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Abstract

It is generally accepted that in order to describe the dynamics of relativistic par-
ticles in the laboratory (lab) frame it is sufficient to take into account the relativistic
dependence of the particles momenta on the velocity. This solution of the dynamics
problem in the lab frame makes no reference to Lorentz transformations. For this
reason they are not discussed in particle tracking calculations in accelerator and
plasma physics. It is generally believed that the electrodynamics problem can be
treated within the same ”single inertial frame” description without reference to
Lorentz transformations. In particular, in order to evaluate radiation fields arising
from charged particles in motion we need to know their velocities and positions
as a function of the lab frame time t. The relativistic motion of a particle in the
lab frame is described by Newton’s second law ”corrected” for the relativistic de-
pendence of momentum on velocity. It is assumed in all standard derivations that
one can perform identification of the trajectories in the source part of the usual
Maxwell’s equations with the trajectories ~x(t) measured (or calculated by using
the corrected Newton’s second law) in the lab frame. This way of coupling fields
and particles is considered since more than a century as the relativistically correct
procedure. We argue that this procedure needs to be changed, and we demonstrate
the following, completely counterintuitive statement: the results of conventional
theory of radiation by relativistically moving charges are not consistent with the
principle of relativity. In order to find the trajectory of a particle in the lab frame
consistent with the usual Maxwell’s equations, one needs to solve the dynamics
equation in manifestly covariant form by using the coordinate-independent proper
time τ to parameterize the particle world-line in space-time. We show that there
is a difference between ”true” particle trajectory ~x(t) calculated or measured in the
conventional way, and covariant particle trajectory ~xcov(t) calculated by projecting
the world line to the lab frame (t(τ), x1(τ), x2(τ), x3(τ)) and using the lab time t to
parameterize the trajectory curve. In other words, for a relativistic motion acceler-
ated along a curved trajectory, the results of conventional particle tracking differ
from those of covariant particle tracking. The difference is only due to a choice of
convention, but only ~xcov(t) is consistent with the usual Maxwell’s equations. This
essential point has never received attention in the physical community. As a result,
a correction of the conventional synchrotron-cyclotron radiation theory is required.

Preprint submitted to 6 April 2017



1 Introduction

The special theory of relativity is based on a space-time with pseudo-
Euclidean geometry. The principle of relativity can in fact be seen as a
consequence of the space-time geometry. To simplify computations one of-
ten works with the components of vectors and tensors rather than with
geometric objects. Each Lorentz frame (i.e. inertial frame with a Lorentz
system of coordinates) gives a coordinate dependent representation of any
geometric object or relation, and transformation from one Lorentz frame to
another are sometimes needed. These coordinate transformations take iner-
tial coordinate system onto inertial coordinate system and keep the form of
laws of nature.

It is generally accepted that in order to describe the dynamics of relativis-
tic particles in a single inertial frame, there is no need to use the laws of
relativistic kinematics. It is sufficient to take into account the relativistic
dependence of the particles momenta on the velocity. With this correction
factor properly taken into account, Newton’s laws are in full agreement
with the principle of relativity. Theoretical treatment of relativistic particle
dynamics in the laboratory (lab) reference frame involves only corrected
Newton’s second law. Note that this solution of the dynamics problem in
the lab frame makes no reference to Lorentz transformations, and this is a
reason why they are not discussed in particle tracking calculations involved
in accelerator and plasma physics.

It is generally believed that the electrodynamics problem can be treated
within the same ”single inertial frame” description without reference to
Lorentz transformations (see standard textbooks, e.g. [1, 2]). When the lab
frame is chosen with a Lorentz system of coordinates in it, then the usual
Maxwell’s equations apply, and all results of classical electromagnetism are
recovered in that frame. It is assumed in all standard derivations that usual
Maxwell’s equations and corrected Newton’s second law can explain all
experiments that are performed in a single inertial frame, for instance the
lab frame. In particular, in order to evaluate the radiation fields arising from
a collection of sources we only need to specify velocities and positions of the
charged particles involved as a function of the lab frame time t. In its turn,
the relativistic motion of these particles in the lab frame is described by the
corrected Newton’s second law. This coupling of Maxwell’s equations and
the corrected Newton’s equation is commonly accepted as useful method in
accelerator and plasma physics and, in particular, in analytical and numer-
ical calculations of synchrotron and cyclotron radiation properties (see e.g.
[3, 4]). Such approach to relativistic dynamics and electrodynamics usually
forces the physicist to believe that the description of radiation by a relativis-
tic charged particle is possible without detailed knowledge of the theory of
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relativity.

In our previous publications [5, 6, 7, 8] we argued that there is a funda-
mental, surprising disagreement between this commonly accepted way of
coupling electrodynamics and dynamics in the lab frame and the principle
of relativity. In particular, we argued that it leads to a strong qualitative dis-
agreement between conventional results of synchrotron-cyclotron radiation
theory and experiments. In other words, we support the following coun-
terintuitive statement: in the lab reference frame there is incompatibility
between, on the one hand, the trajectory of a charged particle ~x(t) calculated
by using the corrected Newton’s second law and, on the other hand, the
usual Maxwell’s equations.

This incompatibility is only due to an inconsistent choice of conventions
used in the solution of dynamics and electrodynamics problem. In order to
find the particle trajectory compatible with the usual Maxwell’s equations
in the lab frame, one needs to solve the dynamics equation in manifestly
covariant form by using the coordinate-independent proper time τ to pa-
rameterize the world-line that describes the particle evolution. As we will
see, the trajectory ~xcov(t), which is compatible with the usual Maxwell’s
equations can be found by using the manifestly covariant dynamics equa-
tion. From the lab frame it is viewed as the result of successive Lorentz
transformations between the lab frame with Lorentz coordinates and the
co-moving sequence of Lorentz reference frames. The composition law that
follows from group properties of Lorentz transformations is used to ex-
press the conditions of co-moving sequence of frames tracking a particle.
The motion of a particle in the lab frame coordinates is included in the
functions (t(τ), x1(τ), x2(τ), x3(τ)), which basically are, at any τ, components
of a four-vector describing an event in a space-time. Thus, if one chooses
the lab time t as a parameter for the trajectory curve, after inverting the
relation t = t(τ) the space position vector of a particle in the lab frame can
be assumed to have the functional form ~xcov(t). We will see that there is a
difference between conventional particle trajectory ~x(t), calculated by solv-
ing the corrected Newton’s equations, and the covariant particle trajectory
~xcov(t), calculated by projecting the world line onto the lab frame. This es-
sential point has never received attention in the physical community. As a
result, the difference between conventional particle trajectory and covariant
particle trajectory seems to have been almost entirely overlooked by many
physicists including J. Schwinger [9], who developed results of synchrotron
radiation theory by using the usual Maxwell’s equations and ~x(t), instead
of ~xcov(t).

The statement that there is difference between the two trajectories ~x(t) and
~xcov(t) does not mean that the conventional trajectory ~x(t) is incorrect. Within
the frame of dynamics only, both trajectories describe correctly the same
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physical reality. Different expressions for the particle trajectories are differ-
ent only because they are based on the use of different clocks synchronization
conventions. Whenever we have a theory containing an arbitrary conven-
tion, we should examine what parts of the theory depend on the choice of
that convention and what parts do not. We may call the former convention-
dependent, and the latter convention-invariant parts. Clearly, physically
meaningful results must be convention-invariant. We state that the differ-
ence between the two trajectories ~x(t) and ~xcov(t) is convention-dependent
and has no direct physical meaning. In fact, once more, different expressions
for the particle trajectory in a single (e.g. lab) reference system arise from the
use of different synchronization conventions, and different types of clocks
synchronization simply provide different time coordinates that describe the
same reality. In particular, we cannot specify any experimental method by
which simultaneity between two events in different places can be decided.
In other words, the determination of simultaneous events imply the choice
of a convention. In a similar fashion, in order to measure the speed of a par-
ticle, one first has to synchronize the clocks that measure the time interval
as the particle travels between two given points in space. Therefore it can be
said that, consistently with conventionality of simultaneity, the value of the
particle speed is also a matter of convention and has no definite objective
meaning.

The conventional nature of distant simultaneity in special relativity is not to
be confused with the relativity of simultaneity. Clearly, the conventionality
of simultaneity within a single inertial frame is quite distinct from the rela-
tivity of simultaneity. The theory of relativity showed that it is meaningful to
discuss about the simultaneity of events only relatively to a given reference
frame. However, it should be clear that even within a single reference frame
the definition of simultaneity of events is matter of convention [10].

The usual non-covariant approach leading to the calculation (or the mea-
surement) of the particle trajectory ~x(t) in the lab frame is understood to
deal not with geometric, tensor quantities in 4D space-time, but rather with
quantities from the ”3+1” space and time. In other words, in the lab frame,
Minkowski space-time ”splits up” into three-dimensional space and one-
dimensional time, yielding a separate ”3+1” space and time. Within the lab
frame, this looks precisely the same as in Newtonian kinematics: there is
an Euclidean three-space, a global time t, and the Newton’s second law of
motion, albeit corrected for the relativistic dependence of momentum on
velocity [10]. In the lab ”3+1” space and time we cannot associate the trajec-
tory of a charged particle with ~xcov(t). For instance, a trajectory measurement
would give the usual noncovariant result ~x(t). In this sense, in the lab frame
the function ~xcov(t) has only a formal significance. The covariant trajectory
must be used only because we need to solve electrodynamics problem based
on the use of Maxwell’s equations in their usual form.
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One might choose to use the noncovariant trajectory ~x(t), but the price to
pay would be a change in the form of Maxwell’s equations. In fact, later on
we will see that there are two satisfying ways of coupling fields and par-
ticles. The first, Einstein’s way, consists in using relativistic kinematics for
the description of the particle evolution and the usual Maxwell’s equations.
The second way consists, instead, in using the noncovariant trajectory ~x(t)
together with a ”translation” of Maxwell’s equations to the ”3+1” space and
time convention, which we will call everywhere in this paper, the ”absolute
time convention”. We will show that the transformation of Maxwell’s equa-
tions to the absolute time convention can be found by means of the metric
tensor gµν, which has in this case non-diagonal components.

If one chooses the second way, one is faced with the problem of solving a
modified version of Maxwell’s equations: in the ”3+1” space and time we
have much more complicated field equations to deal with. To get around this
difficulty, we observe that these equations can always be simplified. One
only needs to make a change of time and spatial variables. Transforming
to new variables leads to the usual Maxwell’s equations. However, in these
new variables the non-covariant trajectory x(t) is automatically transformed
to the covariant trajectory ~xcov(t) that is the trajectory compatible, as we
discussed above, with the usual Maxwell’s equations. The bottom line is
that the change of variables in the ”3+1” space and time is nothing but a
Lorentz transformation, which is now, however, only used as a mathematical
device yielding the solution of the electrodynamics problem with minimal
effort.

To summarize our arguments, we can say that the usual way of coupling
fields and particles in the ”3+1” space and time has been considered for more
than a century as the relativistically correct procedure to follow. Textbooks
on electrodynamics describe how the properties of radiation by relativistic
moving charges can be calculated by using the lab frame, without any
reference to Lorentz transformations, and coupling the usual Maxwell’s
equations with the corrected Newton’s second law that yield the trajectory
~x(t).

At variance, in sections 2, 3 and 4 of this paper we explicitly challenge this
procedure, showing that the usual Maxwell’s equations should be coupled
instead to the covariant trajectory ~xcov(t). In those sections we also present a
practical case study for illustrating the difference between conventional and
covariant trajectories. In section 5 we discuss the aberration of light effect
as an example illustrating the electrodynamics of moving charges. We have
chosen this particular example because it is relatively simple, although it
can be seen as a prototype that can be generalized for the description of
all radiation phenomena. In section 6 we analyze our theory in connection
with experiments involving relativistic electrons and, finally, in section 7 we
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come to conclusions.

2 Error in coupling fields and particles within a single inertial frame

As discussed in the introduction, it is generally accepted that in order to
describe the dynamics of relativistic particles in the lab reference frame,
which we assume inertial, one only needs to take into account the relativis-
tic dependence of the particles momenta on the velocity. In other words, the
treatment of relativistic particle dynamics involves only a corrected New-
ton’s second law. In a fixed lab frame, we consider an electric field ~E and a
magnetic field ~B. They interact with a charged particle in accordance with

d~p
dt

= e
(
~E +

~v
c
× ~B

)
,

~p = m~v
(
1 −

v2

c2

)−1/2

, (1)

where the particle rest mass, charge, and velocity are denoted by m, e, and ~v
respectively. The Lorentz force law, plus measurements on the components
of the acceleration of test particles, can be viewed as defining the compo-
nents of electric and magnetic fields. Once the field components are found
in this way, they can be used to predict the accelerations of other particles
[11].

Thus, within a single inertial lab frame there is an Euclidean three-space, a
global, absolute time t, and the corrected Newton’s second law of motion.
Notice that the solution of the dynamics problem in the lab frame does not
involve any Lorentz transformation. In other words, the laws of relativistic
dynamics within the lab frame, where Minkowski space-time ”splits up”
into three-dimensional space and one-dimensional time, is very simple:
aside for a straightforward correction, it looks precisely the same as in
Newtonian dynamics.

Going to the electrodynamics problem, the differential form of Maxwell’s
equations describing electromagnetic phenomena in the same inertial lab
frame (in cgs units) is given by the following expressions:

~∇ · ~E = 4πρ ,
~∇ · ~B = 0 ,

~∇ × ~E = −
1
c
∂~B
∂t
,
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~∇ × ~B =
4π
c
~j +

1
c
∂~E
∂t
. (2)

Here the charge density ρ and current density ~j are written as

ρ(~x, t) =
∑

n

enδ(~x − ~xn(t)) ,

~j(~x, t) =
∑

n

en~vn(t)δ(~x − ~xn(t)) , (3)

where δ(~x−~xn(t)) is the three-dimensional Dirac δ-function, while mn, en, ~xn(t),
and ~vn = d~xn(t)/dt denote respectively rest mass, charge, position, and veloc-
ity of the n-th particle involved in the electrodynamics process. To evaluate
radiation fields arising from the external sources in Eq. (3), we need to know
the velocity ~vn and the position ~xn as a function of the lab frame time t. As
discussed above, it is generally accepted that the equations of motion, which
describe how the coordinates of the charged particles change with the lab
time t, are described by the corrected Newton’s second law Eq. (1).

In previous work [5, 6, 7, 8] we argued that this way of coupling fields and
particles in the lab frame, which is considered in all standard treatments, is
surprisingly incorrect. We pointed out that only a solution of dynamics and
electrodynamics equations in manifestly covariant form results in the correct
coupling between fields and particles. In the next sections we explain our
reasons in support to the following, completely counterintuitive statement:
in the relativistic limit, the usual algorithm for solving Maxwell’s equations
in the lab frame, i.e. with current and charge density created by particles
moving along the trajectories ~xn(t), described by Eq. (1), is at odds with the
principle of relativity.

3 Dynamics. Space-time geometry

A geometrical view of physics often yields great conceptual clarity. Space
and time form a unique four-dimensional continuum of events with pseudo-
Euclidean geometry. This is the essence of the special theory of relativity, and
has consequences on all physical phenomena. In particular, all physical laws
expressed in terms of geometric objects automatically include the principle
of relativity. Physical laws, and in particular the dynamics equations, can
be expressed as tensor equations in Minkowski space-time. These equations
relate geometric objects and do not need coordinates to be expressed. For
example, the evolution of a particle can be described in terms of a world line
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σ(τ), and a 4-velocity u = dσ(τ)/dτ that have a meaning independently of any
coordinates system. The coordinate-independent proper time τ is a suitable
parameter describing the evolution of physical systems in the relativistic
laws of motion. Similarly, in geometric language, electromagnetic field is
described by second-rank, antisymmetric tensor F, which also requires no
coordinates for its definition. This tensor produces a 4-force on any charged
particle given by mdu/dτ = eF · u.

When coordinates are chosen, one may work with components, instead of
with geometric objects. Relying on the geometric structure of Minkowski
space-time, one defines the class of inertial frames and adopts a Lorentz
frame with orthonormal basis vectors. Within the chosen Lorentz frame,
Einstein’s synchronization of distant clocks and Cartesian space coordi-
nates are enforced. Hence, in Lorentz coordinates we have the well-known
diagonal Minkowski metric tensor gµν = diag(1,−1,−1,−1). Then, as is also
well-known, any two Lorentz frames are related by a Lorentz transfor-
mation, which preserves the metric tensor components, so that the law of
motion becomes

m
d2xµ
dτ2 = eFµν

dxν
dτ

, (4)

in any Lorentz coordinate system [11]. It is extremely important to under-
line here that Einstein’s synchronization of distant clocks is conventionally
chosen in any Lorentz frame, when writing down Eq. (4) and that this choice
affects the fourth component of Eq. (4). The importance of this observation
will be clear later on.

We now consider a relativistic particle, accelerating in a given inertial frame
(to fix ideas it can be the lab frame), and we analyze its evolution within
the framework of special relativity. Investigation of the time dependence is
best performed in the particle’s rest frame where, by definition, the parti-
cle remains still. However, the problem of constructing frames associated
with non-inertial motions is complicated in special relativity. If a relativistic
particle accelerates in an inertial frame, its rest frame is non-inertial, and
Lorentz transformations cannot be used to map observations made in the
rest frame, back to the laboratory frame. To get around that difficulty, one
introduces an infinite sequence of comoving frames. At each instant, one
picks a Lorentz frame centered on the particle and moving with it. In this
frame the particle is at rest for an instant. Then, an instant later, the par-
ticle’s velocity changes to a new value and observation of the particle is
performed with the help of another Lorentz frame of the sequence, centered
on the particle and moving with it at the new velocity. The coordinates sys-
tems associated with the comoving sequence are assumed to be associated
to an orthonormal tetrad of basis vectors. The comoving sequence of frames

8



just described can be constructed by choosing, for each value of τ along
σ, an inertial system whose origin coincides with σ(τ) and whose x′0-axis
is tangent to σ at σ(τ). Therefore, the zeroth basis vector e′0 is identical to
the 4-velocity u. In the tetrad basis e′i(τ) the particle has proper 4-velocity
u = (c, 0, 0, 0) and 4-acceleration a = (0, a1, a2, a3) [10, 11, 12].

The next step consists in relating the basis vectors of the tetrad e′0(τ), e′1(τ),
e′2(τ), e′3(τ) at any proper time τ to the basis vectors e0, e1, e2, e3 of the lab frame
by a Lorentz transformation e′µ(τ) = Λν

µ(τ)eν. Therefore, the basis vectors at
two successive instants must also be related to each other by a Lorentz
transformation. In the lab frame one thus has a coordinate representation
of the world-line as σ(τ) = (t(τ), x1(τ), x2(τ), x3(τ)). The covariant particle
trajectory ~xcov(t) is calculated by projecting this world-line to the lab frame
basis and using the lab time t as a parameter for the trajectory curve.

We claim, and this claim is quite central for our reasoning, that there is
a fundamental reason for a difference between the non-covariant particle
trajectory ~x(t) calculated by solving corrected Newton’s equations and the
covariant particle trajectory ~xcov(t) calculated by projecting world line onto
the lab frame basis as indicated above. As just seen shown, the trajectory
~xcov(t) is viewed from the lab frame as the result of Lorentz transformations
Λν
µ(τ) that depend on the proper time. As a result, the composition law that

follows from the group property of the Lorentz transformation is used to
express the conditions of co-moving sequence of frames tracking a particle.
In contrast to this, ~x(t) follows from the solution of the corrected Newton’s
equations and does not include Lorentz transformation composition law.

We can flesh out more the previous arguments, and discuss the difference
between the trajectories ~x(t) and ~xcov(t) by means of an explicit example. We
will see how, depending on the way we calculate the trajectory, a composi-
tion of Lorentz transformations will be involved (or not) yielding a Wigner
rotation contribution (or not) to the trajectory seen from the lab frame. In
order to do so, we first need two introductory remarks.

First, as is known, the composition of non-collinear Lorentz boosts does
not results in a different boost but in a Lorentz transformation involving
a boost and a spatial rotation, the Wigner rotation [13, 14, 15]. Suppose
that our particle moves along an arbitrary accelerated world-line. As just
discussed, the basis vectors of the tetrad defining the instantaneously co-
moving frames are related to the basis vectors of the lab frame by a Lorentz
transformation depending on the proper time i.e. e′µ(τ) = Λν

µ(τ)eν. The most
general Lorentz transformation Λν

µ(τ) can be uniquely separated into a pure
Lorentz boost followed by spatial rotation. Therefore, as seen from the lab
frame, the space-like vectors of the tetrad (those with indexes µ = 1, 2, 3)
rotate relative to the Cartesian axes of the lab frame. The expression for an
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infinitely small rotation angle is given by [16]

δΦ =

(
1 −

1
γ

)
~v × d~v

v2 =

(
1 −

1
γ

)
δη , (5)

where d~v is the vector of an infinitely small velocity change due to acceler-
ation, Φ is the Wigner rotation angle of the space-like vectors of tetrad, and
η is the orbital angle of the particle in the lab frame. From Eq. (5) follows
that in the ultra relativistic limit γ −→ ∞, space-like vectors of tetrad rotate
exactly as the velocity vector ~v.

Second, in order to analyze the finite size of a relativistic object one can
extend the concept of ”instantaneously comoving frame” or ”infinitesiemal
coordinate system” to a ”local coordinate system ” covering a finite domain
[11]. Consider, as before, the world-line σ(τ). For a fixed value of τ, the
three space-like basis vectors ~e′1(τ), ~e′2(τ), ~e′3(τ) are applied at the event σ(τ):
these basis vectors span over a space-like hyperplane. The typical point of
this hyperplane can be represented in the form ~X′ = X′1~e

′
1(τ) + X′2~e′2(τ) +

X′3~e′3(τ), where ~X′ is the separation vector from σ(τ). Here the three numbers
X′1,X

′

2,X
′

3 play the role of Euclidean coordinates in the hyperplane. We then
assign to each point on the spatial hyperplane the coordinates X′0,X

′

1,X
′

2,X
′

3,
with X′0 = τ. These ”local coordinates” approximate a Lorentz frame in the
immediate neighborhood of the accelerated observer.

Having finished with the introductory remarks, we can now turn our at-
tention to our concrete physical example on the difference between ~x(t) and
~xcov(t), which is actually involving a Wigner rotation. Such effect may be
of practical importance in the analysis and interpretation of experiments
with ultrarelativistic modulated electron bunch at XFELs. An ultrarelativis-
tic electron bunch in an XFEL modulated at nm scale is a macroscopic (in
the 10 µm scale) finite-size object. Therefore one needs a local coordinate
system, rather than an instantaneously co-moving frame to follow the object
evolution. With the help of the local coordinate system described above we
can use Eq. (5) to consider the case when the modulated ultrarelativistic
electron bunch is kicked by weak dipole field. The bunch velocity is per-
pendicular to the wavefront of the modulation upstream of the kicker. If
the velocity of the modulated electron bunch is close to the velocity of light,
Lorentz transformations work out in such a way that the rotation angle of
the modulation wavefront δΦ coincides with the angle of rotation of the
velocity δη. Relativistic kinematics shows the surprising effect that the ori-
entation of the modulation wavefront is readjusted along the new direction
of the electron bunch. In other words, when the evolution of the electron
bunch modulation is treated according to relativistic kinematics, the ori-
entation of the modulation wavefront in the ultra-relativistic asymptotic is
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always perpendicular to the electron bunch velocity. This is plausible if one
keeps in mind that the wavefront of a laser pulse behaves precisely in the
same way: during the motion along a curvilinear trajectory, the wavefront
of the radiation is always perpendicular to the direction of motion of the
laser pulse.

In contrast, conventional particle tracking, which is performed with the
corrected Newton’s second law Eq. (1), yields the result that a kick results in
the change in the trajectory of the electron bunch, but the orientation of the
modulation wavefront remains as before. In other words, the kick results in
a difference between directions of the electron motion and the normal to the
wavefront. Within the lab frame, the particles motion follows the corrected
Newton equations, and there is no Wigner rotation.

This serious discrepancy between the results ”conventional” and ”covari-
ant” particle tracking naturally brings up the question: which of these re-
sults is the correct one? The answer is sophisticated. Within the framework
of dynamics only, both results describe correctly the same physical reality.
The expressions for the particle trajectories are different only because they
are based on the use of different clock synchronization conventions. The
wavefront of the modulated electron bunch can be considered as a plane
of simultaneous events. Establishing simultaneous events is only a matter
of convention and the orientation of the wavefront of an ultra relativistic
electron bunch has no definite objective meaning. In contrast to this, the
direction of electron bunch propagation downstream the kicker obviously
has a direct objective meaning and does not depends on the choice of clock
synchronization.

In particular notice that while Eq. (4) was explicitly given together with
Einstein’s synchronization of distant clocks, Eq. (1) was not. In the next
sections we will demonstrate the incompatibility between the ”3+1” or
”conventional” manner of performing particle trajectory calculations, based
on Eq. (1), and the standard approach to electrodynamics, which deals with
the Maxwell’s equations in their usual forms.

4 Electrodynamics. Space-time geometry

In a coordinate-free formulation of electrodynamics, the electromagnetic
field is represented by an electromagnetic tensor field F = F(x) on the space-
time. The source of the field is the electromagnetic current j(x), which is a
four-vector field. Written in geometric language, the electrodynamics laws
are
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5 ·
∗ F = 0 ,

5 · F = 4π j , (6)

where the gradient operator 5 is also four-vector and where ∗F is the dual
tensor. In a Lorentz coordinate system (∗F)αβ = (1/2)εαβγδFγδ where εαβγδ is
the Levi-Civita pseudo-tensor [11].

The geometric equations Eq. (6) are represented in the lab frame (with
Lorentz coordinates on it) as the usual Maxwell’s equations Eq. (2). The
charge and current densities Eq. (3) must be written as av4-vector current
by representing the charge world-line in the lab frame:

xµ(τ) = [ct(τ), x1(τ), x2(τ), x3(τ)] , (7)

and integrating over the proper time with an appropriate additional delta
function. One thus obtains [17]

jµ(x) = ec
∫

dτuµ(τ)δ4(x − x(τ)) , (8)

where the charge 4-velocity uµ(τ) and the 4-vector coordinate xµ(τ) are so-
lutions of the covariant dynamics equation Eq. (4). The integration over the
proper time τ leads to

jµ(~x, t) = euµ(t)δ3(~x − ~xcov(t)) . (9)

We thus obtain

ρ(~x, t) = eδ(~x − ~xcov(t)) ,
~j(~x, t) = e~vcov(t)δ(~x − ~xcov(t)) , (10)

where ~vcov = d~xcov/dt.

In the previous sections we showed that ~xcov(t) and ~x(t) differ from each
other. The central point of our criticism is that in all standard derivations
the trajectories in the source part of the usual Maxwell’s equations Eq. (2)
were identified with the trajectories obtained in the ”3+1” manner i.e. with
the use of the corrected Newton’s second law Eq. (1). In other words, ~x(t)
was always used, instead of ~xcov(t) as it must be. We claim that a solution of
Maxwell’s equations in their usual form based on the results of conventional
particle tracking ~x(t) cannot be used for the explanation of experimental facts
and that Maxwell’s equations Eq. (2) are compatible, instead, with results
of covariant particle tracking Eq. (10).
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5 The effect of aberration of light as an example

In this section we will consider an application of our way of coupling fields
and particles in the context of the effect of aberration of light, that is a
change in the direction of light propagation ascribed to boosted sources.
In particular we will expand on our previous claim by showing that the
effect of aberration of light cannot be explained on the basis of conventional
coupling fields and particles.

Let us consider the case of radiation emitted by macroscopic time-varying
charge and current densities. At a more fundamental level, they are just
moving charges. We consider a plane full of these sources, all oscillating
together, with their motion in the plane, such that they all have the same
amplitude and phase.

According to the principle of relativity, usual Maxwell’s equations Eq. (2)
can always be used in any inertial frame where sources are at rest. The same
considerations apply when sources are moving in non-relativistic manner.
In particular, when oscillating, charged particles emit radiation, and in the
non-relativistic case, when the velocities of oscillating charges vn � c, dipole
radiation will be generated and described with the help of the Maxwell’s
equations in their usual form, Eq. (2). Here we will limit our consideration
to the case of sources moving in a non-relativistic way.

Maxwell’s equations can be manipulated mathematically in many ways and
be casted in a form more suitable for certain applications. For example, from
Maxwell’s equations we can obtain an equation which depends only on the
electric field vector ~E:

c2
∇

2~E −
∂2~E
∂t2 = 4π

∂2~P
∂t2 − 4πc2~∇

(
~∇ · ~P

)
. (11)

Here ~P is the dipole momentum density.

Instead of using directly the field equation in the form of Eq. (11), we can
use the Green’s theorem to express the Fourier-transformed of Eq. (11) in
integral form. We first apply a temporal Fourier transformation to Eq. (11)
to obtain the inhomogeneous Helmholtz equation

c2
∇

2~̄E + ω2~̄E = −4πω2~̄P − 4πc2~∇
(
~∇ · ~̄P

)
, (12)

where ω is the frequency and time dependence exp(−iωt) is understood.
Note that here ~̄E and ~̄P are the temporal Fourier transform of ~E and ~P
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respectively. Here we assume that the paraxial approximation is applicable.

It is then possible to neglect the gradient term ~∇
(
~∇ · ~̄P

)
in the right part of

the Helmholtz equation, Eq. (12).

We then introduce a Green function for the Helmholtz wave equation,
G(~r, ~r′), defined as

(
∇

2 + ω2/c2
)

G(~r, ~r′) = −δ
(
~r − ~r′

)
. (13)

For unbounded space, the Green’s function describing outgoing waves is
given by

G(~r, ~r′) =
1

4π

exp
[
iω|~r − ~r′|/c

]
|~r − ~r′|

. (14)

With the help of Eq. (14) we can write a formal solution for the field equation
Eq. (12) as:

~̄E = (ω2/c2)
∫

d~r′ G(~r, ~r′)~̄P(~r′) . (15)

This is just a mathematical description of the concept of Huygens’ secondary
sources and waves, and is of course well-known, but here we still recall
that it follows directly from the Maxwell’s equations. We may consider the
amplitude of the beam radiated by our plane of oscillating charges as a
whole to be the resultant of radiated spherical waves. The charges lying
on the plane give rise to spherical radiated wavelets, and these combine
according to Huygens’ principle to form what is effectively a radiated wave.
If the plane of charges is the xy-plane, then the Huygens’ construction shows
that plane wavefronts will be emitted along the z-axis.

Now imagine that the xy-plane of oscillating charges is kicked along the x
direction in the lab frame, so that now all emitters move at constant speed
vx along the plane of sources. After the boost along the x-axis, Cartesian
coordinates transform as x′ = x − vxt, y′ = y, z′ = z. This transformation
is completed with the invariance in simultaneity ∆t = ∆t′. The absolute
character of the temporal coincidence of two events is a consequence of the
absolute concept of time t′ = t in Newtonian kinematics. Within the lab
frame there is an Euclidean three-space, a global (absolute) time t, and the
Newton’s second law of motion. We come to a situation when there is a
uniform motion of the elementary sources along the plane of simultaneity
with velocity vx. In other words, all sources in the plane have the same
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phase of oscillation. If we now apply Maxwell’s equations Eq. (2) to the case
of kicked sources, the Huygens’ construction shows that plane wavefronts
are emitted along the z-axis, without a change in the direction of emission,
i.e, without light aberration. We come to the conclusion that the effect of
aberration of light cannot be explained on the basis of the conventional
”3+1” coupling of usual Maxwell’s equations Eq. (2) with charge trajectories
measured within the lab frame.

5.1 Einstein’s synchronization convention

The explanation of the effect of aberration of light presented in well-known
textbooks is actually based on the use of relativistic kinematics i.e. on a
transformation from the lab inertial frame to another moving inertial frame.
These two different inertial frames with Lorentz coordinates are related to
one another in a non-Newtonian way. In this approach, quantities involved
do not pertain the ”3+1” space and time of the laboratory frame, but are
rather quantities in 4D Minkowski space-time.

To see this we consider a Lorentz boost in the x-direction to describe the
uniform translation along the x-axis in the laboratory frame. Transformation
of observations in the lab frame S to the moving frame S′ can be made by
a Lorentz transformation. On the one hand, it is well known that the wave
equation (and also Huygens’ principle ) remains form-invariant with respect
to Lorentz transformations. On the other hand, if make a Lorentz boost, we
automatically introduce a time transformation t′ = γ(t − xvx/c2) and the
effect of this transformation is just a rotation of the radiation wave front in
the lab frame. This is because the effect of this time transformation is just a
dislocation in the timing of processes, and has the effect of rotating the plane
of simultaneity on the angle vx/c in the first order approximation. In that
case, due to uniform motion along the x direction, the elementary sources
produce a spatial phase modulation, i.e. a chirp, given by ωxvx/c2, where ω
is the oscillation frequency. It is not hard to see that this chirp is simply a
trivial consequence of the relativity of simultaneity between the two Lorentz
frames S and S′. As a consequence of this linear phase chirp, the radiation
wavefront rotates in the lab frame. In fact, the sources in the plane xy have a
spatially-dependent chirp of phase oscillation. Then, Huygens’ construction
shows that a linear phase chirp implies radiation of a plane wave with the
angle θ = vx/c from the z-direction, which is the usual aberration of light
effect.

It should be clear that in ”3+1” space and time where we live as observers,
we cannot associate phase of oscillating charges with the result of a Lorentz
transformation. Within the lab frame, the spatial phase modulation ωxvx/c2
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has only formal significance. This means that, for instance, the measurement
of oscillating phases within the lab frame will give the usual result of a
uniform phase along the xy plane. Within the lab frame, the motion of the
particles looks precisely the same as predicted by Newtonian kinematics
and the phase chirp does not exist at all.

The difference between the results obtained by using the Lorentz trans-
formation between S and S′, predicting a phase chirp, and the result of an
actual measurement within the lab frame, where no chirp is observed, brings
up the question: which of these results is correct? The answer is baffling:
within the framework of dynamics only, both results correctly describe the
same physical reality. Different expressions for phase distribution along the
plane of emitters are the result of the use of different clock synchronization
conventions in the lab frame. We cannot give any experimental method
by which the phase shift between two particles in oscillating in different
places can be ascertained: determining distant simultaneity is only matter
of convention.

We have thus arrived at an explanation of the effect of aberration of light by
using relativistic transformations. Let us summarize the result of standard
derivations, which deal with the relation between two Lorentz frames, i.e.
inertial frames with specific Lorentz system of space-time coordinates. We
must use a Lorentz boost (i.e. Einstein’s convention of clock synchroniza-
tion in both inertial frames, as prescribed by the use of Eq. (4)), because we
want to solve the electrodynamics problem based on the usual Maxwell’s
equations in the case of moving sources. Maxwell’s equations in their usual
form can certainty be used in any inertial frame for a source at rest, and
the transformation connecting two inertial frames with Lorentz coordinates
is a Lorentz transformation. Then, since the usual Maxwell’s equations are
preserved by Lorentz transformations, usual Maxwell’s equations hold in
the lab frame as well. However, source trajectories measured (or calculated
by conventional particle tracking) in the lab frame obey Eq. (1) and pertain a
different choice of distant clock synchronization: as such, they are not com-
patible with Maxwell’s equations in their usual form. The usual Maxwell’s
equations should be solved with the source trajectory which is viewed from
the lab frame as a result of Lorentz transformation connecting the lab frame
with the moving frame where source is at rest. This corresponds to the choice
of Einstein synchronization convention in both frames and in particular, in
the lab frame.
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5.2 Absolute time convention

It should be noted that there is another satisfying way of coupling fields
and particles, which consists in using charged particles trajectories mea-
sured within the lab frame. As we already discussed above, usual Maxwell’s
equations cannot be employed, because we want to solve electrodynamics
problem based on the use quantities from ”3+1” space and time. Within the
lab frame, as shown before, we have elementary sources in uniform motion
along the xy plane of simultaneity with velocity vx. One can explain the
effect of aberration of light in the ”3+1” space and time similarly as done
before, i.e. modeling the kick as a transformation from the inertial lab frame
to the moving inertial where emitters are at rest. These two inertial frames
are related to one another by a Galilean transformation. After the Galileo
boost along the x-axis, Cartesian coordinates and time transform as

x′ = x − vxt, y′ = y, z′ = z, t′ = t. , (16)

The Galilean time appears to be an absolute time, since it is the same in
all inertial frames. The uniform phase along the plane xy is now viewed
from the lab frame as a result of the Galilean transformation connecting the
lab frame with the moving frame where emitters are at rest. We have thus
obtained the following result: when a Galilean transformation is chosen, the
sources in the moving frame viewed from the lab frame move exactly as
one can see by performing a direct measurement in the lab frame.

We would now like to discuss how Galilean transformations can be un-
derstood in terms of the theory of relativity. Since the inception of special
relativity, most researchers assume that Lorentz transformations directly fol-
low from the postulates of the theory of relativity. However, these postulates
alone are not sufficient to obtain Lorentz transformations: one additionally
needs to synchronize spatially separated moving clocks with the help of
light signals. If this is done by using the Einstein’s synchronization con-
vention, then Lorentz transformations follow. However, if the same clocks
are synchronized following a different synchronization convention, other
transformations follow. In order to get a Galilean transformation, we should
synchronize clocks in the source rest frame. Next, in order to perform mea-
surements (or calculations) in the lab frame, it is necessary to synchronize
the clocks at rest in the lab frame where the source is in uniform transla-
tional motion along the x axis. This can be done with the help of the moving
clocks, simply by adjusting clocks at rest to zero whenever a moving clock
that shows zero flies past a clock at rest (see e.g. [18]).

In agreement with the principle of relativity, usual Maxwell’s equations can
always be exploited in a moving inertial frame where emitters are at rest.
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However, the transformation connecting two inertial frames with absolute
time synchronization is a Galilean transformation, and Maxwell’s equations
do not remain form-invariant with respect to Galilean transformations. In
fact, the d’Alambertian in the left part of Eq. (11) is not a Galilean invariant.
The change of Maxwell’s equations under Galilean transformations can be
found from the knowledge of the metric tensor components gµν. Due to
tensorial character of gµν, starting from the diagonal form in the rest frame
and applying a Galilean transformation we obtain g00 = 1−v2

x/c2, g01 = vx/c,
g11 = g22 = g33 = −1. As a result, in the ”3+1” space and time we have
much more complicated electrodynamics of moving charges than usual. Let
us consider the Galilean transformation of the d’Alembertian. We want to
know how Eq. (11), which describes the radiation process in the moving
frame where emitters are at rest, appears from the point of view of the lab
frame with absolute time synchronization.

In the moving frame fields are expressed as a function of independent vari-
ables x′, y′, z′, and t′. Now, the variables x′, y′, z′, t′ can be expressed in terms
of the independent variables x, y, z, t by means of Galilean transformation,
so that fields can be expressed in terms of x, y, z, t. From the Galilean trans-
formation Eq. (16) after partial differentiation, one obtains

∂
∂t

=
∂
∂t′
− vx

∂
∂x′

,
∂
∂x

=
∂
∂x′

. (17)

Hence the d’Alembertian �′2 = ∇′2 − ∂2/∂(ct′)2 transforms into

�2 =

(
1 −

v2
x

c2

)
∂2

∂x2 − 2
(vx

c

)
∂2

∂t∂x
+
∂2

∂y2 +
∂2

∂z2 −
1
c2

∂2

∂t2 (18)

where coordinates and time are transformed according to a Galilean trans-
formation. After properly transforming the d’Alembertian we can see that
the inhomogeneous wave equation for the electric field in the lab frame
has nearly but not quite the usual, standard form that takes when there
is no common, uniform translation of charges in the transverse direction
with velocity vx. The main difference consists in the ”interference” term
∂2/∂t∂x which arises from the non-diagonal component of the metric tensor
g01 = vx/c. To get around this difficulty, we observe that this equation can
always be simplified. The trick needed here is to make a change of the time
variable. In order to the eliminate the interference term we make a variable
transformation t′ = t − xvx/c2 . In the new variables, i.e. after the Galilean
coordinate transformation and time shift, we obtain the d’Alambertian in
the following form
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�2 =

(
1 −

v2
x

c2

)
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 −

(
1 −

v2
x

c2

)
1
c2

∂2

∂t2 . (19)

A change in the scale of time and coordinate along the direction of uniform
motion in the ratio γ leads to the usual Maxwell’s equations. In particular,
the d’Alambertian �′2 = ∇′2 − ∂2/∂(ct′)2 transforms into �2 = ∇2

− ∂2/∂(ct)2

when coordinates and time are transformed according to Galilean trans-
formation followed by the variable changes specified above. The overall
combination of Galileo transform and variable changes actually yields to
Lorentz transformation in ”3+1” space and time

x′ = γ(x − vxt), y′ = y, z′ = z, t′ = γ(t − xvx/c2) , (20)

but in the present context they are only to be understood as a useful math-
ematical device that allows one to solve the electrodynamic problem in the
”3+1” space and time with minimal effort. Obviously, transforming to new
variables leads to the usual Maxwell’s equations. Time shift results in a slope
of the simultaneity plane and sources in the xy plane are characterized by a
chirp of phase oscillation. Then, the radiation field is given by Eq. (11), and
plane waves are radiated at an angle θ = vx/c, yielding the phenomenon
of light aberration: the two approaches, treated according to Einstein’s or
absolute time synchronization conventions give the same result. In other
words, the Galilean transformation completed by the introduction of the
new variables is mathematically equivalent to the Lorentz transformation
described in the previous subsection.

We state that the variable changes performed above have no intrinsic mean-
ing - their meaning only being assigned by convention. In particular, one
can see the connection between time shift t′ = t − xvx/c2 and the issue of
clock synchrony. A change in the scale of time also is unrecognizable from
physical viewpoint. It does not matter which convention and hence transfor-
mation or ”translation” is used to describe the same reality. What matters is
that, once fixed, such convention should be applied and kept in a consistent
way.

6 Experimental test

We showed that the results of conventional theory of radiation by moving
charges are not consistent with the principle of relativity. There are exper-
imental results that actually confirm the conclusion that the conventional
(”3+1”) particle tracking must be replaced by a covariant 4D space-time
particle tracking according to our previous description, so that the result of
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the tracking be consistent with the usual Maxwell’s equations. For example,
in the preceding sections it was pointed out that even a well-established as
the effect of aberration of light cannot be explained on the basis of the con-
ventional coupling between fields and particles. The experimental checks of
the effect of aberration of light are perhaps the most direct and convincing
evidence that covariant coupling of fields and particles is correct, and does
not need modification. However, there are other experiments that can be
considered and that we will discuss in this section.

The arguments of Section 3 show that for relativistic motion results of co-
variant particle tracking differ from results of conventional particle tracking
in the case of particles accelerating along a curved trajectory.

At present, relativistic synchrotron-cyclotron radiation results are textbook
examples and do not require a detailed description. In the ultra relativistic
limit the particle emissivity is provided by well-known analytical formulas,
which represent the spectral and angular behavior of synchrotron-cyclotron
radiation emitted by an electron moving in a constant magnetic field, and
having an ultra relativistic velocity component perpendicular to it. How-
ever, here we must emphasize that a correction of conventional synchrotron-
cyclotron radiation theory is expected in the light of the pointed difference
between conventional and covariant particle tracking.

Our criticism of all standard derivations is that one cannot perform, as al-
ways done, identification of the trajectories in the source part of the usual
Maxwell’s equations with the trajectories measured (or calculated) in the
”3+1” space and time. One way to demonstrate incompatibility between
the standard approach to electrodynamics, which deals with the usual
Maxwell’s equations and particle trajectories measured within the lab frame
it is to make a direct laboratory test of the synchrotron-cyclotron radiation
theory. In other words, we are stating here that, despite the many mea-
surements done during decades, synchrotron-cyclotron radiation theory is
not an experimentally well-confirmed theory. The most elementary of the
effects that represents a crucial test of the coupling fields and particles, is in
fact a red shift of the critical wavelength of synchrotron-cyclotron radiation,
which is direct consequence of the difference between Einstein’s velocity
addition law and the law of addition of velocities in Newtonian kinematics.
Such a measurement is critical, in the sense that it can confirm or falsify
our theory on the coupling between fields and particles, and has never been
performed to our knowledge.

The dynamical evolution in the lab frame described by Eq. (1) is based on the
use of the lab frame time t as independent variable. In this case the trajectory
~x(t) can be seen, from the lab frame view, as the result of successive Galileo
boosts that track the motion of the accelerated particle. The usual Galileo
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rule for addition of velocities is used to fix the Galileo boosts tracking a
particular particle along its motion.

In contrast, according to covariant particle tracking, any transformation of
observations in the comoving inertial frame, where a particle is instanta-
neously at rest, to the lab frame can be done by Lorentz transformations.
If the relativistic particle is accelerated in the lab frame, one can think of
successive Lorentz transformations tracking its motion. In this case, it is the
Einstein’s rule for addition of velocities, which is used to fix the Lorentz
transformations tracking that particular particle along its motion.

In [6] we focused on the description of an experiment that can reveal the
difference between the predictions of conventional synchrotron radiation
theory and our correction in some commonly used setup. We considered
the simple case when an ultrarelativistic electron beam is kicked by a weak
dipole field before entering a downstream undulator and we studied the
process of emission of spontaneous undulator radiation with and without
transverse kick. According to conventional particle tracking, after the beam
is kicked there is a trajectory change, while the electron velocity remains
as before. The prediction of the conventional theory is that if an electron
beam is at perfect undulator resonance without kick, then after the kick the
same electron beam must be at perfect resonance in the kicked direction.
This is plausible, if one keeps in mind that, after the kick, the particle have
the same velocity and emit radiation in the kicked direction owing to the
Doppler effect.

However, covariant particle tracking clearly shows that the electron after the
kick has lower velocity due to Einstein’s rule of addition of velocities for non
collinear boosts 1 . It follows, in terms of corrected synchrotron radiation
theory, that the electron emits spontaneous undulator radiation with a red
shift in the kicked direction. Since, in terms of the conventional approach,
the same particle would emit spontaneous undulator radiation without red
shift in the kicked direction, we insist on performing a not complicated and
not expensive experiment at 3rd generation light sources that can confute
the conventional theoretical approach.

Synchrotron radiation from bending magnets is emitted within a wide range
of frequencies. The possibility of using narrow bandwidth sources in an ex-
perimental study on the difference between the predictions of conventional
synchrotron radiation theory and our correction looks more attractive. This
allows one to increase the sensitivity of the output intensity on the red shift,
and to relax the requirement on the beam kicker strength and photon beam

1 We stess that, in agreement with what we said up to now, this is the velocity that
has to be inserted into Maxwell’s equations in their usual form, not the velocity
measured by an observer in the lab frame.
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line aperture.

Undulators as sources of quasi-monochromatic synchrotron radiation pro-
duce light in sufficiently narrow bandwidth. They cause the electron beam
to follow a periodic undulating trajectory with the consequence that interfer-
ence effects occur. Undulators have typically many periods. The interference
of radiation produced in different periods results in a bandwidth that scales
as the inverse number of periods. Therefore, the use of insertion devices
installed at third generation synchrotron radiation facilities would allow us
to realize a straightforward increase in the sensitivity to the red shift at a
relatively small kick angle, θ < 1/γ.

In [6] we also stressed that the presence of red shift in undulator radiation
automatically implies the same effect in conventional cyclotron radiation
theory. In fact, the conventional theory predicts that there should be no
red shift for radiation emitted by an electron which has velocity directed
along and across the magnetic lines of force. In the ultrarelativistic limit, the
particle emissivity is provided by well-known analytical formulas, which
represent the spectral and angular behavior of cyclotron radiation emitted
by an electron moving in a constant magnetic field, having a non-relativistic
velocity component parallel to the field, and an ultrarelativistic velocity
component perpendicular to it. According to the conventional approach,
exactly as for the undulator case, the angular-spectral distribution of ra-
diation is a function of the total velocity of the particle due, again, to the
Doppler effect. We note that cyclotron-synchrotron radiation emission is one
of the most important processes in plasma physics and astrophysics and the
results of an experimental test of conventional radiation theory would con-
stitute a truly critical experimental test for a much wider part of physics
than that of synchrotron radiation or X-ray free electron laser sources.

There is another interesting problem where our correction of synchrotron
radiation theory is required, which involves the production of coherent un-
dulator radiation. Let us consider a microbunched ultrarelativistic electron
beam kicked by a weak dipole field before entering a downstream undulator.
We want to study the process of emission of coherent undulator radiation
from such setup. According to conventional particle tracking, based on Eq.
(1), after the beam is kicked there is a trajectory change, while the orienta-
tion of the microbunching phase front remains as before. In other words, the
kick results in a difference between the direction of the electron motion and
the normal to the phase front. In standard electrodynamics, coherent radi-
ation is emitted in the direction normal to the microbunching wavefront.
Therefore, according to the conventional coupling of fields and particles,
when the angular kick exceeds the divergence of the output coherent ra-
diation, emission in the direction of the electron beam motion is strongly
suppressed. In Section 3 we have shown that our manifestly covariant cou-
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pling of fields and particles predicts an effect in complete contrast to the
conventional treatment. Namely, in the ultrarelativistic limit, the plane of
simultaneity, that is wavefront orientation of the microbunching, is always
perpendicular to the electron beam velocity. As a result, we predict strong
emission of coherent undulator radiation from the modulated electron beam
in the kicked direction.

From a pragmatic viewpoint, physical theories should be able to predict
experimental results in agreement with measurements, i.e. they should
”work”. The fact that our theory predicts reality in a satisfactory way is
well-illustrated by comparing the prediction we just made with the results
of an experiment involving ”X-ray beam splitting” of a circularly-polarized
XEL pulse from the linearly-polarized XFEL background pulse, a technique
used in order to maximize the degree of circular polarization at XFELs[20].

Circularly polarized X-ray radiation is needed for investigating magnetic
materials and for dealing with other important material science issues.
Therefore, the production of X-ray radiation with a high degree of circu-
lar polarization is strongly pursued at XFEL facilities. The quality of the
output radiation is optimized in the case of a full-length helical undulator,
but this option remains unrealized at the first stage of many XFEL projects,
due to technical challenges and costs related with the production of long
helical undulators. The choice of a relatively short helical undulator consti-
tutes a reasonable compromise. The electron beam is microbunched in the
preceding planar undulator segments before being sent into a short helical
radiator. This enhances the power of the circularly polarized pulse by sev-
eral orders of magnitude compared with spontaneous emission. The short
helical undulator is then said to be operating in ”afterburner configuration”.
Using an afterburner is in fact an economically and technically convenient
method to generate circularly polarized radiation. However, as an unavoid-
able by-product, the linearly-polarized background radiation from the main
undulator is superimposed with the circularly polarized pulse.

An ultimate solution to reduce this background component was proposed
in [19]. After the main planar undulator the electron beam is deflected by a
bending system and subsequently sent through the helical afterburner. If the
microbunching structure can be preserved, the helical undulator still pro-
duces intense coherent radiation, but now linearly- and circularly-polarized
radiation are well-separated by the bending system. The challenge here
consists in the preservation of the microbunching on the scale of the radia-
tion wavelength, which is of order of one nanometer, as the electron beam
progresses through the bending system. Note that in order to effectively
separate the linearly and the circularly polarized radiation components, the
bending angle must be large compared to the divergence of the coherent
radiation.
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Also consider that according to the conventional theory, the microbunching
is preserved after passing through a simple dipole, but it keeps its original
direction. Then, as discussed above, coherent radiation emission is expo-
nentially suppressed, unless the microbunching is rotated by the bending
angle, so that it becomes orthogonal to the new direction of propagation. In
order to do that, a significant effort is required. The isochronous bending
system proposed in [19] for the European XFEL requires about 87 m long
of total length (which is compatible with the space available in one of the
European XFEL tunnels). It consists of 33 magnets, including 8 dipoles, 9
quadrupoles, and 16 sextupoles. The design in [19] is based on the use of
conventional particle tracking and XFEL codes.

In reality, no isochronous bending system was actually needed at the LCLS
facility to achieve intense emission of coherent, highly circularly polarized
radiation. In its baseline mode of operation, the LCLS generates intense
X-ray pulses from a planar undulator. A 3.2 m-long compact helical undu-
lator segment was installed in place of the last LCLS undulator segment
[20], and used in afterburner mode. The efficiency of this mode of operation
was tested, and a maximum contrast ratio between circularly and linearly
polarized radiation components of about ten was reported in [20]. The same
reference further reports a final improvement of the contrast ratio by ”X-
ray beam splitting”. This was achieved by kicking the electron beam before
entering the helical undulator, so that electron beam and background radi-
ation could pass through the helical undulator at different angles. A single
corrector magnet, that is a weak dipole magnet, placed at the end of the
last planar undulator section was used to control the magnitude of the kick.
Full elimination of the linear polarized component was achieved through
spatial separation combined with transverse collimation. In was confirmed
that the degree of circular polarization was very close to 100%[20]. Experi-
mental results in [20] clearly show an additional red shift of the resonance
wavelength in the kicked direction: the maximum power of the coherent
radiation after the kick was reached when the undulator was detuned to be
resonant to a lower longitudinal velocity after the kick.

The ”X-ray beam splitting” experiment at the LCLS [20] apparently demon-
strated that after a microbunched electron beam is kicked on a large angle
compared to the divergence of the FEL radiation 2 , the microbunching
wavefront is readjusted along the new direction of motion of the kicked
beam. This is the only way to justify coherent radiation emission from the
undulator placed after the kicker and along the kicked direction.

Summarizing, the authors of [20] found that coherent undulator radia-

2 The tuning limit of deflection angle was set at∼ 5 rms of FEL radiation divergence
by beamline aperture, see Fig. 14 in [20]
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tion was produced in the kicked direction and red-shifted compared to
the nominal electron beam energy and undulator strength. These results
came unexpectedly, but from a practical standpoint, the ”apparent wave-
front readjusting” immediately led to the realization that the unwanted,
linearly-polarized radiation background could be fully eliminated without
extra-hardware. In other words a single corrector, already part of the base-
line installations in the intersection between undulator segments, effectively
worked as the complex and expensive bending system designed according
to the theory of conventional particle tracking in [19]. The results of the
”beam splitting” experiment at the LCLS demonstrated that even the direc-
tion of emission of coherent undulator radiation is beyond the predictive
power of the conventional theory.

In this paper we showed that the authors of [20] actually witnessed an ap-
parent wavefront readjusting due to the phenomenon of Wigner rotation,
but they never drew this conclusion. We are indeed first in considering the
idea that results of the conventional theory of radiation by relativistically
moving charges are not consistent with the principle of relativity. In previ-
ous literature, identification of the trajectories in the source part of the usual
Maxwell’s equations with the ”true” trajectories measured in the lab frame
has always been considered obvious. The impact of [20] on our studies was
immediate. At first their result was quite mysterious, but we now under-
stand why it should be so. We analyzed the situation when a microbunched
beam is kicked, and we discovered that several strange phenomena should
occur. Now everything fits together, and our theory, albeit shocking, shows
the existence of both wavefront readjusting and red shift of the resonance
wavelength 3 . The theory of relativity as a theory of 4D space-time with
pseudo-Euclidean geometry has had more than hundred years of history
and development, and rather suddenly it has begun to be fully exploited in
practical ways in accelerator physics.

7 Discussion and Conclusions

Eq. (1), Eq. (2) and Eq. (3) form the basis of conventional coupling of fields
and particles in accelerator and plasma physics, which is considered for

3 It is necessary to mention that in the case of the beam splitting experiment at the
LCLS we deal indeed with an ultra relativistic electron beam with (c − v ' 10−8c),
and with a transverse velocity after the kick which is very much smaller than the
speed of light ((vx/c)2

� 10−8), so that the theoretical studies presented in [5, 6, 7, 8]
yield a correct quantitative description of the beam splitting experiment at the
LCLS and, in particular, of the red-shift of the resonance wavelength in the kicked
direction.
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more than hundred years as relativistically correct. In textbooks on electro-
dynamics it is argued that the properties of radiation by moving relativistic
charges can be calculated by using only the lab frame without reference to
Lorentz transformations.

In this paper we presented our arguments, based on special relativity,
against this conventional way of coupling fields and particles. We found
that, upon a choice of convention, the velocity of a relativistic particle in the
lab frame can be defined in two ways. We called one of them, d~x(t)/dt, the
”3+1” velocity. This is obtained by a direct measurement in the lab frame
(or by conventional particle tracking calculations). The other is the more
mathematical, more abstract velocity d~xcov(t)/dt, which we call ”covariant
velocity”. This velocity is obtained by projecting the particle world-line to
the lab frame basis, where the lab frame is assumed to be a Lorentz frame. It
turns out that these velocities differ from one another and that in the theory
of electrodynamics of moving charges it is the covariant velocity, and not
the ”3+1” velocity which is connected with the usual Maxwell’s equations.

The theory of relativity shows that the intuitive concept of particle trajec-
tory based on direct measurements in the lab frame cannot be used in all
situations. While this statement seems in disagreement with the idea that
measurement is actually defining a physical quantity, let us take as an ex-
ample the relation between the ”true” measured velocity d~x(t)/dt and the
”covariant” velocity d~xcov(t)/dt. The ”true” velocity d~x(t)/dt is the result of
a direct measurement within the lab frame. The quantity d~xcov(t)/dt differs
from the ”true” velocity and has only formal significance. However, we are
better off using covariant trajectories when we want to solve the electrody-
namics problem based on Maxwell’s equations in their usual form. In fact,
the use of ”true” trajectories implies the use of much more complicated field
equations.

A comparison with classical non-relativistic physics might help to make our
point. In classical mechanics one can consider two momenta (see, for exam-
ple [2, 22]). One of them is the ”kinematic momentum”. This is the momen-
tum obtained by multiplying mass by velocity, ~p = m~v. It can be obtained
by a direct measurement within the lab frame. The other is a more mathe-
matical, more abstract momentum, called the ”dynamical momentum”, ~P.
The two definitions differ by the vector potential, since ~P = m~v + e ~A. It turns
out that in classical mechanics it is the dynamical ~P momentum that is con-
nected with standard canonical dynamical equations. In other words, if we
want to solve the dynamics problem based on the usual canonical equations
of motion, we must use the dynamical momentum. We might use the kine-
matic momentum, but we would have much more complicated equations of
motion. To get around this difficulty, we observe that these equations can al-
ways be simplified. The trick needed here is to make a change of variables.
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Transforming to new variables ~P leads to the usual canonical equations.
However, the new dynamical momentum has only formal significance in
the sense that a trajectory measurement in the lab frame will always give
back the usual kinematic momentum m~v.

Let us now return to the Galilean transformations. It is generally believed
that Galilean transformations are incorrect because they do not preserve the
form-invariance of Maxwell’s equations under a change of inertial frame. To
quote e.g. Rosser [21]: ”Now if the co-ordinates and time are transformed
using the Galilean transformations, Maxwell’s equations do not obey the
principle of relativity. [...] If the Galilean transformations were assumed to
be correct, Maxwell’s equations could only be hold in the one reference
frame and should have been possible to identify this absolute system by
electrical and optical experiments. However in practice it proved impossi-
ble to identify by means of experiments any absolute reference frame for
the laws of optics and electromagnetism. [...] This meant abandoning the
Galilean transformations in favor of the Lorentz transformations.”

This idea is a part of the material in well known textbooks (see e.g. [22]).
As a result many physicists still tend to think of Galilean transformations
as old, incorrect transformations between spatial coordinates and time. We
disagree with this point of view. The special theory of relativity is the theory
of four-dimensional space-time with pseudo-Euclidean geometry. From this
viewpoint, the principle of relativity is a simple consequence of the space-
time geometry, and the space-time continuum can be described in arbitrary
coordinates. In the process of ”translation” to arbitrary coordinates, the
geometry of the four-dimensional space-time does not change. Therefore,
contrary to the view presented in textbooks, Galilean transformations are
actually compatible with the principle of relativity although, of course, they
alter the form of Maxwell’s equations.

A comparison with the three-dimensional Euclidean space might help here.
In the usual 3D Euclidean space, one can consider a Cartesian coordinate
system (x, y, z), a cylindrical coordinate system (r, φ, z), a spherical coordi-
nate system (ρ, θ, φ), or any other. Depending on the choice of the coordinate
system one respectively has ds2 = dx2 + dy2 + dz2, ds2 = dr2 + r2dφ2 + dz2, or
ds2 = dρ2 +ρ2dθ2 +ρ2 sinθ2dφ2, where ds is the distance between two closely
separated points. The metric actually does not change, but the components
of the metric do, depending only on the choice of coordinates. In general,
in fact, we write ds2 = gikdxidxk. Considering Cartesian coordinates we will
always have gi j = diag(1, 1, 1). Similarly, Lorentz transformations between
inertial frames with Einstein coordinates leave the components of the metric
tensor unvaried.

Let us now discuss an example, that is characteristic for the traditional use
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of the theory of relativity in the explanation of electromagnetic phenomena
from the point of view of two moving inertial frames. This example appears
in many standard thextbooks. To quote Feynman, Leiton and Sands [22]: ”It
is interesting to discuss what it means that we replace the old transformation
between the coordinates and time with the new one, because the old one
(Galilean) seems to be self-evident, and the new one (Lorentz) looks peculiar.
We wish to know whether it is logically and experimentally possible that
the new, and not the old, transformation can be correct. [...] When this
(i.e. Galilean transformation of Maxwell’s equations) is tried,the new terms
that had to be put into the (Maxwell’s) equations led to predictions of new
electrical phenomena that did not exist at all when tested experimentally,
so this attempt had to be abandoned.”.

Our point of view is in disagreement with this. The ”true” trajectory of a
charge ~x(t), which is found by direct measurement in the lab frame, or cal-
culated by using the corrected Newton’s second law, is viewed from the lab
frame as the result of successive Galileo transformations. In other words,
within the lab frame, the motion of the particles looks precisely the same
as predicted by Newtonian kinematics, and relativistic effects like Wigner
rotations do not exist. This is due to a particular choice of synchronization
convention in the lab frame, which we called the ”absolute time convention”.
In agreement with the principle of relativity, usual Maxwell’s equations can
be used in a moving inertial frame where the charge is instantaneously at
rest. However, the transformation connecting any comoving frame to the
lab frame in the case of the absolute time convention is a Galilean trans-
formation, and Maxwell’s equations do not remain invariant with respect
to Galilean transformation. When a Galilean transformation of Maxwell’s
equations is tried, the new terms that have to be put into the Maxwell’s
equations lead to predictions of radiation phenomena that actually do ex-
ist when tested experimentally. To be specific, the main extra-term con-
sists in the ”interference” term (like ∂2/∂t∂x) in the d’Alambertian, which
arises from the non diagonal component of the metric tensor. These new
terms, introduced in the inhomogeneous wave equation, give the effect of
light aberration and explain coherent radiation emission of a microbunched,
ultra-relativistic beam in the kicked direction. Alternatively, one may use the
trajectory ~xcov(t), which is compatible with the usual Maxwell’s equations
and is found by manifestly covariant dynamical equations. This is viewed
from the lab frame as the result of successive Lorentz transformations. The
Lorentz transformation composition law is used to express the conditions
of comoving sequence of frames tracking a particle. In this case, a Wigner
rotation arises and explains light aberration and coherent emission. The
two approaches give, in fact, the same results, and it does not matter which
transformation (Galilean or Lorentz) is used: they both describe the same
reality.
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