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We device a new method to calculate a large number of Mellin moments of single scale quanti-
ties using the systems of differential and/or difference equations obtained by integration-by-parts
identities between the corresponding Feynman integrals of loop corrections to physical quantities.
These scalar quantities have a much simpler mathematical structure than the complete quantity. A
sufficiently large set of moments may even allow the analytic reconstruction of the whole quantity
considered, holding in case of first order factorizing systems. In any case, one may derive highly
precise numerical representations in general using this method, which is otherwise completely ana-
lytic.
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INTRODUCTION

Single scale higher order QED and QCD calculations in
the massless [1, 2] and massive [3] cases at fixed Mellin
moment n are given by polynomials of rational numbers
and a series of a few special constants, the multiple ζ-
values, and possible generalizations thereof [4]. This is
irrespectively the case, whether or not the functional rep-
resentation for general values of n obeys an equation fac-
torizing in first order, [1], or not [5]. If one has access
[6] to an algorithm, through which a large number of
moments, e.g. N = 2000 or larger, can be calculated,
the method of guessing, cf. [8], for holonomic problems,
which often appear in physics applications, allows one
to gain one large difference equation describing the cor-
responding problem [9]. If this equation is solvable in
difference ring theory [10] one finds the solution for gen-
eral values of n for this quantity without any further as-
sumptions, e.g. made in [2, 11]. In any case, significantly
more moments will allow one to constrain the considered
quantity much better numerically using approximation
methods, e.g. through Chebyshev-polynomials or other
interpolation methods.

In the following we describe an algorithm through
which the system of differential equations, or associ-
ated to it, that of difference equations, available by the
integration-by-parts relations [12], can be used to com-
pute a large number of Mellin moments for the master
integrals, and through them for the whole problem. The
solution of the associated difference equations will need
a relatively low number of initial values which have to
be provided. The corresponding sequences of rational
numbers mentioned above actually form the problematic
part in gaining the general n result from the moments,
since very involved, and in some cases yet unknown, func-
tions span the corresponding sequences. In any case, the

method allows either to find the one-dimensional distri-
bution from a large but finite amount of moments, or at
least to constrain it numerically at high accuracy.
We will give a brief illustration of the algorithm in

case of a system of massive 3-loop master integrals, for
which first a larger number of moments is generated, cor-
responding difference equations are found and solved for
general values of the Mellin variable n.

THE ALGORITHM

Single scale master integrals can be represented as ana-
lytic functions Îi(x) =

∑

∞

n=0 Ii(n)x
n with 1 ≤ i ≤ m.

We aim at computing a large number of coefficients
Ii(0), Ii(1), . . . , Ii(s). Usually the coefficients Ii(n) de-
pend on the dimensional parameter ε which itself can
be expanded in a Laurent series in ε of a certain order
o ∈ Z. We are interested in calculating the coefficients

I
(k)
i (n) ∈ R of the expansions

Îi(x) =

∞
∑

n=0

Ii(n)x
n =

∞
∑

n=0

(

∞
∑

k=o

I
(k)
i (n)εk

)

xn (1)

up to a certain degree in ε, ti ∈ Z. More precisely, we
want to compute for 1 ≤ i ≤ m the initial values

I
(k)
i (0), I

(k)
i (1), I

(k)
i (2), . . . , I

(k)
i (s) ∈ R (2)

for the ε-orders o ≤ k ≤ ti.
In our approach we rely on the property that these un-

known functions Îi(x) are usually described by a coupled
system of first oder linear differential equations
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with Dx = d/dx and where A is anm×mmatrix with en-
tries consisting of polynomials in ε and x and the entries
r̂i can be given in form of the expansions

r̂i(x) =

∞
∑

n=0

ri(n)x
n =

∞
∑

n=0

(

∞
∑

k=o

r
(k)
i (n)εk

)

xn (4)

with r
(k)
i (n) ∈ R for n ∈ N. Another important assump-

tion is that the coefficients r
(k)
i (n) can be determined ef-

ficiently by using either the method under consideration
in a recursive fashion or by using, e.g., symbolic sum-
mation and integration techniques [10, 13]. Further, we
assume that for reasonable small numbers s′i the coeffi-

cients I
(k)
i (n) with 0 ≤ n ≤ s′i can be computed up to

certain ε-degrees t′i, i.e., o ≤ k ≤ t′i as a preprocessing
step. Given this input we introduce the following efficient
algorithm that computes the coefficients (2) up to large
values of n.

(1) Using decoupling algorithms [14, 15] transform the
system (3) symbolically to one scalar linear differ-
ential equation

m
∑

k=0

ak(x, ε)D
(k)
x Î1(x) =

m
∑

i=1

di(x, ε)r̂i(x), (5)

where the ai(x, ε) and ri(x) are polynomials in x
and ε; in addition, one obtains identities of the form

Îi(x) =

m
∑

j=2

∑

k

ei,j,k(x, ε)D
k
x Îj(x)

+

m
∑

j=1

∑

k

fi,j,k(x, ε)D
k
x r̂j(x) (6)

for 2 ≤ i ≤ n where the ei,j,k(x, ε) and fi,j,k(x, ε)
are rational functions in x and ε.

The algorithm proceeds now as follows: Compute in
steps (2)-(4) the initial values for Î1(x) by using the
scalar differential equation (5), and compute afterwards
in step (5) the initial values for the remaining integrals
with the given formulas (6).

(2) Plug Î1(x) =
∑

∞

n=0 I1(n)x
n and r̂i(x) =

∑

∞

n=0 ri(n)x
n into (5) and eliminate Dx by using

the property Dx

∑

∞

n=0 h(n)x
n =

∑

∞

n=1 nh(n)xn−1

for a power series
∑

∞

n=0 h(n)x
n. Then by coeffi-

cient comparison w.r.t. xn and using appropriate
shifts one gets a linear recurrence of the form

d
∑

k=0

bk(n, ε)I1(n+ k) = ρ(n, ε), (7)

with ρ(n, ε) =
∑m

j=1

∑l

k=0 gj,k(n, ε)rj(n + k) for
some l ∈ N where the bk(n, ε) and gj,k(n, ε) are

polynomials in n and ε. Finally, divide the equation
by a factor εu for some u ≥ 0 in order to obtain
updated polynomials bk(n, ε) in n, ε where not all
bk(n, 0) with 0 ≤ k ≤ d are zero; the gj,k(n, ε) are
now polynomials in n and Laurent polynomials in
ε.

(3) We write the right hand side of (7) in the expanded
representation

ρ(n, ε) =
∞
∑

k=o

ρ(k)(n)εk, (8)

with ρ(k)(n) ∈ R. Since the r
(k)
i (n) ∈ R in (4)

can be computed efficiently by assumption, the co-
efficients ρ(k)(n) for sufficiently large k ∈ Z and
n ∈ {0, 1, . . . , s} can be obtained explicitly without
any cost.

(4) We proceed as follows; compare [16], Lemma 1.
Plugging

I1(n) =

∞
∑

k=o

I
(k)
1 (n)εk (9)

into (7) and doing coefficient comparison w.r.t. εo

yield the constraint

d′

∑

k=0

bk(n, 0)I
(o)
1 (n+ k) = ρ(o)(n)

for some d′ ≤ d with bd′(n) 6= 0. Choose δ ∈ N

such that bd′(n) 6= 0 for all n ∈ N with n ≥
δ. Then we can compute with the first values

I
(o)
1 (0), . . . , I

(o)
1 (n+ d′ + δ − 1) and the rule

I
(o)
1 (n)←

ρ(o)(n′)−

d′
−1
∑

k=0

bk(n
′, 0)I

(o)
1 (n′ + k)

bd′(n′, 0)
(10)

for n′ = n − d′, n ≥ d′ + δ all the other values
in linear time. Now insert (9) with the explicitly

computed values I
(o)
1 (n) with 0 ≤ n ≤ s into (7)

and move these given values to the right hand side.
This yields

d′

∑

k=0

bk(n, ε)I
′

1(n+ k) =

∞
∑

k=o+1

ρ′(k)(n)εk

for I ′1(n) =
∑

∞

k=o+1 I
(k)
1 (n) where the ρ′(k)(n) for

0 ≤ n ≤ s and sufficiently large k are given ex-
plicitly. Now we are in the position to repeat this
tactic iteratively to compute the remaining coeffi-
cients: next Io+1

1 (n) with 0 ≤ n ≤ s, afterwards
Io+2
1 (n) with 0 ≤ n ≤ s, and eventually Iti1 (n) with
0 ≤ n ≤ s.
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(5) Now expand the rational functions fi,j,k(x, ε) and
gi,j,k(x, ε) in (6) in a Laurent-series expansion w.r.t.
ε and compute their coefficients as power series in
x up to the necessary orders. Finally, combine all
the explicitly given (finite) expansions in (6) us-
ing component-wise addition and Cauchy-products

which yield the coefficients I
(k)
i (n) for 2 ≤ i ≤ m,

o ≤ k ≤ ti and 0 ≤ n ≤ s.

The following remarks are in order; related consider-
ations have been applied also to our algorithms to solve
coupled systems in terms of nested sums over hypergeo-
metric products [13, 17–19].

(i) Our algorithm requires that sufficiently many ini-
tial values/coefficients of r̂i(x) and Î1(x) up to the
right ε-order are computed as a preprocessing step.
The necessary bounds for these numbers can be
determined by analyzing the formulas (7) and (6)
accordingly.

(ii) For simplicity, we assumed that only one scalar dif-
ferential equation arises, as it happens in most ex-
amples. In general, several scalar differential equa-
tions might arise, i.e., steps (2)–(4) have to be ex-
ecuted several times.

(iii) One can choose any λ with 1 ≤ λ ≤ m to determine
a scalar differential equation in Îλ(x). Different
choices of λ might lead to different recurrences (7)
with different orders d and formulae (6) of different
size. In our calculations we analyze for each λ (1 ≤
λ ≤ m) the obtained symbolic formulae and choose
that λ for the calculation steps (3)-(5) that serves
us best, e.g., to minimize the required ε-orders for
the r̂i(x) or minimize the the recurrence order d.

(iv) Often it is a challenge to determine the first ini-
tial values of Iki (n) to activate the recurrence for-
mula (10). Thus it is highly desirable to keep
the order d in (7) as small as possible. Since d
gets smaller if the degrees of the ai(x, ε) w.r.t. x
in (5) can be made smaller, the following refine-
ment can be applied. Divide (5) by the polynomial
h = gcdx(a0, . . . , an) in x. In most applications
this reduces the degrees of the polynomials ai(x, ε)
w.r.t. x heavily and thus produces recurrences with
much lower order, e.g., d = 4 instead of d = 20
in (7). The price to be paid is to determine the
coefficients ρ(k)(n) in (8) by extracting the nth co-
efficients from the right hand side of (5). Here the
more involved calculation steps similarly as given
in step (5) must be carried out.

All these aspects have been implemented within our
package SolveCoupledSystem [13, 18, 19] which uses
subroutines of the summation package Sigma [10] and
the uncoupling package OreSys [15].

ε−3 ε−2 ε−1 ζ2 ε0 ζ2 ζ3

J1 8 24 48 8 89 24 8

J2 8 23 42 8 81 21 8

J3 - 8 19 - 63 - 5

TABLE I. The number of moments needed to find the asso-
ciated difference equations.

ε−3 ε−2 ε−1 ζ2 ε0 ζ2 ζ3

O R O R O R O R O R O R O R

J1 1 2 2 5 3 11 1 2 4 20 2 5 1 2

J2 1 2 2 5 3 10 1 2 4 18 2 5 1 2

J3 - - 1 2 2 4 - - 4 12 - - 1 1

TABLE II. The order and degree of the associated difference
equations.

AN EXAMPLE

Let us consider a set of three 3-loop master integrals
{Ĵ1(x, ε), Ĵ2(x, ε), Ĵ3(x, ε)} which obey a 3 × 3 inhomo-
geneous linear coupled system, cf. (3), as an illustrative
example. They contribute to the massive operator ma-

trix element A
(3)
gg [20], and are given in Eqs. (3.62–3.64).

In a first step, we will use our above method to compute a
large series of fixed moments for J1,2,3(n, ε), and in a sec-
ond step we will use this information to guess recurrences
for these functions. In our example the integrals Ji have
poles up to ε−3 and we would like to compute the mo-
ments up to the constant term O(ε0). Since the number
of moments n0 needed to guess a recurrence is not known
a priori, the moments are computed up to a reasonable
number. If this is not sufficient, further moments can be
computed reusing the previous calculations. E.g., using
our algorithm the time to generate n0 = 500 moments
amounts to 48 sec and n0 = 2000 moments require 569
sec in the present example. In a nutshell, higher moments
can therefore easily be produced.
The guessing method to find the minimal difference

equation requires the numbers n0, depending on ε and
whether the respective set corresponds to the purely ra-
tional term or a respective contribution ∝ ζi. The val-
ues are summarized in Table I. Here the highest number
turns out to be n0 = 89. The guessing method [8] yields
a difference equation

O
∑

k=0

ak(n)F (n+ k) = 0 (11)

for each power in ε. Here O and R denote the order
and degree of the difference equation, i.e. the number
of shift-operators and the maximal degree of the poly-
nomials ak(n). The orders and degrees of the different
difference equations are listed in Table II. The number of
moments always includes a sufficiently large safety mar-
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gin to validate the corresponding difference equations,
which may even be enlarged. We generate additional
moments according to their order to provide the needed
initial values to solve the difference equations.
In the present case, using the algorithm of Ref. [13],

all difference equations can be solved completely using
difference ring theory [10]. Besides rational terms in n
the result for J1(n) and J2(n) is spanned by the harmonic
sums [21] up to S1,2(n). J3(n), furthermore, contains the
finite binomial sum

1

4n

(

2n

n

)

{

n
∑

k=1

4kS1(k − 1)
(

2k
k

)

k2
− 7ζ3

}

, (12)

multiplied by a rational term in n, see also [22]. All
appearing letters building the nested sums forming the
master integrals are found automatically. The above ex-
ample is a simpler one. Let us mention that, for com-
parison, the computational time for the complete pole
terms of more involved massive 3-loop examples requires
the knowledge of about ∼ 1000 even moments [9] and is
estimated to amount to several weeks [23].
In case the difference equations would turn out not to

be first order factorizable using the algorithm of Ref. [13],
at least the first order factorizable terms would be gained
analytically, leaving the non-factorizable part behind for
further analysis using different methods, like those for
elliptic integrals and their potential generalization.
Having the above number of moments, Eq. (1) yields

a first numerical approximation of Ĵk(x) also up to the
required power in ε.
The present method is suitable to obtain precise nu-

merical representations in case of various current mass-
less and massive calculations at 3- and 4-loop order. In
case one may solve the associated difference equations
algebraically, one will even obtain the complete analytic
result without any prejudice, i.e. a sufficiently large
set of scalar moments allows one to fully reconstruct a
one-dimensional distribution. This automatic method is
therefore suited to carry out many more higher loop cal-
culations in contemporary elementary particle physics in
a completely or at least widely analytic form.
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[16] J. Blümlein, S. Klein, C. Schneider and F. Stan, J. Sym-
bolic Comput. 47 (2012) 1267 [arXiv:1011.2656 [cs.SC]];

[17] C. Schneider, A. De Freitas and J. Blümlein, PoS
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