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Results for the two-loop corrections to the Higgs-boson masses of the MSSM with complex
parameters of O

(
α2
t + αtαb + α2

b

)
from the Yukawa sector in the gauge-less limit are presented.

The corresponding self-energies and their renormalization have been obtained in the Feynman-
diagrammatic approach. The impact of the new contributions on the Higgs spectrum is investigated.
Furthermore, a comparison with an existing result in the limit of the MSSM with real parameters
is carried out. The new results will be included in the public code FeynHiggs.

1 Introduction

After the discovery of a Higgs boson [1, 2] with a mass around 125GeV, intense studies were per-
formed to reveal its nature. Although within the present experimental uncertainties the measured
properties of this new boson are consistent with the expectations for the Higgs boson of the Stan-
dard Model (SM) [3, 4], it could be part of an extended model like the theoretically well motivated
minimal supersymmetric Standard Model (MSSM). In the MSSM the observed particle could in
principle be interpreted as one of the three neutral physical Higgs bosons. At the tree-level, the
physical states are given by the neutral CP -even h,H and CP -odd A bosons, together with the
charged H± bosons, and can be parametrized in terms of the A-boson mass mA and the ratio of the
two vacuum expectation values, tanβ = v2/v1 . An admixture of these CP eigenstates is introduced
to the Higgs sector via loop contributions involving complex parameters from other supersymmetric
(SUSY) sectors [5–8].

Loop corrections to the masses of the Higgs bosons are sizable and therefore phenomenologically
very important. Accordingly, numerous calculations for higher-order corrections to the mass spec-
trum within the MSSM for the case where CP conservation has been assumed [9–57] as well as
for the general case of the MSSM with complex parameters (cMSSM) [5–8, 36, 44, 50, 58–66] have
already been performed. The largest one-loop contributions originate from the Yukawa sector due
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to the size of the top-quark Yukawa coupling ht, where αt = h2t
/

(4π) . For large values of tanβ

contributions of the order αb = h2b
/

(4π) , with the bottom Yukawa coupling hb, can become sizable.
At the two-loop level both types of contributions receive further potentially large corrections. The
dominant contribution is given by the leading O(αtαs) terms [24, 27, 28, 62] which are known
in the MSSM with complex parameters. Additional corrections involving the strong coupling αs
are known in the special case of the CP -conserving MSSM [53–55]. Another important class of
two-loop corrections are Yukawa-coupling enhanced contributions of the order O

(
α2
t + αtαb + α2

b

)
which are known in the CP -conserving MSSM as well [35, 41]. A computation of the leading cor-
rections of O

(
α2
t

)
has been published for the general MSSM [63, 64]. In this article also the other

pieces of the two-loop Yukawa terms are obtained for the general case of the MSSM with complex
parameters.

The phases of complex parameters in the MSSM are constrained by limits on electric dipole
moments (EDMs) [67–72], the impact of meson mixings and decays (see Ref. [73] and references
therein), and Higgs-coupling measurements [4].

Following the usual convention, we choose to fix the phase of the mass of the electroweakinos, φM2 ,
to zero; then the phase of µ from the superpotential, φµ, needs to be close to zero or π in order to
be compatible with the experimental constraints. The other relevant parameters are the phase of
the gluino mass parameter, φM3

, and the trilinear soft-breaking parameters of the stops, φAt
, and

sbottoms, φAb
. These phases, φM3 , φAt and φAb

, are less constrained; especially the bounds on the
phases of the trilinear soft-breaking parameters are weaker for the third generation than for the
second and first generation.

The calculation presented here extends the Yukawa-type contributions of O
(
α2
t

)
from Refs. [63,

64], and profits from previously developed tools [74]. For this reason the theoretical framework
is just briefly outlined and only new aspects are explained in detail in Section 2. The numerical
analysis in Section 3 is focussed on the impact of the new contributions on the Higgs masses, showing
substantial shifts of 2GeV and more in certain regions of parameter space. In the limit of vanishing
phases of the parameters, our results agree well with previous results in the MSSM for the case
where CP conservation has been assumed [41]; differences are shown for the comparison with an
interpolation for non-zero phases which so far has been used in FeynHiggs [27, 38, 66, 75, 76]. The
new results will become part of the public code FeynHiggs.

2 Higgs masses at higher orders in the complex MSSM

In this section, we briefly outline the theoretical framework for Higgs-mass predictions at higher or-
ders in the MSSM. We introduce our conventions, explain some details of our chosen renormalization
scheme, and comment on the gauge-less limit and the bottom mass resummation.

2.1 Notation and conventions at the tree level

The two scalar SU(2) Higgs doublets are expressed in terms of their components in the following
way,

H1 =

(
v1 + 1√

2
(φ1 − iχ1)

−φ−1

)
, H2 =

(
φ+2

v2 + 1√
2
(φ2 + iχ2)

)
. (2.1)
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After rotation to mass eigenstates, the Higgs potential reads

VH = −Th h− TH H − TAA− TGG

+
1

2

(
h, H, A, G

)
MhHAG


h

H

A

G

+
(
H−, G−

)
MH±G±

(
H+

G+

)
+ . . . ,

(2.2)

with the tadpole coefficients Th,H,A,G, and the mass matrices

MhHAG =


m2
h m2

hH m2
hA m2

hG

m2
hH m2

H m2
HA m2

HG

m2
hA m2

HA m2
A m2

AG

m2
hG m2

HG m2
AG m2

G

 , MH±G± =

(
m2
H± m2

H−G+

m2
G−H+ m2

G±

)
. (2.3)

The matrices MhHAG and MH±G± are diagonal at the tree level after minimizing the potential.
Explicit expressions for the entries are given in Ref. [66].

2.2 Gauge-less limit

The gauge-less limit in our calculation is defined by neglecting all couplings proportional to g1 or g2.
As a consequence of this approximation the gauge-boson masses MW and MZ are equal to zero in
the new two-loop contributions.

Accordingly, the Higgs-boson masses entering the two-loop calculation take on the values

mh = mG = mG± = 0 , mH = mA = mH± . (2.4)

In this limit, the tree-level mixing angles α ∈ [−π/2, 0) and β ∈ [0, π/2) fullfil the relation

α = β − π

2
. (2.5)

2.3 Higgs masses at the two-loop order

The Higgs mass matrix elements at the two-loop order receive contributions from self-energies,
leading in general to mixing of all neutral states. In this article the full one-loop corrections are
used, while the O(αtαs) and the new O

(
α2
t + αtαb + α2

b

)
terms are evaluated in the gauge-less limit

and at zero external momentum. Therefore, the loop-corrected propagator ∆hHAG is given by

∆hHAG(p2) = i
[
p21−M

(0)
hHAG + Σ̂

(1)
hHAG(p2) + Σ̂

(2)
hHAG(0)

]−1
. (2.6)

Therein, Σ̂
(k)
hHAG denotes the matrix of the renormalized diagonal and non-diagonal self-energies for

the h,H,A,G fields at loop order k, and M
(0)
hHAG denotes the diagonal tree-level mass matrix.

Mixing of the Goldstone boson (and of the longitudinal Z boson) with the other Higgs bosons
yields negligible effects to the propagators of the physical Higgs bosons [77–79]. Therefore, in the
following we will only consider the (3× 3) submatrix of ∆hHAG involving the physical Higgs bosons.
Though, Goldstone–Higgs mixing is taken into account in subloop renormalization terms of the type
(one-loop)

2 [64].
The neutral Higgs masses are derived from the real parts of the complex poles of the hHA

propagator matrix, obtained as the zeroes of the determinant of the renormalized two-point function,

det Γ̂hHA
(
p2
)

= 0 , Γ̂hHA
(
p2
)

= i
[
p21−M

(0)
hHA + Σ̂

(1)
hHA(p2) + Σ̂

(2)
hHA(0)

]
. (2.7)
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2.4 Counterterms

The renormalized two-loop self-energies can be written as

Σ̂
(2)
hHA(p2) = Σ

(2)
hHA(p2)− δ(2)MZ

hHA , (2.8)

with Σ
(2)
hHA denoting the unrenormalized self-energies at the two-loop order, and δ(2)MZ

hHA com-
prising all two-loop counterterms resulting from parameter and field renormalization. The notation
follows [64], where the required expressions for δ(2)MZ

hHA can be found.
The Feynman-diagrammatic calculation of the self-energies has been performed with the help of

FeynArts [80, 81] for the generation of the Feynman diagrams, and TwoCalc [82] for the two-loop
tensor reduction and trace evaluation. The one-loop renormalization constants have been obtained
with the help of FormCalc [83].

2.4.1 Genuine two-loop renormalization

The two-loop counterterms for the Higgs self-energies given in Ref. [64] also apply to the corrections
described in the present article. However, there is an interesting difference for the cancellation of
the divergence in the self-energy Σ

(2)
hH(0). The corresponding counterterm reads

δ(2)mZ
hH = δ(2)m2

hH + 1
2m

2
H±δ(2)ZhH + . . . , (2.9)

where terms with products of two one-loop counterterms have been omitted. In the gauge-less limit
δ(2)m2

hH is the only counterterm which contains δ(2)tβ ,

δ(2)m2
hH = m2

H± c2β δ
(2)tβ + . . . . (2.10)

Here we define tβ ≡ tanβ, sβ ≡ sinβ and cβ ≡ cosβ. The two-loop field renormalization constant
for the same matrix element is given by

δ(2)ZhH = −cβsβ
[
δ(2)ZH2

− 1
4

(
δ(1)ZH2

)2
− δ(2)ZH1

+ 1
4

(
δ(1)ZH1

)2]
. (2.11)

In the gauge-less limit, the two-loop counterterm for tβ can be expressed as

δ(2)tβ =
tβ
2

[(
δ(2)ZH2

− δ(2)ZH1

)
− 1

4

(
δ(1)ZH2

− δ(1)ZH1

)2
−
(
δ(1)ZH2

− δ(1)ZH1

)
δ(1)ZH1

]
.

(2.12)

Combining Eqs. (2.9)–(2.12) yields

δ(2)mZ
hH =

cβ sβm
2
H±

4

(
δ(1)ZH2

− δ(1)ZH1

)
δ(1)ZH1

+ . . . . (2.13)

The DR field-renormalization constant δ(1)ZH1
is a pure UV-divergent term, calculated as the

derivative with respect to the external momentum p2 of the φ1 Higgs self-energy. The only contri-
bution in the gauge-less limit is a bottom loop, i. e. in the case of the previously calculated O

(
α2
t

)
corrections [64], δ(1)ZH1 was equal to zero due to the approximation mb = 0. The terms originating
from two-loop field-renormalization and two-loop renormalization of tβ cancelled each other exactly.

Now, for the more general case of a non-zero bottom mass, also δ(1)ZH1
is non-zero and the

cancellation is not complete anymore. The genuine two-loop parts of the field-renormalization
constants, δ(2)ZH1 and δ(2)ZH2 , drop out in the gauge-less limit at zero external momentum in
Eq. (2.13) because of a cancelation of the contributions in δ(2)tβ and δ(2)ZhH . In principle, δ(2)ZH1

4



and δ(2)ZH2
could still appear as field-renormalization constants for the other Higgs-mass counter-

terms. However, also there they drop out exactly (see Eq. (2.23) in [64]):

• for δ(2)mZ
h since m2

h = 0 in the gauge-less limit,

• for δ(2)mZ
H since m2

H = m2
H± and α = β − π

2 in the gauge-less limit,

• for δ(2)mZ
A since m2

A = m2
H± in the gauge-less limit,

• for δ(2)mZ
hA and δ(2)mZ

HA since the Higgs sector is CP conserving at the tree level.

2.4.2 Resummation

Radiative corrections to the relation between the bottom-quark mass and the Yukawa coupling of the
bottom quark hb are proportional to tβ . In order to resum the leading tβ-enhanced contributions,
an effective bottom Yukawa coupling is used as described in Refs. [78, 84–89], leading to a UV finite
and complex correction factor ∆mb. Using a DR renormalization for mb in the MSSM, the largest
contributions of this type are captured through an effective bottom-quark mass which is given by

mDR,MSSM
b (mos

t ) ' mb,eff =
mDR,SM
b (mos

t )

|1 + ∆mb|
. (2.14)

The symbol mDR,SM
b (mos

t ) denotes the bottom mass in the DR renormalization scheme, taking into
account SM-type QCD corrections, evaluated at the on-shell top mass.

We use the correction factor ∆mb at the one-loop order which is implemented in FeynHiggs.
For illustrating the effects seen in our numerical analysis below, we give here the explicit form of
the leading contribution:

∆mb =
2αs
3π

µ∗M∗3 tβ I
(
m2
b̃1
,m2

b̃2
,m2

g̃

)
, (2.15a)

I(a, b, c) = −
b a log b

a + c b log c
b + a c log a

c

(b− a) (c− b) (a− c)
. (2.15b)

In order to avoid a double counting of contributions from the bottom–sbottom sector to the Higgs-
boson self-energies, the bottom-mass is renormalized in the DR scheme as specified in Eq. (2.14).

2.4.3 Subloop renormalization

One-loop counterterms for subloop renormalization enter the self-energies Σ
(2)
hHA in Eq. (2.8). In

contrast to the previously calculated O
(
α2
t

)
corrections, the approximation of massless bottom

quarks is dropped in the present calculation. Accordingly, new counterterms for the bottom–
sbottom sector are induced, which are specified in the following.

The squark mass matrices in the
(
q̃L, q̃R

)
bases, q = t, b, in the gauge-less limit are given by

Mq̃ =

(
m2
q̃L

+m2
q mq

(
A∗q − µκq

)
mq (Aq − µ∗ κq) m2

q̃R
+m2

q

)
, κt =

1

tβ
, κb = tβ . (2.16)

SU(2)-invariance requires m2
t̃L

= m2
b̃L
≡ m2

Q̃3
. The squark mass eigenvalues can be obtained by

performing unitary transformations,

Uq̃Mq̃U
†
q̃ = diag

(
m2
q̃1 , m

2
q̃2

)
. (2.17)

The independent parameters entering the two-loop calculation via the quark–squark sector are the
quark masses mq, the soft SUSY-breaking parameters mQ̃3

and mq̃R , q̃ = t̃, b̃, the complex trilinear
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couplings Aq = |Aq|ei φAq , q = t, b, the complex µ parameter from the superpotential, and the ratio
of the vacuum expectation values tβ . All of them have to be renormalized at the one-loop level,

mq → mq + δ(1)mq, (2.18a)

Mq̃ →Mq̃ + δ(1)Mq̃. (2.18b)

The renormalization of the top–stop sector, as well as of µ and tβ is carried out as specified in
Ref. [64]. For the renormalization of the bottom–sbottom sector, we refer to Ref. [41, 46, 90] where
renormalization of mb and Ab in the DR scheme has been proposed to avoid numerical instabilities.
Also for the applied resummation of ∆mb the DR scheme for mb is convenient, as explained above.
The renormalization scale is chosen to be the on-shell top mass.

• The bottom-quark self-energy in Lorentz decomposition is given by

Σb(p) = 6pω−ΣL
b (p2)+ 6pω+ ΣR

b (p2) +mb ΣS
b (p2) +mbγ5 ΣPS

b (p2) , (2.19)

with the left-vector part ΣL
b , right-vector part ΣR

b , scalar part ΣS
b , and pseudo-scalar part

ΣPS
b . The bottom-quark mass renormalization is fixed at the on-shell top-mass scale via

δ(1)mb = mb<e
[

1

2

(
ΣL
b

(
m2
b

)
+ ΣR

b

(
m2
b

))
+ ΣS

b

(
m2
b

)]
DR
, (2.20)

• With Eqs. (2.17)–(2.18) we define

Uq̃ δMq̃ U†q̃ =

(
δ(1)m2

q̃1
δ(1)m2

q̃1q̃2

δ(1)m2 ∗
q̃1q̃2

δ(1)m2
q̃2

)
. (2.21)

The renormalization of the soft-breaking parameter Ab follows from Eqs. (2.16) and (2.21)
with q = b, yielding

δ(1)Ab =

[
Ub̃ 11U

∗
b̃ 12

δ(1)m2
b̃1
− δ(1)m2

b̃2

mb
+ Ub̃ 21U

∗
b̃ 12

δ(1)m2
b̃1b̃2

mb

+ Ub̃ 22U
∗
b̃ 11

δ(1)m2 ∗
b̃1b̃2

mb
− (Ab − µ∗ tanβ)

δ(1)mb

mb

]
DR

.

(2.22)

The counterterms δ(1)m2
b̃i
, i = 1, 2 can be computed from the corresponding sbottom self-

energies Σ
(1)

b̃ib̃i
, i = 1, 2, and the counterterm δ(1)m2

b̃1b̃2
is given by the sbottom mixing Σ

(1)

b̃1b̃2
.

Again, the renormalization scale is the on-shell top mass.

• Invariance under SU(2) yields the following relation between the stop and sbottom sector,

δ(1)mQ̃3
≡

2∑
i = 1

|Ut̃ 1i|2 δ(1)m2
t̃i
− 2<e

[
Ut̃ 22U

∗
t̃ 12 δ

(1)m2
t̃1 t̃2

]
− 2mt δ

(1)mt

=

2∑
i = 1

|Ub̃ 1i|
2 δ(1)m2

b̃i
− 2<e

[
Ub̃ 22U

∗
b̃ 12

δ(1)m2
b̃1b̃2

]
− 2mb δ

(1)mb .

(2.23)

We apply on-shell conditions to both stop particles and the stop mixing angle, and choose
to make δ(1)m2

b̃1
a dependent quantity by this relation. The other diagonal sbottom-mass

6



counterterm is fixed on-shell via

δ(1)m2
b̃2

= <e
[

Σ
(1)

b̃22

(
m2
b̃2

)]
. (2.24)

The quantity δ(1)m2
b̃1b̃2

is the off-diagonal entry of Eq. (2.21) for q = b. It is already fixed by
the renormalization condition of Eq. (2.22).

3 Numerical results for the Higgs spectrum

In the following numerical analysis the new contributions of O
(
α2
t + αtαb + α2

b

)
are added to the

known Higgs-mass corrections in the general case of the MSSM with complex parameters which
are implemented in FeynHiggs (version 2.12.0).1 The improvement by resummation of leading
logarithms as described in Refs. [56, 91] is not included. The large impact of the O

(
α2
t

)
terms has

been investigated in Refs. [63, 64] and is not presented here again. Instead the focus is set on the
new corrections induced by the finite bottom mass. If not stated otherwise, we choose the following
default setting for the parameters entering through the new contributions:

tβ = 50, mH± = 1.5TeV, mt = 173.2GeV, mt̃R
= mb̃R

= 2TeV, mQ̃3
= 2.1TeV, (3.1a)

At =

∣∣∣∣1.3mt̃R
+
µ

tβ

∣∣∣∣ ei φAt , Ab = 2.5mb̃R
ei φAb , M3 = 2.5TeV ei φM3 , µ = sgn[µ] 1TeV.

(3.1b)

The quantities in Eq. (3.1a) are real parameters. The charged Higgs massmH± is chosen as an input
parameter and its value is set to ensure the compatibilty of scenarios with high tβ with the current
experimental constraints from searches for heavy MSSM Higgs bosons [92, 93]. The parameters
in Eq. (3.1b) are in general complex. Their respective phases φAt , φAb

and φM3 are scanned in
section 3.2. Thereby the gluino mass parameter M3 does not occur directly in the new Higgs self-
energy contributions, but it appears in the leading term of the bottom-mass resummation. The
parameter µ is also complex in general, but its phase is constrained to be very close to zero or π
by EDM limits (see above). We remark that the phases φM3 , φAt and φAb

are also constrained by
EDM limits, but scenarios with large phases are possible (see e. g. Ref. [94]). We show results for
the Higgs mass when varying two phases at the same time.

The absolute value of At has been fixed to yield a lightest Higgs-boson mass close to 125GeV
which can then be identified with the Higgs signal discovered at ATLAS and CMS. Together with
mQ̃3

and mt̃R
it determines the mass shift which is induced by the stop contributions. We choose

different values formQ̃3
andmt̃R

, mb̃R
to avoid numerical instabilities due to degeneracies. Different

setups for mt̃R
and Xt = At − µ∗/tβ are possible to yield a lightest Higgs mass of 125GeV as can

be seen in Fig. 1. Therein the gray bar indicates the mass range 125.1±0.21(stat)±0.11(syst)GeV
as measured by ATLAS and CMS [95].

The absolute value of Ab is close to the upper limit

|Ab|2 < 3
(
m2
Hd

+ |µ|2 +m2
Q̃3

+m2
b̃R

)
, (3.2a)

m2
Hd

+ |µ|2 =
(
m2
H± −m2

W

)
sin2β − 1

2
m2
Z cos 2β , (3.2b)

from the approximate bound from the requirement of vacuum stability to avoid charge- and color-
breaking minima [96, 97] (see Refs. [98–104] for more detailed discussions of this issue).

1The previously implemented contributions of O
(
α2
t

)
are replaced by the new result.
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Figure 1. Dependence of the lightest Higgs-mass Mh on mt̃R
and Xt. The other parameters except At

and mt̃R
have been fixed to the values given in Eqs. (3.1) with vanishing phases.

In the following analyses we call ∆Mh the shift of the lightest Higgs-boson mass by the new
Yukawa terms of O

(
αtαb + α2

b

)
, i. e. excluding the previously analyzed contributions of O

(
α2
t

)
.

In section 3.1, the impact of different parameters on the lightest Higgs boson mass in the CP -
conserving case is investigated.

We have also investigated the mass shifts of the heavier neutral Higgs bosons. In general, the
shifts are of the same absolute size as for the lightest Higgs but with opposite sign. However, since
the tree-level input value mH± needs to be large for high values of tβ (where the O

(
αtαb + α2

b

)
contributions are relevant) to be in agreement with experimental constraints, the relative mass
shift for the heavy Higgs bosons is only ≈ 1h. Moreover, both heavy Higgs bosons receive nearly
identical corrections; in the investigated scenarios the largest difference was ≈ 0.1GeV. For this
reason we do not present diagrams for the mass shifts of the heavier Higgs bosons here. It should
however be noted that even small mass shifts can have an important impact on the resonance-
type behaviour that typically occurs between the two heavy neutral Higgs states in CP -violating
scenarios, see Refs. [105, 106].

3.1 Scenarios with real parameters

We start to analyze our results by performing a comparison with the previously implemented two-
loop corrections in FeynHiggs. The two-loop corrections of O(αtαb) were up to now only known
for the MSSM with real parameters and mA being an input. Accordingly, a different Higgs-mass
prediction is found when using FeynHiggs for the version of the MSSM with real or complex
parameters even when using the same input mass mA.

In Fig. 2 both predictions (dashed: MSSM with real parameters, dotted: MSSM with complex
parameters) are compared to our new result (solid) as a function of mA. The different colors
correspond to different values of tβ . The large deviations between the dashed and dotted curves
for large values of tβ are induced by the O(αtαb) terms, which are not incorporated in the dotted
curve. Our new result significantly reduces that gap, i. e. the dashed and solid lines are much
closer together. Since our new result additionally contains corrections of O

(
α2
b

)
, which are not

8
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tβ = 30

tβ = 10

500 1000 1500 2000

124

125

126

127

128

129

130

mA [GeV]

Mh
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Figure 2. Comparison of the lightest Higgs-boson massMh as predicted with our new two-loop corrections
(solid), the version of FeynHiggs for the MSSM with real parameters, i. e. including O(αtαb) corrections
(dashed), and the version of FeynHiggs for the MSSM with complex parameters, i. e. without O(αtαb)
corrections (dotted) for the parameters specified in Eqs. (3.1) with vanishing phases.

incorporated in the dashed line, the agreement is not expected to be perfect, and especially for low
mA and large tβ the improved Higgs-mass prediction significantly differs from the previous result.

In our following analyses we choose mH± as an input parameter where also the O(αtαb) terms
must be regarded as new contributions. We investigate the dependence of the prediction for Mh

on tβ , µ and M3, whereby all parameters are still kept real. The results are depicted in Figs. 3–6.
As can be seen in Fig. 3 large contributions above 1GeV are only visible at high values of tβ . In

this scenarioM3 is positive, leading to a much bigger ∆Mh if µ is negative, which can be understood
from Eqs. (2.14) and (2.15). For later analyses we fix tβ = 50.

In Fig. 4 we investigate the dependence of ∆Mh on the size of µ. We find very large gradients
for the following two cases: positive M3 and negative µ ≈ −1.8TeV, and negative M3 and positive
µ ≈ 2.6TeV, which can again be understood from Eqs. (2.14)–(2.15), where for too large values of |µ|
and opposite signs of µ and M3 the perturbative region of parameter space is left, as ∆mb → −1.
A further increase of |µ| in the regions of large gradients leads to a very strong enhancement of the
bottom Yukawa coupling and accordingly to very large negative mass shifts, yielding eventually a
tachyonic Higgs boson. For the following analyses, we choose to fix µ = −1TeV, i. e. below the
problematic scale and with sgn[µ] = −1. However, it should be noted that scenarios with positive µ
can lead to large shifts as well, when M3 is negative, as in both cases the bottom Yukawa coupling
is enhanced. Moreover, scenarios with sgn[µ] = 1 are in better agreement with constraints from the
anomalous magnetic moment of the muon [107–109]. Close to |µ| =

√
m2
t̃1,2
−m2

t ≈ 1.8TeV one
can see kinks which are induced by threshold effects from the higgsino–top–stop system.

In Fig. 5 the impact of the gluino mass parameter is depicted. This effect enters the Higgs
self-energies at the investigated order purely via the employed effective bottom mass. We see a
rising shift at growing |M3| for opposite signs of µ and M3 (yielding the same enhancement in
∆mb, see Eqs. (2.15)). At |M3| =

√
m2
b̃1,2
−m2

b ≈ 2TeV (nearly invisible) threshold effects from

the gluino–bottom–sbottom system appear. For our following analyses we fix |M3| above that region
at 2.5TeV.
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Figure 3. Dependence of the lightest Higgs-mass
shift ∆Mh on tβ . The parameter µ is either positive
(blue) or negative (red).
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Figure 4. Dependence of the lightest Higgs-mass
shift ∆Mh on µ. The parameter M3 is either pos-
itive (blue) or negative (red). The region around
µ = 0 is left out because of numerical instabilities.
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Figure 5. Dependence of the lightest Higgs-mass
shift ∆Mh on M3. The parameter µ is either posi-
tive (blue) or negative (red).
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Figure 6. Dependence of the lightest Higgs-mass
shift ∆Mh on |Ab|. The sign of Ab is either positive
(blue) or negative (red), and sgn[µ] = −1.

Finally, in Fig. 6 the absolute value of Ab is varied, and the resulting mass shift is plotted for
positive sign (blue) and negative sign (red) of Ab. The difference between both curves, i. e. the
impact of the phase φAb

, is enhanced for larger absolute values. However, as too large values of |Ab|
lead to instable vacua, we set it to |Ab| = 2.5mb̃R

which is close to the upper limit of Eq. (3.2).

3.2 Scenarios with complex parameters

Various phases enter the self-energies of the Higgs bosons at O
(
α2
t + αtαb + α2

b

)
. Their impact on

the Higgs sector is shown in Figs. 7–9. Here we keep µ negative, i. e. sgn[µ] = −1, and M3 positive,
but we could also have chosen the opposite signs of both parameters to see enhanced effects for the
phase dependent terms as has been shown in Fig. 4.

We start with the phases φAt and φAb
. The results are depicted in Fig. 7, where mass shifts

between 0.3GeV and 1.4GeV can be seen. For φAb
= 0 the variation with respect to φAt is maximal;

the larger the phase of Ab, the flatter the dependence on the phase of At. Similarly, variation of
φAb

yields the largest effects for φAt
= 0. Also the signs of the phases matter, e. g. the mass shifts

are different for φAb
= ±π2 .
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Figure 7. Dependence of the lightest Higgs-mass shift ∆Mh on φAt and φAb , sgn[µ] = −1. solid: exact
calculation, dotted: interpolation in FeynHiggs, the red-dotted and orange-dotted lines are identical.
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Figure 8. Dependence of the lightest Higgs-mass
shift ∆Mh on φM3 and φAb , sgn[µ] = −1.
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Figure 9. Dependence of the lightest Higgs-mass
shift ∆Mh on φM3 and φAt , sgn[µ] = −1.

In addition to the exact calculation (solid lines), FeynHiggs offers an implemented interpolation
of the self-energy corrections that have been known up to now for the case of real parameters but
not for the complex case. Since the O(αtαb) terms were only available for real parameters, and the
O
(
α2
b

)
terms were neither in the real nor the complex case incorporated in FeynHiggs, deviations

from the new mass shifts can be expected even for real parameters. Besides these relatively small
differences, the linear interpolation can differ by ≈ 0.5GeV from the full result in the investigated
scenario. Also the asymmetric behaviour for the change of two phases at the same time was not
described correctly by the interpolation.

Figs. 8 and 9 show the influence of varying the gluino phase φM3 and in addition either φAb

or φAt . These terms are induced by the correction factor ∆mb as the investigated class of two-
loop corrections does not contain the parameter M3. Also here the largest phase dependence is
found when one phase is equal to zero. In Fig. 8 the mass shift is nearly symmetric in ±φM3

and ±φAb
, i. e. the red and yellow curves are lying on top of each other. Nevertheless, there are

small asymmetries in the renormalized two-loop self-energies Σ̂hA and Σ̂HA. On the contrary the
mass shift ∆Mh in Fig. 9 shows a clear asymmetry similar to Fig. 7.
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In summary, phase dependent contributions of O
(
αtαb + α2

b

)
lead to mass shifts of the lightest

Higgs boson of ≈ 1GeV in the investigated scenarios. The sign of µ has been chosen to be negative
in the considered scenarios, but similar effects can be found at positive large µ (and opposite sign
of M3).

4 Conclusions

The two-loop corrections of O
(
α2
t + αtαb + α2

b

)
to the Higgs-boson masses in the MSSM with

complex parameters have been computed in the gauge-less limit at vanishing external momentum.
The terms of O

(
αtαb + α2

b

)
have only been known in the special case of real parameters before,

but only the contributions of O(αtαb) are incorporated in FeynHiggs at the moment. The specific
aspects related to the renormalization of these new contributions have been discussed, and their
numerical impact on the Higgs spectrum has been investigated.

For the lightest Higgs boson mass at ≈ 125GeV we have found shifts above 1GeV at tβ > 40

for different scenarios: moderate |µ| = 1TeV with negative sign and positive M3, At, Ab, or with
positive sign and negative M3, At, Ab. The reason for that enhancement can be found in the
large correction factor ∆mb yielding an enhancement of the bottom Yukawa coupling. The effect
of varying the phases φM3

, φAt
and φAb

can be as large as 1GeV. If one phase is set close to π,
the dependence on the other phases is typically weakened; the largest effects are found when only
one phase is varied with all others being zero. In FeynHiggs an interpolation of the corrections
of O(αtαb) obtained for the case of real parameters was implemented for the case of complex
parameters. We have found deviations with a size of ≈ 0.5GeV from this approximation, especially
when several phases are different from zero at the same time.

Mass shifts for the heavier neutral Higgs bosons have not been depicted. They are similar to
the ones of the lightest Higgs boson, however with opposite sign. To justify a large value of tβ
we have chosen the input mass mH± = 1.5TeV. Therefore, the relative size of the mass shifts is
small. Moreover, both heavy Higgs bosons receive similar corrections with a maximal difference
of ≈ 0.1GeV in the investigated scenarios. Nevertheless, such small mass shifts can be important
to correctly describe the resonance-type behaviour of nearly mass-degenerate mixed particles like
the two heavy Higgs bosons in the MSSM with complex parameters.

The new results will be implemented in the public code FeynHiggs.
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