7]

χ
t
YM
(r) = C̄t(0)+2

r

∑
∆=a

C̄t(∆) with (2.4)

C̄t(∆) =
a4

(T −2d−∆)L3

T−a−d−∆

∑
x0=d

〈
q̄t(x0)q̄t(x0 +∆)

〉
, q̄t(x0) = ∑

~x
qt(~x,x0) .

In this case, the definition of χ t
YM

includes an extra parameter, r. As we explain in the next sec-
tion, this parameter can be chosen as to minimize the statistical uncertainties, while keeping the
systematic effects under control.

3. Systematic effects from the definition of the observables

3.1 Open boundaries

Open boundaries are instrumental to achieve the finer lattice spacings in this work. Although
we did not perform a dedicated comparison between open and periodic boundary conditions, the
scaling of autocorrelations found for the larger N is compatible with a polynomial scaling law (our
evidence even suggests τint ∝ a−2); in comparison with the exponential growth observed in Ref. [8].
The details of our update algorithm are given in Ref. [5].

In order to fix the parameter d in Eqs. (2.3) and (2.4), we fit the symmetrized data to an
ansatz of the form f (x0) = A+Be−mx0 . The criterion to define the plateau region is to require
that | f (d)−A|< σ/4, where σ is the average statistical error for x0 > d. This guarantees that the
systematic effects are negligible compared to the statistical uncertainty. Following this prescription,
a good choice for ēt and C̄t is d = 9.5

√
t0, and d = 7.5

√
t0, respectively. An example of how this

fit works is shown Fig 1 (left).
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Figure 1: Left: x0 dependence of t2
0 〈ēt(x0)〉 for an SU(4) ensemble at β = 11.14. The fit to a one excited

state contribution agrees very well with the data. The red vertical line denotes the value of d = 9.5
√

t0, which
defines the plateau region for this observable. Right: ∆ dependence of the 〈q̄t(x0)q̄t(x0 +∆)〉 correlator. The
red (open) symbols show the results when using a standard algorithm and statistics comparable to the ones
used for our large N simulations, while in black (filled), we show the precise data obtained using a multilevel
approach and approximately 10 times more statistics. After the value of ∆ = 7.0

√
t0 (red vertical line), the

contribution of the tail is negligible compared to the statistical uncertainty.

3.2 Large distance behaviour of the topological charge correlator

The definition of χ t
YM

in Eq. (2.4) has an extra parameter r. For a given statistical accuracy,
the existence of an appropriate r is guaranteed from the exponential fall-off of C̄t(∆). In practice
however, this behaviour is hidden by the statistical fluctuations of the data, and one has to deal with
a severe signal to noise problem. This is particularly relevant in the pure gauge theory, where the
large mass of the pseudoscalar glueball produces an extremely fast decay in the signal.

One way to deal with the signal to noise problem is to use multilevel techniques, which have
the potential to dramatically improve on the scaling of errors of the standard Monte-Carlo algorithm
used in lattice QCD simulations. We use the algorithm described in Ref. [9] to obtain high precision
data for an SU(3) ensemble at β = 6.11(a = 0.078fm) on a lattice of L ≈ 1.6fm. Assuming that
the relative contribution of the tail in the sum of the C̄t(∆) correlator does not depend strongly on
N, the estimation of the tail obtained from the high precision SU(3) data can be used to truncate
the sum in the rest of SU(N) ensembles.

Figure 1 (right) shows a comparison between the correlator computed using the multilevel
algorithm with a total of N0×N1 = 784×280 = 201600 measurements and the standard algorithm
with N0 = 15600 measurements. Clearly, the reduction in errors obtained from the multilevel
algorithm is larger than the one expected simply from an increase in statistics.

We use the high precision data to estimate D̄t(r) = ∑∆>r C̄t(∆), and then compare it to C̄t(∆)

for each of our ensembles. Basically, at large distances, the contribution of the tail in the correlator
is much smaller than the statistical variation, and therefore, summing it up to arbitrarily large
values of r increases only the statistical fluctuation, without an improvement in the signal. To find
the right value of r at which the systematics from the truncation can be neglected, we impose the
condition αD̄t(r)< σ/4, where σ is the statistical error of C̄t(∆) at ∆ = r, and α is a normalization
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factor to account for possible N dependences in the observable. With this criterion, the choice of
r = 7.0

√
t0 guarantees that the systematic effects coming from neglecting the tail of the correlator

are negligible within our statistics.

3.3 Finite volume checks

One final source of systematic uncertainty comes from the finite volume used in lattice sim-
ulations. All our ensembles have a physical size L ≈ 1.5fm, which are slightly larger than the
SU(3) ensembles used in Ref. [6]. The statistics in Ref. [6] are one order of magnitude larger than
ours, and no finite size effects are observed. In order to validate this for the larger N, we simulated
lattices with L = 1.1fm and 2.3fm for both SU(4) and SU(5). An additional lattice at L = 2.0fm
was also generated in the case of SU(5). The results are shown in Fig. 2 (left) and show that finite
size effects are below the statistical fluctuations.
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Figure 2: Left: Check of finite volume effects for SU(4) and SU(5) at the lattice spacing a≈ 0.96fm. The
SU(5) points have been shifted to improve legibility. Also in the case of SU(3), with much larger statistics,
no finite size effects are observed [6]. Right: Plot of the ratio χ t

YM
/χ t0

YM
as a function of a2/t0. Even with

this high precision observable, there is no noticeable N dependence on the cut-off effects.

4. Large N and continuum limit fits

The final part of the analysis is the large N and continuum limit extrapolations. The data used
for this purpose is shown Fig. 3 (left), together with the final extrapolation. In order to assess the
systematics from the extrapolations, several fits were performed and a summary is shown in Fig. 3
(right). The various fit strategies are described in the following.

For the final result all the points are fitted to a global function which accounts for the leading
order in the Symanzik and large N expansions

t2
0 χ

t
YM
(1/N,a) = t2

0 χ
t
YM
(0,0)+ c1

1
N2 + c2

a2

t0
. (4.1)

Given that the scaling violations are of the same order of the statistical errors, a conservative
choice is to use only the two finest points for each lattice. In this way, the assumption on the region
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of validity of the leading order Symanzik expansion is constrained, thus systematics are reduced
at the expense of an increase in the statistical uncertainty. We use this approach and furthermore
restrict the use of the SU(3) data only to fit the coefficient c2 in Eq. (4.1). Again, not using SU(3)
to fit c1 reduces the systematics from the large N extrapolation. Using this fit strategy (NGF2), we
obtain a result for t2

0 χYM(0,0) = 7.03(13) · 10−4. If one extra point in SU(3) is used (NGF3), the
result t2

0 χYM(0,0) = 7.13(10) ·10−4 is obtained, which is compatible with the one from NGF2.

Among the rest of fits attempted, the simplest one is to perform a continuum limit fit group by
group and later apply the large N extrapolation (LF3). Additionally, one can use Eq. (4.1) and fit it
to all the points without restrictions (GF3), or in a similar fashion, as for NGF3, use the three points
from SU(3), but only the two finest from the rest of gauge groups (GF2). The former produces a
result of t2

0 χYM(0,0) = 7.06(7) ·10−4, while the latter gives a value of t2
0 χYM(0,0) = 7.09(7) ·10−4.

Both are compatible with the results quoted previously, but notice that the errors are half as small,
so the choice made on NGF2 is a more conservative one, accounting for possible systematic effects.

In addition, an extra term of the form a2/N2 can be added to Eq. (4.1). However, our data
suggest that both the 1/N and the O(a2) corrections are small; a fact which is further supported
by the N independence of the ratio χ t

YM
/χ t0

YM
as a function of a2/t0. This quantity can be captured

up to very high accuracy as shown in Fig. 2 (right). In spite of this, a fit including the sub-leading
a2/N2 term (GFF3) was also considered in our analysis.

As can be seen in Fig. 3 (right), the different fit strategies are all compatible, and the fluctu-
ations in the final result cannot be directly associated with a systematic effect. In fact, systematic
effects cannot be discerned from the data, so the more conservative choice in NGF2 is the one we
choose for our final result.
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Figure 3: Left: Results for all the ensembles used for the large N and continuum extrapolations. The SU(3)
data is from Ref. [6], while the rest is taken from Ref. [5]. The fit corresponds to NGF2. Right: Summary
of several fits employed. For each fit we report the value of χ2/dof on the upper axis. The band shows the
result from the fit NGF2, which we report as the central value for t2
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5. Conclusions

In this work we have presented the computation of the large N limit of the topological sus-
ceptibility χYM using a theoretically sound definition on the lattice through the Yang-Mills gradient
flow. Our final result t2

0 χYM = 7.03(13) · 10−4 has a 2% error and represents a new verification
of the Witten-Veneziano formula that gives mass to the η ′ meson. We have presented a detailed
discussion of the systematic effects involved in this calculation and at the level of accuracy of our
results, we observe no significant finite N or finite a corrections.
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