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1. Introduction

In his papers [1, 2] R.A. Gustafson evaluated integrals representing multidimensional generalization of
the Mellin–Barnes integrals. The integrals associated with the classical su(N) and sp(N) Lie algebras
take the form [1]

(
N∏

n=1

∫ i∞

−i∞

dzn
2πi

) ∏N+1
k=1

∏N
j=1 Γ(αk − zj)Γ(βk + zj)∏

k<j Γ(zk − zj)Γ(zj − zk)
=
N !
∏N+1

k,j=1 Γ(αk + βj)

Γ
(∑N+1

k=1 (αk + βk)
) (1)

and

(
N∏

n=1

∫ i∞

−i∞

dzn
2πi

) ∏2N+2
k=1

∏N
j=1 Γ(αk ± zj)

∏N
k=1 Γ(±2zk)

∏
k<j Γ(zk ± zj)Γ(−zk ± zj)

=
2NN !

∏
k<j Γ(αk + αj)

Γ
(∑2N+2

k=1 αk

) , (2)

where Γ(α ± β) ≡ Γ(α + β)Γ(α − β) and the integration contours separate the series of poles of Γ
functions, {αk +nk} and {−βk −nk}, k = 1, . . . , N , nk ∈ Z+, in the first integral, and {αk +nk} and
{−αk − nk}, k = 1, . . . , 2N + 2 in the second one.

In this paper we show that Gustafson’s integrals (1), (2) arise in a natural way in the integrable
spin chain models. Namely, both integrals can be related to the matrix element of the shift operator
Tγ (the operator of translations) in the Sklyanin’s representation of Separated Variables (SoV) [3].
Moreover, we obtain a new identity which we were not able to derive from the Gustafson’s integrals (1)
and (2). It takes the form

(
N∏

n=1

∫
dzn
2πi

) ∏N
j=1

(∏N+1
k=1 Γ(αk − zj)

)(∏N
m=1 Γ(zj ± βm)

)

∏
k<j Γ(zk ± zj)Γ(zj − zk)

=
N !
∏N

j=1

∏N+1
k=1 Γ(αk ± βj)

∏N+1
j<k Γ(αj + αk)

, (3)

where it is supposed that the series of poles {αk+nk} and {±βk−nk} are separated by the integration
contours.

We calculate also the scalar products between the eigenfunctions of the different elements of
monodromy matrix and show that evaluation of these scalar products in SoV representation gives rise
to new integral identities.

The paper is organized as follows: Sect. 2 contains the basic facts about the spin chain models. In
Sect. 3 we recall the construction of the SoV representation and provide the explicit expressions for the
corresponding basis functions. Scalar products of certain eigenfunctions are calculated in sect. 4 and
5. We also show that the SoV representation for the matrix element of the translation operators gives
rise to the Gustafson’s integrals (1), (2). In sect. 6 we present several new integrals which follow from
relations between the eigenfunctions of the monodromy matrix for closed spin chain. The final sect. 7
contains a short summary and outlook. Some technical details and elements of the diagrammatic
technique are given in the Appendix A.

2. Spin chain models

One dimensional quantum mechanical lattice models with the dynamical variables being generators
of some Lie algebra are usually called the spin chain magnets. We consider a model with the SL(2, R)
symmetry group. The dynamical variables are the generators of the SL(2, R) group

S
(k)
+ = z2k∂zk + 2skzk, S

(k)
0 = zk∂zk + sk, S

(k)
− = −∂zk , (4)
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where the index k enumerates the lattice sites, k = 1, . . . , N and the parameter sk (spin) specifies the
representation of the SL(2, R) group in the k-th site. Henceforth we will consider the homogeneous
spin chains, s1 = s2 = . . . = sN = s. The generators (4) act on the irreducible discrete series
representation of the SL(2, R) group, D+

s , the spin s being a positive integer or half-integer number,
which is realized on the space of functions holomorphic in the upper complex half-plane [4]. The
Hilbert space of the model is given by the direct product of vector spaces of the representation D+

s

in each site, HN =
∏N

k=1 ⊗Vs. Thus the space HN is the space of functions of N complex variables
holomorphic in each variable in the upper half-plane and equipped with the invariant scalar product [4],
which takes the form

(
f1, f2

)
=

N∏

k=1

∫
Dzk

(
f1(z1, . . . , zN )

)†
f2(z1, . . . , zN) . (5)

Here the integration goes over the upper half-plane y ≥ 0, (z = x + iy) and the integration measure
is defined as

Dz =
2s− 1

π
(2y)2s−2dxdy . (6)

The scalar product (5) is invariant under the SL(2, R) transformations

f(z1, . . . , zN) 7→ [T (g)f ](z1, . . . , zN ) =
N∏

k=1

1

(czk + d)2s
f(z′1, . . . , z

′
N) , (7)

where g−1 =

(
a b
c d

)
∈ SL(2, R) and z′k = (azk+b)/(czk+d). The generators (4) are anti-hermitian

w.r.t. this scalar product.
The Quantum Inverse Scattering Method (QISM) [5, 6, 7, 8] allows one to define a physically

meaningful Hamiltonian as a function of the dynamical variables, S
(α)
k , k = 1, . . . , N and provides

effective tools for solving the corresponding spectral problem. The pivotal object for the QISM
machinery (see for a review Refs. [9, 10]) is the monodromy matrix. It is given by a product of Lax
operators [6]

Lk(u) = u+ i

(
S
(k)
0 S

(k)
−

S
(k)
+ −S(k)

0

)
, (8)

which are two by two matrices depending on the generators S
(k)
α and the spectral parameter u ∈ C.

For the closed [6] and open [11] spin chains the monodromy matrices are defined as follows:

T cl
N (u) = L1(u)L2(u) . . . LN(u) =

(
AN (u) BN (u)
CN (u) DN (u)

)
, (9)

T
op
N (u) = TN(−u)σ2T t

N (u)σ2 =

(
AN (u) BN (u)
CN (u) DN (u)

)
. (10)

Here σ2 is the Pauli matrix and the T t
N is the transposed matrix. The matrix elements

AN (u), . . . , DN (u) (AN (u), . . . ,DN (u)) are the (differential) operators acting on the Hilbert space
of the model. By construction they are polynomials in the spectral parameter u.

It is shown in the QISM that the entries of the monodromy matrix T cl
N (u) form commuting

families,

[AN (u), AN (v)] = [BN (u), BN (v)] = [CN (u), CN (v)] = [DN (u), DN (v)] = 0 . (11)

For the open spin chains this property holds for the off-diagonal elements only,

[BN (u),BN (v)] = [CN (u),CN(v)] = 0. (12)
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z2z1 z3 zNzN−1

w1 w2 wN−1w3

βα

Figure 1. The diagrammatic representation of the operator ΛN (u), α(u) = s − iu, β(u) = s + iu. The arrow
from w̄ to z with the index α stands for the propagator Dα(z, w̄), Eq. (16)

It follows from Eqs. (11), (12) that the eigenfunctions of the operators AN (u), BN (u), etc. do not
depend on the spectral parameter. At the same time the corresponding eigenvalues are polynomials
in u. It turns out that an eigenfunction is completely determined by its eigenvalue. Therefore it
is convenient to label eigenfunctions by the roots of the corresponding eigenvalue polynomials. For
instance, if Ψ is the eigenfunction of AN (u) with the eigenvalue aN (u) = (u− x1) . . . (u− xN ) we will
denote it by Ψx1,...,xN

,

AN (u)Ψx1,...,xN
= aN (u)Ψx1,...,xN

= (u− x1) . . . (u − xN )Ψx1,...xN
. (13)

The eigenfunctions of operators BN (u), AN (u) etc, provide the convenient bases (Sklyanin’s
representation of SoV [3]) for studies of the spin chain models. All these eigenfunctions admit an
explicit representation in the form of multi-parametric integrals which we discuss in the next section.

Closing this section we note that the operators, BN and CN , AN and DN , BN and CN are related
to each other by an inversion [15], so that is is sufficient to consider the operators BN , AN and BN

only.

3. Sklyanin’s representation of Separated Variables

The eigenfunctions of the operators BN (u), BN (u) and AN (u) were constructed in Refs. [12, 13, 14],
respectively. In this section we present the explicit expressions for these eigenfunctions and discuss
their properties.

3.1. BN -system

In order to present the result in a compact form we define an auxiliary operator ΛN (u). This operator,
where u ∈ C is a spectral parameter, maps a function of N − 1 variables to a function of N variables
according the following rule

[ΛN (u)f ](z1, . . . , zN ) =

(
N−1∏

k=1

∫
Dwk

)
Λ
(u)
N (z1, . . . , zN |w1, . . . wN−1) f(w1, . . . , wN−1) , (14)

where

Λ
(u)
N (z1, . . . , zN |w1, . . . wN−1) =

N−1∏

j=1

Ds−iu(zj , w̄j)Ds+iu(zj+1, w̄j) (15)

and the function Dα (propagator) is defined as follows:

Dα(z, w̄) =

(
i

z − w̄

)α

. (16)



Spin Chains and Gustafson’s Integrals 5

p

α1

α2

α3 β3

β2

β1

z1 zN

α1

α2

α3

α4

β3

β2

β1

z2 z1 z2 zN

w = 0

Figure 2. The diagrammatic representation of the eigenfunction Ψ
(N)
B

(p, ~x|~z), left diagram, and Ψ
(N)
A

(~x|~z), right
diagram, for N = 4. The indices are defined as follows: αk = s− ixk, βk = s+ ixk. In a given layer the parallel
arrows have the same indices. The arrows attached to the dashed line start from the point w = 0.

Note, that under conjugation the propagator transforms as follows, (Dα(z, w̄))
† = Dα∗(w, z̄).

The operator ΛN has the following properties: first, ΛN (u) is annihilated by the operator BN (u),

BN (u)ΛN (u) = 0 (17)

and, second, it satisfies the following exchange relation [13]

ΛN (u1)ΛN−1(u2) = ΛN (u2)ΛN−1(u1) . (18)

The eigenfunctions of the operator BN are obtained by a consecutive application of the operators Λk

to the exponential function

Ψ
(N)
B (p, ~x|~z) = bN (p)ΛN (x1)ΛN−1(x2) . . .Λ2(xN−1) e

ipw . (19)

The separated variables ~x = {x1, . . . , xN−1} are real numbers, xk ∈ R, and p ≥ 0. The normalization
factor is convenient to choose as follows:

bN (p) = pNs− 1

2 (Γ(2s))−N2/2. (20)

It follows from Eqs. (17), (18) that Ψ
(N)
B (p, ~x|~z), Eq. (19), is the eigenfunction of the operator BN (u),

BN (u)Ψ
(N)
B (p, ~x|~z) = p(u − x1) . . . (u− xN−1)Ψ

(N)
B (p, ~x|~z) . (21)

It is symmetric under permutation of the separated variables {x1, . . . , xN−1}. Since the operator
BN (u) is self-adjoint for real u, (BN (u))† = BN (u), the eigenfunctions are mutually orthogonal [12]

(
Ψ

(N)
B (p′, ~x′),Ψ

(N)
B (p, ~x)

)
= (2π)N−1 δ(p− p′)

(
∑

S

δ(x− Sx′)

) ∏
j 6=k Γ(i(xk − xj))

∏N−1
k=1

[
Γ(αxk

)Γ(βxk
)
]N , (22)

where αx = s− ix, βx = s+ ix,
(
∑

S

δ(x− Sx′)

)
≡

∑

S∈SN−1

δ(x1 − x′s1) . . . δ(xN−1 − x′sN−1
) (23)

and the sum goes over all permutations.



Spin Chains and Gustafson’s Integrals 6

zN

α1

z1

β1

α2

β2

α3

β3

α1

α2

α3

β1

α1

β3

α2

β2

p

Figure 3. The diagrammatic representation of the eigenfunction Ψ
(N)
B

(p, ~x|~z), N = 4. The notations are the
same as in Fig. 2.

3.2. AN -system

The eigenfunctions of the operator AN (u) is constructed in the similar way [14]:

Ψ
(N)
A (~x|~z) = aN (~x) Λ̂N (x1)Λ̂N−1(x2) . . . Λ̂1(xN ) , (24)

where

aN = (Γ(2s))−N2/2 (25)

and the operator Λ̂N is defined as follows

[Λ̂N (x)f ](z1, . . . , zN ) = Ds+ix(zN , 0) [ΛN(x)f ](z1, . . . , zN) . (26)

The operator satisfies equations similar to Eqs. (17) and (18):

AN (u)Λ̂N (u) = 0 , Λ̂N (u1)Λ̂N−1(u2) = Λ̂N (u2)Λ̂N−1(u1) . (27)

which ensure that

AN (u)Ψ
(N)
A (~x|~z) = (u− x1) . . . (u− xN )Ψ

(N)
A (~x|~z). (28)

The function Ψ
(N)
A (~x|~z) is symmetric under permutation of the spectral parameters xk, and for the

scalar product one gets [14]

(
Ψ

(N)
A (~x′),Ψ

(N)
A (~x)

)
= (2π)N

(
∑

S

δ (x− Sx′)

) ∏
j 6=k Γ(i(xk − xj))

∏N
k=1

[
Γ(αxk

)Γ(βxk
)
]N . (29)

3.3. BN system

The operator BN (u) vanishes at u = −i/2, BN (−i/2) = 0, so it is convenient to redefine the operator
to get rid of this zero [13],

B̂N (u) = BN (u)/(2u+ i). (30)
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The new operator is a polynomial of degree 2N − 2 in the spectral parameter u which is symmetric
under u→ −u, B̂N (u) = B̂N (−u).

The eigenfunctions have the form (19) with a different type of the ”layer” operator ΛN 7→ Λ̃N

Ψ
(N)
B

(p, ~x|~z) = cN (p)Λ̃N (x1)Λ̃N−1(x2) . . . Λ̃2(xN−1) e
ipw , (31)

where

cN (p) = pNs− 1

2 (Γ(2s))−N(N−1/2) . (32)

The operator Λ̃N(x) is defined as follows [13]

[Λ̃N (x)f ](z1, . . . , zN ) =

(
N−1∏

k=1

∫
Dwk

)
Λ̃
(x)
N (z1, . . . , zN |w1, . . . wN−1) f(w1, . . . , wN−1) , (33)

and the kernel Λ̃
(x)
N has the form

Λ̃
(x)
N (z1, . . . , zN |w1, . . . wN−1) = Ds−ix(zN , w̄N−1)

(
N−1∏

k=1

∫
Dξk

)
N−1∏

i=1

Ds−ix(zi, ξ̄i)Ds+ix(zi+1, ξ̄i)

×
(

N−2∏

k=1

Ds+ix(ξk, w̄k)Ds−ix(ξk+1, w̄k)

)
Ds+ix(ξN−2, w̄N−1). (34)

Again, this operator satisfies two equations,

B̂N (x)Λ̃
(x)
N = 0 , Λ̃N (x1)Λ̃N−1(x2) = Λ̃N(x2)Λ̃N−1(x1) . (35)

The scalar product of two eigenfunctions takes the form [13]

(
Ψ

(N)
B

(p′, ~x′),Ψ
(N)
B

(p, ~x)
)
= (2π)N−1 δ(p− p′)

(
∑

S

δ(x′ − Sx)
)

×
N−1∏

n=1

Γ(2ixn)Γ(−2ixn)

∏
j<k Γ(i(xk ± xj))Γ(−i(xk ± xj))
∏N−1

k=1 [Γ(αxk
)Γ(βixk

)]2N
. (36)

It appears quite helpful to use a diagrammatic representation for all objects – Λ-operator,
eigenfunctions, etc, – considered above. They can be represented in the form of Feynman diagrams.
The examples are shown in Figs. 2 and 3. In these figures the arrow line with the index α stands for
the propagator, Dα, Eq. (16), and the integration over all vertices with the measure (6) is implied.
Identities like (18) are equivalent to the statement of the equality of the corresponding diagrams and
can be proved with the help of few diagrammatical rules given in Appendix A.

The operators BN (u), AN (u),BN (u) are symmetric operators for real u. Provided that they can
be extended to self-adjoint operators their eigenfunctions will form a complete system in the Hilbert
space. The direct proof of completeness is also possible and will be given elsewhere. In particular, the
completeness of the BN and AN systems is equivalent to the completeness of the SoV representation
for the Toda spin chain which was proved by K. Kozlowski [18]. In what follows we take for granted
that each of these systems provide a basis in the Hilbert space HN .

Finally, we need two more identities for the eigenfunctions. Namely,

AN (x1)Ψ
(N)
B (p, x1, . . . , xN−1|~z) = (u+ is)NΨ

(N)
B (p, x1 + i, . . . , xN−1|~z) , (37a)

BN (x1)Ψ
(N)
A (x1, . . . , xN |~z) = −i(u+ is)NΨ

(N)
A (x1, . . . , xN |~z) , (37b)
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i.e. the operators AN and BN act as shift operators on the separated variables. Since the
eigenfunctions are symmetric in xk the similar equations hold also for all others xk. Equations (37)
can be derived from the fundamental commutation relations (FCR) for the operators AN , BN , see e.g.
Refs. [10, 3] or by the ”gauge rotation” trick for the Lax operators, [16, 12].

4. Matrix elements

In this section we discuss calculation of the scalar product of the eigenfunctions Ψ
(N)
B (p, ~u) and Ψ

(N)
A (~x)

and the matrix element of the shift operator, Tγ = exp{−γS−}, where S− =
∑N

k=1 S
(k)
− is the shifts

generator

Tγf(z1, . . . , zN) = f(z1 + γ, . . . , zN + γ) , γ ∈ R . (38)

We introduce the following notation

SBA
N (p, ~u; ~x) =

(
Ψ

(N)
B (p, ~u),Ψ

(N)
A (~x)

)
, Tγ(~x, ~x

′) =
(
Ψ

(N)
A (~x′), TγΨ

(N)
A (~x)

)
. (39)

The matrix elements (39) have been calculated in Ref. [14]. It was done by going over to the Feynman
diagram representation for the quantities in question and subsequent evaluation of these diagrams.
The calculation is rather straightforward and will not be repeated here, see Ref. [14] for details.
Another examples of the diagrammatic technique can be found in Refs. [12, 13, 17] and in Sect. 5
of the present work †. Here we give some arguments explaining why these matrix elements can be
calculated in the closed form.

It can be shown that both these matrix elements satisfy difference equations. In order to derive
a difference equation for the scalar product SBA

N (p, ~u; ~x) we consider the matrix element of the

operator AN (u1) between the eigenstates Ψ
(N)
B (p, ~u) and Ψ

(N)
A (~x). Since the function Ψ

(N)
A (~x|~z) is

the eigenfunction of the operator AN (u1) and AN (u1) acts as shift operator on Ψ
(N)
B (p, ~u) we get

(
Ψ

(N)
B (p, ~u), AN (u1)Ψ

(N)
A (~x)

)
=

N∏

k=1

(u1 − xk)
(
Ψ

(N)
B (p, ~u),Ψ

(N)
A (~x)

)
=

N∏

k=1

(u1 − xk)S
BA
N (p, ~u; ~x)

(40)

and

(
Ψ

(N)
B (p, ~u), AN (u1)Ψ

(N)
A (~x)

)
=
(
AN (u1)Ψ

(N)
B (p, ~u),Ψ

(N)
A (~x)

)

= (u+ is)N
(
Ψ

(N)
B (p, ~u+ i~e1),Ψ

(N)
A (~x)

)
= (u+ is)NSBA

N (p, ~u+ i~e1; ~x), (41)

where ~u + i~e1 = {u1 + i, u2, . . . , uN−1}. Thus we get a recurrence relation on the function
SBA
N (p, ~u+ i~e1; ~x) in the variable u1, which takes the form

(u + is)NSBA
N (p, ~u+ i~e1; ~x) =

N∏

k=1

(u1 − xk)S
BA
N (p, ~u; ~x) . (42)

The solution of the difference equation (up to multiplication by a periodic function of u1) has the

form
∏N

k=1 Γ(i(xk − u1))/Γ
N (s− iu1). Next, proceeding in the same way and considering the matrix

† For an application of this technique to the Toda spin chain see Ref. [19].
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element of the operator BN (x1) one can fix the x1-dependence of SBA
N (p, ~u; ~x). Taking into account

that SBA
N (p, ~u; ~x) is symmetric in {x} and {u} one gets

SBA
N (p, ~u; ~x) =

1√
p
p−iX

N∏

k=1

1

Γ(s− ixk)

N−1∏

j=1

Γ(i(uj − xk))

Γ(s− ixk)Γ(s+ iuj)
× ϕ(~x, ~u) , (43)

where we put X =
∑N

k=1 xk and ϕ(~x, ~u) is a periodic function in each variable. The p-dependence
follows from two relations

iS0Ψ
(N)
A (~x|~z) = −

(∑

k

xk

)
Ψ

(N)
A (~x|~z) and iS0Ψ

(N)
B (p, ~u)|~z) = i

(
p∂p − 1/2

)
Ψ

(N)
B (p, ~u)|~z). (44)

In order to fix the periodic function ϕ(~x, ~u) one can either analyse analytic properties of the
function SBA

N or calculate it directly with the help of diagrammatic technique. The diagrammatic
approach appears to be more effective in all cases considered in this work. For the matrix element (43)
it gives ϕ(~x, ~u) = 1. Nevertheless the very possibility to obtain a matrix element by solving difference
equations usually indicates that the corresponding Feynman diagram can be calculated in a closed
form, though, sometimes, it is not so straightforward calculation as for SBA

N , [14]. The corresponding
examples are considered in the next section.

One has also to take care about singularities in (43) arising when uj → xk. All Γ-functions in
the numerator of (43) come from the integration of the propagator’s chains (see. Ref. [14]),
∫
DwDs+iu(z, w̄)Ds−ix(w, ζ̄) =

Γ(2s)

Γ(αx)Γ(βu)

∫ ∞

0

dp

p

eip(z−ζ̄)

pi(x−u)
=

Γ(2s)Γ(i(u− x))

Γ(βu)Γ(αx)
Di(u−x)(z, ζ̄). (45)

For x = u the momentum integral diverges at the lower limit. To make sense of this integral for
x = u one can introduce the regulator, i(u − x) → i(u − x) + ǫ. Technically, in order to not destroy
the balance of indices that makes possible calculation of diagrams in a closed form it is preferable to
ascribe a small positive imaginary part to the variables xk, uk, and replace uk → ūk = u∗k in (43).
Thus we assume that Imxk > 0, and Imuk > 0 and write (43) in the form

SBA
N (p, ~u; ~x) =

1√
p
p−iX

N∏

k=1

1

Γ(s− ixk)

N−1∏

j=1

Γ(i(ūj − xk))

Γ(s− ixk)Γ(s+ iūj)
. (46)

The matrix element Tγ(~x, ~x
′) was calculated in [14] with the help of diagrammatic technique.

Here we only briefly discuss derivation of the recurrence relation. Making use of the commutation
relation

[S−, AN (u)] = BN (u) (47)

which is a consequence of the FCR [10], and taking into account that (AN (x))† = AN (x̄) one derives

N∏

k=1

(x1 − x̄′k)Tγ(~x, ~x
′) =

(
AN (x̄1)Ψ

(N)
A (~x′), TγΨ

(N)
A (~x)

)
=
(
Ψ

(N)
A (~x′), AN (x1)TγΨ

(N)
A (~x)

)

=
(
Ψ

(N)
A (~x′), Tγ

(
AN (x1) + γBN (x1)

)
Ψ

(N)
A (~x)

)
= −iγ(x1 + is)NTγ(~x+ i~e1, ~x

′) . (48)

The direct calculation results in the following expression for Tγ

Tγ(~x, ~x
′) = (γ + i0)i(X−X̄′)e

π
2
(X−X̄′)

∏

k,j

Γ(i(x̄′j − xk))

Γ(s− ixj)Γ(s+ ix̄′k)
, (49)

which as can be easily checked satisfies the above recurrence relation. Note also that the operator
e−γS− is a well–defined operator on HN provided that Im(γ) ≥ 0. Indeed, if f ∈ HN , then
ϕ = e−γS−f , (ϕ(z1, . . . , zN) = f(z1 + γ, . . . , zN + γ)) also belongs to HN .
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4.1. First Gustafson’s integral

Expanding the eigenfunctions Ψ
(N)
A over Ψ

(N)
B (B-system) one gets the following integral representation

for the matrix element Tγ(~x, ~x
′),

Tγ(~x, ~x′) =
1

(N − 1)!

∫ ∞

0

dp eiγp
∫ ∞

−∞

N−1∏

k=1

duk
2π

µN (~u)SBA
N (p, ~u, ~x)

(
SBA
N (p, ~u, ~x′)

)†
, (50)

where the measure is defined as follows, see Eq. (22)

µN (~u) =

∏N−1
k=1

[
Γ(s+ iuk)Γ(s− iuk)

]N
∏

j 6=k Γ(i(uk − uj))
. (51)

Calculating the momentum integral and canceling common factors on both sides of Eq. (50) one gets
the identity

1

(N − 1)!

(
N−1∏

n=1

∫
dun
2π

) ∏N
k=1

∏N−1
j=1 Γ(i(x̄′k − uj))Γ(i(uj − xk))∏

k<j Γ(i(uk − uj))Γ(i(uj − uk))
=

∏N
k,j=1 Γ(i(x̄

′
k − xj))

Γ(i
∑N−1

k=1 (x̄′k − xk))
, (52)

which is nothing else as the first Gustafson’s integral (1).
Starting from the addition theorem for the shift operator, Tγ1+γ2

= Tγ1
Tγ2

, one derives an integral
identity for the matrix elements (49). It takes the form

1

N !

N∏

n=1

∫
dun
(2π)

ζiU
∏N

k,j=1 Γ(i(x̄
′
k − uj))Γ(i(uj − xk))∏

k<j Γ(i(uk − uj))Γ(i(uj − uk))
=

ζiX
′

(1 + ζ)i(X̄′−X)

N∏

k,j=1

Γ(i(x̄′k − xj)) . (53)

Note, that (53) can be obtained from (52) by sending parameters, xN and x′N to infinity. Further,
dividing both sides of (53) by ζ and integrating from zero to infinity one reproduces the integral (9.2)
in Ref. [1].

5. Mixed scalar products

In order to derive the second Gustafson’s integral we consider the scalar products between the functions
of the B system (open chain) and the B and A systems (closed chain). At first step we derive the
recurrence relations for the matrix elements

S
A
N (p, ~u|~x) =

(
Ψ

(N)
B

(p, ~u),Ψ
(N)
A (~x)

)
, δ(p− q)SBN (~u|~x) =

(
Ψ

(N)
B

(p, ~u),Ψ
(N)
B (q, ~x)

)
. (54)

Analysis is almost the same for both products so we consider only SAN (p, ~u|~x). We start by noticing
that

BN (u) = BN (−u)AN (u)−AN (−u)BN(u) = (−1)N−1(2u+ i)
{
iS−u

2N−1 + . . .
}

(55)

and

BN (u)Ψ
(N)
B

(p, ~u|~z) = (−1)N−1(2u+ i)p

N−1∏

k=1

(u2 − u2k)Ψ
(N)
B

(p, ~u|~z). (56)
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αx1

βu1

v1

v′1

v2

v3

αx2 αx2

βu2

Figure 4. The diagrammatic calculation of the scalar product SA
N
(p, ~u|~x), Eq. (54). The leftmost

diagram corresponds to the scalar product SA
N=4(p, {u1, u2, u3}|{x1, x2, x3, x4}) and the rightmost – to

SA
N=3(p, {u2, u3}|{x2, x3, x4}). The upper part of the diagrams, above the dotted line, corresponds to the

eigenfunction AN (closed chain), and the lower part – to the eigenfunction BN (open chain). The indices are
not shown explicitly. They can be easily read of the diagrams in Figs. 2 and 3 (notice that αx1

= s − ix1, and
βu1

= s+ iu1 = (αu1
)∗).

Then, considering the matrix element
(
Ψ

(N)
B

(p, ~u),BN (x1)Ψ
(N)
A (~x)

)
and taking into account that the

operator AN (x1) annihilates the eigenfunction Ψ
(N)
A (~x) while BN (x1) shifts the separated variables as

given by Eq. (37b) one derives after some algebra

p
N−1∏

k=1

(x21 − u2k)S
A
N (p, ~u|~x) = i(x1 + is)N

N∏

k=2

(x1 + xk)S
A
N (p, ~u|~x+ i~e1) . (57)

Solving this recurrence relation and taking into account that the function SAN (p, ~u|~x) is a symmetric
function of the separated variables x1, . . . , xN we get

S
A
N (p, ~u|~x) = 1√

p
p−iX

∏N
k=1

∏N−1
j=1 Γ(±iuj − ixk)

∏N
k=1 Γ

N(s− ixk)
∏

k<j Γ(−i(xk + xj))
× ΦN (u) . (58)

Of course, there is always the possibility to multiply this expression by a periodic function in x. Let
for a moment assume that Eq. (58) correctly reproduces the x-dependence ‡ of the function SAN . Then
one can see that the Γ-functions in the second product in the denominator have the ”nonstandard”
arguments and can hardly be obtained from the integration of the propagator chains. It means that
the diagram which represents the matrix element SAN (p, ~u|~x), see Fig. 4, cannot be calculated with
the help of identities given in the Appendix A only. One can check that the approach based on the
successive use of the chain rule and the permutation identities does not work already for N = 3 .

In order to calculate SAN (p, ~u|~x) we make use of the fact that the x-dependence of this function is
known. Thus we have to determine the function ΦN (u) in Eq. (58) only. Therefore it is sufficient to
calculate the corresponding Feynman diagram for some specific value of variables {xk}. For a natural

‡ For N = 1, 2 the function SA
N

can be easily calculated by the diagrammatic technique that gives some insight into
the structure of the answer for general N .
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αu

αu

βu

βu

αu

βu

βu

Figure 5. The diagrammatic representation of the operator FN (u) (N=4) The indices are defined as follows
αu = s− iu, βu = s+ iu.

choice, x1 = u1, the r.h.s. in Eq. (58) becomes singular. However, the integration over a ”free” vertex
in the diagram for SAN (p, ~u|~x) (the leftmost gray vertex in Fig. 4 with only two propagators attached)
produces the factor (see Eq. (45))

a(s+ iu1, s− ix1) =
Γ(2s)Γ(i(u1 − x1))

Γ(s+ iu1)Γ(s− ix1)
, (59)

which is also singular at x1 → u1. Canceling the singular factor Γ(i(u1 − x1)) on both sides
one can safely put x1 = u1. Since at x1 → u1 the propagator arising due to the integration,
Di(u1−x1)(v

′
1, v̄1) → 1, the line connecting vertices v1 and v′1 disappears. The resulting diagram

can be simplified as follows:

(i) one integrates over the vertex v′1 and move the resulting line to the right with the
help of the permutation relations given in Appendix A. Then one consequently applies
the same procedure to the vertices v1, v2 and so on. Each integration produces the
factor a(α, β) and the successive application of the permutation relations results in a
rearrangement of indices. Namely, the integration over the vertices v′1, v1, v2, . . . gives the factors
a(αu1

, αu1
), a(βu1

, αx2
), a(βu1

, αx3
), . . ., respectively. After these steps the upper part of the

resulting diagram (the middle diagram in Fig. 4) corresponds to the diagram for the eigenfunction

Ψ
(N−1)
A (x2, . . . , xN ).

(ii) The lower part of the middle diagram in Fig. 4 has the form

Λ̃†
2(uN−1 . . . Λ̃

†
N−1(u2)FN−1(u1) , (60)

where the operator FN (depicted by the dashed lines in Fig. 4) has the diagrammatic

representation shown in Fig. 5. The operators Λ̃†
N and FN obey the following exchange relation

Λ̃†
N (v)FN (u) = a(αu, βv)a(αu, αv)FN−1(u)Λ̃

†
N (v) . (61)

The proof of this relation is straightforward and illustrated in Fig. 6. Using this relation one gets
for the product (60)

Λ̃†
2(uN−1) . . . Λ̃

†
N−1(u2)FN−1(u1) =

N−1∏

k=2

a(αu1
, βuk

)a(αu1
, αuk

)F1(u1)Λ̃
†
2(uN−1 . . . Λ̃

†
N−1(u2) .

(62)

Finally, taking into account that F1(u)(z, w̄) = Ds−iu(z, w̄) and performing Fourier transform
one finds that the lower part of the diagram corresponds to the diagram for the eigenfunction

Ψ
(N−1)
B

(p, u2, . . . , uN−1).
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v1

v2

Figure 6. The diagrammatic proof of the exchange relation (61). The right diagram corresponds to the product

Λ̃†
N
(v) FN (u). On the first step one integrates over the vertex v1 and moves the resulting line to the right with the

help of the permutation relations ii and iii in Appendix A. It ends up as the arched line in the middle diagram.
On the next step one repeats the same procedure for the vertex v2. On the third step we insert the lines with the
indices ±i(u − v) as shown in the rightmost diagram and move them to the left and right interchanging on the
way the indices of the two upper layers. On the final step one moves the arched line to the left. The resulting

diagram corresponds to the product FN−1(u)Λ̃
†
N
(v).

Thus one expresses the N -sites scalar product SAN for the special choice of parameters, x1 = u1,
via the N − 1 sites scalar product. Collecting all factors and taking into account the normalization
coefficients (25), (32) we obtain:

SAN (p, ~u|~x)
Γ(i(u1 − xi))

∣∣∣
u1=x1

= S
A
N−1(p, {u2, . . . , uN−1}|{x2, . . . , uN})Γ(2s)a(αu1

, αu1
)

Γ(αu1
)Γ(βu1

)

N∏

k=2

a(βu1
, αxk

)

×
N−1∏

k=2

a(αu1
, βuk

)a(αu1
, αuk

)× p−iu1
Γ(2s)

Γ(αu1
)
(Γ(2s))−3N+2 . (63)

Substituting SAN and SAN−1 in the form (58) we get for ΦN (u)

ΦN (u1, . . . , uN−1) =
1

ΓN (αu1
)ΓN (βu1

)

N−1∏

k=2

1

Γ(αuk
)Γ(βuk

)
ΦN−1(u2, . . . , uN−1) . (64)

Taking into account the boundary condition Φ1 = 1 we get

ΦN (u1, . . . , uN−1) =

(
N−1∏

k=1

Γ(αuk
)Γ(βuk

)

)−N

(65)

and, hence

S
A
N (p, ~u|~x) = 1√

p
p−iX

∏N
k=1

∏N−1
j=1 Γ(±iuj − ixk)

(∏N−1
k=1 Γ(αuk

)Γ(βuk
)
∏N

k=1 Γ(αxk
)
)N ∏

k<j Γ(−i(xk + xj))

. (66)

The calculation of the scalar product SBN (~u|~x) goes exactly along the same lines so we quote the final
result only

S
B
N (~u|~x) =

∏N−1
k=1

∏N−1
j=1 Γ(±iuj − ixk)

(∏N−1
k=1 Γ(αuk

)Γ(βuk
)Γ(αxk

)
)N ∏

k<j Γ(−i(xk + xj))

. (67)

In deriving Eq. (66) we have neglected the possibility to multiply the solution (58) of the
recurrence equation (57) by a periodic function of x. In order to see that Eq. (66) gives the right
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answer one can proceed a bit differently, finally arriving to the same result. Namely, it can be shown by
a straightforward application of the integration rules to the diagram for the scalar product SAN (p, ~u|~x),
(the leftmost diagram in Fig. 4) that it can be represented in the form F(u1, ~x)× S(u2, . . . , uN−1|~x),
where F(u1, ~x) is given by a product of Γ-functions. Since the function SAN (p, ~u|~x) is a symmetric

function of ~u variables one concludes that SAN (p, ~u|~x) = ∏N−1
k=1 F(uk, ~x)× ΨN(~x). Finally, in order to

determine ΨN(~x) one applies the same “u1 → x1” trick described above.

5.1. Second Gustafson’s integral

The second Gustafson’s integral is also related to the matrix element Tγ(~x, ~x
′), Eq. (39). Only this

time we use expansion over the eigenfunctions Ψ
(N)
B

(p, ~u). One gets

Tγ(~x, ~x′) =
1

(N − 1)!

∫ ∞

0

dp eiγp

(
N−1∏

k=1

∫ ∞

−∞

duk
4π

)
µ̃N (~u)SAN (p, ~u, ~x)

(
S
A
N (p, ~u, ~x′)

)†
, (68)

where the measure is defined as follows, see Eq. (36),

µ̃N (~u) =

∏N−1
k=1

[
Γ(s+ iuk)Γ(s− iuk)

]2N
∏

j<k Γ(i(uk ± uj))Γ(−i(uk ± uj))
. (69)

Substituting SAN (p, ~u, ~x), Eq. (66), in (68) and integrating over p one gets,

1

(N − 1)!

(
N−1∏

n=1

∫
dun
4π

) ∏N
k=1

∏N−1
j=1 Γ(i(x′k ± uj))Γ(−i(xk ± uj))

∏N−1
k=1 Γ(2iuk)Γ(−2iuk)

∏N−1
k<j Γ(i(uk ± uj))Γ(−i(uk ± uj))

=

= Γ−1(i(X ′ −X))

N∏

k,j=1

Γ(i(x′k − xj))

N∏

k<j

Γ(i(x′k + x′j))Γ(−i(xk + xj)) . (70)

This integral, after redefinition αk = ix′k, αN+k = −ixk andN−1→N , coincides with the integral (2).

Writing down the scalar product SAN (p, ~x, ~x′) in the Ψ
(N)
B (q, ~u) basis one gets the following identity

S
A
N (p, ~x, ~x′) =

1

(N − 1)!

(
N−1∏

k=1

∫
duk
2π

)
µN (~u)SBN (~x, ~u)SBA

N (p, ~u, ~x′) , (71)

where the measure µN (~u) is defined by Eq. (51). Substituting explicit expressions for the scalar
products, Eqs. (46), (66), (67), one obtains after some redefinition the integral (3).

For N = 1 the integral (3) is a special case of the integral (1). Contrary, for N > 1 the
integral (1) follows from the integrals (2) and (3). Indeed, let us send α2N+2 → ∞ in (2) and compare
the asymptotic of both sides. It give rises to the following identity

(
N∏

n=1

∫ i∞

−i∞

dzn
2πi

) ∏2N+1
k=1

∏N
j=1 Γ(αk ± zj)

∏N
k=1 Γ(±2zk)

∏
k<j Γ(zk ± zj)Γ(−zk ± zj)

= 2NN !
∏

k<j

Γ(αk + αj) . (72)

Then multiplying both sides of (3) by

∏N+1
j=1

∏N
m=1 Γ(γj ± βm)

∏N
k=1 Γ(±2βk)

∏
k<j Γ(βk ± βj)Γ(−βk ± βj)

(73)

and carrying out β-integrals with the help of (2) and (72) one obtains the first Gustafson’s integral (1).
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6. N × (N − 1) scalar products

In this section we calculate another set of scalar products that gives us a possibility to obtain several

new Γ-integrals. Namely, we consider the scalar products of the eigenfunctions Ψ
(N)
B (p, ~x|~z), Ψ(N)

A (~x|~z)
with functions

Ψ
(N−1)
B (p, x1, . . . xN−2|~zN−1)×Mν(zN ), Ψ

(N−1)
A (p, x1, . . . xN−1|~zN−1)×Mν(zN ), (74)

where Mν(z) is a power function (see also Appendix A)

Mν(z) = (Γ(2s))−1/2Γ(s+ iν)Ds+iν(z, 0) = (Γ(2s))−1/2Γ(s+ iν)eiπ/2(s+iν)z−s−iν . (75)

All four scalar products can be calculated by the diagrammatic technique. The calculation goes
along the following lines: one starts with the diagram GN for the N -point scalar product of two
functions. Then using the chain rule and permutation identities given in Appendix A one transforms
GN into the form GN = FN ×GN−1. Here FN is a factor depending on the spectral parameters and
given by a product of Γ functions and GN−1 is the diagram for the N − 1 point scalar product. So
one immediately gets that GN = FNFN−1 . . . F3×G2. In all cases, the starting point of the recursion,
the diagram GN=2, can be easily evaluated.

We obtained the following expressions for the scalar products:

(
Ψ

(N−1)
B (p, ~u)×Mν ,Ψ

(N)
A (~x)

)
=
p−i(ν+X)

√
p

Γ(αν)

Γ(βν)

N∏

k=1

Γ(i(xk + ν))

Γ(αxk
)Γ(βxk

)

×
N−2∏

k=1

Γ(βuk
)

Γ(i(uk + ν))

N∏

k=1

N−2∏

j=1

Γ(i(uj − xk))

Γ(αxk
)Γ(βuj

)
,

(
Ψ

(N−1)
A (~u)×Mν , ψ

(N)
A (~x)

)
= 2πδ(ν +X − U)

Γ(αν)

Γ(βν)

∏N−1
k=1 Γ(βuk

)
∏N

k=1 Γ(βxk
)

N∏

k=1

N−1∏

j=1

Γ(i(uj − xk))

Γ(αxk
)Γ(βuj

)
. (76)

and
(
Ψ

(N−1)
B (q, ~u)×Mν ,Ψ

(N)
B (p, ~x)

)
= θ(p− q)piU+ 1

2 q−iX− 1

2 (p− q)i(X−U−ν)−1

×
N−1∏

k=1

1

|Γ(αxk
)|2

N−2∏

j=1

Γ
(
i(uj − xk)

)

Γ(βuj
)Γ(αxk

)
,

(
Ψ

(N−1)
A (~x)×Mν ,Ψ

(N)
B (p, ~u)

)
=
pi(−ν+X)

√
p

N−1∏

k=1

1

Γ(βuk
)

Γ(i(uk − ν))

Γ(i(xk − ν))

N−1∏

k,j=1

Γ(i(xk − uj))

Γ(βxk
)Γ(αuj

)
. (77)

Here and below X =
∑

k xk, Y =
∑

k yk and U =
∑

k uk. It is tacitly assumed that the “ + 0”
prescription is used for all Γ functions in the numerators, i.e. Γ(i(u− x)) 7→ Γ(i(u− x) + ǫ).

The scalar product of two functions Ψ1(~y), Ψ2(~x) can be written, schematically, in the form

(
Ψ1(~y),Ψ2(~x)

)
=

∫
dµ(~u)

(
Ψ1(~y),Ψ3(~u)

)(
Ψ3(~u),Ψ2(~x)

)
, (78)

where Ψ3(~u) is the complete system associated with Ψ
(N)
B , Ψ

(N)
A or with the functions (74) and µ(~u)

is the corresponding measure. The r.h.s. of Eq. (78) has the form of the multidimensional Mellin-
Barnes integral. We list below some of the integrals arising in this way. The most interesting ones
are those for which the number of external parameters minus the number of integrations is maximal.
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Presenting results we change the integration variables iuk → uk and do the same for the external
parameters. Since the prescription for a bypass of the poles is fixed and integrals are convergent, the
corresponding integral identities hold for the complex parameters as well. We will also sometimes
shift N → N + 1, N + 2.

• The first integral arise from (78) for the choice:{
Ψ1,Ψ2,Ψ3

}
=
{
Ψ

(N−1)
A (~y)×Mν , ψ

(N)
A (~x),Ψ

(N−1)
B (p, ~u)×Mν

}
. It takes the form

1

N !

∫ N∏

k=1

duk
2πi

∏N
j=1

∏N+1
k=1 Γ(yk − uj)

∏N+2
k=1 Γ(uj + xk)

∏N
k=1 Γ(ν + uk)

∏
i6=j Γ(ui − uj)

=

∏N+2
k=1

∏N+1
j=1 Γ(yi + xk)

∏N+2
k=1 Γ(ν − xk)

, (79)

where ν = Y + X =
∑N+1

k=1 yk +
∑N+2

k=1 xk and Rexk > 0, Reyk > 0 and coincides with the
integral (3.2) in Ref. [2].

• Considering
{
Ψ

(N−1)
B (p, ~u)×Mν ,Ψ

(N)
A (~x),Ψ

(N−1)
A (~u)×Mν

}
we get

2πi

N !

∫ N∏

k=1

duk
2πi

δ

(
N∑

k=1

uk

) ∏N
j=1

∏N−1
k=1 Γ(yk − uj)

∏N+1
k=1 Γ(xk + uj)∏

k 6=j Γ(uk − uj)
=

=

∏N+1
k=1 Γ (X − xk)∏N−1
k=1 Γ (X + yk)

N+1∏

k=1

N−1∏

j=1

Γ(yj + xk) , (80)

where X =
∑N+1

j=1 xj and Rexk > 0, Reyj > 0 and integration goes along the imaginary axis.
For N = 2 this identity is equivalent to the Wilson - de Branges integral [20, 21].

• The triple
{
Ψ

(N−1)
A (~y)×Mν , Ψ

(N)
B (p, ~x), Ψ

(N−1)
B (q, ~u)×Mν

}
gives rise to

1

N !

∫ N∏

k=1

duk
2πi

Γ(ν −X − U)

Γ(ν + Y − U)

∏N+1
k=1

∏N
j=1 Γ(yk − uj)Γ(xk + uj)∏

k 6=j Γ(uk − uj)

=
N+1∏

k=1

Γ(ν − xk)

Γ(ν + yk)

∏N+1
k,j=1 Γ(yj + xk)

Γ(X + Y )
, (81)

where Rexk > 0, Re yk > 0, and Re ν > ReX . For N = 1 it is equivalent to the second Barnes
Lemma, while for general N it is a modification of the first Gustafson’s integral (1).

• For
{
Ψ

(N)
B (p, ~y)×Mν, Ψ

(N)
A (~x), Ψ

(N−1)
A (~u)×Mν

}
one gets

1

N !

∫ N∏

k=1

duk
2πi

Γ(s−X − U)

Γ(s+X + U)

N∏

k=1

Γ(X + U − yk)

Γ(X + U − uk)

∏N
j=1

∏N
k=1 Γ(yk − uj)

∏N+1
k=1 Γ(xk + uj)∏

k 6=j Γ(uk − uj)
=

=

N+1∏

k=1

Γ(s− xk)

Γ(s+ xk)

N∏

k=1

Γ(s− yk)

Γ(s+ yk)

N+1∏

k=1

N∏

j=1

Γ(yj + xk),

(82)

where Rexk > 0, Re yk > 0, ReX > Re yk and Re s > ReX . Again, for N = 1 it reduces to the
second Barnes Lemma.
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• The last integral comes from
{
Ψ

(N)
B (p, ~y), Ψ

(N)
A (~x), Ψ

(N−1)
B (p, ~u)×Mν

}

1

(N − 1)!

∫
dν

2πi

∫ N−1∏

k=1

duk
2πi

Γ(s−X − ν)

Γ(s+X + ν)

∏N+1
k=1 Γ(ν +X − xk)∏N−1
k=1 Γ(ν +X + uk)

Γ(Y − ν)Γ(ν + U +X − Y )

Γ(X + U)

×
∏N−1

j=1

∏N
k=1 Γ(yk − uj)

∏N+1
k=1 Γ(xk + uj)∏

k 6=j Γ(uk − uj)
=

N+1∏

k=1

Γ(s− xk)

Γ(s+ xk)

N∏

k=1

Γ(s− yk)

Γ(s+ yk)

N+1∏

k=1

N∏

j=1

Γ(yj+xk) .

(83)

Here Rexk > 0, Reyk > 0, Re(X − Y ) > 0 and Re(s−X) > 0. For N = 1 it is equivalent to the
second Barnes Lemma.

7. Summary

The eigenfunctions of the matrix elements of the monodromy matrix (both for the closed and open
spin chains) provide convenient bases for the study of the spectral problem for the corresponding spin
magnets. Remarkably enough these eigenfunctions can be constructed explicitly as multi-parametric
integrals and represented by Feynman diagrams of a certain type. The scalar products between the
different eigenfunctions can be calculated with the help of the diagrammatic technique and, as a rule,
are given by a product of the Γ-functions with arguments depending on the parameters labeling the
eigenfunctions (separated variables). In the SoV representations the scalar product or matrix elements
take the form of multidimensional Mellin–Barnes integrals. Studying different scalar products we
succeeded to reproduce all relevant integrals in Ref. [1, 2] except two ones – the integrals (9.6) in
Ref. [1] and (5.4) in Ref. [2] – and derived several new integrals which we were not able to derive from
the Gustafson’s integrals.

In this work we have considered only the homogeneous spin chains. However, the eigenfunctions
can be constructed in a similar way and for general case of the inhomogeneous spin chains with
impurities [12]. The Gustafson’s integrals (1), (2) are not sensitive to all these modifications. At the
same time we expect that inclusion of additional parameters (spins and impurities) into consideration
could have modify integrals given in sect. 6.

We hope also that this approach can be extended to the noncompact SL(2,C) spin magnets [22]
and allows one to obtain a corresponding extension of Gustafson’s integrals. Some insights into the
possible structure of such integrals can be derived from the works [23, 24, 25].
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Appendices

Appendix A. Diagram technique

In this Appendix we present the basic elements of the diagram technique which was used throughout
the paper. The propagator

Dα(z, w̄) =

(
i

z − w̄

)α

=
1

Γ(α)

∫ ∞

0

dp eip (z−w̄) pα−1 (A.1)
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is shown by the arrow directed from w̄ to z with the index α attached to it. Under complex conjugation
it behaves as follows: (Dα(z, w̄))

∗ = Dα∗(w, z̄).
There are several useful identities involving propagators:

(i) Chain rule: the integral of two propagators is the propagator again:

= a(α, β)
α β α + β − 2s

∫
DwDα(z, w̄)Dβ(w, ζ̄) = a(α, β)Dα+β−2s(z, ζ̄) , (A.2)

where

a(α, β) =
Γ(2s)Γ(α+ β − 2s)

Γ(α)Γ(β)
. (A.3)

(ii) Permutation relation:

αx βx

βu αu

=

βx αx

i(
x
−
u
)

i(
x
−

u
)

αu βu

(iii) Reduced permutation relation:

αx βx

αu αx

βuαu

=

i(
x
−
u
)

(iv) The propagator identity:

= a(βx, βν)×
βx

αx

αν

0

0

z z

0

αν
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All these identities can be easily checked by going over to the momentum representation.

There are two standard bases in the (one-particle) Hilbert space H.

• The plane waves: Ep(z) = ps−1/2eipz/Γ1/2(2s), p > 0:

(Ep′ , Ep) =

∫
Dz Ep(z)Ep′(z) = δ(p− p′) . (A.4)

• powers:

Mν(z) = (Γ(2s))−1/2Γ(s+ iν)Ds+iν(z, 0) = (Γ(2s))−1/2Γ(s+ iν)eiπ/2(s+iν)z−s−iν , (A.5)

where ν ∈ R,

(Mν′ ,Mν) =

∫
DzMν(z)Mν′(z) = 2πδ(ν − ν′) . (A.6)

For the transition matrix element one gets
(
Mν , Ep

)
= p−iν−1/2 . (A.7)
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