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1 Introduction

The remarkable progress in experimental techniques in the past two decades has provided a fresh
impetus to the study of hard exclusive and semi-inclusive reactions with identified particles in the
final state. Such processes are interesting as they allow one to access the hadron structure on a much
more detailed level as compared to totally inclusive reactions. A (probably still distant) major goal
is to understand the full three-dimensional proton structure by “holographic imaging” of quark and
gluon distributions in transverse distance and momentum spaces. The related experiments have
become a prominent part of the research program at all major existing and planned accelerator
facilities, e.g. the Electron Ion Collider (EIC) [1].

The relevant nonperturbative input in such processes in many cases involves operator matrix
elements between states with different momenta, dubbed generalized parton distributions (GPDs),
or vacuum-to-hadron matrix elements related to light-front hadron wave functions at small trans-
verse separations, the distribution amplitudes (DAs). The scale-dependence of such distributions is
governed by the renormalization group (RG) equations for the corresponding operators, where, in
contrast to standard parton densities, mixing with the operators involving total derivatives has to
be taken into account. Going over to local operators one has to deal with a triangular mixing matrix
where the diagonal entries are the anomalous dimensions, the same as in deep-inelastic scattering,
but the off-diagonal elements require a separate calculation.



The projected very high accuracy of future experimental data, e.g. on the Deeply Virtual
Compton Scattering (DVCS) at the JLAB 12 GeV upgrade [2] and the EIC, and the v* — 7y
transition form factor at Belle II at KEK [3], has to be matched by the increasing theoretical
precision; in the ideal case one would like to reach the same level of accuracy as in inclusive
reactions. The NNLO (three-loop) analysis of parton distributions and fragmentation functions
is becoming the standard in this field [4], so that the NNLO evolution equations for off-forward
distributions are appearing on the agenda.

In this work we derive the explicit expression for the three-loop contribution to the flavor-
nonsinglet evolution kernel in the so-called light-ray operator representation. This kernel can be
converted to the evolution equation for the GPDs by a Fourier transformation, whereas its expansion
at small distances provides one with the matrix of the anomalous dimensions for local leading twist
operators. In the latter form, our results are directly relevant for the lattice calculations of pion DAs
in which case the uncertainty due to the conversion of lattice results to the MS scheme currently
proves to be one of the dominant sources of the error [5]. The three-loop (NNLO) anomalous
dimensions of the leading-twist operators are known for about a decade [6], however, a direct
calculation of the missing off-diagonal terms in the mixing matrix to the same precision is quite
challenging.

Conformal symmetry of the QCD Lagrangian allows one to restore the nondiagonal entries in
the mixing matrix and, hence, full evolution kernels at a given order of perturbation theory from
the calculation of the special conformal anomaly at one order less [7]. This result was used to
calculate the complete two-loop mixing matrix for twist-two operators in QCD [8-10], and to derive
the two-loop evolution kernels for the GPDs [11-13].

In Ref. [14] we have proposed to use a somewhat different technique to implement the same idea.
Instead of studying conformal symmetry breaking in the physical theory [8-10] we suggest to make
use of the exract conformal symmetry of large-ny QCD in d = 4 — 2¢ dimensions at critical coupling.
Due to specifics of the minimal subtraction scheme (MS) the renormalization group equations in
the physical four-dimensional theory inherit a conformal symmetry so that the evolution kernel
commutes with the generators of conformal transformations. This symmetry is exact, however,
the generators are modified by quantum corrections and differ from their canonical form. The
consistency relations that follow from the conformal algebra can be used in order to restore the
¢-loop off-forward kernel from the ¢-loop anomalous dimensions and the (¢ — 1)-loop result for the
deformation of the generators, which is equivalent to the statement in Ref. [7].

Exact conformal symmetry of modified QCD allows one to use algebraic group-theory methods
to resolve the constraints on the operator mixing and also suggests the optimal representation for
the results in terms of light-ray operators. In this way one avoids the need to restore the evolution
kernels from the results for local operators, which is not straightforward. This modified approach
was tested in [14] on several examples to two- and three-loop accuracy for scalar theories, and
in [15] for flavor-nonsinglet operators in QCD to two-loop accuracy. As a major step towards the
NNLO calculation, in [16] we have calculated the two-loop quantum correction to the generator
of special conformal transformations. In this work we use this result to obtain the three-loop
(NNLO) evolution equation for flavor-nonsinglet leading twist operators in the light-ray operator
representation in the MS scheme. The relation to the representation in terms of local operators [7-9)
is worked out in detail and explicit results are given for the matrix of the anomalous dimensions
for the operators with up to seven covariant derivatives. Our results are directly applicable e.g. to
the studies of the pion light-cone DA and flavor-nonsinglet GPDs.

The presentation is organized as follows. Sect. 2 is introductory, it contains a very short general
description of the light-ray operator formalism and the conformal algebra. In this section we also
explain our notation and conventions. In Sect. 3 we show that the contributions to the evolution
kernel due to the conformal anomaly can be isolated by a similarity transformation. As the result,



the evolution kernel can be written as a sum of several contributions with a simpler structure.
This construction is similar in spirit to the “conformal scheme” of Refs. [8-10]. We find that
the remaining (canonically) SL(2)-invariant part of the three-loop kernel satisfies the reciprocity
relation [17-20], discussed in Sect. 4. The explicit construction of the invariant kernel is presented
in Sect. 5. We provide analytic expressions for the terms that correspond to the leading asymptotic
behavior at small and large Bjorken z, and a simple parametrization for the remainder that has
sufficient accuracy for all potential applications. In Sect. 6 we explain how our results for the
renormalization of light-ray operators can be translated into anomalous dimension matrices for
local operators. In this way also the formal relation to the results in [7-9] is established. The final
Sect. 7 is reserved for a summary and outlook. The paper also contains several Appendices where
we collect the analytic expressions for the kernels.

2 Evolution equations for light-ray operators
A renormalized light-ray operator,
[O)(x; 21, 22) = ZO(x; 21, 22) = Zd(x + z1n)ihq(x + z2n), (2.1)

where the Wilson line is implied between the quark fields on the light-cone, is defined as the
generating function for renormalized local operators:

Oltwi21,22) = 2 A2 [G)(D o)™ D) ata)] (22)

m,k

where D,, = 0,, —igA, is the covariant derivative. Here and below we use square brackets to denote
renormalized composite operators (in a minimal subtraction scheme). Due to Poincare invariance
in most situations one can put x = 0 without loss of generality; we will therefore often drop the x
dependence and write

O(z1, 22) = O(0; 21, 22).

The renormalization factor Z is an integral operator in z1,z2 which is given by a series in 1/e,
d=4— 2,

Z=1 — =Y afz". .
+y —Zi(a Zi(a) =Y a'Z, (2.3)
k=0 =k
The RG equation for the light-ray operator [O] takes the form
(M + B(a)0a + H(0) ) O] (w521, 22) = 0, (2.4)

where M is the renormalization scale,

Qg da

a=7r0  Bla)=Mom = —2a(c+afy+a’fi+...) = —2a(c + 5(a)) (2:5)
with
11 2 2
Po =5 Ne—3ns, Pr=3 [17C% = 5Cans — 3Crpny] . (2:6)

H(a) is an integral operator acting on the light-cone coordinates of the fields, which has a pertur-
bative expansion

H(a) = o HY + 2 H® + o> H® + ... (2.7)



It is related to the renormalization factor (2.3) as follows

d .1 ) 0 (0)
H(a) = —M 7L :2’yq(a)+2;€aZl , (2.8)

where Z = ZZ %, Z, is the quark wave function renormalization factor and v, = My In Z, the
quark anomalous dimension. The QCD B-function 3(a) and 7, are known to O(a®) [21-25].
The evolution operator can be written as [26]

H(a)[0](21, 22) = / do / a8 (e, B) [O)(=fs, 2£,) (2.9)

where
275 = 2100 + 2oa a=1-a, (2.10)

and h(a, B) = ahM(a, B) + a>hP (a, B) + ... is a certain weight function (evolution kernel).

)

It is easy to see [14] that translation-invariant polynomials (z1 — 22)*" are eigenfunctions of the

evolution kernel,
H(a)21y = v (a) 213 12 =21 — 2. (2.11)

The eigenvalues yx (a) correspond to moments of the evolution kernel in the representation (2.9),

1 1
YN = / da/ d3(1 —a—B)Vh(a, B) = a'yj(\}) + a2’y](\?) + a?"yj(\?) +.... (2.12)
0 0

They define the anomalous dimensions of leading-twist local operators in Eq. (2.2) where N = m+k
is the total number of covariant derivatives acting either on the quark or the antiquark field. The
corresponding mixing matrix in the Gegenbauer polynomial basis is constructed in Sect. 6.

The leading-order (LO) result for the evolution kernel in this representation reads [26]:

1 _
H®Y (21, 20) = 4CF{/O dag [Qf(Zh z2) — f(212, 22) — f(21, Zz%)}

1 a 1
7/ da/ dﬂf(zfg,zgl)JrEf(zl,zQ)}. (2.13)
0 0

The expression in Eq. (2.13) gives rise to all classical leading-order (LO) QCD evolution equations:
the DGLAP equation for parton distributions, the ERBL equation for the meson light-cone DAs,
and the general evolution equation for GPDs.

The LO evolution kernel H(Y) commutes with the (canonical) generators of collinear conformal
transformations

sO =9, —o.
S(()O) = 21821 + 2’2822 + 2,
Sio) =210, + 230, +2(21 + 22) (2.14)
which satisfy the usual SL(2) algebra
[So, S+] = £84, [S4,5-] =25,. (2.15)

It can be shown that as a consequence of the commutation relations [H(l), S&O)] = 0 the correspond-
ing kernel (M) (v, B) is effectively a function of one variable 7 called the conformal ratio [27]

D (a, 8) = h(r). r=2

== 2.16
o (216)



up to trivial terms ~ §(«)d(5) that correspond to the unit operator. This function can easily be
reconstructed from its moments (2.12), alias from the anomalous dimensions.

Indeed, it is easy to verify that the result in Eq. (2.13) can be written in the following, remark-
ably simple form [27]

Y (a, B) = —4CF {m(f) +60(1—7)— %5(@5(5)] , (2.17)

where the regularized d-function, d4(7), is defined as

/ dadf3 6, (7)f (8, 25,) = /0 da /0 apsr) (£t 250) = (1, 22)]

«

_ /1 do2 [2£(21,20) = Flot,22) — flen,250)]. (2.18)
0

Beyond the LO this property is lost. However, the evolution kernels for leading twist operators
in minimal subtraction schemes retain exact conformal symmetry. Indeed, the renormalization

factors for composite operators in this scheme do not depend on € by construction. As a consequence,
the anomalous dimension matrices in QCD in four dimensions are exactly the same as in QCD in
d = 4 — 2¢ dimensions that enjoys conformal symmetry for the specially chosen “critical” value of
the coupling [14-16]. The precise statement is that the QCD evolution kernel H(a) commutes with
three operators

[H(a), S4] = [H(a),5-] = [H(a),So] = 0 (2.19)

that satisfy the SL(2) algebra (2.15). These operators can be constructed as the generators of
collinear conformal transformations in the 4 — 2e-dimensional QCD at the critical point and have
the following structure [14-16]:

S =89, (2.20a)
~ 1
. 1
Sy =804 As, = 54 (2 + ) (5(a) + 5H(a)) + (21 — 22) Aa), (2.20c)

where 3(a) is the QCD S-function (2.5) and S are the canonical generators (2.14).

Note that the generator S_ corresponds to translations along the light cone and does not receive
any corrections as compared to its canonical expression, S(_O). The generator Sy corresponds to
dilatations; its modification in interacting theory ASy = Sy — Séo) can be related to the evolution
kernel H(a) from general considerations [14]. Finally S; is the generator of special conformal
transformations and Eq. (2.20c) is the most general expression consistent with the commutation
relations (2.15). To see that, note that ASL =5, — SSFO) must have the same canonical dimension
[mass] =1 as Sio), meaning that [Séo), AS. ] = AS;. Thus we can write ASy = (21 + 22)A1 + (21 —
22)Ay where [S(go), Aj 5] = 0. Plugging this expression in the commutation relation [S1, S_] = 2S5y
one obtains A; = ASy and [S_, As] = 0. Changing notation Ay — A we arrive at the expression
given in Eq. (2.20c).

Using (2.20) in the commutation relation [Sp, S;] = S5, or equivalently [H(a), S1] = 0, results
in

[SSFO),H(Q)] = —[AS+,H(a)] = [H(a),zl +22} (ﬁ(a) + %H(a)) + [H(a),zlgA(a)}. (2.21)



If H(a) is known, this equation can be used to find A(a) and in this way construct the SL(2)
generators that commute with the evolution kernel in a theory with broken conformal symmetry.
The main point is, however, that A(a) can be calculated independently from the analysis of the
conformal Ward identity [7, 13, 16]. In this way Eq. (2.21) can be used to calculate the non-invariant
part of the evolution kernel with respect to the canonical generators Si%.

Indeed, expanding the kernels in a power series in coupling constant

H(a) = aH® + o?H® + 3H® + ..., A(a) = aAW +a2A®) 4 (2.22)

one obtains from (2.21) a nested set of equations [14]

(S HV] =0, (2.23a)
1
[Sio),H(Q)] = [H(l), Z1 + ZQ] <ﬂo + iH(l)) + [H(l), 2’12A(1)] y (223b)

(S H®] = [HD, 2, + 2] <ﬂl + %H@)) + [H®, 21 + 2] (ﬂo + %H(”)
+ [HP, 2A0] + [HY), 20,AP)] | (2.23¢)
so that the commutator [Sio), H®)] is expressed in terms of the lower order kernels, H*) and A(*)
with k£ < ¢ —1.

The first of them, Eq. (2.23a), is the usual statement that the LO evolution kernel commutes
with canonical generators of the conformal transformation. As a consequence, the corresponding
kernel A(V)(a, B) can be written as a function of the conformal ratio (2.16) and restored from the
spectrum of LO anomalous dimensions. The result is presented in Egs. (2.13), (2.17).

The second equation, Eq. (2.23b), is, technically, a first-order inhomogeneous differential equa-
tion on the NLO evolution kernel H(?). To solve this equation one needs to find a particular solution
with the given inhomogeneity (the expression on the r.h.s.), and add a solution of the homogeneous
equation [SSFO),]HI@)] such that the sum reproduces the known NLO anomalous dimensions. This
calculation was done in Ref. [15] and the final expression for H(?) is reproduced in a somewhat
different form below in App. A.

In this work we solve Eq. (2.23¢) and in this way calculate the three-loop (NNLO) evolution
kernel H®). The main input in this calculation is provided by the recent result for the two-loop
conformal anomaly A(?) [16]. Since the algebraic structure of the expressions at the three-loop level
is quite complicated, we separate the calculation in several steps in order to disentangle contributions
of different origin. The basic idea is to simplify the structure as much as possible by separating
parts of the three-loop kernel that can be written as a product of simpler kernels.

3 Similarity transformation

The symmetry generators S, in a generic interacting theory (2.20) involve the evolution kernel
H(a) and additional contributions A(a) due to the conformal anomaly. These two terms can be
separated by a similarity transformation

H=U'HU, Sio=U"1'S.,U. (3.1)

Note that H and H obviously have the same eigenvalues (anomalous dimensions). Going over to
the “boldface” operators can be thought of as a change of the renormalization scheme,

[O(Zl, ZQ)]U = U [O(Zl, ZQ)]WS (32)



The “rotated” light-ray operator [O(z1, 2z2)|u satisfies the RG equation
(Ma + B(@)0u + H(a) = B(@).U - U )[O(e1, 22)]r = 0. (33)
Looking for the operator U in the form
U=¢,  X(a)=aX® +a>X® 4., (3.4)

we require that the “boldface” generators do not include conformal anomaly terms,

s_ =59, (3.5a)
- 1
So =SV + A8y = S+ <ﬂ(a) + 5H(a)> , (3.5b)
— 1

With this choice the generators S, on the subspace of the eigenfunctions of the operator H with
a given anomalous dimension vy take the canonical form with shifted conformal spin j =1 — 1+
2B(a)+ 17~ (a) so that the eigenfunctions of H can be constructed explicitly. The evolution equation
in this form (3.3) still contains, however, an extra term 3(a)d,U - U™! and is not diagonalized.

Since the evolution kernel commutes with the canonical generators 5 and S((,O) we can assume
that X(*) commute with the same generators as well,

(57, %0 = 15¢”, x W) =0, (36)

whereas comparing Eqgs. (2.20c¢) and (3.5¢) yields the following set of equations:

[SEFO),X(U] = 215AM , (3.7a)
1 1
[SSFO), X(2)] = ZlgA(Q) + [X(l), z1 + 22:| (ﬂo + §H(1)) + 5 |:X(1), ZlgA(l) . (37b)

These equations can be used to fix X(V) and X from the known one- and two-loop expressions
for the conformal anomaly, A" and A [15, 16], up to SL(2) (canonically) invariant terms. In
other words, the transformation U that brings the conformal generators to the form (3.5) is not
unique; there is some freedom and we specify our choice later on. The one-loop result, X1, turns
out to be rather simple whereas the two-loop operator, X(?), is considerably more involved. Explicit
expressions are presented in App. B.

The rotated, “boldface” evolution kernels satisfy a simpler set of equations as compared to
Eqgs. (2.23), as the terms involving the conformal anomaly are removed,

[SSFO), H(l)] =0, (3.8a)
1

[T HO) = [HO, 21 + 2 <ﬂo + §H“>) : (3.8b)

[SY HO®] = [HD, 2 + 2] <ﬂl - %H@)) + [H®), 21 + 2] <ﬂo + %H“)) : (3.8¢)

These equations are solved by

HD =1

)

mv

1
H® = HJ] + T (ﬂo + 5H“’) : (3.9)

2
1 1 1 1
H® =7 41O (61 + 5H§j§) + TP (/30 + §H§§3) + (W) + 5(1r<1>)2) (/30 + 5H§§3) ,



where Hl(:fz are (canonically) SL(2)-invariant operators with kernels that are functions of the con-
formal ratio (2.16) and the operators T commute with 59 and S(()O) and obey the following
equations:

(8, T0] = 1), 21 + 2],
(S, T = [HE), 21 + 2], (S, TP = [T, 21 + 2] (3.10)

Similar to the X kernels defined as the solutions to Eqgs. (3.7), the T kernels are fixed by Eqs. (3.10)
up to SL(2) (canonically) invariant terms. Explicit expressions are collected in App. C.

Note that the expressions for the perturbative expansion of the evolution kernel in Eq. (3.9)
can be assembled in the following single expression:

B(a) + %H(a) = {]1 - % (a']f(l) + a? (’JI‘<2> + T§2>Hinv(a)) + O(a3)) }1 <B(a) + %Hmv(a))
(3.11)

Finally, adding the contributions from the rotation matrix U = exp{aX(l) +a?X® 4 . .} we obtain
the following results for the first three orders of the evolution kernel in the MS scheme:

HO = g = g®

v’

1
H® = HO) + [0, x0] = HE) + T (5 + 5HL) ) + [HY) X0,

nv’

H® =H® + [H(Q),X(l)] + [H(l),X@)] + l{H(Q)’ (X(l))Q}
=H) + 10 (ﬂ + H@’) + T8 (ﬂ + Hfii) (T@) 5 (1Y) > <ﬂ + Hfii)

+ [H(Q) X(l)] [’]I‘(l)H(l) X(l)] [H(l) x(2 1)]H.(1) + [H(l) X(Q)]
2 mv

nv? mv’ nv?’

inv? inv?

+ Bo ([TSV,X(”] + [H(), X*]) + 5[[H“) XM, x] - [H(l) X(22)], (3.12)

where all entries are known except for the SL(2)-invariant part of the three-loop kernel H® that

mv
has yet to be determined. Explicit expressions for the X and T kernels are given in App. B and

App. C, respectively.! The SL(2)-invariant kernels Hl(f‘z

form

can be written in the following general

1 —
H{) f(21,22) = F&Q/<mg@ﬂnﬂﬂ*fwﬁwﬁ*ﬂmw%ﬂ+x@ﬂmwﬂ

[ e [ a5 (8 0 () 1o ) (313)

Here 2§, is defined in Eq. (2.10), 7 = a/(aB) and Py5 is the permutation operator, Pof(21, 29) =
f(#2,21). Tcusp is the cusp anomalous dimension which is known to the required accuracy [6]:

r&, =4Cr,
67 w2 5
@ —1 _ =
cusp 6 [CACF (36 12) 13 fCF] ,

245 6772 117t 11 1 209 572
ré —e64|C3C — CaCpnp= | o + = — =
cusp ACr (95 ~ 316 T 0 T a®) TG\ o T Q’

+Chny= (@ 55) - ian}]. (3.14)

1 The X kernels with an extra index, X%Q), X(21) and X(2:2)| correspond to different contributions to X(?) as
described in App. B.



The LO expression (2.13) corresponds to
x5 =20k, Xi(7) = —~4Cr . X (1) = 0. (3.15)

The two-loop constant term x((J2) and the functions Xi(i)](T), X?n(\?) (1) are given in App. A. The
three-loop expressions will be derived below.

Note that the expression for the two-loop kernel in Eq. (3.12) differs from the one derived in
Ref. [15] where the non-invariant part is written in form of a single expression. The representation of
the non-invariant part of the two- and three-loop kernel as a product of simpler operators suggested

here seems to be sufficient and probably more convenient for most applications.

4 Reciprocity relation

The eigenvalues of H(*)
H®) (21 = 22)" = /W (V) (21 — 22)" (4.1)

correspond to the flavor-nonsinglet anomalous dimensions in the MS scheme that are known to
three-loop accuracy [6]. Note that our definition of the anomalous dimension v*)(N) differs from
the one used in Ref. [6] by an overall factor of two. In addition, in our work N refers to the number
of derivatives whereas in [6] the anomalous dimensions are given as functions of Lorentz spin of the
operator. Thus

®) (N =29®(N +1 : 4.2
v ( ) this work K ( + ) Ref. [6] ( )

One can show that the eigenvalues of the invariant kernels Hl(s")]
Hi (21— 2)Y = 900 (V) (21— 2)Y (4.3)

with a “natural” choice of T operators specified in App. C satisfy the following symmetry relation:
Let jy = N +2 (conformal spin); the asymptotic expansion of Wi(fg(N ) at large j — oo only contains
terms symmetric under the replacement jy — 1 — jx. Note that this symmetry does not hold for
the anomalous dimensions v*)(N) themselves.

The argument goes as follows. As well known [28], conformal symmetry implies that the
evolution kernels can be expressed in terms of the quadratic Casimir operator of the symmetry
group. As a consequence it is natural to parameterize the anomalous dimensions in the form

AN) = F(N+24 5(a) + 53(N)) = (i + Bla) + 59(V) (1.4)

It has been shown [18-20] that the asymptotic expansion of the function f(5) = af™ (j)+a?f 3 (j)+
. at large j only contains terms that are symmetric under reflection j — 1 — 5. In all known
examples the f-function also proves to be simpler than the anomalous dimension itself. Expanding

both sides of Eq. (4.4) in a power series in the coupling one obtains 2

FO ) =+, (4.52)
2
72 =220) = 7 (8ot 370 ) =2w) = (B0 120 7V . (@450)
FO(jn) = 4@ (N) — (51 n 17<2>(N)) ) - (50 N 17<1>(N))2 d_2f<1>(jN)
2 AN 3 3 N2
= (B0 570 5P, (4.50)

2See also Ref. [17] for a derivation in terms of the corresponding splitting functions in z-space.



so that the values of f(¥) (jnv) are related to the anomalous dimensions at the same order of pertur-
bation theory up to subtractions of certain lower-order terms.

Let us compare this expansion with the relations between the eigenvalues of H(*) in Eq. (4.1)
and of the invariant kernel Hl(m)/ in Eq. (4.3). Using Eq. (3.12) and explicit expressions for the

eigenvalues of the T kernels in Eq. (C.6) one obtains (note that the commutator terms do not
contribute to the spectrum)

AO(N) =N,

1 d
YAWN) = 12N + (8o + 370N ToAmWY),
d 22
A =200 + (814 ) ) Gt + 5 (B + 3R] )

(80 30 [0 + £ () | (4.6)

Comparing this expansion to the one in Eq. (4.5) we see that
k
SO () =0 (V). (4.7)

In other words, the QCD anomalous dimension in the MS scheme can be written in terms of the
eigenvalues of the invariant kernel as

1) = i (N 24 Bla) + (), (48)

and the asymptotic expansion of vi,y(N) at large N only contains terms invariant under the reci-
procity transformation jy = N 4+2+— 1 —jy =—N — 1 [18-20].

This relation implies a certain condition for the choice of T kernels which appears to be natural
in the first few orders of perturbation theory, see App. C.

3)

mv

5 Three-loop invariant kernel H!

The three-loop invariant kernel H® takes the form

mv

1 _
Hl(n\)/f(zla 2) = ng)sp/ dag (Qf(zl, 29) — f(21y, 22) — f(z1, 231)) + Xo )f(zh 22)
/ da/ dﬁ X () + D (r )Pm)f(zfngﬂ- (5.1)

The three-loop cusp anomalous dimension ng)sp is known (3.14) so that our task is to determine
the constant x( ) and two functions of one variable, Xl(g\)/(T) and XEP;(E)(T). This can be done by
3)

mv

using the information on the spectrum of H;

H) (21— 22)V =42V (21— 2)V, (5.2)

mv
where

Y (N) =+ (N) - (/31 - %%”(N)) %%”(N) — (Bo + 5%1)(]\7)) 2w

+ 2 (80 20 (o) (5.3

~10 -



can easily be calculated from the known one-, two-, and three-loop flavor-nonsinglet anomalous
dimensions [6].
The constant term ng) in the invariant kernel (5.1) corresponds to the constant term in the

large-N asymptotic of the anomalous dimension

HIN) =278, [w(N +2) - @) +x§ + 0(1/N?) (5.4)
and is straightforward to obtain. Using the expressions from Ref. [6] we find
4 2
o [3176 L 167271 23954 13454}
=Ck G = 3206 + a7 8 9
752 1287t 345272 6242 32 80x2 70
2 _tve o . 2| 9< o oEn i
+CF"f[ 9% 135 T sl 27]+CF”f[9<3 81 +27}
C2r 16 , 9464 3227% 2715872 28789
TN {* R G =500+ =~ —g 3 }
| Crny [7 1072§ B QL 181672 2752}
N, 3 81 27
Cr 3632 317r4 771272 7537
80 - } . 5.5
N2 { ¢ = 8065 + 5 s TR (5:5)

(3)

mv
consider even and odd values of IV separately. We write

WD) = 8P () + (~)NAE (), (5.6)

so that the combinations %(:;r )(N )E= 7(3\, )(N ) correspond to the eigenvalues of the invariant kernel

for even (odd) N. Using the representation in (5.1) one obtains

The calculation of the functions x;..(7) and xm(v)( ) is much more involved. As usual one has to

AED(N) = 20, [B(N +2) — (2 / do / B A —a-pN,  (5.7a)

&) /da/ B X (1) (1 — o = B)N. (5.7b)

These relations can be inverted to express the kernels as functions of the anomalous dimensions [15]

1 c+100 1 + T
) = 5 [ N 3 88D W) P (7).

Ux —100 1
c+100
PO () = - N (2N ) (N Py (2T
W =5 [ aveN 300 Pvn (). (59)
where
AYEPD(N) = 483D (N) — 208 [0 (N +2) — 9(2)] — x5, (5.9)

and Py 1 is the Legendre function. All singularities of the anomalous dimensions have to lie to the

left of the integration contour.

The algebraic structure of the three-loop anomalous dimension 71(33

complicated to do the integrals in (5.8) analytically. We, therefore, adopted the following strategy:

(N) [6] is, unfortunately, too

We will provide analytic expressions for the terms that correspond to

(¥() —¥(2)"

1. the leading contributions ~ — ,
iG -1

j = N + 2, to the large-N expansion of the

anomalous dimensions,
2. the contribution of the leading singularity (pole at N = —1) in the complex plane.

The remainder will be parameterized by a sufficiently simple function with a few fit parameters.

- 11 —



5.1 Splitting functions

It turns out to be advantageous to use the representation for the anomalous dimensions in terms
of the splitting functions. The three-loop splitting functions are available from Ref. [6] and involve
harmonic polylogarithms (HPL) up to weight five, see Ref. [29]. Using this result and Eq. (5.3) it
is straightforward to calculate the splitting functions for the invariant kernels such that

1
) = = [ eV @), (5.10)
0
The “plus” function can be written as
HED (@) =208, —— — (x§) — 208 )5(1 — 2) + A (), (5.11)

cusp (1 _ :C)J,_

where the first two terms are related to the logarithmic and the constant contributions in the large-
N expansion of the anomalous dimension, cf. (5.7a) and for H, (3= )( ) there are no such terms,

mv

cf. (5.7b). The symmetry property under jy — 1 — jy for the eigenvalues of the invariant kernel is
equivalent to the Gribov-Lipatov reciprocity relation for the corresponding splitting functions
AHH () = —aAHEH) (1/2). (5.12)

mv mnv

We want to find a parametrization for the splitting functions consistent with the reciprocity relations
(5.12) and separating the leading contributions at x — 0 and = — 1.
To this end, let us define the set of functions ¢ (z) such that

/Oldacij or(x) = (ﬁ)kﬂ . (5.13)

They can be constructed recursively,

do(z) =1, / & 1 (E)bola/o), (5.14)
so that

$1(x) =2z —(14+2z)lnx,
¢o(x) =27 + 23+ 2)Inz + (1 +2)In’z, (5.15)

where here and below

(5.16)

8l
I
—_
|
8

We write the splitting functions as

mv mv

AHCH (i ZB@”@ )+ 208 70l 1n( ) +oHC (1),

mnv mv

HE3 ) (z ZB<3 Vo (z) +2CE) + 6HE ) (a), (5.17)

where the addenda, 6H1(§’VJr )( ) and 5H1(§’V (x), do not include, by construction, terms n*z, k>1
(for z — 0) and Z In* Z, k > 0 (for £ — 1). The maximum powers of the logarithms are found by
inspection of the known analytic expression. Thus, with normalization constants Hoi

SHE® (2) = 0@, SH* (2) = HF +0O(a), (5.18)

my r—1 my z—0
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Figure 1: Left panel shows the ratio 5H-(3+)(x)/H-(3+)(x) (dashed curve) for exact splitting functions and

the error in using the approximation (5.22), (6Hi(:‘j_)|ﬁt - 6Hi(j:)|exact)/Hi(jj) (solid curve) for ny = 4. The
shaded area indicates an error band of 0.5%. The similarly defined approximation error for the combinations
H®) 4+ H) (dashes) and H™ — H(7) (solid) which give rise to moments with odd and even N, respectively,

is shown on the right panel.

or, equivalently, in moment space,

1
67i(jf)(N) = —/ dx o™ 5Hi(fvi)(x), (5.19)
0
vanishes as 1/N* at large N and its only possible singularity at N = —1 is a simple pole.
The constants B,(cgjt)7 C,igi) are collected in Table 1 where, for completeness, we also repeat the
expressions for x(()g) (5.5) and ng)sp (3.14). In all cases we show the coefficients for the following

color decomposition:

C3 Crn C
F= C%FQ) + C%an(2> + CFTL?F@) + FFF@) + ]FV—fF<5> + N_};F<6> , (5.20)

where F' = A,(:’i), B,(fi), xé3), T

The remaining terms 5Hi(:f )(z) contain the whole algebraic complexity of the full result but
numerically they are rather small. For illustration we show the ratio 5Hi(:f ) (x)/ Hl(jj ) (x) for N, =3
and ny = 4 in Fig. 1 (dashed blue curve on the left panel). One sees that 5Hi(§’;r)(ac) contributes at
most 6% to the full splitting function in the whole range 0 < x < 1 so that for all practical purposes
it can be approximated by a simple expression with a few parameters.

Due to the reciprocity property (5.12) the functions 5Hi(:f )(x) can be parameterized in the
form

SHH (2) = 2 ha(2/7%) . (5.21)
We choose the following ansatz
a4+ byt
he(t) = HY 1 5.22
w0 = i (14 ). (5.22)

where a+ and b4 are fit parameters and the normalization constants Hoi are determined analytically
from the condition 5H.(3i)(x) = HE + O(x) (5.18). The fitted values of the parameters ag and
T—

mv
by for the different color structures can be found in Table 2. With this simple parametrization we
reduce the deviation from the exact splitting functions to less than 0.5%, see Fig. 1.
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c2 1672 9464 32071 2715872 28789 | 352 1960 214472 17674
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N. 9 % 45 81 27 3 27
Cp 3632 3lnt 77127 | 7537 88 490 53672 44zt
NZ g @Gt TR 39T Ty T
B§3+) B£3+) B§3+) Bisﬂ C(()3+> Cl(3+)
746 4072 1672 352 70768  34887% 1767 184
s 0 0 i
F 9 9 3 C 27 2 15 3
28 1672 128 11966 25672 16
C2 i 0 0 0 - (G- — -=
Fi 9 9 39T T T Tar 3
64
Crn} 0 0 0 0 5 0
c? 1886 52r% | 3632 167° | 520 352 74428 348872 1767* | 1672 376
-1 - _ _ | g | 2 _ =
N. 66+ —3--— 9 3 3 6 3 @t w T 3 3
Crng 512 8x? 400 16 0 7QC 75932+1287r2 8
N, 9 9 9 3 3 27 3
Cp 3272 7672 | 1816 1672 | 176 17902 8367° | 44’ 872 196
1o 22 P02 gy | 22 = o 2R
N2 G+ 9 9 3 3 CS ot T o B 3 3
Bigf) Bé:sf) B:(;:sf) 34(137) Cé:sf)
C2 7288 5272 | 3632 3272 520 88
~12 =2 i S22 ee | 2
N. 8ot ——+ 5 9 3 3 6 3
Crng 167> 488 _ 400 _16 0 _8
N, 9 9 3 3
Cr 3860 16472 | 1816 = 44x? 176 44
112G + =2 S22 g | 2
N2 G T 9 3 3 3

Table 1: Cusp anomalous dimension ng)sp (3.14), constant term X(()g) (5.5) and the coefficients

Bkgjt)7 C,S,gi) (5.17) in the splitting function representation of the invariant kernel.
5.2 Mellin transformation

The following Mellin representation of the kernels Yiny (7) and X%, (7) proves to be useful in order
to restore them from the splitting functions and allows one to write all terms in the form that
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H(_)'— a4 b+
. 272 2877 64t
o3 2le_2om 0.2263 0
e 3 9 45
32 1672
C2n; 3 0.5340 0
Cc% 368¢; 992 17672 4rt
_ _ 2 — | 0.05174 | 4.116
N, 5 0 "9 T i
Crng 32¢3 | 256 8w
- el R U 0.09626 | —1.526
N. 3 "o 9
C% 328¢; 736 1407  8r?
- = —— | 0.06595 0
N? 3 9 9 ' o
Hy a— b_
C% 220072 2874
128(3 — 24 — 4040 | —0.
N 8¢, 57—+ g | 04040 | —0.7986
CFTLf 1767T2
— 16¢- 1252
. > 6¢3 0.125 0
Ccz 120872 77t
4¢3 — 24 — — 22 —1.
N2 643 57—+ 0.2206 077

Table 2: Values of the parameters in the ansatz for 5H.(3i)(x) (5.21), (5.22).

mnv

automatically respects the reciprocity relation:

c+ioco
=5 [ a0 7/ (5:252)
W0 = [ L . (5.230)

The integration contour in the first integral, (5.23a), must be chosen in the analyticity strip of the
second integral, (5.23b), (the strip where integral converges). Making use of this representation one
obtains

1 c+i00 . F(]N _1_ p)
AP (N) = —/ dp XD (PT2 (1 + p)i——— P 5.24
V]nv ( ) 27TZ oo lenv(p) ( p)F(jN+1+p)7 ( a)
c+1i00 .
iy (V) = 5 X (P)T( p)ir(jjv 15, (5.24b)

Since for large jy the ratio I'(jy — 1 — p)/T(jn + 1+ p) ~ j;,2(1+p), the asymptotic expansion of
the integrals in Egs. (5.24) at jy — oo can be obtained by moving the integration contour to the
right and picking up the corresponding residues. It is easy to check that if the only singularities
of the Mellin-transformed kernels X(p) in the right half-plane are poles (of arbitrary order) at real
integer values of p, then a generic term of the asymptotic expansion of the anomalous dimensions

has the form
(Y0in) — (@)™
(nGn = 1))k 7
which is required by the reciprocity symmetry under the jy +— 1 — jy transformation [18-20].
Under the same condition (X(p) only has poles at integer p values in the right half-plane), the

k>0m>0,
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kernels x(7) at small values of the conformal ratio have the expansion
x(1) = Z ChomT" I T .
km

The Mellin transform of the one-loop kernel is very simple:
X =—4Cr o X = —4Cp 2mid(p)] . (5.25)

More examples are collected in Table A, see App. A. One finds that the Mellin space kernels have a
rather simple form, while the corresponding anomalous dimensions can be quite involved. Also the
two-loop evolution kernels in Mellin space are given by rather compact expressions, see Eq. (A.3).
If the anomalous dimensions are written in terms of the splitting functions, Eq. (5.10),
inv

1
Yo (N) = —/ duw aV H{ (x) (5.26)
0

the corresponding Mellin-transformed invariant kernels can be calculated as

(k) I'(2p+2) /1 (k+) 1 (142 x\P
; =——_ H. — — 5.27
Xinv (P) T2(1+p) Jo da Hi, () zz \1—2 (fQ) ( )

(k+)

and similar for )ZEPUC) (p), with the replacement H. ™ (z) — Hi(fvf)(x). The kernels in 7 space can

nv mv
finally be obtained by the inverse Mellin transformation (5.23a). We found this two-step approach
to be the most effective for the three-loop case.

For the remainder function 5Hi(:f )(x) written in the form (5.21) one obtains in Mellin space

~ T(2p+2) [ B
SR = 77/ dt hy(t)tP~! 2
Xinv (p) 1—\2(1 + ) o :t( ) ) (5 8)
and for the simple ansatz in Eq. (5.22)
~ I'2p+2 m
5RED () =~ 20D T gt (5.20)

T2(1+ p) sin(mp)
Using Eq. (5.23a) we finally obtain the following expression for the corresponding contribution to
the invariant kernel

() =

HF T
iy i+ asZ(4-6 bi)| — H (5.30)

(1+4ax7/7)

We also need the expressions for the functions ¢ (5.14) in p- and 7-space defined as

F(0) E—M/Ol 4z 6x(7) — (1”) (%)pz/lﬁ(m)ﬂ o). (331)

I2(1+p) x2z \1—= o TT

One obtains

é1(p) = —7/ (psinmp),

bo(p) = o1 (p) 2

d2(p) = d1(p) " 7

Ba(0) = d1(p) (=25 +'0) = ).

Y - p (1 —Sp) ’ m’

Bulp) = d1(p) (5 + = [v'(0) - ]). (5.32)
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and

a(7) = —pr(7) + HO:({) = —In7 + Liz (—7/7) ,
i) st~ (2) =28 (=) 2 () ()
=27 — 2Lia (—7/7) - 2(Lig(7) ~ Lis(1)) +In7 <L12 %) % 7
pa(r) = —Bea(r) — () — Honon (T
= =5, (=) +5Ho (=2 ) + 3Huor (=2 ) — Howon (— =) (5.33)

where Hy, ,(z) are harmonic polylogarithms, see Ref. [29].
With these expressions at hand, our result for the invariant kernel (5.1) is complete. We obtain

4
X1 = 3" BEVgn(r) = 68 + PP [ (7/7) + 2] + xS ()

Xine (1) = D B () = G5+ oxi, (), (5.34)

mv lI]V

gi), C,ggi) can be found in

where the functions ¢ (7) are defined in Eq. (5.33), the coefficients B,(c
Table 1 and the parameters for 6xlii)( ) (5.30) are collected in Table 2.

For illustration, in Fig. 2 we compare the full NNLO invariant functions x(a) = ax™ +
a®>x® + a®x®) with the NLO, O(a?), and the LO, O(a), results for a typical value of the coupling
ag/m = 0.1 and, for definiteness, ny = 4. In the same plot the NNLO results using the exact
three-loop functions obtained by the numerical integration of Eq. (5.8) are shown by dots. One sees
that the accuracy of our parametrization is rather good. The remaining entries in the invariant
kernel are, for the same values ny = 4 and /7 = 0.1,

Ceusp = al' W (1 + 8.019a + 80.53a + ...) = al' M (1 4 0.2005 4 0.0503 + . ...) ,
xo = ax$” (1 —0.7935a — 141.3a2 + ...) = ax (1 — 0.0198 — 0.0883 + ...). (5.35)

6 From light-ray to local operators

Light-ray operators are nothing but the generating functions for the renormalized local operators
so that the mixing matrices for flavor-nonsinglet local operators can be calculated, in principle, by
evaluating the evolution kernels on the test functions of the form f(z1, z2) = 2725, cf. (2.2). The
results in this form are required for several applications, e.g. the calculation of moments of the
distribution amplitudes and generalized nucleon parton distributions using lattice QCD techniques
where the precision is increasing steadily and in some case already now requires NNLO accuracy [5].

Instead of using mixing matrices for the operators with a given number of left and right deriva-
tives, as in Eq. (2.2), it proves to be more convenient to go over to the Gegenbauer polynomial
basis. To the leading-order accuracy these operators diagonalize the evolution equations. Apart
from convenience, writing the results in this form will allow us to make explicit connection to the
formalism and notations used in [13] where the NLO expressions have been presented in this basis.
We will see that the local operator formalism has its own advantages, e.g., solving the conformal
constraint (2.21) is significantly easier in this language. Also the final step, reconstructing the
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Figure 2: Invariant functions Xiny (7) (left panel) and x5, (7) (right panel) for o /7 = 0.1. The LO result
(short dashes) is shown together with the NLO (long dashes) and NNLO (solid curves). The NNLO results
using exact O(a®) functions obtained by the numerical integration of Eq. (5.8) are shown by black dots for
comparison.

invariant kernels from the eigenvalues, can be completely avoided here, as they directly enter the
anomalous dimension matrices as diagonal elements.

Our goal is to translate the evolution kernels for light-ray operators into the anomalous dimen-
sion matrices for local operators of the form

, k>n. (6.1)

0., — 0
— kv3/2 21 Z2
Onk ((’Ll + 8Z2) Cn <621 T azz) O(Zl, 22)

Z1=2Z2 =0

Here k is the total number of derivatives and the operator of the lowest dimension for given n,
O, = Opyp, is a conformal operator (lowest weight of the representation of the SL(2) group).
Increasing k for fixed n corresponds to adding total derivatives.

The operators O, mix under the evolution

0 0 =
9 TN 0] = — o (O] 6.2
(15 P01 ) Ol = = 3= O (6:2)
The mixing matrix 7, is triangular and its diagonal elements are equal to the anomalous dimen-
sions
Yo =0 if 0/ >n, Ynn = Y - (6.3)

Since v, does not depend on k, the second subscript k is essentially redundant. In what follows
we will use a “hat” for the anomalous dimensions and other quantities in matrix notation

The light-ray operator (2.2) can be expanded in terms of the local operators defined in Eq. (6.1)

O(x;21,22) = Y > Dur(21,22) O (), (6.5)

n=0k=n
where the coefficients @, (21, 22) are homogeneous polynomials of two variables of degree k [30]:

on+3 D(n+2)
(k—n)!'T(n+k+4)

D1 (21,22) = wnk(S_(‘_O))kfnz?Q , Wk = 2 (6.6)
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These polynomials are mutually orthogonal and form a complete set of functions® w.r.t. the canon-
ical SL(2) scalar product (see, e.g., [30])

Lo ymt2) (6.7)

<(I)nk|q)n’k’> = 5kk’6nn’ | |(I)nk||2 = 6kk’5nn’ Wnkp;I 5 Pn D)

so that the local operators (6.1) can be obtained by the projection on the corresponding “state”
Ot = vt (BnklO(21,22)) = pu((S4)" " 25l O (21, 22)) - (6.8)

The (canonical) conformal spin generators S§:0 ) act as rising and lowering operators on this space

whereas S(()O is diagonal

(k + 2) (2’1, ZQ)
(k —-n—+ 1)(” +k+ 4)@nk+1(2’1, 22) s
— @nk,l(zl, ZQ) . (69)

S(()O)q)nk (21,22)

sYe
P21, 22)

S(_O)q)nk (21,22)

Thus the set of coefficient functions ®,, (21, z2) for &k = {n...oo0} forms an irreducible representa-
tion of the SL(2) algebra, which is usually referred to as the conformal tower.

Let A be a certain operator A acting on quantum fields. Its action can be realized by the
expansion in terms of local operators with “matrix elements” serving as expansion coefficients

(A, On] =Y ARE, O (6.10)

n'k’

Alternatively one can represent A by some integro-differential operator A acting on the arguments
21, z2 of the light-ray operator O(z1, 22) and, by means of the expansion (6.5), on the coefficient
functions,

[A O 21,22 Z(I)nk 21,22 ZAnn’ @) n'kl = [AO](Zl,ZQ) = Z[A(I)nk](21,22)0nk. (6.11)
n'k’ nk

Comparing the representations in Egs. (6.10) and (6.11) we see that the action of A on the coefficient
functions of local operators is given by the transposed matrix

[A®,1](21, 22) ZA D, (21, 22) - (6.12)
/k/

Using the orthogonality relation (6.7) one obtains
ARE 10|72 (@i (21, 22) [[APpr i) (21, 22)) = (nk|A|nE'), (6.13)

which is the desired conversion, for a generic operator, between the light-ray and local operator
representations.

The “matrix elements” Ak’; depend in general on four indices. However, if the operator A has a
certain (canonical) dimension, i.e [Séo), A] =daA, then its matrix elements are nonzero only if the
indices satisfy the constraint do = k — k’. This reduces the number of independent indices by one
and allows one to write Afl’fll, = Apn (k)0k i +da- If, in addition, the operator A is invariant under
translations, i.e. [S_, A] = 0, then it follows from Egs. (6.9) that the matrix elements Afl’j;, = A,
do not depend on the upper indices at all.

30ur notation in this section is adapted to facilitate the comparison with Ref. [13] and differs from the notation
used in [30]. In particular the functions @, defined in (6.6) correspond to ®, ;_, in [30].
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Constraints on the operator mixing in the light-ray operator representation that follow from

conformal algebra take the form (2.21)

(5, H(a)] = [H(a), 21 + 2] <B<a> + %H@) + [H(a), 212A(a)].

To translate this equation into the local operator representation, we define the matrices

amn (k) = (m, K|S |n, k — 1),
bin (k) = (m, k|z1 + 22|n, k — 1),
Ymn = (m, k[Hln, k),
Winn = (M, k|z12A|n, k — 1) .

The first two matrix elements are easily computed,

amn (k) = —(m —k)(m + k + 3)dpmn = —a(m, k)dpmn ,
bin (k) = 2(k — n)dmn — 2(2n 4+ 3)Vmn

where we introduced a discrete step function

9 1if m —n > 0 and even
. 0 else.

The remaining two are nontrivial and can be written as a perturbative expansion
s

@) =" +a*3? + a5V 4 a= 2

w(a) = awM + a?>w® 4 ...

Eq. (6.14) becomes in matrix notation

&7 = BBl (5(0) + 33(@ ) + 5. 9(a)]

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

Note that the matrices a(k) and B(k:) (6.16) depend in principle on the total number of derivatives
k. However, due to the fact that only diagonal elements depend on this parameter, the dependence

on k drops out in the commutator. Hence we can safely omit it.

In complete analogy to the light-ray operator formulation, this equation fixes the non-diagonal

(i.e. canonically non-invariant) part of the anomalous dimension matrix. Indeed, the commutator

on the Lh.s. of Eq. (6.18) takes the form

~

[@,5(a)mn = (—a(m, k) + a(n, k))ymn = —a(m, n)Ymn ,

so that the non-diagonal elements of the mixing matrix are given by [8]

P00 =6 {5051 (33 + @) + Flo. 51}
where
— M
M =5 )

In particular to the two-loop accuracy

~ ~1) (14 ~(1) ~
7(2)7ND = g {[’Y(l); b] (5’7(1) + ﬁO) + [7(1)5W(1)]} .

—920 —
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)

Here 4" is the well-known (diagonal) matrix of one-loop anomalous dimensions

2
(D = ~Wg 0 =26mCr (45 (n+1) — ————— — 3 6.23
Tmn = Tn r (451 ) (n+1)(n+2) ) (6.23)
and w(1) is the one-loop conformal anomaly
A — S1(m + 1) 2A )
(1) _ mn 1 mn
W = 4CF(2n + 3) a(m,n Y 6.24
w( Jal ) < (n+1)(n+2) a(m,n) (6.24)
where
2 —n—2
Ao =51 (PE2) -1 (PR pasin - n- D - S 1) (629
Collecting everything one obtains the two-loop anomalous dimension matrix:
(1) %(11)
@) 5@ 2 0 L 00 43y (B + 20D ) G + wih) L (6.26)
a(m, n) 2
The first few elements (0 <n <7, 0 <m <7) for N. = 3 are
0 0 0 0 0 0 0 0
0 23 0 0 0 0 0 0
W0 HE o0 0 0 0 0
8668 5241914
%(37)1 5?2 21 85012 80375 6620846 X X X
B 120%92 20 2610232 e 8336%254 X X
0 8505 U 7875 0 385875 0 0
_ 2054 ) 34243 " 2208998 0 718751707 0
14175 2025 70875 3087000
0 226526 )" 982399 0 7320742 0 557098751203
35721 55125 250047 2250423000
0O 0 O 0 0 0 0 0
0 2 0 0 0 0 0 0
2o ¥, 0 o 0 0 0
88 26542
—ny 1(0)4 z 10%4 2020 31(1)32 X X X (6.27)
i 1314 05 2(3)2 2085 171(2)476 X X
0 %% 0 165 0 99225 0 0
4108 " 242 )0 1804 0 3745727 0
2835 135 945 198450
0 2372 0 506 0 2860 0 36241943
1701 315 1701 1786050

Our expressions for the one-loop conformal anomaly and the two-loop anomalous dimension matrix
coincide identically with the results in [13].4

Expanding Eq. (6.20) to the third order, we obtain the three-loop nondiagonal anomalous
dimension matrix in the form

N _g{r@ BIGAY + o) + 52, 0]+ BD, DI + 1) + [<1>,w<2>]}. (6.28)

In addition to the already known quantities, this expression involves the matrix element of the
two-loop conformal anomaly (B.6),

w® = (m, k|z12AP |n, k—1) = 4[ 5 bl + Aw?) (6.29)

4The explicit relation to the notations in [13] is as follows: a(k)|[15 = 7—a( ) b(k)\[m B(k)7 w I3 = —w)
() _

and ’\7[13] = 2¢5(=1) A perturbative expansion in [13] is done in powers of as/(27), e.g., F(a) = Zi(2a)i:§'(i71>.
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where

AW®) = (m, k|21 n k= 1) . (6.30)

n

The explicit expression for the operator Af) (B.7) can be found in [16]. We have not found a

closed analytic expression for the matrix Aw%%, but the values for given m,n can be evaluated in
a straightforward way.
Splitting the result into different color structures,

Aw? = 2 Aw! + %AV/\VFA + BoCrAW'E

C

we get for the first few elements (0 <n <5, 1 <m <7)

0 0 0 0 0 0
— 0 0 0 0 0
0 — 3015 0 0 0 0
AwfA = -8 0 -8B 0 0 0 :
_ 7399 _ 724339
0 90 0 6000 0 0
_ 1070777 0 _ 12001 0 _ 123357091 0
16800 96 756000
0 22974677 o _ 101507627 0 _ 308384869
211680 588000 1481760
0 0 0 0 0 0
-0 0 0 0 0 0
1176553
P 1400959 10800 7327709 X X X
aw = ~ 9000 752(3)8391 ~ 36000 21110899581 X X ,
0 "~ 7617400 0 ~ 76860000 0 0
_ 68372343 0 _ 5045910661 0 _ 307457793929 0
5488000 21168000 740880000
0 _ 99911324293 0 _ 808931234579 0 _ 2942615103467
800150400 2222640000 5601052800
0 0 0 0 0 0
35 0 0 0 0 0
1855
. 0 18 0 0 0 0
AWM = 1B o 22 9 0 0 (6.31)
2891 146839
0 30 0 1000 0 0
6459 o 390313 () 2552407
100 2700 13500
0 202820 () 4798313 ;14365013
1764 24500 61740

Using these expressions and the diagonal matrix elements from [6] we obtain the full three-loop
anomalous dimension matrix

3 B3 =~(3)

. ~(3 ~(3
Y = ding{r” 1} A Fnr A i Ton, (6.32)

3(

where the off-diagonal matrices for V. = 3 and different powers of ny in the range 0 <n <7, 0 <
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m < 7 are given by the following expressions:

0 0 0 0 0 0 00
0 0 0 0 0 0 00
49024 0 0 0 0 0 00
36623912
'7213 = 3&?11 pA0T5 2359%891 X ! ! 0o
i oo 36450 0 0 0 00
0 83132?8723 0 3250260593918215031 0 0 00
281851388261 0 208052194247 0 21898269506047 0 00
7501410000 714420000 37507050000
0 7192640196053 0 159898280729473 0 220023775251709 ()
56710659600 525098700000 396974617200
0 0 0 0 0 0 00
0 0 0 0 0 0 00
28700
s 57(6)2188 X X X X o~
’753)> = 12(7)9108 e 264034828 X X X o~
nf — _ )
30375 0 . 273375 07 0 0 00
0 - 8148972553556245 0 - 5;%8;328 0 0 00
_ 54942827 0 _ 636248861 0 _ 77507831071 0 00
2500470 13395375 937676250
0 _ 1660976917 0 _ 7496172461 0 36406093529 () ()
67512690 156279375 472588830
0 0 0 0 0 0 00
0 0 0 0 0 0 00
B0 0 0 0 0 00
3172
7(712) - 1316 0 41356 0 0 0 00 .
' 25 gran O gs012
55(1)69 178505 10(7)93 11025 176(2339 000
893025 7260193 9450 683_)03 99225 515?359 00
0 6orais Y Sosss0 O 331as0 00

For completeness we also write the first few anomalous dimensions [6]:

7Y =0,

(s) 2560 11028416 (2560 334400 1792

TR T T 6561 _(27 st 2187)"f_ﬁ”f’

(5 2200 64486199 (4000 967495 2569

720 TR T T o6244 _(27 3t 4374)"f_79”f’

s 11512 245787905651 (5024 726591271 384277

75T 405 0T T 82012500 < 27 T 3733780 )"f 91125 '/

s 11312 550048023077 (5824 90842989 431242

4 =505 % 164025000 < 27 % T 303750 )”f 91125 '/

(s) 558806 10337334685136687 (45376 713810332043 160695142
% = To845 ** T T 2756768175000 _< 189 T 2187911250 >"f_ 31255875 1’

3y 185482 59388575317957639 (16432,  12225186887503 1369936511

%6 =615 °* T T14702763600000 _( 63 > 35006530000 ) 7 7250047000

() 5020814 46028648192099544431 (158128 349136571992501 38920977797

7 = 178605 T T 10718314664400000 _( 567 ot 945177660000) I~ 6751269000 '/
(6.34)

To visualize the size of the three-loop correction we consider the full NNLO nondiagonal part of
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the anomalous dimension matrix for ny = 4 in the same range (0 <n <7, 0 <m < 7):

0 0 0 0 0 0 00
0 0 0 0 0 0 00
11.1 + 179 0 0 0 0 0 00
5D _ g2 0 22.6 + 290a 0 0 0 0 00
—3.47—13.2a 0 24.5 4 297a 0 0 0 00
0 6.12 + 93.2a 0 24.3 4 291a 0 0 00
—5.94 — 49.3a 0 9.74 4 120a 0 23.5 + 282a 0 00
0 0.0764 + 35.6a 0 114+ 131a 0 22.6 + 272a 0 0
(6.35)

For realistic values of the strong coupling a = a/(4m) ~ 1/40 the three-loop contribution is on the
average about 30% of the two-loop result.

7 Conclusions

Using the two-loop result for the conformal anomaly obtained in Ref. [16] we have completed here
the calculation of the three-loop evolution kernel for the flavor-nonsinglet leading-twist operators
in off-forward kinematics. The result is presented in the form of the evolution equation for the
relevant nonlocal light-ray operator. In addition we derive the explicit expression for the three-loop
anomalous dimension matrix for the local operators of dimension D < 10, i.e., containing up to seven
covariant derivatives. In the latter form, our result is directly applicable to the renormalization of
meson distribution amplitudes and will be useful for lattice calculations of their first few moments.

Practical methods for the solution of the three-loop evolution equations in more general GPD
kinematics still have to be developed. Our results can, in principle, be translated to the evolution
equation for GPDs by a Fourier transformation, although algebraic complexities of this transfor-
mation may prohibit obtaining the analytic expressions. An alternative method using the Mellin
transformation in the conformal spin [31, 32] is very attractive and it has become the standard tool
in the NLO analysis of the DVCS [33-35] and deeply-virtual meson production [36, 37]. The exten-
sion of this technique to NNLO was considered in [33-35] in a special “conformal” renormalization
scheme. The transformation to the conventional MS scheme can be done using the results of our
paper, but it remains to be seen whether this works in practice without major complications. The
NNLO analysis of the DVCS data will, of course, require the extension of our results to flavor-singlet
operators.

Acknowledgments

This study was supported by Deutsche Forschungsgemeinschaft (DFG) with the grants MO 1801/1-2
and SFB/TRR 55.

Appendices

A Two-loop invariant kernel

The two-loop constant term X82) and the functions x> (1), X?H(VZ)(T) in the invariant kernel (3.13)

inv

are given by the following expressions:

c

X5 = %CF{BO (37 — 4n®) + Cp (43 — 47%) + Ni (26 — 872 + 72@,)} : (A.1)
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and

11 20 22 2 1 2 5
Xl(rzn)/(T) = 4CF{_?60 + CF |:1n7' — ? + %:| — FC (LIQ(T) + —]n2'f‘ — ;hl’?' — % + g) } 5
4
?n(f) (r) = —&<1n2f — 27'1117_') . (A.2)
The corresponding kernels in Mellin space take a rather simple form
Y2 (p) = 40w ro(2mi)5(—ip) — Crt+ =201
W) = 40k {ro2mital=ip) - —— (Cp 4 o2
PO =8P T 51 A3
v (P) . psimp(p )S1(p—1), (A.3)
where
S PR L ) B I C A
OE TR T T TN, \3 6 ) '

The following table of Mellin transforms in Tab. A is helpful to arrive at this representation:

x(@) || ~Zpsin(rp)R(p) V), n= N 41
_ 1
" : NOCESVE
T = P 1
S 8 =26+ Ty
FlnT pS1(p) (—1)"{25’_3(n) —45_51(n) +251(n) (25_2(71) + %) - Cs}
1. 5 n?+n+1 (=)™ 72
Sl Silp=1) B+ 1)?  n(ntl) <252(")+E)
' = w?
L12(T) *Sl(p) m <252(n) + E)

Table A: Mellin transformation (5.23) for several typical kernels and the corresponding contribu-
tions to the anomalous dimensions. Here Si(p) = ¢(p+ 1) — 9(1).

B X kernels

In this appendix we present explicit expressions for the kernels X(*) appearing in the operator of

similarity transformation (3.1).
The one-loop kernel X() is defined as a solution to the differential equation (3.7a)

[, XMV = 2,40, (B.1)
where AM is the O(a) conformal anomaly [15]
'oa
AW f(zy, 29) = —QC’F/ da(a + 1na) [f(zf‘g,zg) — f(z1,251)] - (B.2)
0
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The result reads
L In o
XD f (21, 20) = 20 (/ da—2 [2f(z1,z2) (2, 2) — f(zl,zg‘l)} T Axgg) , (B.3)
0

where AXSIEJ is an invariant kernel (solution of the corresponding homogeneous equation) which

has the following generic form (cf. (3.13)):
(1) Lo
AXiny f (21, 22) = Xof (21, 22) + Xl/ da— (Qf(zh z2) — f(219, 22) — f(21, 231))
0
1 a
4 [ da [ (Axr) + Axe(r)Piz) a4 (B.4)
0 0

The choice of AXE}JJ is a matter of convenience, e.g., it can be put to zero.
The two-loop kernel X(?) is defined as a solution to Eq. (3.7b)

1 1
[Ssro)aX(Q)} = 215AP) + {X(l), z1 + 22} (50 + QH(I)) +3 [X(l), 212A(1)} ; (B.5)
where [16]
1
2’12A(2) = 2’12Agr2) + Z [H(2), 21+ 22} . (BG)

The operator Af) takes the form
1 &
AP f(ar,z2) = [ da [ B[t ) + 0, O0Pra] [Flatn 1) — Fleban251)]
0 0

+ /Oldu /Oldt%(t) [f(z%,zg) — f(zl,zé‘f)} (B.7)

Explicit expressions for the functions w(ca, 3), w* (a, B) and () can be found in [16] (see App. C2).
The solution can be written as a sum of three terms corresponding to the three contributions
on the r.h.s. of Eq. (B.5),

X® =x® 4 x@ 4 x@ (B.8)
where

1 2
Xi =g (T + BT + Cp (1 = %) T + xR + X,

1
i =00 (3 1),

1 1
x{ =3 {Axg{},xﬂq - 5X®2. (B.9)

The operators T, T(21) are given in App. C and XZ, X(22) are defined as solutions to the
following equations:

(S, X@D) = XD 2y + 2], [S19, X(22)] = [2,A0, XM, (B.10)

One obtains

1
X(2’1)f(21,22) — QCF{_/ do (g(l —Xl)lnd—i—lna) [2f(2:1,212) — f(27%, 22) — f(zl,zgl)}
0 (6%

+ /01 do /Oa B In(1—a—p) (AX(T) + AXP(T)Pm)f(z;g, zgl)} : (B.11)
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where X7, Ax(7), xp(7) are the entries in (B.4), and

X(2 2) Zl, ZQ

+ (90 + 00(3) et . (B.12)

1
Ii(a) = —j(lnalnd+2alna+2dln6¢) :
o
. . . . 1 _ 2
Po(ar) = 2(L13(a) —Lis(a) —Ina Lisg(@) + Inw ng(a)) + o Inalna+ o Ina, (B.13)

~ Y Liy@) - %) - %124 2 v (34 L a—a%ma—
ﬂ(a)fa(ng(a) In a) 2aln a+<a a)lnalna <3+a>lna (o a)alna 2.

The operators ng, X%) which originate from the two-loop anomaly Af) are rather involved. We

obtain
(2) ! U ! do au au
XK fley, )= [ du | — [s(c) — (1)] [Qf(zlsz) — [(21%' 22) — f(21,231")
0 0
1
+ [ dagin(a) 24, 22) - Flat) — Fon,2)], (B.14)
0
where () is one of the functions entering the two-loop conformal anomaly (B.7) and

1 1 1
EIA(a):2CI2; [ Lis(@) + Ina Lis(a )—|—glngd—i—Lig(a)—i—alnalnd—zand

3o Cr
— Ina na}—i—

« c

(1 o+ — lna) (B.15)

Finally

(2) _ ! “ F 1 A AP a B
Xip f(z1,22) = C’F/O da ; dB|CF &pla, B) + A (5113 (o, B) + & (avﬂ)]p12) [ (212, 251)
(B.16)

where

i (a, B) = {ng( ) — Lis (1 - %) - é {Lig(a) — Liy <%)] +In7 Liy (1 - %)

1+aln541nﬂ_+(oz<—>ﬂ)],

+
(o, B) = Q[Lig(ﬂ_) — 2Li3(8) — Lis (1 - g) — Lis (E) +1In7 Liy ( - é) +In <§) Liz(B)

é (ng(ﬂ) — Liy (g)) P Lio(8) + %mam@ +omBB+ (o< ﬂ)} (B.17)
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and
th(a,f)=In(1—a—-B)In(r7) — ~n*(1 —a— B)+3Inalns —Inalnj

+ |:6L13(O_é>10L13(Q>+21H04L12( )+ 6InaLiz(a )+lnaln&(lna+ln@72)

1 1 O 2
—4 JrOé(Lig(@)fLig(l))——111364—g1n264+ Ina— =Ina+ — lna+15lna
3 o 2 o
+@Hﬂﬁ (B.18)
In all expressions 7 = g—g

C T kernels
The T®*) operators, k = 1,2,... are defined as solutions to the differential equation (3.10)
(99, T®] = [HE) 2, + 2, (C.1)

where H*) are the S L(2) invariant parts of the evolution kernel which have the general decompo-

mv

sition as shown in Eq. (3.13). This equation can easily be solved:

L' alna
T(k)f(zlv ZQ) - 7F8€1)sp/ do o (f(z?‘Qv ZQ) + f(zlv Zgl))

1 o
+ [ Lo [ agm =g () X @R Fe ). (€2

where the functions Xl(m)/, xEPH(V) for one loop, k = 1, and two loops, k = 2, are given in Egs. (3.15)
and (A.2), respectively.

The 'H‘§2) kernel is defined as the solution to
(59,137 = [T, 21 + 2], (C.3)

Using the explicit expression for T(Y) = Tl(;\)/ (2.13) one obtains after a short calculation

1 a?a
'H‘§2)f(z1,22):—%/0 daa 2 a(f(212,22)+f z1,221 /da/ dﬁln (1—a— 6)f(z12,221)
(C4)

We stress again that Eqgs. (3.10) determine the T-kernels up to the SL(2) (canonically) invariant

parts. Our choice in (C.2) and (C.4) corresponds to the following condition on the eigenvalues of
these kernels: Let 7.(k)( l(m),

e (corresponding contri-

N) be the eigenvalues of the invariant kernels H
butions to the anomalous dimensions),

H(k)zu = %(r]fv) (N)Zu (C.5)

mnv

It is easy to check that eigenvalues of the kernels defined in (C.2) and (C.4) are given by the
following expressions:

d &
T =TOW),  THW) = =/l (),
1 d?
TP =T N2, TP (V) = 5 T (V). (C.6)

This choice is convenient for our present purposes as it leads to a certain symmetry of the three-loop

invariant kernel Hl(m), that allows one to obtain somewhat simpler expressions, see Sec. 5.
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