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Abstract

A multiplicity of quark-lepton families can naturally arise as zero-modes in flux
compactifications. The flavour structure of quark and lepton mass matrices is
then determined by the wave function profiles of the zero-modes. We consider
a supersymmetric SO(10) × U(1) model in six dimensions compactified on the
orbifold T 2/Z2 with Abelian magnetic flux. A bulk 16-plet charged under the
U(1) provides the quark-lepton generations whereas two uncharged 10-plets yield
two Higgs doublets. Bulk anomaly cancellation requires the presence of additional
16- and 10-plets. The corresponding zero-modes form vectorlike split multiplets
that are needed to obtain a successful flavour phenomenology. We analyze the
pattern of flavour mixings for the two heaviest families of the Standard Model
and discuss possible generalizations to three and more generations.
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1 Introduction

The explanation of the masses and mixings of quarks and leptons remains a challenge
for theories which go beyond the Standard Model (SM). Interesting relations between
quark and lepton mass matrices are obtained in grand unified theories (GUTs) based on
the gauge groups SU(4)×SU(2)×SU(2) [1], SU(5) [2], SO(10) [3,4] and flipped SU(5)
[5,6], and some understanding of the hierarchies between quark-lepton generations can
be obtained by means of U(1) flavour symmetries [7].

Extending grand unified theories to higher dimensions offers new possibilities for
symmetry breaking and the doublet-triplet splitting problem. This has been studied
in particular in orbifold GUTs where the colour triplet partners of the Higgs doublets
are projected out from the spectrum of massless states [8–12]. Orbifold GUTs can also
be obtained as intermediate step towards the embedding of the Standard Model into
string theories [13–16].

Important progress in understanding the flavour structure of the Standard Model
has also been made in the context of the heterotic string [17, 18] as well as in F-
theory [19–21]. In string theory Yukawa couplings are dynamical quantities whose
values depend on the vacuum structure of the theory. An interesting example are flux
compactifications where the Yukawa couplings can be calculated as overlap integrals
of wave functions that have non-trivial profiles in the magnetized extra dimensions
[22]. In a similar way, Yukawa couplings of magnetized toroidal orbifolds have been
analyzed [23–26]. The resulting flavour structure depends on the number of pairs
of Higgs doublets. In the simplest cases it appears difficult to obtain the measured
hierarchies of quark and lepton masses [24, 25].

Magnetic flux leads to a multiplicity of chiral fermion zero-modes according to
the number of flux quanta, which can be used to explain the number of quark-lepton
generations [27]. Moreover, flux is an important source of supersymmetry breaking [28].
Starting from a six-dimensional orbifold GUT model [29] with gauge group SO(10), we
have considered in [30] possible effects of an additional U(1) factor. Abelian magnetic
flux can be used to generate a multiplicity of quark-lepton families from a charged
bulk 16-plet. Bulk anomaly cancellation requires additional 10-plets and 16-plets that
can be uncharged. The orbifold projection then leads to split multiplets, which allow
for the familiar solution of the doublet-triplet splitting problem in the Higgs sector.
Since the quark-lepton hypermultiplet carries U(1) charge, the scalar superpartners of
quarks and leptons acquire large supersymmetry breaking masses of order the GUT
scale, leading to a picture reminiscent of ‘split supersymmetry’ [31, 32].

In this paper we study the flavour structure of the orbifold GUT model [30]. The
magnetic flux leads to a non-trivial profile of the quark and lepton bulk wave functions
whereas the Higgs zero-modes have a constant bulk profile. Contrary to previously
considered flux compactifications, Yukawa couplings arise from superpotential terms at
the orbifold fixed points, i.e., from products of quark-lepton wave functions and not
as volume integrals over products of quark-lepton and Higgs wave functions. More-
over, mass mixings of quarks and leptons with split multiplets occur. This offers new
possibilities to obtain a realistic pattern of quark and lepton mass matrices.
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The paper is organized as follows. In Section 2 we recall the needed features of
the symmetry breaking in the GUT model [30] and discuss properties of the zero-
mode wave functions. The main part of the paper are Sections 3 and 4. Here the
structure of the quark and lepton Yukawa couplings and mass mixings is discussed,
and a quantitative description is given for masses and mixings of the two heaviest SM
families. Section 5 summarizes some aspects of supersymmetry breaking and the Higgs
sector. The appendices A and B give some details on Wilson line breaking and the
complex flavour vectors which determine Yukawa matrices and mass mixings.

2 GUT model and symmetry breaking

In this section we recall the main features of a six-dimensional SO(10) GUT model
previously discussed in [30]. In particular, we discuss the GUT symmetry breaking
by means of Wilson lines, list all the fields relevant for flavour mixing and discuss the
properties of the zero-mode wave functions that determine the Yukawa matrices and
the mixings with split multiplets.

We start from N = 1 supersymmetry in six dimensions with SO(10)× U(1) gauge
symmetry, compactified on the orbifold T 2/Z2. In addition to the 45-plet of vector
multiplets the model contains six 10-plets and four 16-plets. For this set of bulk fields
all irreducible and reducible SO(10) gauge anomalies cancel [29,30]. It is convenient to
group 6d vector multiplets into 4d vector multiplets A = (Aµ, λ) and 4d chiral multiplets
Σ = (A5,6, λ

′), and 6d hypermultiplets into two chiral multiplets, (φ, χ) and (φ′, χ′) [33].
Note that (φ′, χ′) transform in the the complex conjugate representation compared to
(φ, χ). The origin ζI = 0 is a fixed point under reflections, Ry = −y, where y denotes
the coordinates of the compact dimensions. Defining fields on the orbifold such that

A(x,−y) = A(x, y) , Σ(x,−y) = −Σ(x, y) ,

φ(x,−y) = φ(x, y) , φ′(x,−y) = −φ′(x, y) ,
(1)

breaks 6d N = 1 supersymmetry to 4d N = 1 supersymmetry at the fixed point ζI = 0.
The bulk SO(10) symmetry can be broken to the Standard Model group by means

of two Wilson lines1. The fixed points ζi, i = PS,GG, fl are invariant under combined
lattice translations and reflection: T̂iζi = ζi, with T̂i = Ti ◦ R, Tiy = y + λi, where λi
denotes a lattice vector (see Appendix A). Demanding that fields on the orbifold satisfy
the relations

PPSA(x, T̂PSy)P−1
PS = ηPSA(x, y) ,

PGGA(x, T̂GGy)P−1
GG = ηGGA(x, y) ,

(2)

1In Refs. [11] the breaking of SO(10) was obtained by considering the orbifold T 2/Z2
3. This is

equivalent to the symmetry breaking on T 2/Z2 with two Wilson lines that is considered in this section.
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ζI ζPS

ζflζGG

Figure 1: Orbifold T 2/Z2 with two Wilson lines and the fixed points ζI , ζPS , ζGG, and ζfl.

with matrices PPS, PGG given in Appendix A and parities ηPS, ηGG = ±, the gauge
group SO(10) is broken to the Pati-Salam subgroup GPS = SU(4) × SU(2) × SU(2)
and the Georgi-Glashow subgroup GGG = SU(5) × U(1)X at the fixed points ζPS and
ζGG, respectively (see Fig. 1). The surviving SM gauge group is obtained as intersection
of the Pati-Salam and Georgi-Glashow subgroups of SO(10),

GSM′ = GPS ∩GGG = SU(3)× SU(2)× U(1)Y × U(1)X . (3)

Group theory implies that SO(10) is broken to flipped SU(5), Gfl = SU(5)′×U(1)X′ ,
at ζfl.

Analogously to the vector multiplets the hypermultiplets satisfy the relations

PPSφ(x, T̂PSy) = ηPSφ(x, y) ,

PGGφ(x, T̂GGy) = ηGGφ(x, y) ,
(4)

where the matrices PPS and PGG now depend on the representation of the hypermulti-
plet. The SO(10) multiplets A and φ can be decomposed into SM multiplets, A = {Aα}
and φ = {φα}. Each of them belongs to a repesentation of GPS as well as GGG and is
therefore characterized by two parities,

Aα(x, T̂PSy) = ηαPSA
α(x, y) , Aα(x, T̂GGy) = ηαGGA

α(x, y) , (5)

φβ(x, T̂PSy) = ηβPSφ
β(x, y) , φβ(x, T̂GGy) = ηβGGφ

β(x, y) . (6)

The parities of the vector multiplet are fixed by the requirement that the SM gauge
bosons are zero-modes. The parities of the hypermultiplets can be freely chosen subject
to the requirement of anomaly cancellations. A given set of parities then defines a 4d
model with SM gauge group.

Magnetic flux is generated by a U(1) background gauge field. One bulk 16-plet, ψ,
carries U(1) charge. The other 16-plets, ψc, Ψ and Ψc, and the 10-plets H1, . . . , H6 have
no U(1) charge. Each hypermultiplet leads to a ‘split multiplet’ of 4d zero-modes that
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SO(10) 10

GPS (1,2,2) (1,2,2) (6,1,1) (6,1,1)

GGG 5∗−2 5+2 5∗−2 5+2

ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG

H1 + − + + − − − +

Hu

H2 + + + − − + − −
Hd

H3 − − − + + − + +

d

H4 − − − + + + + −
dc

SO(10) 16

GPS (4,2,1) (4,2,1) (4∗,1,2) (4∗,1,2)

GGG 10−1 5∗+3 10−1 5∗+3,1−5

ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG

ψ − + − − + + + −
qi li uci , e

c
i dci , n

c
i

uc, ec

Ψ − − − + + − + +

Dc, N c

SO(10) 16∗

GPS (4∗,2,1) (4∗,2,1) (4,1,2) (4,1,2)

GGG 10∗+1 5−3 10∗+1 5−3,1+5

parities ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG

ψc − + − − + + + −
u, e

Ψc − − − + + − + +

D,N

Table 1: PS- and GG-parities for bulk 10-plets and 16-plets.
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Table 2: The four different parity assignments for the charged 16-plet ψ, encoded in the parities for the
(4,2,1)-plet at ζPS and the 10−1-plet at ζGG, and the resulting wave function for the different SM fields.
The profile of the wave functions is shown in Fig. 2.

Model ηPS ηGG q uc dc l ec nc

I + + ψ++ ψ−+ ψ−− ψ+− ψ−+ ψ−−

II − + ψ−+ ψ++ ψ+− ψ−− ψ++ ψ+−

III + − ψ+− ψ−− ψ−+ ψ++ ψ−− ψ−+

IV − − ψ−− ψ+− ψ++ ψ−+ ψ+− ψ++

have both parities positive. This allows for the wanted doublet-triplet splitting in the
Higgs sector. The parities ηβPS and ηβGG can be chosen such that H1 and H2 contain the
Higgs doublets Hu and Hd, respectively. The 16-plets Ψ and Ψc contain zero-modes
Dc, N c and D,N , respectively. Expectation values of N c and N break U(1)X , and
therefore B − L. Dc and D have down-quark quantum numbers and acquire mass by
mixing with the zero-modes of the 10-plets H5 and H6 listed in Table 3 of Appendix A.
The 10-plets H3 and H4 also have zero-modes with down quark quantum numbers.
In Table 1 all zero-modes are listed, which are relevant for our discussion of flavour
mixing.

The charged bulk 16-plet ψ yields N 16-plets of zero-modes for N flux quanta,
independent of the parity assignements, plus an additional split multiplet of zero-modes
for which both parities are positive. The zero-modes of a charged hypermultiplet have
non-trivial wave function profiles. There are four possibilies to choose a pair of parities
ηPS, ηGG. Correspondingly, there are four models that differ by the parities of the SM
components, and therefore the assignment of the four types of wave functions to quarks
and leptons. The four models are listed in Table 2.

For our discussion of flavour mixings we choose model II where uc and ec have both
parities positive. Hence, the bulk field ψ has the decomposition

ψ =
N∑
i=1

[
qiψ

(i)
−+ + liψ

(i)
−− + (dci + nci)ψ

(i)
+−

]
+

N+1∑
α=1

(ucα + ecα)ψ
(α)
++ . (7)

For the wave functions ψ
(j)
ηPSηGG(y) we use the expressions given in [34]. For N flux

quanta they read

ψ(j)
ηPSηGG

(y) = N ′ e−2πNy2
2

∑
n∈Z

e−2πN(n− j
2N )

2
−iπ(n− j

2N )(ikPS−kGG)

× cos

[
2π

(
−2nN + j +

kPS

2

)
(y1 + iy2)

]
, (8)

ηPS =eiπkPS , ηGG = eiπkGG , kPS, kGG = 0, 1 .
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|ψ++|2

|ψ−+|2

|ψ+−|2

|ψ−−|2

Figure 2: The modulus squared of the wave functions ψab(y), a, b = +,−, on the orbifold. Darker shades
indicate larger values for |ψab|2. Solid circles represent fixed points with non-vanishing values for the wave
function, whereas hollow circles are fixed points where the respective wave function vanishes.
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For ηPS = ηGG = + there are N + 1 zero-modes, with j = 0, 1, . . . N . In all other cases
one has N zero-modes, with j = 0, 1, . . . N − 1. The shape of the wave functions is
shown in Fig. 2. The wave functions ψ

(j)
++ are non-zero at all fixed points. All other

wave functions are non-zero at two fixed points and vanish at the other two. As we shall
see in the subsequent section, this leads to a characteristic pattern of flavour mixings.

3 Flavour mixings from geometry

In this section we discuss the geometric origin of flavour mixing in our model. Su-
persymmetry in six dimensions does not allow for a bulk superpotential. Couplings
between the bulk hypermultiplets can therefore only arise at the fixed points. There,
the couplings of fields are proportional to the product of their wave functions, evaluated
at the respective location. The background flux leads to a multiplicity N of fermion
families in our model, and each Yukawa coupling of hypermultiplets at a fixed point is
therefore turned into a N × N flavour matrix. The SM gauge quantum numbers and
the Wilson line configuration determine the wave function for a given field, see Table
2. In the following we shall focus on model II.

In order to illustrate how the Yukawa matrices arise from the wave function profiles,
let us consider a 2 × 2 down-type quark Yukawa matrix. This arises at the SO(10)
fixed point from the term

WI ⊃ hI
d ψψ H2|ζI ⊃ hI

d qiψ
(i)
−+ dcjψ

(j)
+− Hd|ζI

⊃ v2h
I
d did

c
j ψ

(i)
−+ψ

(j)
+−|ζI ≡ v2Y

ij
d did

c
j ,

(9)

where i, j are the family indices which label the degeneracy of of the zero-mode wave
functions. The wave functions have to be evaluated at the SO(10) fixed point, and we
assume electroweak symmetry breaking with v2 = 〈Hd〉. From Eq. (9) and Eqs. (59),
(67) one obtains the down-quark Yukawa matrix

Y ij
d = hIdψ

(i)
−+ψ

(j)
+−|ζI = hId

(
0.32 (1 + i) 0.71

1.50 (1 + i) 3.29

)
. (10)

In principle, there are further contributions to the down-quark Yukawa couplings from
other fixed point superpotentials. However, all operators involving the quark doublet
vanish at the Pati-Salam fixed point, as they are proportional to ψ

(i)
−+ that vanishes at

ζPS due to their negative parity there. By the same reason there is neither a contribution
from the Georgi-Glashow fixed point where the right-handed down quark wave functions
ψ

(i)
+− vanish, nor from the flipped SU(5)′ × U(1)′ fixed point where both the quark

doublets and the right-handed down quarks cannot couple. Up to higher-dimensional
operators, the model II therefore predicts the down-quark Yukawa couplings uniquely.

The matrix given in Eq. (10) has some characteristic features. First of all, one of
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the eigenvalues vanishes,
Ŷd = hId diag(0, 5.0) , (11)

so there is only one heavy state with nonvanishing mass. This follows immediately from
the fact that the matrix Yd is a dyadic tensor build from two vectors that determine
the couplings of qi and dcj at the fixed point ζI . As we shall see, a second nonvanishing
mass can be obtained from the mixing with vectorlike split multiplets. Furthermore,
it is interesting that the matrix (10) is complex, which is a consequence of the two
nonvanishing Wilson lines. It therefore naturally incorporates CP violation.

In most cases, the Yukawa matrices have contributions from two fixed points. It
is straightforward to list the lowest-dimensional operators that contribute to fermion
masses at the various fixed points after B − L and electroweak symmetry breaking,

WYuk = δI

(
hI
u ψψH1 + hI

d ψψH2 + hI
n ψψΨcΨc

)
+δPS

(
hPS
u 4 4∗∆1 + hPS

d 4 4∗∆2 + hPS
n 4∗4∗FF

)
+δGG

(
hGG
u 10 10H5 + hGG

d 5∗10H5∗ + hGG
ν 5∗ncH5 + hGG

n ncncNN
)

+δfl

(
hfl
u 5̃∗1̃0H5̃∗ + hfl

d 1̃0 1̃0H5̃ + hfl
e 5̃∗ecH5̃ + hfl

n 1̃0 1̃0 T̃ ∗T̃ ∗
)
,

(12)

where we denote the Higgs fields in the representations of the unbroken SO(10) sub-
groups at the various fixed points by H1|ζPS

= ∆1, H1|ζGG
= H5, H1|ζfl = H∗

5̃
,

H2|ζPS
= ∆2, H2|ζGG

= H5∗ , H2|ζfl = H5̃, Ψc|ζPS
= F , Ψc|ζGG

= N and Ψc|ζfl = T̃ ∗;
δp = δ(y − ζp), p = I, . . . , fl, and the vacuum expectation values of the Higgs fields are
〈H1〉 = 〈Hu〉 = v1, 〈H2〉 = 〈Hd〉 = v2 and 〈Ψc〉 = 〈N〉 = vB−L. We refer to the matter
fields at the various fixed points by their SU(4) or SU(5) representation respectively,
marking flipped SU(5)′×U(1)′ fields with a tilde. Specifying to model II, all but six of
the operators in Eq. (12) vanish because in most couplings one of the matter field wave
functions is zero at the fixed point. This considerably simplifies the superpotential,

WYuk = δI

(
hI
u ψψ H1 + hI

d ψψ H2 + hI
n ψψΨcΨc

)
+ δPSh

PS
n 4∗4∗FF + δGGh

GG
u 10 10 H5 + δflh

fl
e 5̃∗ec H5̃ .

(13)

The dimension-four operators give Yukawa couplings for the quarks, charged leptons
and neutrinos, whereas the dimension-five operators give Majorana masses for the right-
handed neutrinos.

As we showed above for the down-type quarks, the wave functions fully determine
the matrix structure of the couplings. Of special note in this regard are the fields with
even parities at all fixed points, uci and eci . For these, the degeneracy induced by N
flux quanta is N + 1-fold, so the up-quark and charged lepton Yukawa matrices derived
from Eq. (13) are actually N × (N + 1) matrices.

As described in the previous section, the considered GUT model unavoidably pre-
dicts additional vectorlike states that are expected to have mass terms of order the GUT
scale. Mixing them with quarks and leptons, one can obtain realistic mass matrices.
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First, we project the bulk 16∗-plet, ψc, in such a way that it complements the addi-
tional uc and ec we obtained from the flux (see Table 1). Mixing with these zero-modes
u and e, the up-quark and charged lepton Yukawa couplings turn into (N+1)×(N+1)
matrices. Next, we project two of the additional bulk 10-plets to a vectorlike pair of
down-type quarks, H3 ⊃ d, H4 ⊃ dc. Introducing mixing in the down-quark sector pro-
vides sufficient freedom to reproduce the measured features of quark mixing. Finally,
a large number of SM singlet fields are required by the cancellation of gravitational
anomalies. These can mix with the right-handed neutrinos, and with the left-handed
neutrinos via nonrenormalizable operators.

The mixing of up-quarks and charged leptons with the zero-modes of ψc occurs
through bilinear mass terms at the fixed points where u, e are contained in ψc|ζPS

= 4′,
ψc|ζGG

= 10∗′ and ψc|ζfl = (5̃′, e). The mass mixing terms read

Wmix =
∑
p

mp
u ψ

cψ|ζp

= mI
u ψ

cψ|ζI +mPS
u 4′4∗|ζPS

+mGG
u 10∗′10|ζGG

+mfl
u 5̃′5̃∗|ζfl +mfl

e ee
c|ζfl .

(14)

As for the Yukawa couplings, the mixing terms are proportional to the relevant wave
function, ψ

(α)
++ in this case, evaluated at the respective fixed points. The mass matrices

of up-quarks and charged leptons after electroweak symmetry breaking are then given
by

Mu = v1

∑
p=I,GG

hpu ψ
(i)
−+ψ

(α)
++|ζp uiucα +

∑
p=I,PS,GG,fl

mp
u ψ

(α)
++|ζp uucα

≡ v1Y
iα
u uiu

c
α + mα

u uu
c
α , (15)

Me = v2

∑
p=I,fl

hpe ψ
(i)
−−ψ

(α)
++|ζp eiecα +

∑
p=I,PS,GG,fl

mp
e ψ

(α)
++|ζp eecα

≡ v2Y
iα
e eie

c
α + mα

e ee
c
α , (16)

where i = 1 . . . N , and α = 1 . . . (N + 1). v1,2 correspond to the electroweak scale,
while the mp

u are assumed to be of the order of the compactification scale. At all but
the flipped SU(5)′ × U(1)′ fixed points, uc and ec are part of the same irreducible
representation, forcing mp

e = mp
u with p = I,PS,GG; in addition one has the SO(10)

relation hI
e = hI

d.
The down-quarks di, d

c
i mix with the vectorlike pair d, dc through operators involving

the Higgs field Ψ. The superpotential terms read

Wmix = λI〈Ψ〉ψH3|ζI + λPS〈F ∗〉4∗6|ζPS

+ λ′I〈Ψc〉〈H2〉ψH4|ζI + λ′PS〈F 〉〈∆2〉4 6′|ζPS
,

(17)

where H3|ζPS
= 6 ⊃ d, H4|ζPS

= 6′ ⊃ dc and Ψ|ζPS
= F ∗. All fixed points contribute to
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a mass term of order the unification scale for H3H4 ⊃ ddc. With 〈Ψ〉〈F ∗〉 = vB−L as
B − L breaking vacuum expectation value, the down-quark mass matrix becomes

Md = v2h
I
d ψ

(i)
−+ψ

(j)
+−|ζI didcj + vB−L

∑
p=I,PS

λp ψ
(i)
+−|ζp ddci (18)

+
v2vB−L
M∗

∑
p=I,GG

λ′p ψ
(i)
−+|ζp didc +mDdd

c

≡ v2Y
ij
d did

c
j + vB−Lλ

i
d dd

c
i +

v2vB−L
M∗

λ′id did
c +mDdd

c , (19)

where we have explicitly introduced the mass scale M∗ for the nonrenormalizable terms.
A third kind of mixing appears in the neutrino sector. Gauge singlets, required by

the cancellation of gravitational anomalies, can mix with the SM singlet right-handed
neutrinos. These couplings involve the Higgs field Ψc. The gauge singlets can also
couple to the left-handed neutrinos through a nonrenormalizable interaction, involving
both Ψ and Hu. Considering for simplicity only one singlet S, one obtains for the
bilinear superpotential terms

Wmix = κI〈Ψc〉ψS|ζI + κPS〈F 〉4∗S|ζPS

+ ρI〈H1〉〈Ψ〉ψS|ζI + ρfl〈H5̃∗〉〈T̃ 〉5̃∗S|ζPS
;

(20)

all fixed points contribute to a singlet mass term mSSS. Combining the mixing terms
with the Yukawa interactions (13), one obtains a N × (N + 1) Dirac neutrino mass
matrix,

MD
ν = v1h

I
ν ψ

(i)
−−ψ

(j)
+−|ζI νincj +

v1vB−L
M∗

∑
p=I,fl

ρpψ
(i)
−−|ζp νiS

≡ v1Y
ij
ν νin

c
j +

v1vB−L
M∗

ρiν νiS , (21)

where hI
ν = hI

u, and a (N + 1)× (N + 1) Majorana neutrino mass matrix for the heavy
sterile neutrinos,

Mn =
v2
B−L

MP

∑
p=I,PS

hpn ψ
(i)
+−ψ

(j)
+−|ζp ncincj + vB−L

∑
p=I,PS

κp ψ
(i)
+−|ζp nciS +mSSS

≡
v2
B−L

M∗
Y ij
n ncin

c
j + vB−Lκ

i
n n

c
iS +mSSS . (22)

Despite the mixing with an additional sterile neutrino, the seesaw formula can still be
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applied to obtain the N ×N light neutrinos mass matrix

Mν = −MD
1

Mn

MT
D . (23)

Let us finally emphasize the GUT relations between the parameters. These are in
particular the SO(10) relations for the Yukawa couplings at the fixed point ζI: h

I
ν = hI

u

and hI
e = hI

d, as well as the relations for the mixing parameters, mp
e = mp

u with p =
I,PS,GG.

4 The two heavy families

Let us now consider the case of two flux quanta, N = 2, and apply it to the two
heaviest families of the Standard Model. We start with the down-quark mass matrix,
already discussed in the previous section. As an example, we choose the parameters2

hI
d = 0.007, λI = 0.3, λPS = 0.2, λ′I = 0.1, λ′GG = 0.13 and mD = 1015 GeV. From

Eq. (19) and the values of the wave functions given in Eqs. (59), (67) one obtains the
3× 3 matrix

M
(3)
d [GeV] =

 0.12 (1 + i) 0.27 0.08

0.58 (1 + i) 1.27 0.07

7.6 (1 + i)× 1013 8.4× 1014 1× 1015

 , (24)

where the third row vector contains GUT scale masses.
It turns out that the quark and charged lepton mass matrices are all of the form

(
M̂

(N+1)
αβ

)
=

(
mij µi

Mβ

)
, i, j = 1 . . . N , α, β = 1 . . . N + 1 , (25)

with m ∼ µ ∼ v � M ∼ vB−L. This matrix can be reduced to a N × N matrix
by integrating out one heavy state with GUT-scale mass M [29]. Let us introduce an
orthonormal set of vectors eα with

eα
†eβ = δα,β Mβ = M(e†N+1)β . (26)

2We also choose vB−L = 1015 GeV, M∗ = 2 × 1017 GeV, tanβ = 3. Note that the precise values
of these parameters is not important. A change can be compensated by rescaling the superpotential
parameters. The parameters are chosen to reproduce the properties of the two heaviest SM families.
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Defining two unitary matrices V and U by

Vαβ = (eβ)α ,

U †αβ = δα,β −
1

M
δα,i (mij(eN+1)j + µi(eN+1)N+1) δN+1,β +O

(
1

M2

)
,

(27)

one easily verifies (i, j = 1 . . . N),

U †M̂V =

(
mik(ej)k + µi(ej)N+1 0

0 M

)
, (28)

up to corrections of relative order 1/M . Clearly, the N × N matrix in the upper-left
corner is the relevant low-energy mass matrix.

Using Eq. (28) it is straightforward to integrate out the heavy state contained in
the matrix (24). For a convenient choice of vectors ei one then finds the 2× 2 matrix

M
(2)
d [GeV] =

(
0.12 (1− i) 0.15

0.57 (1− i) 0.87

)
(29)

with the mass eigenvalues

M̂d[GeV] = diag(0.023, 1.20) . (30)

The up-quark mass matrix can be obtained in the same way. We choose the additional
parameters as hI

u = 0.15, hGG
u = 0.00075 and mp

u = (0.1, 0.05, 0.15, 1.0)×1015 GeV with
p = (I,PS,GG, fl). From Eqs. (15), (58) and (59) one obtains the 3× 3 mass matrix

M (3)
u [GeV] =

 11 18 1.9

53 81 7.1

−8.7× 1014 4.2× 1014 2.0× 1015

 . (31)

After integrating out the heavy state one finds the 2× 2 matrix

M (2)
u [GeV] =

(
11 18

51 83

)
(32)
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with the mass eigenvalues

M̂u[GeV] = diag(0.33, 99) . (33)

Diagonalizing the up- and down-quark mass matrices by biunitary transformations,
one obtains from the left-handed rotation matrices the CKM matrix. We find the
mixing angle sin θq23 = 0.031. The obtained bottom, strange, top and charm masses
and the CKM mixing angle agree with the measured values at the GUT scale within
5%3. Given the structure of the quark mass matrices the small mixing angle sin θq23 is
rather surprizing. Indeed, the individual rotation angles for the diagonalization of the
up- and down-quark matrices are much larger. However, since the matrices are rather
similar, the mismatch is small, which leads to a small angle in the CKM matrix.

The charged lepton mass matrix is mostly determined by the parameters of the
quark mass matrices. In addition we choose hfl

e = 0.0013 and mfl
e = 1.9 × 1014 GeV.

From Eq. (16) and the wave functions given in Eqs. (58), (63) one obtains the 3 × 3
charged lepton matrix

M (3)
e [GeV] =

 0.22i 0.19 + 0.16i 0.18− 0.15i

0.81− 0.03i 1.27 0.11 + 0.05i

1.1× 1013 3.0× 1014 5.9× 1014

 . (34)

Integrating out the heavy state yields the 2× 2 matrix

M (2)
e [GeV] =

(
0.23i 0.09 + 0.21i

0.82− 0.03i 1.07− 0.02i

)
(35)

with the mass eigenvalues

M̂e[GeV] = diag(0.07, 1.38) . (36)

The neutrino sector plays a special role. Eq. (21) yields a 2×3 Dirac neutrino mass
matrix whereas Eq. (22) gives a 3× 3 matrix for the heavy sterile neutrinos. Choosing
the remaining parameters as ρI = 0.8, ρfl = 0.1 and hI

n = 6, hPS
n = 3, mS = 1015 GeV,

κI = 0.3, κPS = 0.4, and using the wave functions Eqs. (63), (67), one finds the Dirac
neutrino mass matrix,

MD
ν [GeV] =

(
10i 11 (1 + i) 0.30 + 0.07i

37 (1 + i) 81 1.29 + 0.03i

)
, (37)

3We take all masses and mixings angles at the GUT scale from the recent compilation [35].
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and the sterile neutrino mass matrix,

Mn[GeV] =

 0.53i 0.19 (1 + i) −0.38 (1 + i)

0.19 (1 + i) 1.27 5.9

−0.38(1 + i) 5.9 10

× 1014 . (38)

The seesaw formula (23) then yields the 2× 2 matrix for the light neutrinos

M (2)
ν [meV] =

(
2.1i 7.6 (1 + i)

7.6 (1 + i) 54

)
(39)

with the mass eigenvalues

M̂ν [meV] = diag(0, 54) . (40)

The vanishing eigenvalue is again a consequence of the dyadic tensor structure of the
neutrino Yukawa matrix. Diagonalizing the charged lepton and neutrino mass matrices
one finds the MNS mixing angle sin θl23 = 0.38. The lepton masses and the MNS
mixing angle are roughly consistent with the measured values at the GUT scale [35].
Contrary to the quark sector the mixing angle is large in the lepton sector. This is a
consequence of the seesaw mechanism which implies that the transitions from flavour
to mass eigenstates for charged leptons and neutrinos do not compensate each other.

Having fixed the parameters of our model one could hope that changing the number
of flux quanta to N = 3 would yield a successful description of the Standard Model
with three quark-lepton families. Unfortunately, this is not the case. In fact, the third
family would remain massless. The reason is once more the dyadic structure of the
Yukawa matrices. The flux compactification provides a N -component complex vector
for each of the six SM fields at the four fixed points (see Table 2). However, due to
the presence of two Wilson lines, for five SM fields these vectors vanish at two fixed
points. Hence many Yukawa matrices, which are products of two vectors, and mixings
with the additional vector-like states vanish. As a consequence, mass matrices with full
rank can be obtained for N = 2 but not for N = 3.

There are several ways to avoid this problem. The simplest possibility is to have
more than one bulk 16-plet that feels the magnetic flux, for instance one 16-plet with
charge one and one 16-plet with charge two in the case of one flux quantum. Alter-
natively, one could start with a smaller bulk gauge group such as SU(6) so that one
Wilson line is enough to achieve symmetry breaking to the Standard Model. Finally, it
is conceivable that not all quarks and leptons are zero-modes from magnetic flux and
that some of them result from split bulk fields or from fields localized at some fixed
points. These possibilities will be studied in future work.
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5 Supersymmetry breaking and Higgs sector

For completeness, we summarize in this section some other aspects of the considered
GUT model, which are of phenomenological interest. The Abelian magnetic flux breaks
supersymmetry. Since the matter hypermultiplet ψ carries U(1) charge, scalar quarks
and leptons acquire universal masses of the order of the compactification scale, which
corresponds to the GUT scale [28,36],

m2
q̃ = m2

l̃
=

4πN

V2

∼ (1015 GeV)−2 , (41)

where N is the number of flux quanta and V2 is the volume of the compact dimensions.
The magnetic flux together with a nonperturbative superpotential at the fixed points
can stabilize the compact dimensions [36], and it is possible to obtain Minkowski or
metastable de Sitter vacua [37] with small cosmological constant. In these vacua the
U(1) vector boson A, the moduli and the axions are all heavy [38],

mmoduli ∼ maxions ∼ mA > m3/2 ∼ 1014 GeV . (42)

The expectation values of the moduli F-terms are of the order of the gravitino mass.
Since the moduli dependence of the gauge kinetic terms is known [38], one easily obtains
for the gaugino masses

mg̃ ∼ mw̃ ∼ mb̃ ∼ m3/2 , (43)

whereas the SM gauge bosons are massless by construction.
At tree-level the two Higgs fields Hu and Hd are massless since they originate from

bulk 10-plets that do not feel the magnetic flux. Also the higgsinos are massless since
they are protected by a Peccei-Quinn-type symmetry. One may worry whether it
is possible to consistently extend such a theory up to the GUT scale. In fact, this is
known not to be the case for split supersymmetry or high-scale supersymmetry because
of vacuum instability [39]. On the contrary, for a two-Higgs doublet model, with or
without higgsinos, an extrapolation to the GUT scale is possible [40] for stable or
metastable vacua [41]. This implies constraints on the masses of the heavy neutral
scalar and pseudoscalar as well as charged Higgs bosons H, A, H±, respectively, and
on the ratio of vacuum expectation values,

mH , mH± = mA +O
(
v2

m2
A

)
, mA & 1 TeV ,

tan β =
v2

v1

= O(1) .

(44)

Solutions of the two-loop renormalization group equations of gauge and Yukawa cou-
plings show gauge coupling unification at a scale ∼ 1014 GeV. At LHC energies the
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main hope for new discoveries lies on additional heavy Higgs bosons and higgsinos with
masses mh̃ & v1,2.

A large scale of supersymmetry breaking, like the GUT scale that lies many orders
of magnitude above the electroweak scale, reintroduces the ‘hierarchy problem’. Is an
enormous fine tuning of parameters needed to keep the Higgs bosons at the electroweak
scale once quantum corrections are included? This is certainly the case in the effective
4d theory if only zero-modes are taken into account in the loop diagrams. However, the
situation might be different if the virtual states are extended to the whole Kaluza-Klein
tower. A well known example is the mass of a Wilson line for an Abelian 6d gauge field
compactified on a torus. After some regularization, one obtains a Wilson line mass of
the order of the inverse size of the compact dimensions [42]. Remarkably, as was recently
shown, in the presence of magnetic flux the one-loop quantum corrections to the Wilson
line mass vanish [43]. This suggests that magnetic flux may provide a partial protection
of scalar masses w.r.t. quantum corrections. However, the applicability to electroweak
symmetry breaking in the considered GUT model remains to be investigated.

6 Summary and conclusions

Supersymmetric grand unified theories in higher dimensions provide an attractive ultra-
violet completion of the Standard Model. An example is the six-dimensional SO(10)×
U(1) model with magnetic flux considered in this paper, which itself may have an em-
bedding into string theory. An orbifold compactification to four dimensions with two
Wilson lines can break the six-dimensional gauge symmetry to the Standard Model
gauge group. The quark-lepton families arise as zero-modes of complete 16-plets due
to the magnetic flux, whereas two Higgs doublets are obtained as split multiplets from
bulk 10-plets. Additional bulk 16- and 10-plets lead to further split multiplets that
can mix with the complete quark-lepton 16-plets.

After describing the symmetry breaking and the quantum numbers of the zero-
modes, we have analyzed the Yukawa couplings and the bilinear mixings of the zero-
modes. In many flux compactifications, where also the Higgs fields feel the magnetic
flux, Yukawa couplings arise from overlap integrals of bulk wave functions. On the
contrary, in the model under consideration Yukawa couplings and mass mixings are
superpotential terms that can arise at the orbifold fixed points. The entire flavour
structure is then contained in complex vectors in flavour space, one for each SM repre-
sentation at each fixed point. These vectors are a prediction of the flux compactification.
They determine the mixings with split multiplets and their products yield the Yukawa
matrices.

We have shown that this pattern of flavour mixing can account for masses and
mixings of the two heaviest Standard Model families. The mass hierarchies are either
due to a hierarchy of Yukawa couplings or to relative importance of Yukawa couplings
and mass mixings. Starting generically from large flavour mixings, the CKM mixing
turns out to be small due to the small mismatch of the rotation matrices for up- and
down-quark mass matrices. On the other hand, the seesaw mechanism distinguishes
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between the charged lepton and the neutrino mass matrices, and the MNS mixing
therefore remains large. It turned out that the two-flavour model cannot be extended
to a three-flavour model in a straightforward way. Due to the dyadic structure of
the Yukawa matrices and the presence of two Wilson lines, too many terms vanish
that would be allowed by the gauge symmetries, and the lightest quark-lepton family
remains massless. As briefly described in the previous section, there are several ways
to avoid this problem. The investigation of these possibilities is left for future work.

Let us finally compare the pattern of flavour mixings described in this paper with
successful flavour models of Frogatt Nielsen type (see, for instance, [44–47]). In these
models the entries of the mass matrices are powers of a small parameter, and therefore
small. The powers are determined by the U(1) charges of the Standard Model fields.
Choosing appropriate charges one obtains hierarchical masses and small mixings in
the quark sector. The lepton sector is different due to the seesaw mechanism. Mass
hierarchies in the Dirac neutrino mass matrix and the sterile neutrino mass matrix
can compensate each other, leading to small mass ratios and large mixings for the light
neutrinos. On the contrary, in flux compactifications one starts from mass matrices with
large entries, which have rank one due to the dyadic structure of the Yukawa matrices,
and therefore only one massive family. Smaller Yukawa terms and mixing with split
multiplets yields small corrections and increases the rank. CKM mixings in the quark
sector are small due to the small mismatch between the rotation matrices of up- and
down-quark mass matrices. The neutrino sector is again different because of the seesaw
mechanism and large MNS mixings remain. The two pictures of the origin of the flavour
structure in the Standard Model are complementary to each other. Mass matrices of
Frogatt Nielsen-type have been obtained in heterotic string compactifications (see, for
instance, [50]) as well as F-theory compactifications (see, for instance, [19]). It will be
interesting to understand the connection to string theory compactifications that realize
large flavour mixings as in the flux compactification described in this paper.
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A Wilson line breaking on orbifolds

The breaking of SO(10) to the Standard Model gauge group by boundary conditions
is often based on the orbifold T 2/(Z2 × Z2 × Z2) [11]. For completeness, we recall the
equivalent description based on T 2/Z2 with two Wilson lines in the following.

The torus T 2 is obtained by identifying points y = (y1, y2) which differ by a lattice
vector, i.e. T 2 = R2/Z2 (see Fig. 3),

y ∼ Tiy = y + λi , i = 1, 2 . (45)

Further identifying points that are related by a rotation of 180o around the origin,

y ∼ Ry = −y , (46)

one obtains the orbifold T 2/Z2. The orbifold has four fixed points,

T̂pζp = ζp , p = I,PS,GG, fl , (47)

where
T̂I = R , T̂PS = T1 ◦R , T̂GG = T2 ◦R , T̂fl = T2 ◦ T1 ◦R . (48)

In an orbifold field theory one needs an embedding of the space group S = {I, R, T1, T2}
into field space (see, for instance, [48]) which is defined on the covering space R2. The
corresponding transformations K[S] act linearly in field space. On the fundamental
domain of the orbifold the fields then satisfy certain boundary conditions.

Using the reflection R to break 6d N = 1 supersymmetry to 4d N = 1 supersymme-
try and considering the fields even under reflection, the embedding of the space group
into the gauge fields is defined by

PiA(x, T̂iy)P−1
i = ηiA(x, y) , i = PS,GG , (49)

where the Pi are SO(10) matrices with

P 2
i = I , η2

i = 1 . (50)

In addition, one has
PflA(x, T̂fly)P−1

fl = ηflA(x, y) , (51)

with Pfl = PGGPPS, ηfl = ηGGηPS. As the subscripts indicate, the matrices Pi can be
chosen such that SO(10) is broken to the Pati-Salam and the Georgi-Glashow subgroups

19



λ1

λ2

ζI ζPS

ζflζGG

Figure 3: Left: torus T 2; right: orbifold T 2/Z2 with the fixed points ζp, p = I,PS,GG,fl.

at ζPS and ζGG, respectively. For hypermultiplets one has

Piφ(x, T̂iy) = ηiφ(x, y) , i = PS,GG , (52)

where the matrices Pi depend on the representation of φ, and the parities ηi can be
chosen independently for each hypermultiplet.

The embedding (49), (52) of the translations into field space imply that SO(10) is
broken to the corresponding subgroups at the fixed points,

PiA(x, ζi)P
−1
i = ηiA(x, ζi) , Piφ(x, ζiy) = ηiφ(x, ζi) , i = PS,GG . (53)

The SO(10) multiplets A and φ can be decomposed into SM multiplets, A = {Aα},
φ = {φβ}. Each of them belongs to a representation of GPS as well as GGG and is
therefore characterized by two parities,

Aα(x, T̂iy) = ηαi A
α(x, y) , φβ(x, T̂iy) = ηβi φ

β(x, y) , i = PS,GG . (54)

The matrices PPS and PGG have been explicitly given in [11] for the fundamental
representation. At a fixed point ζi each SO(10) representation can be decomposed into
representations of the unbroken subgroup, and the matrices Pi can be written as linear
combinations of projection operators P̂ onto these representations. One finds for the

20



SO(10) 45

GPS (15,1,1) (15,1,1) (15,1,1) (15,1,1)

GGG 240 104 10∗−4 10

ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG

A + + + − + − + +

G X

GPS (1,3,1) (1,1,3) (1,1,3) (1,1,3)

GGG 240 240 104 10∗−4

ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG

A + + + + − + − +

W B

GPS (6,2,2) (6,2,2) (6,2,2)

GGG 240 104 10∗−4

ηPS ηGG ηPS ηGG ηPS ηGG

A − + − − − −

SO(10) 10

GPS (1,2,2) (1,2,2) (6,1,1) (6,1,1)

GGG 5∗−2 5+2 5∗−2 5+2

ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG

H5 − + − − + + + −
Dc′

H6 − − − + + − + +

D′

Table 3: PS- and GG-parities for the bulk 45-plet and the 10-plets H5 and H6. G, W,B and X denote
gluons, electroweak gauge bosons and the additional U(1) gauge boson contained in SO(10).
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45-, 10- and 16-plet, respectively (see [49]),

PPS =


P̂(15,1,1) + P(1,3,1) + P(1,1,3) − P(6,2,2) for 45

P̂(1,2,2) − P̂(6,1,1) for 10

P̂(4∗,1,2) − P̂(4,2,1) for 16,

(55)

PGG =


P̂240 + P̂10 − P̂104 − P̂10∗−4

for 45

P̂5∗−2
− P̂52 for 10

P̂5∗3
+ P̂1−5 − P̂10−1 for 16.

(56)

Using these relations the parities in Tables 1,2 can be easily determined.
In Table 1 we have listed parities and zero-modes for all fields that are relevant for

the Yukawa couplings and the mixings of split multiplets with the 16-plets of zero-
modes. For completeness we list parities and zero-modes for the gauge fields and the
10-plets H5 and H6 in Table 3.

B Vectors in flavour space

The flavour structure of our model is entirely determined by the values of the wave
functions at the various fixed points, ψ

(i)
ab |ζp . The degeneracy index labels idependent

fields, which means we can interpret the set of wave functions with given parities as a
vector in flavour space,

ψab =

ψ
(1)
ab

ψ
(2)
ab
...

 , a, b = +,− . (57)

In this appendix we give the explicit values of these vectors for N = 2 flux quanta
evaluated at the fixed points.

Right-handed up-quarks and electrons are states with even parity at all fixed points.
Therefore, their wave function does not vanish at any fixed point. The four vectors in
flavour space read

ψ++|ζI =

0.15

1.09

1.68

 , ψ++|ζPS
=

 0.15

−1.09

1.68

 , ψ++|ζGG
=

1.68

1.09

0.15

 , ψ++|ζfl =

 1.68

−1.09

0.15

 .

(58)
They are three-vectors because the ψ++ are N + 1-fold degenerate.

The left-handed quark doublet’s distribution in the internal space is given by ψ−+.
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Their wave function is non-zero at two fixed points only,

ψ−+|ζI =

(
0.42

1.96

)
, ψ−+|ζGG

=

(
1.96

0.42

)
. (59)

The up-quark Yukawa coupling matrix is a linear combination of two matrices which
are obtained as dyadic products of flavour space vectors,

Yu = hIuψ++|ζI × ψ−+|ζI + hGG
u ψ++|ζGG

× ψ−+|ζGG
. (60)

Note that this matrix has rank two, independent of the dimensionality of the flavour
space vectors. Mixing with the additional state u is governed by a linear combination
of the ψ++|ζp , which were given in Eq. (58),

mu =
∑
p

mp
uψ

T
++|ζp . (61)

This gives the overall up-quark mass matrix

Lm ⊃
(
u1 u2 u

)(v1Yu

mu

)uc1uc2
uc3

 . (62)

The numerical values for an example parameter set are given in Eq. (31).
Right-handed charged leptons have the same field profile as right-handed up quarks.

However, the left-handed lepton fields are given by the wave function ψ−−. They are
present at the SO(10) and flipped SU(5)′ × U(1)′ fixed points,

ψ−−|ζI =

(
0.28(1 + i)

1.95

)
, ψ−−|ζfl =

(
0.39i

1.38(1− i)

)
. (63)

Again, the Yukawa couplings follow from a linear combination of dyadic products,

Ye = hI
dψ++|ζI × ψ−−|ζI + hfl

eψ++|ζfl × ψ−−|ζfl , (64)

while the mixing with the additional state e is given by the vectors ψ++|ζp ,

me =
∑
p

mp
eψ++|ζp . (65)
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GUT relations imply mp
e = mp

u, p = I,PS,GG.
The down-quark mass terms are

Lm ⊃
(
d1 d2 d

)( v2Yd
v2vB−L

MP
λ′d

vB−Lλd mD

)dc1dc2
d̂c

 , (66)

where Yd = hIdψ+−|ζI × ψ−+|ζI is a dyadic product. The wave function values for
right-handed down quarks are

ψ+−|ζI =

(
0.77(1 + i)

1.68

)
, ψ+−|ζPS

=

(
−0.77(1 + i)

1.68

)
, (67)

while those for the left-handed quarks were already given in Eq. (59) The coupling
between d and the dcj is

λd = λIψ
T
+−|ζI + λPSψ

T
+−|ζPS

, (68)

while the coupling between the di and dc is

λ′d = λ′I ψ−+|ζI + λ′GG ψ−+|ζGG
. (69)

The Dirac neutrino mass matric reads

Lm ⊃
(
ν1 ν2

)(
v1Yν

v1vB−L

MP
κν

)νc1νc2
S

 , (70)

with the Yukawa matrix Yν = hIuψ−−|ζI × ψ+−|ζI given by the dyadic product of the
vectors given in Eq. (63) and Eq. (67). The mixing with the SO(10) singlet scalar S,

ρν = ρI ψ−−|ζI + ρfl ψ−−|ζfl (71)

is also governed by the values in Eq. (63).
Finally, the Majorana mass matrix for the sterile neutrinos is

Lm ⊃
(
νc1 νc2 S

)(v2
B−L

M∗
Mνc

vB−L

2
κν

vB−L

2
κTν mN

)νc1νc2
S

 . (72)
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The corresponding mass matrix Mn reads

Mn = hInψ+−|ζI × ψ+−|ζI + hPS
n ψ+−|ζPS

× ψ+−|ζPS
, (73)

where the ψ+−|ζp are already defined in Eq. (67). The same flavour space vectors govern
the mixing with the sterile neutrino S

κν = κI ψ+−|ζI + κPS ψ+−|ζPS
. (74)

This explicit presentation showcases that the entire flavour sector is determined by
the four sets of wave functions. These determine flavour space vectors when evaluated
at the fixed points. All relevant numerical values were presented in Eqs. (58), (59),
(63) and (67).
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