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Abstract

Phase transitions associated with nearly conformal dynamics are known to lead

to significant supercooling. A notorious example is the phase transition in Randall-

Sundrum models or their CFT duals. In fact, it was found that the phase transition in

this case is first-order and the tunneling probability for the radion/dilaton is so small

that the system typically remains trapped in the false vacuum and the phase transition

never completes. The universe then keeps expanding and cooling. Eventually the

temperature drops below the QCD scale. We show that the QCD condensates which

subsequently form give an additional contribution to the radion/dilaton potential, an

effect which had been ignored so far. This significantly reduces the barrier in the

potential and allows the phase transition to complete in a substantially larger region

of parameter space. Due to the supercooling, electroweak symmetry is then broken

simultaneously. This class of models therefore naturally leads to an electroweak phase

transition taking place at or below QCD temperatures, with interesting cosmological

implications and signatures.
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1 Introduction

The nature of the electroweak phase transition is still weakly constrained experimentally and

many possibilities remain open, in particular when the scalar sector of the theory is extended.

There has been growing interest lately in the possibility of a strong first-order electroweak

phase transition, not only because of its relevance for baryogenesis but also because it is a

potential source of gravitational waves detectable at LISA [1]. The majority of the literature

has focused on polynomial potentials for the Higgs and associated scalar fields.

On the other hand, if the Higgs is part of an approximately conformal sector, electroweak

symmetry breaking is tied to the breaking of conformal invariance. The electroweak phase

transition is then governed by a nearly conformal potential. This scenario has very interesting

cosmological properties as such potentials generically lead to large amounts of supercooling,

see e.g. refs. [2–8]. This may in particular delay the phase transition to temperatures near

the QCD scale or below. When this happens, QCD confines and gluons and quarks form

condensates. The main motivation of this paper is to study if these condensates can sub-

sequently trigger the breaking of conformal invariance and thereby induce the electroweak

phase transition.

For illustration, we work with the 5D Randall-Sundrum (RS) model [10]. Via the gauge-

gravity duality, this and related constructions [11, 12] are dual to composite Higgs models

with partial compositeness, where the Higgs arises from a nearly conformal sector [13–15].

The RS model has been a very popular solution to the hierarchy problem. In addition, it pro-

vides a framework to address the flavour puzzle in the standard model [16–18]. The distance

between the UV and IR brane in the RS model corresponds to a scalar field, the so-called

radion. This field maps to the dilaton of the dual CFT, the pseudo-Nambu-Goldstone boson

of broken scale invariance. It can obtain a potential for example by means of the Goldberger-

Wise mechanism [19] which stabilizes the inter-brane distance, or equivalently, triggers the

breaking of conformal invariance. The corresponding potential is nearly conformal and has

the form

V (µ) = µ4 × f(µε) , (1.1)

where f(µε) with |ε| � 1 is a very slowly-varying function of µ. Due to this form, the

potential is very shallow with extrema which are far separated from each other in field

space. A potential of the Goldberger-Wise type in particular typically has a barrier at very

small field values which separates the origin from the minimum. The dilaton/radion then

needs to tunnel through this barrier during the phase transition which leads to the breaking

of conformal invariance, or the stabilisation of the inter-brane distance, in the early universe

(for earlier studies of this phase transition see [5,20–26]). However, the vast distance between

the extrema suppresses the tunneling rate. The phase transition can therefore typically not

complete and the field instead remains stuck in the wrong vacuum. This is the origin of the

supercooling that we have mentioned earlier.
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The shallowness of the potential, however, also means that corrections to the potential

at small field values can have a big impact. As we will show in this paper, such corrections

can in particular arise from the QCD condensates which form when the temperature drops

to the QCD scale. In the RS model, the gluon is a 5D bulk field. The gauge coupling of

the 4D massless mode which we identify with the gluon is then affected by the length of the

extra dimension and thus by the radion. In the dual CFT, on the other hand, the gluon

gauges an SU(3) symmetry of the CFT. The resulting contribution to the QCD β-function

decouples when the CFT confines. This leads to a dependence of the QCD coupling on

the confinement scale of the CFT and thus on the dilaton. The scale where QCD becomes

strongly coupled and itself confines then also depends on the radion/dilaton. Via the gluon

and quark condensates, this gives an additional contribution to the potential which can

change its shape near the barrier. This can in turn significantly enhance the tunneling

probablility, allowing the phase transition to complete.

The Higgs is localized towards the IR brane of the RS model which in the dual CFT

corresponds to the Higgs being a composite state. The fact that in this scenario the temper-

ature during the phase transition of the radion/dilaton is below the QCD scale, means that

temperature corrections to the Higgs potential are negligible. Electroweak symmetry will

therefore generically be broken simultaneously and QCD thus induces the electroweak phase

transition. This potential dramatic impact on the nature of the electroweak phase transition

was overlooked in the previous literature on RS and composite Higgs models. A fascinating

application would be to use the strong CP -violation from the QCD axion, which would be

large during such a phase transition near QCD temperatures, as the source of CP -violation

for cold baryogenesis [9]. The output of this work will give strong support for this possibility.

The outline of the paper is as follows. We begin with a review of the Goldberger-Wise

potential for the radion in sec. 2. In sec. 3, we then show how the QCD confinement

scale depends on the vacuum expectation value of the radion. Sec. 4 presents the new

contribution to the radion potential from the QCD condensate. In sec. 5, we then review the

RS phase transition, first without the QCD effect and then showing the impact of the QCD

condensate on the nature of the phase transition. We comment on cosmological implications

and experimental signatures in sec. 7 and conclude in sec. 8.

2 The radion potential in Randall-Sundrum models

We begin with a review of the important properties of the Randall-Sundrum model from

which the nearly-conformality of the scalar potential originates. The geometry is that of a

slice of AdS5 space with metric

ds2 = e−2ky ηµνdx
µdxν − dy2 , (2.1)
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where k ∼ O(MPl) is the AdS5 curvature. The slice is bounded by two branes at y = 0 and

y = y
IR

to which we refer as the UV and IR branes, respectively. It can be obtained either

from an orbifold or directly from an interval. In either case, we shall restrict the coordinate

to the interval [0, y
IR

] here and below. The size y
IR

of the extra dimension can be stabilized

by means of the Goldberger-Wise mechanism [19]. To this end, a bulk scalar is introduced,

S ⊃
∫
d5x
√
g
(1

2
∂Aφ ∂

Aφ−
m2
φ

2
φ2 − δ(y)V

UV
− δ(y − y

IR
)V

IR

)
(2.2)

with boundary potentials

V
UV

= λ
UV

(φ2 − v2
UV
k3)2 , V

IR
= λ

IR
(φ2 − v2

IR
k3)2 . (2.3)

These trigger a vacuum expectation value (VEV) for the scalar with profile along the extra

dimension given by

〈φ〉 = Ak3/2e(4+ε)ky + B k3/2e−εky , (2.4)

where

ε ≡
√

4 +m2
φ/k

2 − 2 . (2.5)

The mass of a scalar in AdS5 can be tachyonic, m2
φ ≥ −4k2 according to the Breitenlohner-

Freedman bound [27], and ε can thus be both positive and negative. The integration con-

stants A and B are determined by the boundary conditions which depend on the boundary

potentials. In the limit of large couplings λ
IR

and λ
UV

, one finds

A =
v
IR
− v

UV
e−εkyIR

e(4+ε)ky
IR − e−εkyIR

' v
IR
e−(4+ε)ky

IR − v
UV
e−(4+2ε)ky

IR , (2.6)

B = v
UV
− A ' v

UV
. (2.7)

The scalar VEV and its contribution to the energy-density thus depends on the size of the

extra dimension. Integrating over the extra dimension then leads to the effective 4D potential

VGW(µ) ' µ4

[
(4 + 2ε)

(
v
IR
− v

UV

(µ
k

)ε)2

− ε v2
IR

+ δ

]
, (2.8)

where

µ ≡ e−kyIRk . (2.9)

We will refer to this field as the radion. In the potential, we have neglected a constant piece

but included an additional contribution δ µ4. The latter arises if the IR brane tension T is

detuned from the value which is required to obtain a static solution in the Randall-Sundrum

model without radion stabilization, T = −24M3
5k+ δ k4 with M5 being the 5D Planck scale.

Due to various loop corrections on the IR brane, δ is generically expected to be nonzero.

Provided that −(4 + ε)v2
IR
< δ < (ε+ ε2/4)v2

IR
, the above potential has a global minimum

and one maximum at

µmin,max ' k

(
v
IR

v
UV

)1/ε

X
1/ε
min,max , (2.10)
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where

Xmin,max ≡
(

1 +
ε

2

)−1
(

1 +
ε

4
± sign(ε)

2

√
ε+

ε2

4
− δ

v2
IR

)
. (2.11)

The radion can then be stabilized at hierarchically small values µ � k with an order-one

ratio v
IR
/v

UV
if |ε| � 1. Note that µmax < µmin and the maximum is thus a barrier which

separates the origin from the minimum. As we discuss in more detail in sec. 5, in the early

universe the radion needs to transition from the origin to the minimum of the potential.

The barrier therefore means that this phase transition is first-order. On the other hand, for

δ < −(4 + ε)v2
IR

the barrier disappears if ε > 0, while the potential then only has a minimum

at the origin if ε < 0. Both the barrier and the minimum disappear for δ > (ε + ε2/4)v2
IR

.

One thus necessarily needs a nonvanishing δ if ε is negative. We can use the above relation

to trade v
UV

for µmin. The potential then reads

VGW(µ) = µ4 v2
IR

[
(4 + 2ε)

(
1 − Xmin

(
µ

µmin

)ε)2

− ε +
δ

v2
IR

]
. (2.12)

In the derivation so far we have tacitly assumed that the scalar VEV does not deform

the geometry. As we discuss in the appendix, for ε > 0 this is fulfilled provided that

v
IR

N
� min

[
1

2πXmin

√
3

ε

(µmin

k

)ε
,

√
3

4π

]
, (2.13)

where

N ≡ 4π

(
M5

k

)3/2

. (2.14)

Using this parameter is motivated by the AdS/CFT correspondence which suggests that the

gauge theory which is dual to the Randall-Sundrum model has O(N) colors (the precise

prefactor is undetermined; the prefactor in the definition above arises for the gauge theory

dual to type IIB string theory on AdS5 × S5). For later use, we note that the ratio M5/k

and thus N is restricted by the requirement that we can neglect higher powers of the Ricci

scalar compared to the Einstein-Hilbert term in the action. Estimating the coefficients of

these terms from naive dimensional analysis, this gives the condition [28]

N &
4 · 53/4

√
3π

. (2.15)

Let us next consider the case ε < 0. As we discuss in more detail in the appendix, in

this case there is always a region around the origin in the radion potential for which the

backreaction of the Goldberger-Wise scalar on the geometry can not be neglected. It may

still be possible to reliably analyse the phase transition if this region is sufficiently small.

Nevertheless, we will focus on the case ε > 0 in this paper, which is enough for our purpose.
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Together with its kinetic term [29,30], the 4D action for the radion reads

S ⊃
∫
d4x

(
3N2

4π2
(∂ρµ)2 + VGW(µ)

)
. (2.16)

The field µ is thus not canonically normalized. We will nevertheless continue to work with

µ since it sets the mass scale of the Kaluza–Klein (KK) modes. The minimum µmin of its

potential is therefore directly constrained by collider and flavour experiments and electroweak

precision tests. We will use µmin = 2.5 TeV throughout this paper.1

The potential (2.12) is the basis for most studies of the phase transition in RS models

[5, 20–26]. The position of the barrier and the shape of the potential in the vicinity of the

barrier control the size of the tunneling action. On the other hand, for small ε as needed

to explain the hierarchy between the electroweak (EW) and Planck scales, the position of

the barrier is close to the origin of the potential. Any corrections of the potential at scales

much smaller than the IR scale (i.e. of order TeV) can therefore have a strong impact on

the phase transition dynamics. The purpose of this work is to consider the corrections from

QCD confinement which were ignored so far. We will see that they substantially improve

the tunneling probability and open up parameter space for a viable cosmology.

3 Dependence of the QCD scale on the radion in Randall-Sundrum

models

We next review relevant aspects of QCD in an RS model and then discuss how this leads to

a dependence of the QCD scale on the radion. The action for QCD in an RS model reads

S ⊃
∫
d5x
√
g

(
− 1

4g2
5

GMNG
MN − δ(y)

τ
UV

4
GµνG

µν − δ(y − y
IR

)
τ
IR

4
GµνG

µν

)
, (3.1)

where GMN and g5 are the field strength and coupling of QCD in 5D and we have allowed for

localized kinetic terms on the two branes. Performing a KK decomposition and integrating

over the extra dimension, we get

S ⊃
∫
d4x

−1

4g2
QCD

G(0)
µν G

(0)µν , (3.2)

where G
(0)
µν is the field strength of the zero mode (which is identified with the standard model

gluon). The tree-level contribution to its gauge coupling reads

1

g2
QCD

=
log k

µ

kg2
5

+ τ
UV

+ τ
IR
. (3.3)

1With a custodial symmetry in the bulk, the bound from electroweak precision tests is µmin > 1.9 TeV

[31,32]. An additional strong constraint arises from CP -violation in K− K̄-mixing. This can be satisfied by

either a larger µmin or an accidental cancellation of order 5−10% [31,32]. Alternatively, the relevant process

can be suppressed by extending the QCD gauge group in the bulk [33] or by coupling the Goldberger-Wise

scalar to the bulk fermions [34].
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Taking also the running due to the standard model particles from the UV scale k to an

energy scale Q into account, we get at energies below the IR scale µ (see e.g. [35])2

1

g2
QCD(Q, µ)

=
log k

µ

kg2
5

− b
UV

8π2
log

k

Q
− b

IR

8π2
log

µ

Q
+ τ

UV
+ τ

IR
(for Q . µ) . (3.4)

Here b
UV

is the contribution to the β-function coefficient from quarks localized near the UV

brane and the gluon itself, while b
IR

arises from quarks localized near the IR brane. We

make the common choice that the top-bottom doublet and the right-handed top are in the

IR, whereas the remaining quarks are in the UV. This then gives b
UV

= 8 and b
IR

= −1.

It is straightforward to understand the origin of the terms in the above expression from

the dual perspective. A gauge field in the bulk of an RS model is dual to a gauge field that

weakly gauges a global symmetry of a CFT. The action in eq. (3.1) then maps to

S ⊃
∫
d4x

(
LCFT −

τ
UV

4
GµνGµν + GµJ µ

CFT

)
, (3.5)

where LCFT defines the CFT, Gµ is the gauge field and J µ
CFT is the current of the global

symmetry. Furthermore, the IR scale of the RS model is dual to the confinement scale of the

CFT. The first term in eq. (3.4) can then be understood as arising from the CFT degrees of

freedom which contribute with the β-function coefficient

bCFT ≡ −
8π2

kg2
5

. (3.6)

It depends on µ because the CFT confines at that scale and no longer contributes to the

running at lower energies. The second term is due to the contribution from standard model

particles which are fundamental and not part of the CFT sector. Instead the third term

results from standard model particles which are (dominantly) composite states. Since the

latter only arise at the confinement scale, this contribution again depends on µ. Finally, the

last term is due to threshold corrections at the confinement scale.

The QCD coupling thus depends on the IR scale in an RS model. Correspondingly, the

scale ΛQCD at which it becomes strong depends on the IR scale too. Let us define ΛQCD as

the scale where the QCD coupling diverges.3 From eq. (3.4), we then find

ΛQCD(µ) =

(
kbUVµbIR e−8π2τ

(µ
k

)−bCFT

)1/(b
UV

+b
IR

)

(for ΛQCD(µ) . µ) , (3.7)

where τ ≡ τ
UV

+ τ
IR

and we have assumed that ΛQCD(µ) . µ. The latter condition arises

because eq. (3.4) is only valid for energy scales Q . µ. Indeed, the QCD scale is above the

2If the cutoff is above the AdS scale, additional corrections arise from loop momenta between the two

scales. These corrections can be absorbed into the parameters g5, τ
UV

and τ
IR

(see e.g. [36]).
3If we define it instead as the scale where gQCD(ΛQCD(µ), µ) = 4π, τ → τ − 1/16π2 in eq. (3.7) below.
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IR scale if ΛQCD(µ) & µ and the analysis in terms of the zero mode of the 5D gauge field is

no longer justified. We discuss what happens in this regime below.

In order to reproduce the QCD coupling today, the free parameters g5 and τ need to be

chosen such that ΛQCD(µmin) = ΛQCD,SM, where µmin is the minimum of the radion potential

and ΛQCD,SM is the QCD scale today. This relation allows us to fix τ in terms of g5 which

then gives4

ΛQCD(µ) = ΛQCD,SM

(
µ

µmin

)n
(for ΛQCD(µ) . µ) , (3.8)

where

n ≡ b
IR
− bCFT

b
UV

+ b
IR

. (3.9)

The size of g5 and thus bCFT and n is limited by the requirement that the KK decomposition

is sensible in the effective 4D theory. Indeed, since the gauge coupling in 5D is an irrelevant

operator, the theory is expected to become strongly coupled at the scale Λc ∼ 16π2/g2
5.

Demanding that at least one KK mode is still in the perturbative regime, πk . Λc, we find

the condition g2
5k . 16π. This translates to n & 0.1.

We will be interested in the case n < 1. For the radion at the minimum of its potential,

µ = µmin, the QCD scale is given by ΛQCD(µmin) = ΛQCD,SM � µmin. Then moving the

radion away from the minimum to smaller values, the QCD scale decreases. For n < 1,

ΛQCD(µ) decreases slower than linearly with decreasing µ though and eventually both become

comparable. For even smaller radion values, the condition for eq. (3.8) is then no longer

satisfied. In order to see what happens for ΛQCD & µ, it is again useful to consider the dual

perspective. The dependence of the QCD scale on µ arises in this description, because the

CFT confines at the scale µ and (most of) its states no longer contribute to the running of

the QCD coupling at energies below µ. In addition, such a dependence also results because

some states (corresponding to the IR-localized quarks) only arise at the scale µ and then

contribute to the running at lower energies. Since for ΛQCD > µ, QCD confines at higher

energies than the CFT, in this regime ΛQCD will become independent of µ.5 By continuity,

we then expect

ΛQCD(µ) = ΛQCD(µc) (for ΛQCD(µ) & µ) . (3.10)

Here µc is the IR scale for which ΛQCD(µc) is so large that eq. (3.8) is no longer applicable.

We parametrise our ignorance where precisely this happens by a parameter nc and define µc
as the IR scale for which

ΛQCD(µc) = nc µc . (3.11)

4Note that τ is always positive for the parameters that we consider.
5 In the 5D description, eq. (3.4) is the running gauge coupling of the zero-mode of the 5D gauge field.

For energies above the KK mass scale, such a coupling is ill-defined. Instead one can define the coupling in

this regime via the gauge field correlator with endpoints restricted to the UV brane [37–39]. One then in

particular finds that the loop corrections become independent of the IR scale (or KK mass scale) for energies

above that scale (see e.g. sec. III B in [39]).
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Figure 1: Schematic plot of the QCD confinement scale ΛQCD as a function of the IR scale µ for

µmin = 2.5 TeV, nc = 3 and n = 0.1, 0.2, 0.3, 0.4, 0.5 (in blue, yellow, green, red, purple).

The conditions of validity for eqs. (3.8) and (3.10) then become ΛQCD(µ) ≶ nc µ. For n < 1,

this is equivalent to µ ≷ µc. Using eq. (3.8), we find

µc = µmin

(
ΛQCD,SM

ncµmin

) 1
1−n

. (3.12)

We expect that nc is larger than 1. Indeed, the description in terms of the zero mode of

the 5D gauge field should not break down immediately when the QCD confinement scale

becomes larger than the IR scale, ΛQCD(µ) > µ. We instead expect that this description

becomes no longer applicable only once the QCD confinement scale reaches the mass scale

of the first KK mode of the 5D gauge field, ΛQCD(µ) & mKK. This would imply nc ∼ π.

We plot ΛQCD(µ) as determined in this section for µmin = 2.5 TeV, nc = 3 and different

values of n in fig. 1. Starting from µ = µmin, it initially decreases with decreasing µ according

to eq. (3.8). It then eventually reaches the value in eq. (3.11), after which it stays constant.

We expect that the change between the scalings in eqs. (3.8) and (3.10) will be smoother

than shown in the plot.

4 Contribution of the QCD condensates to the radion potential

As we will discuss in more detail in sec. 5, if the radion potential is solely determined by the

Goldberger-Wise field, the phase transition in RS models can only complete in small regions

of parameter space. For most choices of parameters the radion instead remains stuck in the

wrong vacuum and the universe enters an inflationary phase. This lowers the temperature

of the surrounding plasma. Eventually the temperature reaches the QCD scale and QCD
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confines. As is well-known, this generates condensates for the gluon and the light quarks.

We now discuss how these can affect the radion potential.

The gluon condensate was determined in ref. [40] as (see also [41,42])6

〈G(0)
µν G

(0)µν〉 = 4π · (7± 1) · 10−2 GeV4 , (4.1)

where the index (0) denotes that the gluon is the zero-mode of a KK tower in our 5D model.

A somewhat smaller value was given in ref. [43], though with a significantly larger error,

while lattice studies in refs. [44–46] find a range of values. We use the result in eq. (4.1)

for definiteness in the following but our analysis is not very sensitive to O(1)-variations in

the gluon condensate. The condensates of the light quarks, on the other hand, are found to

be [43]

〈ψ(0)

u,d ψ
(0)
u,d 〉 = −(1.65± 0.15) · 10−2 GeV3 . (4.2)

The condensate of the strange quark is smaller by about a factor 0.8 [43]. These condensates

contribute to the trace of the energy-momentum tensor

T ρρ ⊃ −
bQCD

32π2
G(0)
µν G

(0)µν +
∑

quarks

mq ψ
(0)

i ψ
(0)
i . (4.3)

The first term is due to the scale anomaly of QCD, where bQCD is the β-function coefficient

of QCD, and the sum in the second term is over all quarks that form a condensate, where

mq denotes their masses. The trace of the energy-momentum tensor in turn relates to the

energy density as

V =
1

4
〈T ρρ 〉 . (4.4)

Once QCD confines, it thus contributes to the energy density of the universe. Since in the

RS model the scale at which QCD becomes strongly coupled depends on the radion, the size

of the condensates and thus their contribution to the energy density depends on it too. On

dimensional grounds, we expect that

〈G(0)
µν G

(0)µν〉 ∼ (ΛQCD(µ))4 , (4.5)

〈ψ(0)

u,d ψ
(0)
u,d 〉 ∼ (ΛQCD(µ))3 . (4.6)

Following from eqs. (4.3) and (4.4), this leads to an additional contribution from QCD to

the radion potential.

We are thus interested in situations where the phase transition of RS models happens at

temperatures at or below the QCD scale. Electroweak symmetry is then generically broken

simultaneously. Correspondingly, we in principle need to analyze the phase transition in the

6 In the relevant literature, typically a convention is used where the gauge coupling appears in the

covariant derivative. Then values for the expectation value 〈αsGµν Gµν〉 are quoted. In our convention

(cf. eq. (3.2)), this leads to the factor 4π in eq. (4.1).
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two-field potential for the radion µ and the Higgs 〈H〉. The Higgs then in particular affects

the potential from the quark condensates via the quark masses. Let us for the moment

assume that the radion tunnels into its minimum first and the Higgs only follows afterwards.

Then 〈H〉 = 0 during the phase transition of the radion and the contribution from the quark

condensates vanishes. For the contribution from the gluon condensate, we can estimate the

prefactor in eq. (4.5) by matching with eq. (4.1) for ΛQCD = ΛQCD,SM ' 330 MeV [47]. We

then find

VQCD(µ, 〈H〉 = 0) ≈ − bQCD

17
(ΛQCD(µ))4 (4.7)

for the contribution of the gluon condensate to the radion potential. Several comments

are in order: The prefactor in this relation could have an additional dependence on ΛQCD

and thus µ. However, we expect that the resulting change with µ in the prefactor is at

most of order 1. We will later see that our results are relatively insensitive to changes

of this (or even somewhat larger) magnitude. More important is that the gluon condensate

〈G(0)
µν G(0)µν〉 remains positive for all confinement scales, so that the prefactor does not change

sign. But since this quantity should (at least in principle) be calculable using a path integral

in Euclidean space-time, this is trivially satisfied (see the discussion in sec. 6.9 in ref. [48]).

The positivity of the gluon condensate also makes intuitive sense because it means that the

energy density is lowered during confinement (the quark condensates give a comparatively

smaller contribution).

Note that all quarks are massless along the direction 〈H〉 = 0. The relevant β-function

coefficient in eq. (4.7) therefore is bQCD = 7. Correspondingly instead of ΛQCD,SM, which is

the scale where the QCD coupling diverges if 3 flavours are light at that scale (the other 3

flavours are decoupled at their respective masses), we need to use ΛQCD,0 ' 90 MeV for the

case of 6 light flavours [47] in eqs. (3.8) and (3.10). This gives

VQCD(µ, 〈H〉 = 0) ≈ − bQCD

17
·

Λ4
QCD,0

(
µ

µmin

)4n

for µ > µc

(ΛQCD(µc))
4 for µ < µc .

(4.8)

The energy density in the minimum of the Goldberger-Wise potential is given by

VGW(µmin) ' −ε v2
IR
µ4

min

(√
ε+

ε2

4
− δ

v2
IR

− δ

2v2
IR

)
. (4.9)

This is typically much bigger than VQCD(µmin) since µmin � ΛQCD,SM. The new contribu-

tion from QCD is thus negligible near the minimum of the radion potential. However, the

Goldberger-Wise potential goes approximately like µ4, while the potential from the gluon

condensate is proportional to µ4n. For n < 1, the importance of the latter relative to the

former thus grows with decreasing µ. Since the gluon condensate contributes with a nega-

tive sign to the energy density, it can then partly remove the barrier in the Goldberger-Wise

potential between the origin and the minimum. This is borne out in fig. 2, where we plot
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Figure 2: The radion potential plotted around the Goldberger-Wise barrier without (left) and

with (right) the contribution from the gluon condensate for µmin = 2.5 TeV, n = 0.15, nc = 3,

ε = 1/20, vIR = 1 and δ = −1/2. The combined potential is negative near the origin because the

gluon condensate contributes with a negative sign, while the Goldberger-Wise potential vanishes

there. For better comparison, we have shifted the combined potential to make it vanish at the

origin too. Notice that the barrier does not completely disappear even with the contribution from

the gluon condensate.

the radion potential without and with the contribution from the gluon condensate near the

Goldberger-Wise barrier for n = 0.15 (and nc = 3, µmin = 2.5 TeV, vIR = 1, ε = 1/20).

The gluon condensate indeed removes a significant part of the barrier and, more generally,

changes the shape of the potential. Notice that it does not remove the barrier completely

though and a small barrier remains. The reason is that the gluon condensate becomes inde-

pendent of µ for µ . µc as discussed previously, while the Goldberger-Wise potential grows

approximately like µ4 near the origin. Since a barrier remains, the phase transition is still

first order. We then need to calculate the bounce in order to see if the tunneling rate is

sufficiently high for the phase transition to complete in the early universe. But from the

plot of the potential, we expect that the QCD contribution can significantly increase the

tunneling rate. We will see later that this is indeed the case.

Let us next discuss the case where both µ and 〈H〉 change simultaneously during the

phase transition. The contribution from the gluon condensate is then still given by eq. (4.7).

But the β-function coefficient becomes a (stepwise) function of µ and 〈H〉 since it depends on

the number of light fermions near the QCD scale ΛQCD. In addition, the quark condensates

now contribute to the potential. Matching with eq. (4.2) for ΛQCD = ΛQCD,SM gives the

estimate

VQCD(µ, 〈H〉) ⊃ − 1

2

∑
quarks

yq 〈H〉 (ΛQCD(µ))3 . (4.10)

As we discuss below, this relation is a priori only valid for ΛQCD(µ) . µ. Also again we expect

some additional O(1)-dependence on µ in this relation for ΛQCD different from ΛQCD,SM. The

sum is over all quarks with mq = yq〈H〉 . ΛQCD(µ). Near the minimum of the combined

radion-Higgs potential at µ = µmin and 〈H〉 = vEW, this sum is dominated by the strange

12



quark with yq ≈ 10−3. On the other hand, in the region of the potential where 〈H〉 . ΛQCD,

even the top quark condenses and contributes. In order to compare with the contribution

from the gluon condensate, let us consider two sample trajectories near the minimum of the

two-field potential. For

〈H〉 = vEW

(
µ

µmin

)n
, (4.11)

the ratio 〈H〉/ΛQCD(µ) remains constant and the strange quark condensate dominates over

the other quark condensates everywhere along the trajectory. We then see from eqs. (4.7)

and (4.8) that the gluon and quark condensates contribute approximately equally to the

potential. Let us next consider the trajectory

〈H〉 = vEW
µ

µmin

(4.12)

along the minimum of the Higgs potential.7 The ratio 〈H〉/ΛQCD(µ) then decreases for n < 1

when going along this trajectory from µ = µmin towards µ = 0 and more and more quark

flavours condense. This increases the importance of the quark condensates for the potential

relative to the gluon condensate. On the other hand, this is counteracted by the fact that

eq. (4.8) now decreases proportional to µ1+3n with decreasing µ, while eq. (4.7) still scales

as µ4n.

Nevertheless, it is possible that there are regions of parameter space and trajectories in

the two-field potential for which the quark condensates dominate over the gluon condensate.

However, we will refrain from analyzing this quantitatively. As earlier in this section, we

will instead focus on the tunneling path along the (µ, 〈H〉 = 0)-direction for the radion and

assume that the Higgs only later obtains a VEV. We can then restrict ourselves to the gluon

condensate. Let us assume that, for a given point in parameter space, the tunneling action

along this direction is sufficiently small to allow the phase transition to complete. If the

actual tunneling path in the two-field potential differs from this direction, it necessarily has

a smaller tunneling action and therefore provides a successful phase transition too. Focusing

on the path along the (µ, 〈H〉 = 0)-direction and the gluon condensate is therefore sufficient

for showing that QCD can significantly enlarge the regions of parameter space where the RS

phase transition completes in the early universe. Other paths and the quark condensates

can only open up more parameter space.

7We note that this trajectory is along the minimum of the Higgs potential only if the Higgs mass parameter

m2
H is independent of µ. However, various phenomenological constraints require that this mass is much

smaller than its natural value, |m2
H | � e−2ky

IRM2
5 (or a similar cutoff). In absence of a dynamical mechanism

to generate this (little) hierarchy, one needs an accidental cancellation among different contributions to m2
H

to bring it down to the required value. It is then expected that this accidental cancellation only happens

for µ close to µmin and that the Higgs mass parameter is brought back to its natural value for different µ.

This would change the trajectory along the minimum of the Higgs potential to 〈H〉 ∼ O(1) · µ. We thank

Jay Hubisz for emphasizing this to us.
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In addition, there are technical reasons for focusing on the gluon condensate: It is in

particular less clear that the sign of the quark condensate does not change when ΛQCD

becomes different from ΛQCD,SM (contrary to the case for the gluon condensate). But only

for a negative sign as in eq. (4.2) can the resulting contribution to the radion potential

remove the barrier and thereby help with the phase transition. Furthermore, the derivation

of eqs. (4.3) and (4.8) assumes that we can perform a KK expansion of the 5D fields and

then add confinement as a small perturbation. If the QCD scale becomes larger than the

KK scale, this assumption is no longer justified. In particular, higher-dimensional operators

involving colored KK modes then grow with ΛQCD/µ and this description is thus no longer

under control. It is unclear how the Higgs couples to the quark condensates in this regime.

5 The phase transition in Randall-Sundrum models

We next review the phase transition that happens in RS models when they cool from tem-

peratures above to temperatures below the IR scale. In this section, we ignore the effect

of the gluon condensate on the radion potential and the phase transition. Readers familiar

with this may jump straight to the next section, where we include the QCD effect and which

presents our main results.

At temperatures far above the IR scale µmin, the geometry of the Randall-Sundrum

model is deformed into AdS-Schwarzschild. This space has a black hole horizon instead of

the IR brane. The position of this horizon, or equivalently its Hawking temperature TH , is

the relevant field variable in the AdS-Schwarzschild phase (similar to the radion µ in the

Randall-Sundrum phase). Its potential is given by the free energy of AdS-Schwarzschild [20]8

VAdS−S(TH) =
3

8
π2N2T 4

H −
1

2
π2N2T 3

HT , (5.1)

where T denotes the ambient temperature. As expected, this potential is minimized for

TH = T . Notice that the energy in this minimum increases with decreasing temperature.

Eventually the temperature in the early universe has cooled so much that the minimum

becomes shallower than the minimum of the Goldberger-Wise potential. Subsequently a

phase transition from AdS-Schwarzschild to the Randall-Sundrum space can take place.

This becomes energetically possible at the critical temperature

Tc =

(
−8VGW(µmin)

π2N2

)1/4

, (5.2)

where the energy density VGW(µmin) in the minimum of the Goldberger-Wise potential is

given in eq. (4.9).

The two spaces have different topologies since AdS-Schwarzschild is simply connected

whereas the Randall-Sundrum space is not. But they can be smoothly connected by sending

8Bulk fields like the Goldberger-Wise scalar give additional, smaller contributions (see ref. [20]).
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respectively the horizon and the IR brane to infinity, TH , µ → 0, which in both cases gives

pure AdS5 (cut off by a brane in the UV). As argued in ref. [20], it is then plausible to expect

that the dominant bounce which mediates the phase transition interpolates between the two

spaces via pure AdS5. The potential which governs this bounce is obtained by gluing the

potentials for Th and µ, VAdS−S and VGW, together at the origin, TH = µ = 0.9 In fig. 3, we

plot this combined potential at the critical temperature. Notice that the AdS-Schwarzschild

phase leads to a barrier that separates the two minima in the potential. This comes in

addition to the barrier in the Goldberger-Wise potential which we have mentioned before

and which is already present at zero temperature. The phase transition therefore is first-

order and proceeds via the nucleation of bubbles. The rate with which these bubbles form

is given by

Γn = Γ0 e
−S , (5.3)

where Γ0 is of order of the fourth power of the relevant energy scale of the potential and S is

the bubble action. For O(4)-symmetric bubbles, Γ0 is a function of the characteristic bubble

size, the field value µr to which the field tunnels and the second derivative of the potential

along the tunneling path [49–51]. The scale of all these quantities is set by µr. For O(3)-

symmetric bubbles, an additional dimensionful quantity is the ambient temperature [51].

Since these bubbles are only important for relatively high temperatures, this is typically

again of order µr. In addition, Γ0 can depend on the dimensionless quantities N, ε, v
IR
, δ.

Since Γ0 only enters logarithmically into the relation for the required bubble action S (see

below), though, these parameters can be neglected.

The phase transition can only complete if the rate of bubble nucleation Γn becomes larger

than the Hubble rate per horizon time and volume H4. This leads to the condition on the

bubble action

S . 4 log

(
µrMPl

µ2
min

)
, (5.4)

where we have used the estimate Γ0 ∼ µ4
r and thatH ∼ µ2

min/MPl during the phase transition.

Note that the latter relation applies for both temperatures near and far below the critical

temperature. The Hubble rate in the former case is driven by the AdS-Schwarzschild phase,

while in the latter case it is determined by the cosmological constant which arises from the

universe being stuck in the wrong vacuum (cf. eqs. (4.9) and (5.1)). If the radion potential

is of the Goldberger-Wise type, the radion typically tunnels to near the minimum of the

potential so that µr ∼ µmin. This leads to the criterion S . 140. As we will discuss in

sec. 6, if the gluon condensate modifies the potential near the origin, the radion instead

tunnels to the much smaller value µr ∼ ΛQCD(µc). The resulting criterion S . 50 − 90 for

9Note that in the region 0 ≤ µ . T , temperature corrections to the radion potential are not under

control as the effective 4D description breaks down. However, we are mainly interested in the potential at

the nucleation temperature Tn which is much smaller than µmin (see below). The region which is not under

control is therefore small and can be neglected in calculating the bounce.
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Figure 3: Schematic plot of the combined potential for the AdS-Schwarzschild and Randall-

Sundrum spaces, glued together at the origin and evaluated at the critical temperature.

n = 0.1− 0.5 is more stringent. The modified potential from the gluon condensate will have

a much smaller tunneling action, though, which can then still satisfy the tightened criterion

for the phase transition to complete.

One can distinguish two types of bubbles that form during the phase transition. If the

spatial size of the bubble is much larger than the radius T−1 of the time direction, it has

O(3) symmetry. The bubble action is then given by S = S3/T , where S3 is the action of

the spatial part. In the opposite case, the bubble has O(4) symmetry and its action reads

S = S4. The action for both bubble types generically depends on the temperature and

thus changes as the universe expands and cools. For O(4)-symmetric bubbles, it decreases

with the temperature as the energy difference between the false and true minima then grows

(cf. eqs. (4.9) and (5.1)). This effect is partly counteracted for O(3)-symmetric bubbles due

to the explicit T−1-suppression of the action. The latter is therefore typically minimized for

temperatures not too far below the critical temperature.

Let us first consider bubbles with O(4) symmetry. If we want to determine whether the

phase transition can complete, it is sufficient to calculate their action at zero temperature

since this minimizes the action. The AdS-Schwarzschild part of the instanton vanishes in

this limit and we can use the origin of the Goldberger-Wise potential as the initial state

corresponding to the false vacuum. The radial profile µ(r) of the bubbles is then obtained

by solving the bounce equation

3N2

2π2

(
d2µ

dr2
+

3

r

dµ

dr

)
=

dVGW

dµ
, (5.5)

where r =
√
~x2 + t2 is the radial distance from the center of the bubble and the boundary

conditions are µ(r)→ 0 for r →∞ and dµ/dr = 0 at µ = 0. The bubble action follows from

the integral

S4 = 2π2

∫
r3dr

[
3N2

4π2

(
dµ

dr

)2

+ VGW(µ)

]
. (5.6)

We have numerically calculated the resulting action for µmin = 2.5 TeV, N = 4.5 and

different values of ε, v
IR

and δ (ignoring the QCD effect). In order to stay in the window for
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δ above eq. (2.10) for varying v
IR

, we choose the parametrization δ = δ̃ v2
IR

. In the left panel

of fig. 4, we then fix δ̃ = −0.5 and show results in the (v
IR
− ε)-plane. In the right panel,

v
IR

= 0.5 and results are plotted in the (δ̃ − ε)-plane. Regions where the action satisfies the

criterion in eq. (5.4) and where the phase transition can thus complete are shown in green. In

the remaining parameter space, shown in red, the phase transition does not complete and the

radion instead remains stuck in the wrong vacuum. In the hashed region, above and to the

right of the dashed black line, the contraint in eq. (2.13) is not fulfilled and the backreaction

of the Goldberger-Wise scalar on the geometry can not be neglected. The blue, orange, green,

red dashed-dotted lines correspond to the radion mass being (neglecting the backreaction,

see the discussion at the end of this section) mradion = 200 GeV, 600 GeV, 1 TeV, 1.4 TeV,

respectively.10

The bubble action can also be estimated analytically. For O(4)-symmetric bubbles, we are

interested in the action at zero temperature, in which case the energy difference between the

false and true minima is big and the thick-wall approximation is applicable. This gives [51]

S4 ≈
9N4

8π2

µ4
r

−VGW(µr)
. (5.7)

The point µr to which the field tunnels is determined by minimizing S4 with respect to µr.

In fig. 4, the region where the resulting S4 satisfies eq. (5.4) and the phase transition thus

completes is above the dashed purple line. As one can see, the results using the analytical

estimate agree reasonably well with the (more precise) numerical calculation.

Let us next consider O(3)-symmetric bubbles. The bounce equation and bubble action

are obtained from eqs. (5.5) and (5.6) via the replacements 3/r → 2/r, S4 → S3, and

2π2r3 → 4πr2. The contribution to the radion potential from the QCD condensates that we

include in the next section, requires the temperature to drop below the QCD scale. The

action of O(3)-symmetric bubbles is then very large and they become unimportant. Since

this scenario is the main topic of this paper, we will not calculate their action numerically.

At higher temperatures, bubbles with O(3) symmetry can be important though. In order

to check if they open up parameter space for the phase transition to complete, we will use

an analytical estimate for their action. As shown in [21], the thick-wall approximation is

again applicable for these bubbles in the Randall-Sundrum model. The action can then be

10The radion mass is, even if the QCD effect is included, dominated by the Goldberger-Wise potential and

given by

m2
radion ' ε

4π2

3N2

(
v2
IR

(4 + ε)

(√
ε (4 + ε)− 4δ

v2
IR

+ ε

))
µ2
min .
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Figure 4: Results for µmin = 2.5 TeV and N = 4.5 without the QCD effect. For the left panel,

we have fixed δ̃ = −0.5, and for the right panel, vIR = 0.5. Regions where the phase transition can

complete via the nucleation of O(4)-symmetric bubbles are shown in green, while regions where

the nucleation rate is too low are colored in red. Regions above the purple dashed and dotted lines

are allowed according to the analytical estimate of the bubble action for O(4)- and O(3)-symmetric

bubbles, respectively. In the hashed region (above the black, dashed line in the left panel and to right

of the black, dashed line in the right panel), the backreaction constraint is not fulfilled. The blue,

orange, green, red dashed-dotted lines (from bottom to top in the left panel and in the reversed order

in the right panel) correspond to the radion mass being mradion = 200 GeV, 600 GeV, 1 TeV, 1.4 TeV,

respectively.

estimated as [52]11

S3 ≈
√

3

π2

N3µ3
r√

VGW(µmin)(T/Tc)4 − VGW(µr)
. (5.8)

The term in the denominator arises from the energy difference between the false vacuum

(eq. (5.1) at TH = T ) and the potential at the release point (eq. (2.12) at µ = µr). In

fig. 4, the region where the resulting action satisfies eq. (5.4) and the phase transition thus

completes is above the dotted purple line. We see that O(3)-symmetric bubbles do not open

up much more parameter space than those with O(4) symmetry.

Notice that the regions where we found sufficiently small bubble actions are entirely

within the hashed regions. Since our calculation of the bubble actions effectively assumes

11Note that the AdS-Schwarzschild part of the instanton has been neglected in this estimate. Its contri-

bution to the bubble action can not be properly calculated since the normalization of the kinetic term for

the field TH is not known. However, it was argued in ref. [20] that this part of the instanton is suppressed

by powers of N relative to the contribution from the Randall-Sundrum space and can therefore justifiably

be neglected.

18



negligible backreaction, the results in the hashed regions are a priori not reliable. In addition,

significant backreaction is expected to raise the radion mass to the IR scale, an effect not

included in the contour lines. If the radion is so heavy, however, the description of the

phase transition in terms of only the radion becomes questionable. Instead one would have

to include higher KK modes or calculate the full 5D instanton [20, 22]. It is therefore not

clear whether the phase transition can really complete in the corresponding regions of fig. 4.

Furthermore, note that N = 4.5 is just above the constraint in eq. (2.15) from neglecting

higher powers of the Ricci scalar in the action. If one increases N , these region quickly

disappears since the action scales12 as N4.

We thus conclude that when using the Goldberger-Wise potential, the RS phase transition

does not complete for most of the parameter space. Several approaches have been proposed

to remedy this situation, for example by deforming the RS geometry [23–25] or by invoking

brane-localised curvature [26]. We show in the next section how QCD confinement provides

a universal and effective solution to this problem.

6 Effect of the QCD condensates on the phase transition

We now include the effect of the QCD condensates on the radion potential and the phase

transition. As we have seen in sec. 4, the contribution from the gluon condensate in particular

can partly remove the barrier in the Goldberger-Wise potential. We expect that this increases

the tunneling rate. Let us now see whether this is the case.

In regions of parameter space where the phase transition does not complete for the

Goldberger-Wise potential, the radion remains stuck in the wrong vacuum. This vacuum

has a large, positive cosmological constant since the energy density in the true minimum

needs to equal the cosmological constant today and thus almost vanishes (which is achieved

by adding a constant contribution to the radion potential). The universe therefore quickly

enters an inflationary phase. During this period, the temperature drops exponentially and

eventually reaches the QCD scale. The QCD condensates then form and contribute to the

radion potential. However, the QCD scale is itself a function of the radion. It decreases with

µ and then saturates at ΛQCD(µc) given in eqs. (3.11) and (3.12). The effect of the QCD

condensates on the radion potential is maximized if the temperature drops below this scale

ΛQCD(µc). For points in parameter space where the QCD effect allows the phase transition to

complete, this provides a lower bound on the temperature Tn at which the phase transition

12This follows from the transformation properties under scale transformations x→ λx of the kinetic term

and potential in eq. (5.6). Denoting them by T and V , respectively, one has T → λ2T and V → λ4V . For

λ = N , we then see that S4 ∝ N4. From the fact that the bounce is an extremum of the action, one can

similarly show that T = −2V (see e.g. ref. [53]). We use this property as a quality control for the numerical

calculation of the bounce.
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happens:

Tn & ΛQCD(µc) . (6.1)

We emphasize that this is only a lower bound though. For n = 0.1− 0.5, this then gives

Tmin
n ∼ 10−2 GeV − 10−6 GeV. (6.2)

The inflationary phase ends once the phase transition completes. We can estimate the

resulting maximal number of e-folds of this stage as

Nmax
e ∼ log

(
Tc
Tmin
n

)
∼ log

(
µmin

Tmin
n

)
∼ 10 − 20 . (6.3)

We assume that an earlier stage of inflation is responsible for the features of the Cosmic

Microwave Background. A second stage of inflation with a number of e-folds in the above

range is then safe from observational constraints.

From eq. (6.2), we expect the phase transition to happen at temperatures far below the

critical temperature (for example even for ε = 10−3, v
IR

= 10−2 and N = 10, the latter is

of order 10 GeV). Then O(3)-symmetric bubbles are highly suppressed and only bubbles

with O(4) symmetry are relevant. As discussed in sec. 4, we assume that n < 1 and restrict

ourselves to the gluon condensate and the direction (µ, 〈H〉 = 0) in the combined radion-

Higgs potential. The bounce equation, action and approximate action for O(4)-symmetric

bubbles is obtained from eqs. (5.5) to (5.7) by replacing the Goldberger-Wise potential with

Vradion(µ) = −VQCD(0) + VQCD(µ) + VGW(µ) . (6.4)

The first term is chosen such that the potential vanishes for µ = 0. This is an underlying as-

sumption for the bounce equation (which for the Goldberger-Wise potential is automatically

fulfilled).

Let us begin with some analytical estimates. The gluon condensate can affect the barrier

if its contribution to the potential at the position of the barrier is larger than the barrier

height,

|VQCD(µmax)| & |VGW(µmax)| . (6.5)

The importance of the QCD potential relative to the Goldberger-Wise potential grows with

decreasing µ. There is then a region 0 ≤ µ ≤ µQCD with some µQCD & µmax, where we can

neglect the Goldberger-Wise potential. Using eqs. (3.12) and (4.8) (with ΛQCD,SM replaced

by ΛQCD,SM as discussed in sec. 4), the radion potential in this region can be rewritten as

Vradion(µ) ≈ 7

17
Θ(µ− µc) (ΛQCD(µc))

4

(
1 −

(
nc µ

ΛQCD(µc)

)4n
)
. (6.6)

Defining µ̃ ≡ µ/ΛQCD(µc), the approximate analytical result for the bubble action in eq. (5.7)

then gives

S4 ≈ N4 3

π2

µ̃4
r

Θ(µ̃r − 1/nc) ((nc µ̃r)4n − 1)
. (6.7)
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In order to find the bubble action, this expression needs to be minimised with respect to the

release point µ̃r. As we have discussed in sec. 3, we expect that nc ∼ π. For values of nc in

the vicinity of this and n = 0.1, we then find

S4 ≈ N4


0.5 for nc = 2

0.1 for nc = 3

0.03 for nc = 4 .

(6.8)

For n = 0.5, on the other hand, we find

S4 ≈ N4


0.08 for nc = 2

0.02 for nc = 3

5 · 10−3 for nc = 4 .

(6.9)

The criterion in eq. (5.4) for the phase transition to complete evaluates to S4 . 50 for n = 0.1

and S4 . 90 for n = 0.5. We then expect that the phase transition can complete in the

entire region delimited by eq. (6.5) for n = 0.1, nc & 3 or n = 0.5, nc & 2 and N = 4.5 (close

to its minimal allowed value according to eq. (2.15)). Depending on the parameters, higher

values of N can be viable. For example for n = 0.5 and nc = 4, the phase transition could

complete for N up to 12.

In order to see if these expectations are borne out, we have calculated the action for

O(4)-symmetric bubbles numerically. We model ΛQCD(µ) by the function13

Λapprox.
QCD (µ) = ΛQCD,0

µ e−(µcµ )
2

+ µc
µmin

n

(6.10)

which smoothly interpolates between eqs. (3.8) and (3.10) and assume that nc = 3. For

parameters for which the condition in eq. (6.5) is not satisfied, the gluon condensate typically

leads to a second local minimum in the radion potential in the region µ < µmax. Since

the bubble action for tunneling into this local minimum is much smaller than for tunneling

directly into the global minimum, the phase transition will then happen in a two-step process.

For parameter points for which such a second minimum appears, we therefore calculate the

bubble action for the tunneling from the false vacuum into the local minimum and from

there into the global minimum separately. The phase transition can then complete if each

of these two bubble actions satisfies the criterion in eq. (5.4).

We have performed the calculation for µmin = 2.5 TeV, N = 4.5, n = 0.3 and n = 0.1

and different values of ε, v
IR

and δ. As in sec. 5, we choose the parametrization δ = δ̃ v2
IR

to

ensure that δ stays in the window above eq. (2.10) for varying v
IR

. In the left panel of fig. 5,

13Alternatively, one can for example approximate the Θ-function in eq. (6.6) by [1 + tanh ((µ− µc)/b)]/2
with b� 1. This is numerically less stable than the choice in eq. (6.10) but gives comparable results.
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Figure 5: Results for µmin = 2.5 TeV, N = 4.5 and n = 0.1 and n = 0.3 when the QCD effect is

included. For the left panel, we have fixed δ̃ = −0.5, and for the right panel, vIR = 0.5. Regions

where the phase transition can complete via the nucleation of O(4)-symmetric bubbles for both

n = 0.1 and n = 0.3 are shown in green. This to be compared with the allowed regions in fig. 4

without the QCD effect. Regions where the nucleation rate is too low are colored in pale (dark) red

for n = 0.3 (n = 0.1). The corresponding green dashed lines delimit the region satisfying eq. (6.5),

where we expect the QCD effect to be important. In the hashed region (above the black, dashed

line in the left panel and to right of the black, dashed line in the right panel), the backreaction

constraint is not fulfilled. The radion masses are as in fig. 4.

we then fix δ̃ = −0.5 and show results in the (v
IR
− ε)-plane. In the right panel, v

IR
= 0.5

and results are plotted in the (δ̃ − ε)-plane. We color the region where the phase transition

does not complete for both n = 0.1 and n = 0.3 in dark red. The region which is in addition

excluded for n = 0.3 is shaded in pale red, while the remaining allowed region is in green.

In the hashed region (above and to the right of the black, dashed line), the contraint in

eq. (2.13) is again not fulfilled and the backreaction of the Goldberger-Wise scalar on the

geometry can not be neglected. Comparing with fig. 4 without the QCD effect, we see that

the latter opens up a large region of parameter space. We show the regions delimited by

the condition in eq. (6.5), where we expect the gluon condensate to have an effect, as green

dashed lines. As one can see, these match very well the region where the gluon condensate

allows the phase transition to complete. To avoid clutter, we have not plotted contour lines

for the radion mass. But since the QCD condensates contribute negligibly to the potential

near the minimum, they are as in fig. 4.

22



7 Cosmological implications and experimental tests

In our setup, the cosmological history is the following: We start at high temperatures in a hot

CFT gas. The universe is trapped in the false vacuum at µ = 0 separated by a barrier from

the true vacuum until the dilaton tunnels out and gets a VEV. This leads to the confinement

of the CFT, which induces EW symmetry breaking due to the Higgs-dilaton coupling.14 The

shallow dilaton potential is associated with a large bubble action, thus a small tunnelling

probability, and the universe supercools to very low temperatures. When ignoring QCD

effects, one finds that the universe typically remains stuck in the wrong vacuum. We have

found that the QCD condensates, on the other hand, can have a large impact on the tunneling

action in the radion potential, and can enable the RS phase transition to complete in large

regions of parameter space.

After tunneling to the release point, the radion starts classically rolling down its potential

towards the minimum. When the QCD condensates are important, this release point is given

by µr ∼ ΛQCD(µc) which is much smaller than µmin. Since the potential is rather flat for

small field values, the field moves slowly and we have to check that quantum fluctuations do

not bring it back towards the origin, which would lead to eternal inflation. To this end, let

us consider the equation of motion for µ,

µ̈ + 3Hµ̇ =
1

C3

∂Vradion

∂µ
, (7.1)

where H is the Hubble rate and C = 3N2/(2π2) accounts for the normalisation of the

kinetic term of µ. The quantum fluctuations of the radion in the Hubble background are

∆µquant ∼ H/2π and its classical displacement during one Hubble time ∆t ∼ H−1 is

∆µclass ∼ ∆t× µ̇ ∼ V ′radion

3C3H2
, (7.2)

where we have neglected the µ̈-term in the equation of motion. We can then define a critical

field value µ∗ [55] for which

∆µclass = ∆µquant → ∂Vradion

∂µ

∣∣∣∣
µ∗

=
3C3H3

2π
. (7.3)

Since ∆µclass decreases with µ, quantum fluctuations would dominate the evolution of µ

if µr . µ∗. We would then be in the regime of eternal inflation. The Hubble rate H is

controlled by the vacuum energy in the false vacuum which is approximately of order µ4
min.

14How this Higgs-dilaton interplay happens depends on the details of the UV completion. From localising

the Higgs on the IR brane with a mexican hat potential, a Higgs-dilaton potential of the form λ(H2−ξµ2)2/4

is obtained, where ξ = v2EW/µ
2
min and vEW is the Higgs VEV today (see, however, footnote 7). If the Higgs is

a pseudo-Nambu-Goldstone boson, the potential instead has the form µ4(α0 sin2[h/µ] +β0 sin4[h/µ]), whose

coefficients depend on the matter content in the composite sector [54].
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This gives

µ∗ ∼
µ2

min

MPl

∼ TeV2

MPl

∼ 10−12 GeV . (7.4)

For the parameter space of interest, µr ∼ ΛQCD(µc) is always significantly bigger than this

µ∗. There is therefore no danger of eternal inflation and the field instead classically rolls

towards the minimum of its potential after tunneling. A few e-folds of inflation may result

from this short slow-rolling stage. The associated cosmological implications will be discussed

in future work [56].

The dilaton phase transition can thus trigger the EW phase transition, and the dynamics

that we have studied are therefore directly relevant for EW baryogenesis. Furthermore, since

the QCD phase transition takes place before the EW phase transition when the top quark is

still massless, the QCD phase diagram may be impacted. This potentially makes the QCD

phase transition first-order [8, 57]. Just before the EW phase transition, the temperature

of the universe is below the QCD scale. However, the energy density of the universe is

dominated by the TeV scale vacuum energy of the dilaton and the universe is inflating.

After the dilaton phase transition proceeds, reheating takes place as the dilaton energy

density is transferred to the standard model particles. We can thus expect that the universe

reaches EW scale temperatures again so that the QCD phase transition eventually happens

a second time, in the standard way, and the usual standard thermal history follows. The

only remnant of the supercooling stage will be in the form of a stochastic background of

gravitational waves observable at LISA [1, 21]. Because of a potentially first-order QCD

phase transition preceeding the EW phase transition and both happening when the energy

density of the universe is at the TeV scale, this could lead to an enhanced amplitude of

the signal at LISA and potentially some features in the gravitational-wave spectrum (the

double-bump would be difficult to resolve though).

We assume a cosmological scenario in which inflation took place at high scales, when the

power of density perturbations at the origin of the Cosmic Microwave Background (CMB)

was produced, followed by reheating to high (above the TeV scale) temperatures. The

subsequent later stage of supercooling leading to additional 10 to 20 e-folds of inflation may

dilute pre-existing heavy particles and potentially have an impact on the axion abundance [9].

A second stage of inflation with a number of e-folds in this range is not constrained, though,

and the CMB remains unaffected.

Cosmological implications of this scenario were discussed in [5], such as the possibility

of dilution of relic abundances of stable particles during the TeV-scale inflationary stage

or non-thermal dark-matter production during bubble collisions. A particularly interesting

consequence is baryogenesis. Since the EW phase transition takes place essentially in vac-

uum, the usual charge transport mechanism in the vicinity of bubble walls is not appropriate.

This setup is, on the other hand, a natural framework for implementing the mechanism of

cold baryogenesis [9,58] which is very different from the usual EW baryogenesis mechanism
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and does not involve sphalerons. Instead, Higgs quenching induces Chern-Simons transi-

tions [59, 60]. In particular, we provide a natural explanation for a nucleation temperature

at the QCD scale, which nicely motivates the possibility that the QCD axion could be

responsible for providing enough CP -violation for baryogenesis [9].

Our scenario works if the dilaton is rather light (below the mass scale of the composite

resonances, see fig. 4). Experimental tests will therefore come from the detection of the dila-

ton. In a natural realisation without fine-tuning, this means the dilaton is accessible at the

LHC. The properties and signatures of the dilaton are determined by its Nambu-Goldstone

nature [61–65] and it can be distinguished from other additional singlets in extended scalar

sectors of the standard model. While discovering a light dilaton at the LHC would be a

signal in favour of our scenario, this would not be enough. In fact, as clearly shown by the

comparison between figs. 4 and 5, we also need a small parameter n for the phase transition

to complete. According to eqs. (3.6) and (3.9), such a small n corresponds to a small |bCFT |
which means a large 5D gauge coupling kg2

5. This coupling can be probed by measuring

resonant production of KK gluons or KK quarks. Given the bounds from EW precision tests

of order 2 TeV on the KK scale (see footnote 1), we conclude that a future high energy

collider is needed to probe this scenario.

8 Conclusions

Our analysis shows that the possibility to delay the electroweak phase transition down to

QCD temperatures can arise naturally in models where electroweak symmetry breaking is

linked to nearly conformal sectors, as is well-motivated in Randall-Sundrum and composite

Higgs models. We have found that the first-order Randall-Sundrum phase transition becomes

much more likely when including effects from the QCD condensate in the radion/dilaton

potential. The comparison between figs. 4 and 5 shows that a large region of parameter

space opens up when incorporating this effect in the analysis of the tunneling probability.

We summarise our key ingredients:

• The dilaton VEV µ determines the confinement scale of the CFT (or the radion VEV

the IR scale of the RS model).

• The Higgs acquires a potential from its coupling to the radion/dilaton and gets a

non-zero VEV controlled by the scale µ.

• The composite sector is colored and thus coupled to gluons, as imposed by the scenario

of composite Higgs models with partial compositeness [14,15]. At energies lower than µ,

the CFT degrees of freedom no longer contribute to the running of the QCD coupling.

The latter thereby depends on µ. In the Randall-Sundrum description, this results

from the gluon living in the bulk of the extra dimension.
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• Consequently, the scale ΛQCD at which the QCD coupling becomes strong depends on

µ too. It scales as (see eq. (3.8))

ΛQCD(µ) ∝ µn for ΛQCD(µ) . µ .

This means that at small µ, the blowing-up of the QCD coupling is delayed for n < 1,

where n is a free parameter determined by the CFT degrees of freedom contributing

to the QCD β-function, or by the 5D gauge coupling (see eq. (3.9)).

• The QCD contribution from gluon condensation to the radion/dilaton potential comes

with a negative sign, (see eq. (4.7)),

VQCD ∝ − (ΛQCD(µ))4 .

This lowers the potential at small µ and contributes to remove a significant part of the

barrier, leading to an important impact on the tunneling action for 0.1 . n . 1.

While we have not included the Higgs in our analysis, the Higgs-radion interplay can lead

to additional non-trivial effects such as Yukawa coupling variation during the electroweak

phase transition [34,54].

The effect that we have studied in detail in the context of the Randall-Sundrum model

is rather general and applies to other nearly conformal potentials. A related discussion

was presented in ref. [8] in the framework of a classically conformal B − L-extension of

the standard model. In this context, the Higgs has a quartic coupling to an additional

singlet scalar whose VEV breaks B − L. The corresponding Coleman-Weinberg potential

has no barrier at zero temperature (it remains to be checked whether in this model a zero-

temperature barrier could be generated through slowly running perturbing operators at

higher order, similar to what happens in the Goldberger-Wise mechanism). Rather than the

gluon condensate, the top-quark condensate is considered, which generates a linear term in

the Higgs potential yt〈t̄t〉h/
√

2 that suppresses the thermal barrier from the Higgs thermal

mass at temperatures below the QCD scale.

Our results strongly motivate the possibility of cold baryogenesis [9, 58, 59] and open

novel opportunities for cosmology such as a natural TeV-scale stage of inflation which can

lead to the production of primordial black holes [56]. The strongly first-order electroweak

phase transition also leads to a large stochastic signal of gravitational waves observable at

LISA [1,21].
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Appendix: Perturbativity constraints for Goldberger-Wise

In order to be able to neglect the backreaction of the Goldberger-Wise scalar on the geometry,

the magnitude of its energy-momentum tensor needs to be smaller than the contribution from

the cosmological constant. The energy momentum tensor of the Goldberger-Wise scalar is

given by

TMN
φ = gMN

(
1

2
(∂Mφ)2 − m2

2
φ2

)
−
(
∂Mφ

) (
∂Nφ

)
. (8.1)

Plugging in its VEV in eq. (2.4), the µν-components read

T µνφ ' k5v2
IR
ηµν
(k
z

)2
[

(8 + 2ε)

(
1−

( µ

µmin

)ε
Xmin

)2 (µ
z

)8+2ε

− 2 ε
( z

µmin

)2ε

X2
min

− 8 ε

(
1−

( µ

µmin

)ε
Xmin

)(µ
z

)4+ε( z

µmin

)ε
Xmin

]
, (8.2)

where z ≡ ke−ky. The 55-component leads to the same constraints and will therefore not be

given explicitly. The energy-momentum tensor due to the bulk cosmological constant in the

RS model is given by

TMN
Λ = −24M3

5 k
2gMN . (8.3)

We need to impose that the absolute value of eq. (8.2) is smaller than that of eq. (8.3)

everywhere in the bulk, k ≥ z ≥ µ, and for different radion values µ. For the analysis of

the phase transition, we are in particular interested in the radion potential for the range

0 ≤ µ . µmin. For ε > 0, the VEV of the Goldberger-Wise scalar decreases in magnitude

when going from both the IR and UV brane towards the bulk. It is then sufficient to

compare the energy-momentum tensors near the two branes. From the UV brane, this gives

the constraint

v
IR
� N

2πXmin

√
3

ε

(µmin

k

)ε
. (8.4)

Near the IR brane, on the other hand, the energy-momentum tensor of the Goldberger-Wise

scalar depends more strongly on the radion VEV µ. The most stringent constraint in the

range of interest 0 ≤ µ . µmin arises for µ � µmin, where terms in eq. (8.2) involving

(µ/µmin)ε can be neglected. This gives

v
IR
�
√

3N

4π
. (8.5)
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Note that in the literature, the constraint has instead sometimes been evaluated for µ = µmin.

This leads to the factors (1−(µ/µmin)εXmin) in eq. (8.2) being suppressed by ε. The resulting

less stringent constraint can then not guarantee that the backreaction can be neglected for

µ� µmin.

For ε < 0, the terms involving (µ/µmin)ε become arbitrarily big for sufficiently small µ.

In this case, there is therefore always a region around the origin in the radion potential for

which the backreaction can not be neglected.15
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