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Accessing hadronic form factors at large momentum transfers has traditionally presented a chal-

lenge for lattice QCD simulations.

Here we demonstrate how a novel implementation of the

Feynman—Hellmann method can be employed to calculate hadronic form factors in lattice QCD

at momenta much higher than previously accessible.

Our simulations are performed on a sin-

gle set of gauge configurations with three flavours of degenerate mass quarks corresponding to
myx =~ 470 MeV. We are able to determine the electromagnetic form factors of the pion and nucleon
up to approximately 6 GeV?, with results for Gg /G in the proton agreeing well with experimental

results.

PACS numbers: 12.38.Gc,14.20.Dh

I. INTRODUCTION

One of the great challenges of hadron physics is to
build consistent and informative pictures of the internal
structures of strongly-interacting particles. An impor-
tant aspect of this endeavour is the calculation of elec-
tromagnetic form factors for various baryons and mesons.
These encode a description of the distribution of electro-
magnetic currents in hadrons and are key to describing
the extended structure of these composite states.

For most of the second half of the 20*" century, mea-
surements of the electromagnetic form factors of the
nucleon were obtained using the Rosenbluth separation
technique [I] (also e.g. [2]). Broadly, these experiments
indicated that the electric and magnetic form factors
scaled proportionally for Q2 up to around 6 GeV?, with
ppGEp/Gup = 1. This was later found to be in dis-
agreement with recoil polarisation experiments at Jef-
ferson Lab which showed pu,Gg,/Gn, decreasing ap-
proximately linearly for Q> > 0.5 GeV? (see e.g. [3-
7]). This discrepancy is now largely understood through
studies of two-photon exchange effects in the Rosenbluth
method [8 @]. Nevertheless, it is still unknown whether
the linear Q2 trend continues and crosses zero, or if the
fall-off with Q2 slows down. Experimental results are as
yet unable to obtain precise results at the relevant mo-
mentum scales, and so this remains an open question.
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Resolving the scaling of the form factors in this domain
is one of the key physics goals of the upgraded CEBAF
at Jefferson Lab.

The large-Q? behaviour of the pion electromagnetic
form factor F; has proven challenging to probe exper-
imentally — see Refs. [I0HI2] for recent innovative ad-
vances. Besides providing information about the elec-
tromagnetic structure of the pion, the Q?-behaviour of
F,; provides insight into the transition from the soft to
the hard regime in QCD (see [I3] for a recent example).
Owing to the present limitations, experimental data are
unable to reliably discriminate different models describ-
ing the transition to the asymptotic domain [14].

Lattice calculations of hadronic form factors have
typically focussed on the study of processes at low-
momentum transfer (see e.g. 2[15—20]), with only limited
studies at large Q2 > 3 GeV~ [21, 22]. There are a va-
riety of reasons that have contributed to the diffculty in
accessing high-momentum transfer in lattice QCD. Given
that the form factors fall with @2, it is immediately clear
that one is attempting to extract a much weaker signal
from datasets obtained with finite statistics. Further, in
terms of the numerical computation, the signal-to-noise
ratio of hadron correlators rapidly deteriorates as the mo-
mentum of the state is increased. This had commonly led
to the study of 3-point correlators which are projected to
zero momentum at the hadron sink. In this case, the
possible momentum transfers are limited by the maxi-
mum momentum available at the source. With limited
statistical signal, it is therefore difficult to assess the de-
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gree of excited-state contamination, which can lead to
significant systematic uncertainty [19] 2] 23H25].

In the present work we demonstrate the ability to ac-
cess high-momentum transfer in hadron form factors on
the lattice using an extension of the Feynman—Hellmann
theorem to non-forward matrix elements. This builds
upon recent applications of the Feynman—Hellmann the-
orem for hadronic matrix elements in lattice QCD [26-
29] — see also Refs. [30H37] for similar related tech-
niques. Through the Feynman—Hellmann theorem one
relates matrix elements to energy shifts. In the case of
lattice QCD this allows one to access matrix elements
from 2-point correlators, rather than a more complicated
analysis of 3-point functions. This greatly simplifies the
process of neutralising excited-state contamination. As
described below, the method most naturally works in the
Breit frame (E(p’) = E(p)) and hence one maximises the
momentum transfer for any given accessible state mo-
mentum |p|. Finally, the high degree of correlations in
the gauge ensembles makes it possible to extract a weak
signal from a relatively noisy state.

II. FEYNMAN-HELLMANN METHODS

To extend the Feynman-Hellmann analysis to non-
forward matrix elements, we first consider a simple quan-
tum mechanical situation. The familiar form of the FH

theorem reads
oEy oOH
= (u| 5 |v). )

where E is the energy eigenvalue of the state 1. This
readily follows from first-order perturbation theory. In
the presence of spatially-varying external fields, the con-
ventional theorem requires a slight modification. We con-
sider some first-order perturbation of the Hamiltonian,
H = Hy + AV, which couples to a definite (real) spatial
Fourier component

P V@=T@+7(a,

defined in terms of the complex Fourier modes V(q) =
[ 3y e'?¥V (y), for some Hermitian potential V (y). The
diagonal matrix elements of this operator vanish in the
basis of definite momentum eigenstates

(pIVi(q)lp) =0, (3)

and standard perturbation theory would suggest that
there is no shift of the energy level at first order in A.
The exception to this rule is in the case of a degeneracy
in the unperturbed eigenstates Ey(p) = Eo(p £+ q). The
familiar solution in this case is to invoke degenerate per-
turbation theory where one diagonalises the space of the
degeneracy with respect to the applied external potential.
The degeneracy condition dictates that one is considering

Breit-frame transitions. For demonstrative purposes, we
choose the simple case where p = +q/2 and hence at low-
est order in the field strength the system is diagonalised
by the states |q/2)+ o< |q/2) | —q/2). The correspond-
ing eigenvalues are given by Ey(q/2) £ AAE + O(\?),
where the energy shift corresponds to the matrix element
of interest,

AE = (q/2]Vi(q)la/2)+ = (¢/2[V(a)] —a/2). (4)

Owing to the discretised spectrum (and momentum)
on the lattice, this quantum mechanical argument trans-
lates in a straightforward fashion to hadronic matrix el-
ements. In the case of continuous momenta the presence
of the periodic potential induces a gap in the dispersion
curve, as in conventional band theory.

To implement within a lattice calculation, the La-
grangian is modified to incorporate a spatially-varying
external potential

L) = L) + A (¢77Y +eT9V) 0y),  (5)

where the phase of the exponentials is defined with re-
spect to the location of the hadron source at y = 0. The
symbol O denotes a quark-bilinear operator and A repre-
sents the strength of the external field — which is kept
small ensure that the energy response is in the linear
regime. Alternatively, one may isolate the linear A\ de-
pendence of the correlator directly by constructing com-
pound propagators [36], 37].

To compute connected quark contributions, quark
propagators are inverted according the modified action
corresponding to Eq. — sea~quark contributions
would require new gauge ensembles [29] or an effective
reweighting technique. Fourier-projected, hadron corre-
lation functions are defined by

Cp(t) = e P \(QIx(t,x)x(0,0)[Q)x,  (6)

where subscript [€2), is the vacuum of the modified the-
ory. The spectrum can be directly isolated by construct-
ing even and odd linear combinations,

AL A A
oyt =Cp (7)

of Breit-frame momentum pairs, p and p'(= p + q). To
isolate an energy shift, it is more straightforward to im-
plement the “+” combination C), rather than the “—”
sum, which vanishes in the free-field limit.

Only the Breit-frame pairs will receive an energy shift
which is linear in the applied field strength A. This energy
shift corresponds directly to the hadronic matrix element
of interest

0Ex(p)|  _ (H(P)|O0)|H(p))
A (H@)|Hp))
or similarly for p <> p’. We have confirmed numerically

that non-Breit frame states do not receive a linear energy
response, as expected.

(8)



q p pQ
(0,0,0) (0,0,0) 0 0
(2,0,0) (1,0,0) 1 4
(2,2,0) (1,1,0) 2 8
(2,2,2) (1,1,1) 3 12
(4,0,0) (2,0,0) 4 16
(4,2,0) (2,1,0) 5 20
(4,2,2) (2,1,1) 6 24

TABLE I. Momentum insertions and the corresponding Breit-
frame momenta used in these calculations, where p’ = —p.
Momenta are given in lattice Fourier units of 27 /L.

III. SIMULATION DETAILS

In the present work, we use an ensemble of 1700
gauge field configurations with 2 + 1 flavours of non-
perturbatively O(a)-improved Wilson fermions and a lat-
tice volume of L3 x T = 323 x 64. The lattice spacing
a = 0.074(2) fm is set using a number of singlet quanti-
ties [38-41]. The clover action used comprises the tree-
level Symanzik improved gluon action together with a
stout smeared fermion action, modified for the imple-
mentation of the FH method [27].

We use a single ensemble with hopping parameters,
(K1, ks) = (0.120900, 0.120900), which correspond to a
pion mass of ~ 470 MeV. To study electromagnetic form
factors, quark propagators are calculated with the mod-
ified Lagrangian

Ly) » L) + (¢F9Y 4+ e77Y) gly)A-aly), ()

for multiple values of g as listed in Table [, where either
A2 or A4 take non-zero values of 1 x 10™% or —1 x 1072.
Note that we only use the simplest Breit-frame kinemat-
ics, p’ = —p. This choice allows us to minimise p? for
each value of g2, and hence minimise the noise in the
correlator. As described below, this also projects the nu-
cleon energy shifts directly onto Gg or G .

IV. RESULTS
A. Electromagnetic Form Factors of the Nucleon

The (Euclidean) decompositon of the vector current for
the individual quark flavour contributions of the nucleon
is written in terms of the familiar Dirac and Pauli (Fy,,
and Fy,) form factors,

(N, ") | 7(0)7.4(0) | N(p,s)) =

00, ) | Fag (@) + Y7 Fau(Q%) | ulpys) - (10)

where we denote the invariant 4-momentum transfer
squared as Q? = —¢® = —(p/ —p)z. The Sachs elec-

tromagnetic form factors are defined by

QQ
GEq = qu — WFQ(Z (11)
GMq:F1q+F2q (12)
For the incident-normal Breit frame (p’ = —p), the

temporal and spatial components of the current give rise
to energy shifts which directly project out the electric
and magnetic form factors respectively,

9EN p'=—p My
=" —GEgy, (13)
| o
9EN p'=—p [€Xq];
| 2By Mo 19

where é is the spin polarisation vector determined by the
choice of polarisation direction of the nucleon.

Utilising ratios of correlators with and without the ap-
plied external field, we can defined “effective form fac-
tors” by appropriate scaling of the effective energy shift
AEN .,

En AEN (esr)
Claer) = 3y A (13)
_ 2Enxy AEN(em)

%

These should plateau to the relevant form factors pro-
vided A is small enough that the energy shift is predom-
inantly linear. Fig. [I] shows results for effective electro-
magnetic form factors for a subset of Q2 values. Here we
identify that quite clean plateaux are realised up to quite
large momentum transfer. As a check on the selected fit
window, we ensure that the free-field correlators are suffi-
ciently saturating to the ground-state energy dispersion.

Fig. [2] shows results for the proton electric and mag-
netic form factors — neglecting disconnected contribu-
tions, which are anticipated to be very small at large
Q? [42]. In the low-Q? region we compare with results
computed on the same ensembles using a variationally-
improved 3-point function approach, as described in [25].
Very good agreement is observed in the region of overlap.
The statistical signal for the new Feynman—Hellmann ap-
proach is seen to extend to much larger Q? than has been
accessible in the past.

Phenomenologically, the Q?-range we are now able to
access would allow for tighter constraints to be placed
on the distribution of charge and magnetisation in the
nucleon at small impact parameter [43].

Fig. 3| displays the extraction of the ratio Gg/G as
a function of @2, and a comparison to experiment [5HT].
While nothing definitive can be concluded about a po-
tential zero crossing, the overall trend is seen to compare
very well with the experimental data.
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FIG. 1. Effective electric and magnetic form factors of the
w quark in the nucleon for different values of Q%. Results
shown are for a single value of A # 0 (since we are in the
linear region, results at different A are statistically identical).

B. Electromagnetic Form Factor of the Pion

Following a similar analysis as that for the nucleon,
we show the determination of the pion form factor and
comparison to experiment [12] in Fig. El The realised
statistical signal gives confidence that future lattice sim-
ulations will be able to provide important insight into
this transition between the perturbative and nonpertur-
bative.

V. CONCLUSION

In this work we have extended the Feynman—Hellmann
technique to access non-forward matrix elements. We
demonstrate that this provides for a dramatic improve-
ment in the ability to extract nucleon and pion form fac-
tors at much higher momentum transfers than previously
possible. Before making rigorous comparisons with phe-
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FIG. 2. Gg and Gy for the proton from the Feynman-—

Hellmann method and a variational method described in [25]
employed on the same ensemble.

nomenology, standard lattice systematics must be fur-
ther quantified, including quark mass dependence, dis-
cretisation artifacts and continuum extrapolation. There
is also further potential for increased precision by us-
ing improved operators that have better access to high-
momentum states, as proposed in [44].

The high-momentum form factors extracted in this
work demonstrate a significantly expanded scope for lat-
tice QCD to address this phenomenologically interesting
domain of hadron structure.
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