
DESY–17–066
CERN–TH–2017–081

Complete two-loop QCD contributions to the

lightest Higgs-boson mass in the MSSM

with complex parameters

Sophia Borowka1∗, Sebastian Paßehr2,3† and Georg Weiglein3‡

1 Theoretical Physics Department, CERN, Geneva, Switzerland
2Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Énergies (LPTHE),

4 Place Jussieu, F–75252 Paris CEDEX 05, France
3Deutsches Elektronensynchrotron DESY,

Notkestraße 85, D–22607 Hamburg, Germany

Higher-order corrections to the MSSM Higgs-boson masses are desirable for accurate predictions cur-
rently testable at the LHC. By comparing the prediction with the measured value of the discovered
Higgs signal, viable parameter regions can be inferred. For an improved theory accuracy, we compute
all two-loop corrections involving the strong coupling for the Higgs-boson mass spectrum of the MSSM
with complex parameters. Apart from the dependence on the strong coupling, these contributions de-
pend on the weak coupling and Yukawa couplings, leading to terms of O(ααs) and O

(√
αq1
√
αq2αs

)
,

(q1,2 = t, b, c, s, u, d). The full dependence on the external momentum and all relevant mass scales is
taken into account. The calculation is performed in the Feynman-diagrammatic approach which is flex-
ible in the choice of the employed renormalization scheme. For the phenomenological results presented
here, a renormalization scheme consistent with higher-order corrections included in the code FeynHiggs
is adopted. For the evaluation of the results, a total of 513 two-loop two-point integrals with up to five
different mass scales are computed fully numerically using the program SecDec. A comparison with
existing results in the limit of real parameters and/or vanishing external momentum is carried out, and
the impact on the lightest Higgs-boson mass is discussed, including the dependence on complex phases.
The new results will be included in the public code FeynHiggs.
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1 Introduction

Since the discovery of a signal in the Higgs-boson searches at the LHC [1, 2] with a mass around 125 GeV,
it is a prime goal to reveal the detailed nature of the new particle. While with the present experimental
and theoretical uncertainties the measured properties of the detected particle are compatible with the
expectations for the Higgs boson of the Standard Model (SM) [3, 4], other interpretations corresponding
to very different underlying physics are also in agreement with the data. A crucial question in this
context is in particular whether the observed particle is part of an extended Higgs sector that would be
associated with a more general theoretical framework beyond the SM.

Within the theoretically well motivated Minimal Supersymmetric extension of the SM (MSSM), the
observed particle can be interpreted as a light state within a richer spectrum of scalar particles.1 The
Higgs-boson sector of the MSSM consists of two complex scalar doublets leading to five physical Higgs
bosons and three (would-be) Goldstone bosons. At the tree-level, the physical states are given by the
neutral CP -even bosons h,H and the CP -odd state A, together with the charged H± bosons. The
Higgs sector at lowest order can be parametrized in terms of the A-boson mass mA and the ratio
of the vacuum expectation values of the scalar doublets, tanβ = v2/v1 . The MSSM with complex
parameters (cMSSM) is of particular interest since it provides new sources of CP -violation in addition
to the CP -violating phase of the SM. Thereby the Higgs sector is CP -conserving at the tree level, but
potentially large loop contributions involving complex parameters from other supersymmetric (SUSY)
sectors can lead to an admixture of the CP -even states h, H, and the CP -odd A resulting in the mass
eigenstates h1, h2, h3 [6–10]. In this case mA is no longer a useful input parameter; instead the mass of
the charged Higgs boson mH± is used. Besides the input parameter mA or mH± all other Higgs-boson
masses are predicted quantities in the MSSM. The Higgs-boson masses and mixings in the neutral sector
are strongly affected by loop contributions. Especially for the experimentally measured Higgs boson
at about 125 GeV a sufficiently high accuracy of the theoretical computation is essential for drawing
reliable conclusions on the viability of the investigated region of parameter space.
1 Within the MSSM it is usually assumed that the observed particle is associated with the lightest neutral Higgs boson of
the model; see Ref. [5] for a recent update on the viability of the interpretation in terms of the next-to-lightest neutral
Higgs boson of the MSSM.
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A large amount of work has been invested into calculating higher-order corrections to the mass
spectrum within the MSSM with real parameters [11–67] as well as the MSSM with complex parame-
ters [6–10, 65–76]. The largest loop contributions originate from the Yukawa sector due to the size of
the top-quark Yukawa coupling ht, where αt = h2

t

/
(4π) . At the two-loop level QCD corrections enter.

The dominant contribution at the two-loop level is given by the O(αtαs) terms which are known for
the MSSM with complex parameters [12–14, 72]. Also the O

(
α2
t + αtαb + α2

b

)
corrections are known

for the case of complex parameters [73–75]. Restricting to the case of real parameters, the momentum-
dependent O(αtαs) corrections [53–55] and the contributions for the case where all Yukawa couplings
except the one of the top quark are neglected [54] are known. While the phases of the complex parame-
ters affect the predictions for the Higgs-boson masses, production cross sections [77] and decays [78–80],
they also induce CP -violating effects that are constrained by other experiments. These concern in
particular the electric dipole moments [81–88]. For the usual convention where the phase of the mass
of the electroweakinos, φM2

, is set to zero without loss of generality, the phase of the parameter µ is
constrained to be very close to zero or π. The other important phases of the gluino mass, φM3 , and the
trilinear soft-breaking parameters of the stops, φAt , and sbottoms, φAb , are much less constrained. In
particular, the bounds on the phases of the trilinear soft-breaking parameters are significantly weaker
for the third generation than for the second and first generation.

In this article the full two-loop QCD corrections to the Higgs-boson masses are presented for the
general case of the MSSM with complex parameters. They contain all previously computed results for
the MSSM with real or complex parameters. The contributions are comprised of the O(ααs) terms,
involving the electroweak gauge coupling α, and the O

(√
αq1
√
αq2αs

)
terms, involving the Yukawa

couplings αq1 , αq2 , where q1,2 = t, b, c, s, u, d. Terms with mixed up- and down-type Yukawa couplings
only appear in conjunction with mH± as input parameter. Mixed contributions of O

(√
α
√
αq1αs

)
in-

volving one gauge coupling and one Yukawa coupling do not appear in the final result. The results
obtained here for the MSSM can furthermore be used as an approximation for higher-order contribu-
tions within the NMSSM, as discussed in Refs. [89–91]. The computation carried out below makes use
of previously developed tools [53, 92, 93]. The momentum-dependent two-loop integrals appearing in the
two-loop QCD corrections are evaluated with an adapted version of SecDec 2 [94–96]. For the numeri-
cal analysis the new contributions are combined with the full one-loop result [10] and the leading O

(
α2
t

)
terms [73, 74] in the Feynman-diagrammatic approach for complex parameters, available through the
public program FeynHiggs [10–12, 78, 97]. In deriving the new contributions the renormalization scheme
of Ref. [10] at the one-loop level has been adopted and applied to the case of the O(ααs) contribu-
tions. This ensures that the obtained analytical results for the renormalized two-loop self-energies can
consistently be incorporated into FeynHiggs. In the results presented in this paper no resummation of
higher-order logarithmic contributions as obtained in Refs. [56–62] has been included. The combination
of resummed higher-order logarithmic contributions with the results obtained in the present paper will
be addressed in future work. In the numerical analysis below, we show results for the masses of the
three neutral Higgs bosons of the MSSM with complex parameters and their phase dependence, with a
particular focus on those results which are phenomenologically most relevant.

The paper is organized as follows: section 2 provides the theoretical framework for the calculation
and renormalization of the Feynman diagrams that is used to arrive at expressions for the dressed
propagators of the Higgs sector up to the two-loop level. The calculation of the unrenormalized self-
energies and the construction of the two-loop counterterms are described in section 3. Details on the
numerical evaluation of the momentum-dependent two-loop integrals are given in section 4, whereas the
impact of the new contributions on the Higgs-boson masses is discussed in section 5. The conclusions
are given in section 6.
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2 The Higgs sector of the MSSM with complex parameters

2.1 Tree-level relations for masses and mixing

The two scalar SU(2)-doublets are conventionally expressed in terms of their components as follows,

H1 =

(
v1 + 1√

2
(φ1 − iχ1)

−φ−1

)
, H2 = eiξ

(
φ+

2

v2 + 1√
2
(φ2 + iχ2)

)
, (2.1)

with the relative phase ξ. The Higgs potential can be written as a polynomial in the field components,

VH = −Tφ1
φ1 − Tφ2

φ2 − Tχ1
χ1 − Tχ2

χ2

+
1

2

(
φ1, φ2, χ1, χ2

)(Mφ Mφχ

M†
φχ Mχ

)(
φ1, φ2, χ1, χ2

)T
+
(
φ−1 , φ

−
2

)
Mφ±

(
φ+

1

φ+
2

)
+ . . . ,

(2.2)

where terms of third and fourth power in the fields have been omitted, and the relations φ−1 =
(
φ+

1

)†
and φ−2 =

(
φ+

2

)† have been used. Explicit expressions for the tadpole coefficients T and for the mass
matrices M can be found in Ref. [10]. They are parametrized by the phase ξ, the real SUSY-breaking
quantitiesm2

1,2 = m̃2
1,2 + |µ|2, and the complex SUSY-breaking quantitym2

12. With the help of a Peccei–
Quinn transformation [98] the parameter m2

12 can be redefined such that its phase vanishes [99], leaving
only the phase ξ as a potential source of CP -violation at tree level. The requirement of minimizing VH
at the vacuum expectation values v1 and v2 is equivalent to the requirement of vanishing tadpoles of
the physical fields, which in turn implies the condition ξ = 0 at tree level. As a consequence, the Higgs
sector of the MSSM is CP -conserving at lowest order. This implies in Eq. (2.2) that Mφχ is equal to
zero, and φ1,2 do not mix with χ1,2 at tree-level.
The remaining (2 × 2)-matrices Mφ, Mχ, Mφ± can be transformed into the mass eigenstate basis

with the help of orthogonal matrices D(x), using the abbreviations sx ≡ sinx, cx ≡ cosx,

D(x) =

(
−sx cx
cx sx

)
,

(
h

H

)
= D(α)

(
φ1

φ2

)
,

(
A

G

)
= D(βn)

(
χ1

χ2

)
,

(
H±

G±

)
= D(βc)

(
φ±1
φ±2

)
. (2.3)

The Higgs potential in this basis can be expressed as follows,

VH = −Th h− TH H − TAA− TGG

+
1

2

(
h, H, A, G

)
MhHAG

(
h, H, A, G

)T
+
(
H−, G−

)
MH±G±

(
H+

G+

)
+ . . .

(2.4)

with the tadpole coefficients Th,H,A,G and the mass matrices

MhHAG =


m2
h m2

hH m2
hA m2

hG

m2
hH m2

H m2
HA m2

HG

m2
hA m2

HA m2
A m2

AG

m2
hG m2

HG m2
AG m2

G

 , MH±G± =

(
m2
H± m2

H−G+

m2
G−H+ m2

G±

)
; (2.5)

explicit expressions for the entries are given in Ref. [10]. The tadpole terms in Eq. (2.4) are zero at the
tree level, but they enter the predictions for the Higgs-boson masses at higher orders. As mentioned
above, the ellipses denote terms of higher power in the fields which are not relevant in our calculation.
After applying the minimization conditions to Eqs. (2.5), the mass matrices can be brought into

canonical form2

M
(0)
hHAG = diag

(
m2
h, m

2
H , m

2
A, m

2
G

)
, M

(0)
H±G± = diag

(
m2
H± , m

2
G±
)
, (2.6)

2 We use a lower-case m for the Higgs-boson masses at the tree level.
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for β = βn = βc, with β ∈ [0, π/2) given in terms of the vacuum expectation values,

tanβ ≡ tβ =
v2

v1
, (2.7)

and for the second mixing angle α ∈ [−π/2, 0) determined by

tan(2α) =
m2
A +m2

Z

m2
A −m2

Z

tan(2β) . (2.8)

The Goldstone bosons are massless3,mG± = mG = 0. The massesmH± ,mA,mh,mH fullfil the relations

m2
H± = m2

A +M2
W , (2.9a)

m2
h,H =

1

2

(
m2
A +M2

Z ∓
√

(m2
A +M2

Z)
2 − 4m2

AM
2
Z c

2
2β

)
, (2.9b)

including the vector-boson masses MW and MZ . Given the relation in Eq. (2.9a), both mA and mH±

can be chosen as input parameter.
At lowest order, the irreducible two-point vertex functions of the neutral Higgs sector

Γ
(0)
hHAG(p2) = i

[
p21−M

(0)
hHAG

]
(2.10)

are diagonal, and the entries of the mass matrices in Eq. (2.6) provide the poles of the diagonal lowest-
order propagators

∆
(0)
hHAG(p2) = −

[
Γ

(0)
hHAG(p2)

]−1

. (2.11)

2.2 Masses and mixing beyond lowest order

Going beyond leading order, the irreducible two-point functions are dressed by adding the matrix Σ̂hHAG

of the renormalized diagonal and non-diagonal self-energies for the h,H,A,G fields up to the considered
order,

p21−M
(0)
hHAG → p21−M

(0)
hHAG + Σ̂hHAG(p2) ≡ p21−MhHAG(p2) , (2.12)

yielding the full renormalized two-point vertex function

Γ̂hHAG(p2) = i
[
p21−MhHAG

]
. (2.13)

The latter generally contains a mixing of all fields with equal quantum numbers. The dressed propaga-
tors are obtained by inverting the matrix Γ̂hHAG(p2).
Truncating the perturbative expansion at the two-loop level, the momentum-dependent corrections

to the neutral Higgs-boson mass matrices in Eq. (2.12) are given by

M
(2)
hHAG(p2) = M

(0)
hHAG − Σ̂

(1)
hHAG(p2)− Σ̂

(2)
hHAG(p2) . (2.14)

For the MSSM with complex parameters, the one-loop self-energies are completely known [10], and
the leading two-loop O(αtαs) and O

(
α2
t + αtαb + α2

b

)
contributions have been obtained in the approx-

imation of zero external momentum [72–75]. In the case of the MSSM with real parameters also the
momentum-dependent corrections of O(αtαs) are known [53–55]. The remaining QCD contributions at
the two-loop level are completed within this paper. These contributions comprise terms of the O(αxαs),
where αx is either the gauge coupling α or the Yukawa coupling αq with q = {u, d, s, c, b, t}. We neglect
CKM mixing for those contributions.
3 The Goldstone bosons can acquire a non-zero mass value by gauge fixing.
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In order to obtain the physical Higgs-boson masses from the dressed propagators at the considered
order, it is sufficient to explicitly derive the entries of the (3× 3)-submatrix of Eq. (2.14) corresponding
to the (h,H,A)-components. A mixing of the neutral Higgs bosons with the Goldstone boson, as well
as Goldstone–Z mixing, yields subleading two-loop contributions to the Higgs-boson masses that are
not of O(αxαs).
The masses of the three neutral Higgs bosons are obtained from the real parts of the complex poles of

the (h,H,A)-propagator matrix. They are obtained as the zeroes of the determinant of the renormalized
two-loop two-point vertex function,4

det Γ̂
(2)
hHA

(
p2
)∣∣∣
p2 =M2

j − i Mj Γj
= 0, Γ̂

(2)
hHA

(
p2
)

= i
[
p21−M

(2)
hHA

(
p2
)]
, j ∈ {h,H,A} , (2.15)

with M
(2)
hHA being the corresponding (3 × 3)-submatrix of Eq. (2.14). The impact of the self-energies

on the mixing and couplings of the various Higgs bosons to other (MS)SM particles can be obtained
with the same formalism as described in Refs. [10, 100].

3 Calculation of the renormalized two-loop self-energies

The renormalized two-loop self-energies can be written as

Σ̂
(2)
hHA(p2) = Σ

(2)
hHA(p2)− δ(2)MZ

hHA , (3.1)

where Σ
(2)
hHA denotes the unrenormalized self-energies corresponding to the sum of genuine two-loop

diagrams and one-loop diagrams with counterterm insertions. The symbol δ(2)MZ
hHA comprises all

two-loop counterterms resulting from parameter and field renormalization.
The contributing types of Feynman diagrams for the calculation of the full two-loop QCD corrections

entering Eq. (3.1) are depicted in Fig. 1. The diagrams of the topologies 12, 14 and 15 contribute only
if all squarks have the same flavor; couplings with different flavors vanish since the color sum is equal
to zero in that case. The diagrammatic calculation has been performed with the help of FeynArts [101,
102] in generating the Feynman diagrams, and TwoCalc [92] and Reduze [103] for the two-loop trace
evaluation and tensor reduction. The one-loop renormalization constants have been computed with the
help of FormCalc [104].

3.1 Two-loop counterterms

In order to obtain the renormalized self-energies in Eq. (3.1), counterterms have to be introduced up to
second order in the loop expansion, for the tadpoles

Ti → Ti + δ(1)Ti + δ(2)Ti , i = h, H, A , (3.2)

and for the mass matrices of Eq. (2.4)

MhHA →M
(0)
hHA + δ(1)MhHA + δ(2)MhHA , (3.3a)

δ(k)MhHA =

 δ(k)m2
h δ(k)m2

hH δ(k)m2
hA

δ(k)m2
Hh δ(k)m2

H δ(k)m2
HA

δ(k)m2
Ah δ(k)m2

AH δ(k)m2
A

 , (3.3b)

m2
H± → m2

H± + δ(1)m2
H± + δ(2)m2

H± . (3.3c)

The two-loop counterterms of O(ααs) have the same structure as the corresponding one-loop counter-
terms. They are listed here for completeness and to fix our notation.
In order to ensure the correct form of the counterterms for the mass matrices, the rotation angles βn

and βc from Eqs. (2.3) have to be distinguished from β in Eq. (2.7). Whereas no renormalization is
4 We use an uppercase M for the Higgs masses at higher order.
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Top. 1

Φi Φj

g

q q

q q

Top. 2

Φi Φj

g

q̃k q̃k

q̃l q̃l

Top. 3

Φi Φj

g̃

q q̃k

q q̃l

Top. 4

Φi Φj

g̃

q̃k q

q̃l q

Top. 5

ΦiΦj

q̃k

q̃k

q̃k

g

Top. 6

ΦiΦj

q̃l

q

q̃k

g̃

Top. 7

Φi Φj

q

g
q q

q

Top. 8

Φi Φj

q̃k

g̃

q q

q

Top. 9

Φi Φj

q̃k

g
q̃k q̃k

q̃l
Top. 10

Φi Φj

q

g̃

q̃k q̃k

q̃l
Top. 11

Φi Φj

q̃k q̃k

q̃l

g

Top. 12

Φi Φj

q̃k q̃m

q̃n

q̃l, õl

Top. 13

Φi Φj

q̃k q̃k

g

Top. 14

Φi Φj

q̃k q̃m

q̃l, õl

Top. 15

Φi Φj

q̃k q̃l

q̃mq̃n

Top. 16

Φi Φj

q

qq

Top. 17

Φi Φj

q

q

Top. 18

Φi Φj

q̃k

q̃lq̃m

Top. 19

Φi Φj

q̃k

q̃l
Top. 20

Φi Φj

q̃k q̃l

Top. 21

Φi Φj

q̃k

Figure 1: Types of two-loop self-energy diagrams for the neutral Higgs bosons. One-loop counterterm insertions
are denoted by a cross. Φi = h, H, A; q̃ 6= õ. Topologies 11 and 13 contain a one-point loop with a mass-less
gluon and are therefore equal to zero.

needed for α, βn and βc, a counterterm associated with β of the form β → β + δβ is required, in
accordance with the renormalization of tanβ,

tβ → tβ + δ(1)tβ + δ(2)tβ . (3.4)

In the resulting expressions for the counterterm matrices, the identification βc = βn = β can be made,
see Ref. [10] for details of the analogous treatment at the one-loop order (note that a different convention
for the counterterm of tβ is used in Ref. [10]). A complete list of the two-loop counterterms is given in
the Appendix of Ref. [74].
In addition to the parameter renormalization described previously, the field-renormalization con-

stants δ(1)ZHi and δ(2)ZHi are introduced at the one-loop and two-loop order (restricting the latter to
the contributions of O(ααs)) for each of the scalar doublets of Eqs. (2.1) through the transformation

Hi →
√
ZHiHi =

[
1 +

1

2
δ(1)ZHi +

1

2
δ(2)ZHi

]
Hi . (3.5)

The field-renormalization constants in the mass-eigenstate basis of Eqs. (2.3) are obtained via(
h

H

)
→ D(α)

(√
ZH1

0

0
√
ZH2

)
D(α)−1

(
h

H

)
≡ ZhH

(
h

H

)
, (3.6a)(

A

G

)
→ D(βn)

(√
ZH1

0

0
√
ZH2

)
D(βn)−1

(
A

G

)
≡
(
ZAA ZAG
ZGA ZGG

)(
A

G

)
≡ ZAG

(
A

G

)
, (3.6b)(

H±

G±

)
→ D(βc)

(√
ZH1 0

0
√
ZH2

)
D(βc)

−1

(
H±

G±

)
≡ ZH±G±

(
H±

G±

)
. (3.6c)
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The matrices Zij can be expanded as

Zij = 1 + δ(1)Zij + δ(2)Zij . (3.7)

The required one-loop expressions for the entries in the δ(1)Zij-matrices are given in Ref. [10]; the
corresponding set of two-loop expressions is given in Ref. [74].

The genuine two-loop counterterms δ(2)MZ
hHA of Eq. (3.1) can now be summarized as

δ(2)MZ
hHA = δ(2)MhHA +

(
δ(2)ZThH 0

0 δ(2)ZAA

)(
M

(0)
hHA − p

21
)

+
(
M

(0)
hHA − p

21
)(δ(2)ZhH 0

0 δ(2)ZAA

)
,

(3.8)

where the required two-loop mass counterterms read

δ(2)m2
h = c2α−β δ

(2)m2
A + s2

α+β δ
(2)m2

Z + c2β δ
(2)tβ

(
s2(α−β)m

2
A + s2(α+β)m

2
Z

)
+

e sα−β
2MW sw

[(
1 + c2α−β

)
δ(2)Th + sα−β cα−β δ

(2)TH

]
,

(3.9a)

δ(2)m2
H = s2

α−β δ
(2)m2

A + c2α+β δ
(2)m2

Z − c2β δ(2)tβ
(
s2(α−β)m

2
A + s2(α+β)m

2
Z

)
− e cα−β

2MW sw

[(
1 + s2

α−β
)
δ(2)TH + cα−β sα−β δ

(2)Th

]
,

(3.9b)

δ(2)m2
A = δ(2)m2

H± − δ
(2)m2

W , (3.9c)

δ(2)m2
hH =

1

2

(
s2(α−β) δ

(2)m2
A − s2(α+β) δ

(2)m2
Z

)
− c2β δ(2)tβ

(
c2(α−β)m

2
A + c2(α+β)m

2
Z

)
+

e

2MW sw

[
s3
α−β δ

(2)TH − c3α−β δ(2)Th

]
,

(3.9d)

δ(2)m2
hA =

e

2MW sw
sα−β δ

(2)TA , (3.9e)

δ(2)m2
HA = − e

2MW sw
cα−β δ

(2)TA . (3.9f)

The entries of δ(2)MhHA that are not listed here are determined by symmetry. When replacing δ(2) → δ
they are formally equal to the one-loop counterterms listed in Eqs. (53) of Ref. [10] (up to the different
convention for the counterterm of tβ used there).

The two-loop renormalization constants of Eqs. (3.2)–(3.9) are fixed by extending the renormalization
scheme of Ref. [10] from the one-loop to the two-loop order:

• The tadpole counterterms δ(2)Ti are fixed by requiring that the minimum of the Higgs potential
is not shifted, which means that the tadpole coefficients have to vanish at each order. At the
two-loop level, the condition reads

T
(2)
i + δ(2)Ti = 0 , i = h, H, A , (3.10)

where the T (2)
i denote the unrenormalized one-point functions at two-loop order, see Fig. 2 for the

contributing two-loop diagrams. The aforementioned relation for the mixing angles βn = βc = β
is a consequence of the tadpole conditions Ti = 0 at lowest order.
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Top. 1

Φi

q

q

qg

Top. 2

Φi

q̃k

q̃k

q̃kg

Top. 3

Φi

q

q

q̃kg̃

Top. 4

Φi

q̃k

q̃l

qg̃

Top. 5

Φi

q̃k

g

q̃k
Top. 6

Φi

q̃k

q̃l,
õl

q̃m

Top. 7

Φi

q

q

Top. 8

Φi

q

Top. 9

Φi

q̃k

q̃l
Top. 10

Φi

q̃k

Figure 2: Types of two-loop tadpole diagrams contributing to T
(2)
i . One-loop counterterm insertions are

denoted by a cross. Φi = h, H, A; q̃ 6= õ. Topology 5 contains a one-point loop with a mass-less gluon and is
therefore equal to zero.

Top. 1

H− H−
g

q q

o o

Top. 2

H− H−
g

q̃k q̃k

õl õl
Top. 3

H− H−
g̃

q q̃k

o õl
Top. 4

H− H−
g̃

q̃k q

õl o

Top. 5

H−H−

q̃k

q̃k

q̃k

g

Top. 6

H−H−

q̃l

q

q̃k

g̃

Top. 7

H− H−

q

g
q q

o

Top. 8

H− H−

q̃k

g̃

q q

o

Top. 9

H− H−

q̃k

g
q̃k q̃k

õl
Top. 10

H− H−

q

g̃

q̃k q̃l

õm
Top. 11

H− H−

q̃k q̃k

õl

g

Top. 12

H− H−

q̃k q̃m

õn

q̃l, õl

Top. 13

H− H−

q̃k q̃k

g

Top. 14

H− H−

q̃k q̃m

q̃l, õl

Top. 15

H− H−

q̃k q̃l

õmõn

Top. 16

H− H−

o

qq

Top. 17

H− H−

o

q

Top. 18

H− H−

õk

q̃lq̃m

Top. 19

H− H−

q̃k

õl
Top. 20

H− H−

q̃k q̃l

Top. 21

H− H−

q̃k

Figure 3: Types of two-loop self-energy diagrams for the charged Higgs bosons. One-loop counterterm inser-
tions are denoted by a cross. q 6= o, q̃ 6= õ. Topologies 11 and 13 contain a one-point loop with a mass-less
gluon and are therefore equal to zero.

Top. 1

Z Z

q̃k

g

q̃k

q̃l
Top. 2

Z Z

q̃k q̃k

q̃l

g

Top. 3

Z Z

q̃k

q̃l

g

Top. 4

W W

q̃k

g

q̃k

õl
Top. 5

W W

q̃k q̃k

õl

g

Top. 6

W W

q̃k

õl

g

Figure 4: Additional types of two-loop self-energy diagrams for the gauge bosons besides the ones in analogy
to Fig. 1 and 3. q̃ 6= õ.
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• The charged Higgs-boson mass mH± is the only independent mass parameter of the Higgs sector
and is used as an input quantity. Accordingly, the corresponding mass counterterm is fixed by an
independent renormalization condition, chosen as on-shell, given by

<e
[
Σ̂

(2)
H±(m2

H±)
]

= 0 . (3.11)

The renormalized charged-Higgs self-energy at the two-loop level can be expressed in terms of the
unrenormalized charged self-energy and its respective counterterms

Σ̂
(2)
H±(mH±) = Σ

(2)
H±(m2

H±)− δ(2)m2
H± , (3.12)

leading to the mass counterterm

δ(2)m2
H± = <e

[
Σ

(2)
H±
(
m2
H±
)]

(3.13)

when applying the on-shell condition. The contributing Feynman diagrams are shown in Fig. 3.
As we neglect flavor mixing q, o, q̃ and õ always belong to the same generation. As a consequence,
the vertices with four squarks in topologies 12, 14 and 15 are only non-zero when all adjacent
fields are of the same generation.

• The field-renormalization constants of the Higgs mass eigenstates in Eq. (3.6) are combinations
of the basic doublet-field renormalization constants δ(2)ZH1

and δ(2)ZH2
, which are fixed by the

UV-divergent parts of the derivatives of the corresponding self-energies,

δ(2)ZH1
= −

[
dΣ

(2)
HH(p2)

dp2

]div
α=0

, δ(2)ZH2
= −

[
dΣ

(2)
hh (p2)

dp2

]div
α=0

. (3.14)

• Also tβ is renormalized by a purely UV-divergent counterterm, which was shown to be a con-
venient choice [105] (see also Refs. [106, 107]). Alternative process-dependent definitions for the
renormalization of tβ can be found in Ref. [108]. For the class of two-loop corrections of O(ααs)
the counterterm can be written as

δ(2)t2β = t2β

(
δ(2)ZH2

− δ(2)ZH1

)
. (3.15)

• When neglecting momentum-dependent contributions and taking the gaugeless limit, the purely
UV-divergent two-loop counterterms δ(2)ZH1 , δ(2)ZH2 and δ(2)tβ cancel each other and are there-
fore not required for renormalization, compare Ref. [75]. If one of these two limitations is dropped,
δ(2)ZH1

, δ(2)ZH2
and δ(2)tβ are necessary in order to obtain a UV-finite result. In the correc-

tions discussed in this article these counterterms have to be taken into account as none of these
approximations is used.

It should also be noted that the chosen renormalization conditions for δ(2)ZH2 and δ(2)tβ are
not equal to pure DR conditions, since the top-mass counterterm δ(1)mt which enters in δ(2)ZH2

is fixed by an on-shell condition. The resulting differences between the two schemes have been
discussed in [54, 55].

• Renormalization of the D terms in the Higgs–squark couplings which are induced by the gauge
coupling g2, as well as the relation between the charged and CP -odd Higgs masses require counter-
terms for the Z- and W -boson masses, δ(2)M2

Z and δ(2)M2
W , respectively. We treat MW and MZ

as independent input parameters and fix their renormalization constants by the on-shell conditions

<e
[
Σ̂

(2)
Z,W (M2

Z,W )
]

= 0 , (3.16)
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leading to

δ(2)M2
Z,W = <e

[
Σ

(2)
Z,W

(
M2
Z,W

)]
. (3.17)

Here Σ
(2)
Z,W denote the transverse parts of the two-loop self-energies of Z and W , repectively.

Most of the Feynman diagrams contributing to the two-loop self-energies Σ
(2)
Z,W differ from the

Higgs self-energies depicted in Figs. 1 and 3 only by the external fields. Pictorially, they can be
otained by replacing the neutral external Higgs fields by the Z, and the charged Higgs field by
the W boson field. All additional topologies are depicted in Fig. 4.

3.2 Sub-loop renormalization

Apart from the genuine two-loop diagrams, the lowest-order QCD contributions to the self-energies and
tadpoles involve one-loop diagrams with insertions of one-loop counterterms. This subrenormalization
concerns masses and mixing of the colored particles.
The required one-loop counterterms for subrenormalization arise from the quark q and scalar quark q̃

sectors. The squark mass matrices in the
(
q̃L, q̃R

)
bases are given in lowest order by

Mq̃ =

(
m2
q̃L

+m2
q +M2

Z c2β(T 3
q −Qq s2

w) mq

(
A∗q − µκq

)
mq (Aq − µ∗ κq) m2

q̃R
+m2

q +M2
Z c2β Qq s

2
w

)
,

κt,c,u =
1

tβ
,

κb,s,d = tβ ,

(3.18)

with Qq and T 3
q denoting charge and isospin of q ∈ {u, c, t, d, s, b}. For the sake of convenience we

suppress repeating the indices of the first and second generation in the following since renormalization
is analogous to the third generation. SU(2)-invariance requires m2

t̃L
= m2

b̃L
≡ m2

Q̃3
.

The squark mass eigenvalues can be obtained from unitary transformations,

Uq̃Mq̃U
q̃† = diag

(
m2
q̃1 , m

2
q̃2

)
. (3.19)

Since Aq and µ are complex parameters, the unitary matrices Uq̃ can be described by the mixing angle
θq̃ and an additional phase ϕq̃.

The independent parameters which enter the two-loop calculation through the quark–squark sector
are: the quark masses mq, the soft SUSY-breaking parameters mQ̃i

and mq̃R , and the complex trilinear
couplings Aq = |Aq| eiφAq . These parameters have to be renormalized at the one-loop level,

mq → mq + δ(1)mq , m2
q̃L,R
→ m2

q̃L,R
+ δ(1)m2

q̃L,R
, Aq → Aq + δ(1)Aq , (3.20)

thus defining transformations Mq̃ →Mq̃ + δ(1)Mq̃ for the mass matrices in Eq. (3.18). The other free
parameter µ, which is related to the Higgsino sector, enters the self-energies as well. However, the
renormalization of µ does not receive one-loop corrections of O(αs) and is therefore not part of the
contributions considered in this calculation.

The individual renormalization conditions for the colored sector are formulated as follows:

• Renormalization of the top quark mass is carried out in the on-shell scheme, i. e.

δ(1)mt = mt<e
[

1

2

(
Σ
L(1)
t

(
m2
t

)
+ Σ

R(1)
t

(
m2
t

))
+ Σ

S(1)
t

(
m2
t

)]
, (3.21)

where the quark self-energy is given in terms of its Lorentz decomposition

Σq(p) = 6pω−ΣL
q (p2)+ 6pω+ ΣR

q (p2) +mq ΣS
q (p2) +mqγ5 ΣPS

q (p2) (3.22)

with the left-, right-handed projectors ω−,+ = 1
2 (1∓ γ5).
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The bottom mass is renormalized in the DR scheme (see Refs. [41, 42, 109]) at the scale mos
t .

The counterterm can be obtained by using the expression in analogy to the counterterm for the
top quark mass in Eq. (3.21) and restricting to the UV-divergent contributions at the scale mos

t .
The choice of a DR renormalization for mb is convenient in order to incorporate a resummation
of tanβ-enhanced contributions to the relation between the bottom quark mass and the bottom
Yukawa coupling, see Sec. 3.3 below. The contributing Feynman diagrams for the renormalization
of mt and mb are depicted in Fig. 5.

• In order to fix the renormalization constants of the stop sector, we employ the relation

δ(1)Mt̃ = δ(1)
(
Ut̃† diag

(
m2
q̃1 , m

2
q̃2

)
Ut̃
)

= Ut̃†

(
δ(1)m2

t̃1
δ(1)m2

t̃1 t̃2

δ(1)m2 ∗
t̃1 t̃2

δ(1)m2
t̃2

)
Ut̃ . (3.23)

Thus we derive

δ(1)m2
t̃L

=

2∑
i=1

|Ut̃
i1|2 δ(1)m2

t̃i
+ 2<e

[
Ut̃

21U
t̃∗
11 δ

(1)m2
t̃1 t̃2

]
− 2mt δ

(1)mt , (3.24a)

δ(1)m2
t̃R

=

2∑
i=1

|Ut̃
i2|2 δ(1)m2

t̃i
+ 2<e

[
Ut̃

22U
t̃∗
12 δ

(1)m2
t̃1 t̃2

]
− 2mt δ

(1)mt , (3.24b)

δ(1)At = Ut̃
11U

t̃∗
12

δ(1)m2
t̃1
− δ(1)m2

t̃2

mt
+ Ut̃

21U
t̃∗
12

δ(1)m2
t̃1 t̃2

mt
+ Ut̃

22U
t̃∗
11

δ(1)m2 ∗
t̃1 t̃2

mt

−
(
At −

µ∗

tβ

)
δ(1)mt

mt
.

(3.24c)

The counterterm δ(1)At given in Eq. (3.24c) provides the renormalization of the complex parameter
At. It should be noted that the counterterm in fact only contributes to the absolute value of At,
while the phase of At remains unrenormalized.

The counterterms δ(1)m2
t̃1

and δ(1)m2
t̃2

are fixed by on-shell conditions for the top-squarks,

δ(1)m2
t̃i

= <e
[

Σ
(1)

t̃ii

(
m2
t̃i

)]
, i = 1, 2 , (3.25)

involving the diagonal t̃1,2 self-energies, see Fig. 5. The remaining counterterm δ(1)m2
t̃1 t̃2

is fixed
by the renormalization condition (see Ref. [72])

δ(1)m2
t̃1 t̃2

=
1

2
<e
[
Σ

(1)

t̃12

(
m2
t̃1

)
+ Σ

(1)

t̃12

(
m2
t̃2

)]
, (3.26)

which involves the non-diagonal squark self-energy shown in Fig. 5 with incoming t̃2 and outgo-
ing t̃1.

Top. 1

q q

q

g

Top. 2

q q

q̃k

g̃

Top. 3

q̃k q̃l

q̃m

g

Top. 4

q̃k q̃l

q

g̃

Top. 5

q̃k q̃l

g

Top. 6

q̃k q̃m

q̃l, õl

Figure 5: Types of Feynman diagrams for the renormalization of the quark–squark sector. q̃ 6= õ. Topology 5
contains a one-point loop with a mass-less gluon and is therefore equal to zero.
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• Between the gauge and mass eigenstates of the bottom squarks we employ an analogous relation
to Eq. (3.23). We derive

δ(1)m2
b̃L

=

2∑
i=1

|Ub̃
i1|2 δ(1)m2

b̃i
+ 2<e

[
Ub̃

21U
b̃∗
11 δ

(1)m2
b̃1b̃2

]
− 2mb δ

(1)mb , (3.27a)

δ(1)m2
b̃R

=

2∑
i=1

|Ub̃
i2|2 δ(1)m2

b̃i
+ 2<e

[
Ub̃

22U
b̃∗
12 δ

(1)m2
b̃1b̃2

]
− 2mb δ

(1)mb , (3.27b)

δ(1)Ab =

[
Ub̃

11U
b̃∗
12

δ(1)m2
b̃1
− δ(1)m2

b̃2

mb
+ Ub̃

21U
b̃∗
12

δ(1)m2
b̃1b̃2

mb
+ Ub̃

22U
b̃∗
11

δ(1)m2 ∗
b̃1b̃2

mb

− (Ab − µ∗ tβ)
δ(1)mb

mb

]
DR

.

(3.27c)

As indicated by the subscript, we choose to renormalize Ab in the DR scheme, which has been
shown to be convenient for reasons of numerical stability [41, 42, 109]. The scale of Ab is chosen
to be mos

t .

As a consequence of SU(2) invariance the counterterm δ(1)m2
b̃L

is not independent, but a derived
quantity which is fixed by the renormalization of the top–stop sector in Eq. (3.24a), since

δ(1)m2
b̃L

= δ(1)m2
Q̃3

= δ(1)m2
t̃L
. (3.28)

Inserting Eq. (3.27a) and solving for δ(1)m2
b̃1

yields

δ(1)m2
b̃1

=
1

|Ub̃
11|2

(
δ(1)m2

t̃L
− |Ub̃

12|2 δ(1)m2
b̃2
− 2<e

[
Ub̃

21U
b̃∗
11 δ

(1)m2
b̃1b̃2

]
− 2mb δ

(1)mb

)
. (3.29)

The other two counterterms δ(1)m2
b̃2

and δ(1)m2
b̃1b̃2

are fixed analogously as for the stops:

δ(1)m2
b̃2

= <e
[

Σ
(1)

b̃22

(
m2
b̃2

)]
, (3.30a)

δ(1)m2
b̃1b̃2

=
1

2
<e
[
Σ

(1)

b̃12

(
m2
b̃1

)
+ Σ

(1)

b̃12

(
m2
b̃2

)]
. (3.30b)

Therefore in our scheme only mb̃2
is renormalized on-shell, while the counterterm δ(1)m2

b̃1
is a

derived quantity according to Eq. (3.29).

3.3 Resummation of tanβ-enhanced terms

The Yukawa coupling of the bottom quark hb receives radiative corrections proportional to tanβ. Those
tanβ-enhanced contributions can be resummed as described in Refs. [80, 110–115]. The resummed con-
tributions ∆b are UV finite and generally yield complex numerical results. For the numerical evaluation
in Sec. 5, we use the version for ∆b at the one-loop order which is implemented in FeynHiggs and
outlined in the following. The largest tanβ-enhanced contributions can be absorbed by using an effec-
tive bottom-quark mass, which is related to the DR-renormalized bottom quark mass in the MSSM as
follows,

mDR,MSSM
b (mos

t ) ' mb,eff =
mDR,SM
b (mos

t )

|1 + ∆b|
(1− δb) , (3.31)

where mDR,SM
b (mos

t ) is the bottom mass in the DR renormalization scheme in the Standard Model
evaluated at the on-shell top mass. The tanβ-enhanced contributions are captured in ∆b and properly
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resummed by including them in the denominator. The remaining parts of the scalar part of the DR-
renormalized bottom self-energy Σ̂S

b which are not enhanced by tanβ are contained in δb such that

Σ̂S
b (0) = −∆b − δb . (3.32)

The expression ∆b at the one-loop order contains contributions from gluinos, charginos and neutralinos
(ordered in decreasing numerical importance) and reads

∆b =
2αs(Q)

3π

M∗3
mb

2∑
i=1

Ub̃
i1U

b̃∗
i2 B0

(
0, |M3|2,m2

b̃i

)
+
α(Q)

4π

3∑
g=1

2∑
i,j=1

mχ̃±i

mb
cLcR|Cg3|2B0

(
0,m2

χ̃±i
,m2

ũgj

)

− α(Q)

8π

4∑
i=1

2∑
j=1

mχ̃0
i

mb
nLnRB0

(
0,m2

χ̃0
i
,m2

b̃j

)
.

(3.33)

The couplings αs and α are running parameters and are evaluated at the scale Q =
√
mb̃1

mb̃2
. The

symbol C depicts the CKM matrix, and ug, ũg are the gth generation up-type quarks and squarks,
whereas B0(0,m1,m2) and B1(0,m1,m2) are one-loop functions.5 As mentioned above, we otherwise
neglect CKM mixing in the two-loop contributions that we evaluate. The renormalization scale µr from
the loop integrals drops out. The coefficients cL,R and nL,R are given by

cL =
Vχ̃∗
i1 Uũg

j1

sw
−
mug Vχ̃∗

i2 Uũg

j2√
2MW sβ sw

, cR =
mb Uχ̃∗

i2 Uũg∗
j1√

2MW cβ sw
, (3.34a)

nL =

(
Nχ̃∗
i1

3 cw
− Nχ̃∗

i2

sw

)
Ub̃
j1 +

mb Nχ̃∗
i3 Ub̃

j2

MW cβ sw
, nR =

2 Nχ̃∗
i1 Ub̃∗

j2

3 cw
+
mb Nχ̃∗

i3 Ub̃∗
j1

MW cβ sw
. (3.34b)

In order to obtain a full conversion of the bottom mass between the on-shell scheme and the DR scheme
in Eq. (3.31), those parts of the bottom self-energy which are not enhanced by tanβ are included in δb
and incorporated in the numerator of Eq. (3.31).
At the one-loop order they read

δb =
αs(Q)

3π

2∑
i=1

B1

(
0, |M3|2,m2

b̃i

)
+
α(Q)

8π

3∑
g=1

2∑
i,j=1

[
|cL|2 + |cR|2

]
|Cg3|2B1

(
0,m2

χ̃±i
,m2

ũgj

)
+
α(Q)

16π

4∑
i=1

2∑
j=1

[
|nL|2 + |nR|2

]
B1

(
0,m2

χ̃0
i
,m2

b̃j

)
.

(3.35)

The parameters entering in ∆b and δb are computed in the limit of large tanβ. The chargino and
neutralino masses and mixing matrices are then obtained as

lim
tβ→∞

diag
(
mχ̃±1

,mχ̃±2

)
= Uχ̃∗XVχ̃† , lim

tβ→∞
diag

(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4

)
= Nχ̃∗YNχ̃† , (3.36)

5 These one-loop functions are given by

B1(0,m1,m2) = −
1

2
B0(0,m1,m2) +

m2 −m1

2
DB0(0,m1,m2) , B0(0,m1,m2) =

A0(m1)−A0(m2)

m1 −m2
,

DB0(0,m1,m2) =
m2

1 −m2
2 + 2m1m2 log

m2
m1

2 (m1 −m2)3
, A0(m) = m

(
1− log m

µr

)
.
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where we use

X = lim
tβ→∞

Mχ± =

(
M2

√
2MW sβ

0 µ

)
, Y = lim

tβ→∞
Mχ0 =


M1 0 0 MZsβsw
0 M2 0 −MZsβcw
0 0 0 −µ

MZsβsw −MZsβcw −µ 0

 .

(3.37)

Thereby the matrices Uχ̃ and Vχ̃ yield a singular value decomposition for X, and the matrix Nχ̃ yields
Takagi’s factorization [116] on Y.
The sbottom masses in this limit are computed from the matrix given in Eq. (3.18) at Ab = 0. Since

the bottom mass itself also enters that matrix, the final solution for mb,eff is found iteratively.
By using Eq. (3.31) for the bottom mass in the one-loop contributions to the Higgs masses, the

leading higher-order corrections to the Higgs masses from the bottom–sbottom sector are generated.
The contributions of the bottom–sbottom sector to the two-loop self-energies presented in this article
add further subleading shifts. It should be noted that the expression given in Eq. (3.31), which employs
the DR scheme in the MSSM, is chosen such that no double counting of the terms contained in mb,eff
occurs at the two-loop level.

4 Numerical evaluation of the self-energies

The renormalized two-loop self-energies are expressed in terms of two-loop two-point multi-scale inte-
grals with non-zero external momenta. With the help of TwoCalc [92] and Reduze [103] all integrals
can be reduced to the four irreducible scalar two-loop topologies depicted in Fig. 6, and products of
analytically well-known one-loop one- and two-point functions.
The scalar two-loop integrals are defined as

Ti1i2...in(p2,m2
i1 ,m

2
i2 , . . . ,m

2
i5) = (2πµr)

2(4−D)

×
x dDq1

iπ2

dDq2

iπ2

1

(k2
i1
−m2

i1
+ iδ)(k2

i2
−m2

i2
+ iδ) · · · (k2

in
−m2

in
+ iδ)

, (4.1)

where p is the external momentum, qi are the loop momenta, mi the masses of the propagators, µr is
the renormalization scale and D = 4− 2ε the dimension. The iδ results from the solutions of the field
equations in terms of causal Green functions, while the indices i1, i2, . . . in label which ki and mi appear
in the propagators of the integral. The five different ki read

k1 = q1, k2 = q1 + p, k3 = q2 − q1, k4 = q2, k5 = q2 + p. (4.2)

The irreducible two-loop integrals of Fig. 6 may depend on up to five different internal mass scales
taken from the following set,

mt, mb, mt̃1
, mt̃2

, mb̃1
, mb̃2

, mg̃ = |M3|, (4.3)

in addition to a non-zero external momentum, taking the values of p2 = M2
h1
, M2

h2
, M2

h3
when entering

the unrenormalized self-energies, or p2 = m2
H± , m

2
W , m

2
Z when entering the self-energies through two-

loop renormalization constants. Recently, a lot of progress has been made towards describing and
evaluating integrals of this class analytically [117–126]. However, to the best of our knowledge, an
implementation of the analytical results for all topologies in Fig. 6 is not publicly available. We have
therefore calculated these integrals numerically using the program SecDec [94–96].
For the evaluation, the resulting new contributions to the neutral Higgs-boson self-energies have been

added to FeynHiggs via its interface to external programs, see section 2.4 of Ref. [53] for details. We
have extended the existing interface to the program SecDec in FeynHiggs to deal with the 177 mass
configurations of which 88 are computed at four different kinematic points, 72 at two and the rest at
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Figure 6: Irreducible two-loop topologies resulting from tensor reduction, calculated numerically with the
program SecDec. Some of the internal lines may also be massless.

one kinematic point. The parameters entering the integrals are evaluated by FeynHiggs and passed
on to SecDec. It should be noted that the heavy growth of mass configurations with respect to non-
electroweak corrections is due to an increase in the number of mass scales involved in the renormalized
self-energies.
We constructed two independent integration setups to allow for consistency checks of the numerical

result. The two-point one-loop topologies entering the self-energies up to O(ε) are known analytically.
The bulk of their implementation was previously tested in Ref. [53] and compared with the authors of
Ref. [54]. Additional mass configurations were newly implemented and checked against SecDec. The
increase in two-loop mass configurations by more than a factor five with respect to the previous setup in
Ref. [53] calls for a higher precision of the integrals to avoid numerical instabilites due to cancellations.
With the integral reduction, unphysical thresholds can be introduced which cancel in the sum of all
contributing diagrams. Numerically, due to round-off errors, the cancellation might however not always
be exact, leading to numerical instabilities. The latter are cured by introducing a small imaginary part
to the denominators of the coefficients arising from the integral reduction. We have verified that the
numerical dependence of the self-energies on this technical regularization parameter is negligible.
The fact that we take a non-zero value of the bottom quark mass into account leads to a large

hierarchy among the different mass scales. Numerical convergence at the desired accuracy is therefore
difficult to accomplish. On the other hand, we have analyzed the influence of the quark masses of
the first and second generation on the two-loop integrals in the self-energies. For the second generation
and tanβ � 1 a negative shift in the Higgs-boson mass correction of only about 20MeV can be observed
when neglecting the light quark masses. The effect is even smaller for the quark masses of the first
generation. The terms which involve the light quark masses in couplings are negligible, too. It is due to
this reason that we will assume the first and second generation quarks to be massless throughout the
rest of our numerical analysis. The numerical impact of the gauge contributions of the light quarks will
be discussed below.
In order to achieve a relative precision of at least 10−7 for each integral, we use the deterministic

integrator Cuhre included in the Cuba library [127, 128] but have optimized the integration parameters
for each integral topology and mass configuration individually.
As a further crosscheck of our computation, we have compared the O(ααs) contribution by the top–

stop and bottom–sbottom particles to the Z-boson self-energy which is required for renormalization
of the Higgs sector. Since [54] uses massless bottom quarks, we have reevaluated our result for the Z
self-energy in the limit mb = 0. In order to avoid a dependence on the renormalization scheme of the
quark–squark sectors, the Z-boson self-energy has been evaluated in the DR scheme by both groups
for this comparison. Overall we have found a very good agreement with discrepancies at the level
of 0.3GeV2.

We find an overall uncertainty of the self-energies entering the light Higgs-boson mass of maxi-
mally 0.2% by adding all uncertainties on the numerical evaluation of the two-loop integrals in quadra-
ture. Given the resulting size of our newly computed corrections analyzed in the next section, the
absolute uncertainty on the light Higgs boson mass is maximally 0.4MeV, which is well below the shift
coming from neglecting light quark masses from the first and second generation.
The total of 513 integrals have been computed numerically on the fly before passing the resulting

two-loop self-energies back to FeynHiggs, where they are added to the corresponding matrix elements
just before the determination of the propagator poles.
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5 Numerical results for the Higgs mass spectrum

In the following we analyze the numerical impact of the newly computed corrections. We start with a
comparison with earlier results in the literature and then discuss our results in three different scenarios:
an mmod

h -like scenario (based on Ref. [129]), a scenario with a particularly large value of tanβ where
contributions from the bottom and sbottom sector are enhanced, and a low-mH scenario (inspired
by Refs. [5, 129]). For better readability of the results, we define three different Higgs-boson masses
resulting from different higher-order contributions

Mold
hi , contains: O(αtαs)|p2=0 with complex parameters,

M̃old
hi , contains: same as Mold

hi + O(αbαs)|p2=0 with real parameters,

Mnew
hi , contains: O(αqαs),O(ααs),O(hqhoαs) with non-zero p2,

with i ∈ {1, 2, 3}, q, o ∈ {b, t}. (5.1)

All the above results contain the full one-loop and leading O(α2
t )|p2=0 two-loop contributions, and the

tanβ-enhanced contributions to the relation between the bottom quark mass and the bottom Yukawa
coupling are resummed, see section 3.3. As mentioned earlier, the quark masses and Yukawa couplings
of the first and second family are neglected. Thus, the first and second generation contributes only
at O(ααs) by D-term contributions of the sfermions. We focus our numerical discussion on the fixed-
order result up to the two-loop level, i. e. no combination with resummed higher-order logarithmic
contributions as discussed in Refs. [59–61] is employed.
Using the definitions of Eq. (5.1), we assign

∆Mhi = Mnew
hi −M

old
hi , ∆M̃hi = Mnew

hi − M̃
old
hi . (5.2)

The size of the effects of our newly computed contributions is contained in ∆Mhi , since all the previously
known terms are subtracted. So far, the two-loop terms of O(αbαs) were only known in the MSSM
with real parameters and mA as input parameter. ∆M̃hi shows our new contributions without these
terms, if mA is chosen as input parameter.
Below we will discuss our results for non-zero phases of complex parameters. We investigate in par-

ticular the variation of the phases φM3 , φAt and φAb , which are much less constrained by experimental
bounds on EDMs than the phases of µ, M1 (in the usual convention where the parameter M2 is chosen
to be real) and the phases of the trilinear couplings of the first and second generation. As discussed
e. g. in Ref. [130], scenarios with relatively large phase values are possible. In order to demonstrate the
possible impact of the phase variations on the Higgs spectrum, below we display the phase dependences
over the whole range (−π, π].

5.1 Comparison with earlier results

In a first step, in Tab. 1 we show a comparison of the results for the light Higgs-boson mass including
our new contributions with the results of Ref. [54], where in the MSSM with real parameters the
corrections of O(αtαsp

2) and the full corrections of O(ααs) have been evaluated, and with the results
up to O(αtαsp

2) in the MSSM with real parameters from Ref. [53]. The comparison is carried out for the
benchmark scenarios mmax

h , mmod+
h , mmod−

h defined in Ref. [129] and for a modified light-stop scenario
used in Ref. [131]. We find overall good agreement with the results of Ref. [54]. The comparison of the
corrections of O(αtαsp

2) with the full corrections of O(ααs) shows that the inclusion of momentum
dependence in the O(αtαsp

2) corrections yields a downward shift in Mh which is to a large extent
compensated by the further corrections of O(ααs) for the scenarios that are considered here. The
corrections beyond those of O(αtαsp

2) yield an upward shift in Mh of 520MeV in the mmod+
h and more

than 1GeV in the mmod−
h scenario compared to the results of Ref. [53]. The size of the corrections shows

a significant dependence on the parameters in the stop sector. The corrections are largest in the mmod−
h

scenario, where the stop masses are near the SUSY scale and At is negative. In this case there is a large
compensation between the downward shift caused by the corrections of O(αtαsp

2) and the upward shift
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scenario mmax
h mmod+

h mmod−
h modified light-stop

Mold
h (GeV) 128.31 125.36 124.84 122.68

Mold
h (GeV)[54] 128.32 125.36 124.84 122.67

Mold
h +O(αtαsp

2) (GeV)[53] 128.25 125.23 123.83 122.64

Mold
h +O(αtαsp

2) (GeV)[54] 127.94 124.98 123.96 122.33

Mold
h +O(αtαsp

2) +O(ααs) (GeV)[54] 128.38 125.63 124.90 122.46

Mnew
h (GeV) 128.53 125.75 124.85 122.61

Table 1: Comparison of the results for the light Higgs-boson mass with Ref. [54] and Ref. [53] for four
benchmark scenarios from Refs. [129] and [131] with mA = 500GeV and tanβ = 20.

this publication Ref. [54]
δ(2)Z

Ref. [53]
Hi δ(2)Z

Ref. [53]
Hi δ(2)Z

Ref. [54]
Hi

mmod+
h -like MSUSY = 2TeV

Mold
h (GeV) 129.38 129.38 129.38

Mnew
h (GeV) 129.92 129.92 129.84

MSUSY = 3TeV
Mold
h (GeV) 128.63 128.63 128.63

Mnew
h (GeV) 129.62 129.61 129.59

mmod−
h -like MSUSY = 2 TeV

Mold
h (GeV) 126.92 126.92 126.92

Mnew
h (GeV) 127.34 127.33 127.44

MSUSY = 3TeV
Mold
h (GeV) 127.02 127.02 127.02

Mnew
h (GeV) 127.80 127.80 127.94

Table 2: Values for the lightest Higgs-boson mass in the mmod+
h -like and mmod−

h -like scenarios of Ref. [129]
using MSUSY = 2, 3TeV and mA = 500GeV, tanβ = 20. The results are compared with those provided by the
authors of Ref. [54] for two different wave-function renormalization schemes.

caused by the further corrections of O(ααs). On the other hand, the corrections are smallest for the
modified light-stop scenario, in which case we find that the contributions beyond the ones of O(αtαsp

2)
from Ref. [53] even yield a small downward shift. The numerical differences between the results for the
contributions of O(αtαsp

2) from Ref. [54] and Ref. [53], which amount up to 0.3GeV for the examples
considered here, result from different renormalization scheme choices of δ(2)ZHi , see the discussion in
Refs. [53–55]. Those differences in the renormalization schemes also affect the comparison between our
results for Mnew

h and the results for Mold
h +O(αtαsp

2) +O(ααs) from Ref. [54] in Tab. 1.
The differences in the renormalization schemes and the dependence on the parameters in the stop

sector are further investigated in Tab. 2. Here the shifts in the light Higgs-boson mass are shown for
SUSY scales of 2TeV and 3TeV, using otherwise the parameters of themmod+

h andmmod−
h scenarios. The

results forMold
h +O(αtαsp

2)+O(ααs) from Ref. [54], where the mass and Yukawa coupling of the bottom
quark have been neglected, are labelled as Mnew

h in Tab. 2. Two versions of the results from Ref. [54]
are shown, one using the renormalization scheme adopted in Ref. [54] with δ(2)ZHi = δ(2)Z

Ref. [54]
Hi , and

the other using the renormalization scheme of Ref. [53], which we have adopted in the present work,
with δ(2)ZHi = δ(2)Z

Ref. [53]
Hi .6 It can be seen in Tab. 2 that there is very good agreement, at the level

of about 10MeV, between our results and the results from Ref. [54] using the renormalization scheme
of Ref. [53]. The different choices of renormalization schemes in the result of Ref. [54] amount to mass
shifts of up to 150MeV for the displayed examples. The difference between Mnew

h and Mold
h increases

with MSUSY and reaches up to 1GeV for the mmod+
h -like scenario at 3TeV.

6 We are very grateful to S. de Vita for providing us with those results.
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5.2 Scenario 1: mmod
h -like

In the following we further investigate the numerical impact of our results, including the effect of
non-zero phases of the complex parameters. We start with an mmod

h -like scenario. The MSSM model
parameters in this scenario are chosen as follows

mH± = 1.5TeV, M2 = 500GeV, |M3| = 2.5TeV,
m{t̃,b̃}L = mQ̃3

= 2.1TeV, m{t̃,b̃}R = 2TeV, |Xt| = 1.3mt̃R
, |Ab| = |At|,

m{q̃,l̃}{L,R} = 2.5TeV, A{q,l} = 0, q ∈ u, d, s, c, l ∈ e, µ, τ . (5.3)

Compared to the original mmod
h scenario we choose larger bilinear soft-breaking parameters for the

sfermions, and also larger absolute values for µ (see below) and M2. Thereby mQ̃3
is slightly different

from m{t̃,b̃}R in order to avoid numerical instabilities by degeneracies. However, the general feature
of this scenario is kept: it allows for a wide range of Xt = A∗t − µ/ tanβ to be in agreement with
experimental bounds. With our choice of parameters, At and Ab are not expected to be affected by
constraints from charge- and color-breaking minima [132–139]. As Aτ has negligible impact on the
Higgs mass prediction, we set it to zero.
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Figure 7: Prediction for the light Higgs-boson mass Mh1 (left) and the mass shifts ∆Mh1 , ∆M̃h1 (right, as
defined in Eq. (5.2)) as a function of tanβ using mA as input mass for different values of µ. Parameters are as
described in (5.3).
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Figure 8: Prediction for the light Higgs-boson mass Mh1 (left) and the mass shifts ∆Mh1 , ∆M̃h1 (right, as
defined in Eq. (5.2)) as a function of tanβ using mH± as input mass for different values of µ. The black lines
show the results of Fig. 7 for µ = −1500GeV. The results of Fig. 7 for µ = 500GeV are indicated by grey lines,
which are underneath the blue lines. Parameters are as described in Eq. (5.3).
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First, the dependence of the lightest Higgs-boson mass Mh1
on tanβ is analyzed for different values

of the µ parameter. Setting all phases of the parameters that can be complex to zero, our result can
be compared to previous ones in the MSSM with real parameters where the corrections evaluated in
the present paper were not included. In the considered scenario, it is possible to choose either mA

or mH± =
√
m2
A +M2

W as an input parameter which is renormalized on-shell accordingly. The chosen
input mass for Fig. 7 is mA. A comparison of the predicted mass from FeynHiggs-2.12.0, with (Mnew

h1
)

and without (Mold
h1

) incorporating our new corrections is shown. Solid lines depict the new, dashed lines
the previous results. In order to illustrate the different relative sizes of our new contributions, we further
plot M̃old

h1
, where the FeynHiggs result for Mold

h1
is supplemented with the O(αbαs) terms known in the

MSSM with real parameters (dotted lines). The prediction with µ = 500GeV is shown in blue, while
the resulting Higgs-boson mass using µ = −1500GeV is shown in red. The blue dashed and blue dotted
lines are lying on top of each other which means that the O(αbαs) corrections are negligible in this
case. The red curves show that our new corrections are significantly larger than the pure O(αbαs)
contributions and enter with different sign. They therefore overcompensate the slight downward shift
induced by the pure O(αbαs) contributions. The differences ∆Mh1

and ∆M̃h1
, as defined in Eq. (5.2),

are plotted on the right-hand side of Fig. 7. For low values of tanβ the new corrections slightly increase
and then stay constant over a wide range. Only for values tanβ > 40 and large negative µ they drop
by about 20%. Values for tanβ above the depicted range and large negative µ lead to a further rapid
decrease of Mh1 , eventually yielding a tachyonic Higgs boson. This is due to the large bottom Yukawa
coupling with resummed tanβ-enhanced terms which can become non-perturbative in that region of
the parameter space. The rise of the red dotted curve at large tanβ reflects that this decrease happens
for larger values of tanβ once our new corrections are taken into account.
In Fig. 8 the charged Higgs mass mH± is used as an input parameter. The latter implies the occur-

rence of terms of O
(√
αq
√
αoαs

)
and corresponds to the renormalization scheme compatible with both

the MSSM with real and complex parameters. On the left-hand side of Fig. 8, the blue (µ = 500GeV)
and red (µ = −1500GeV) lines show the prediction for the lightest Higgs mass with (solid) and with-
out (dashed) our new contributions. In addition, the solid and dashed curves of Fig. 7 are indicated
again as grey (µ = 500GeV) and black (µ = −1500GeV) lines. In this way, the influence of the two
different renormalization schemes on the Higgs-mass prediction can be seen. While the blue and grey
lines lie on top of each other over the whole range of tanβ, deviations of up to 1.5GeV can be observed
between the red and black curves in the region of large tanβ. Since the slope of the red curves for
large tanβ is smaller than for the black curves, the renormalization scheme with mH± as input pa-
rameter is better suited for this particular region in parameter space. On the right-hand side of Fig. 8
the mass shifts ∆Mh1

and ∆M̃h1
resulting from our new contributions are depicted. The color coding

is the same as described before. The size of the shifts is almost invariant under the exchange of mA

and mH± as input parameter, since only small differences between the two renormalization schemes can
be noticed.
We note that setting µ = 1500GeV and using mH± as input, the same qualitative behavior as

for the lower positive µ value can be observed, with the new contributions being of the same size
as for µ = −1500GeV in the low and intermediate tanβ region. Furthermore, the size of the mass
shift ∆Mh1

in Figs. 7 and 8 shows a similar tendency with respect to the chosen sfermion masses as
depicted in Tab. 2, i. e. larger scales increase the size of the new corrections. However, for stop- and
sbottom masses larger than ≈ 2TeV logarithmic contributions of higher order also become important.
Then, a resummation of these logarithms should be taken into account for an accurate Higgs-mass
prediction. The gluino mass can have a sizable impact due to its appearance in the threshold correction
of O(αtαs).7

7 In the scenario of Eq. (5.3) the NNLL-resummation of logarithms with stop masses as implemented in FeynHiggs gives
rise to an upward shift of the lightest Higgs mass Mold

h by ≈ 1.5GeV over the whole range of tanβ; for stop-mass scales
at 3TeV this shift already amounts to ≈ 2.7GeV. Changing the gluino mass from 2.5TeV to 4TeV corresponds to a
downward shift of the SM-like Higgs mass due to the threshold corrections of O(αtαs) of ≈ 0.5GeV over the whole
range of tanβ.
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5.3 Scenario 2: large tanβ

Scenarios with large values of tanβ are particularly interesting for investigating effects of the new
contributions in the bottom and sbottom sector. In that parameter region, terms proportional to the
bottom Yukawa coupling can be as important as terms from the top sector. In the following, we
investigate the dependence of the new contributions on various parameters at a fixed large tanβ value.
In order to be consistent with experimental constraints by ATLAS and CMS we choose a sufficiently
large value of mH± [140, 141]. If not stated otherwise, the MSSM model parameters are

tanβ = 50, µ = −1.5TeV, mH± = 1.5TeV, M2 = 500GeV, |M3| = 2.5TeV,
m{t̃,b̃}L = mQ̃3

= 2.1TeV, m{t̃,b̃}R = 2TeV, |Xt| = 1.3mb̃R
, |Ab| = |At|,

m{q̃,l̃}{L,R} = 2.5TeV, A{q,l} = 0, q ∈ u, d, s, c, l ∈ e, µ, τ . (5.4)

In Fig. 9 the mass shift ∆Mh1
is displayed as a function of µ. Over a wide range the mass shift is nearly

constant at about ∆Mh1
≈ 0.85GeV. Only for large negative values µ . −1.8TeV, the correction to

the lightest Higgs falls steeply indicating a parameter region where the perturbative prediction for Mh1

becomes unreliable owing to the large value of the bottom Yukawa coupling. Thus, µ should be kept
above that value. The blue line shows the effect of only the third generation quarks and squarks in our
new contributions. The red line shows the result where these contributions are supplemented with the
corrections of the first and second generation, neglecting the light quark masses and Yukawa couplings
of the first two generations, mq = 0, q ∈ {c, s, u, d}. Accordingly, the difference between the two curves
is given by the pure gauge contributions of O(ααs) from the first and second generation. They are
rather small, amounting to about 30MeV.
The variation of ∆Mh1 with the gluino-mass parameter M3 = |M3| exp (i φM3) is shown in Fig. 10.

Close to |M3| ≈ 1.9TeV, thresholds of the gluino–fermion–sfermion system can be observed, which
are introduced by one-loop integrals entering via the subloop-renormalization and resummation of the
bottom Yukawa coupling. The effect of varying the absolute value of the gluino-mass parameter |M3|
on ∆Mh1

is strongest for φM3
= 0 and successively weakened as φM3

approaches π. The results for
φM3 = ±π2 almost lie on top of each other.

third generation only

plus approximated 1st and 2nd generation

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

μ (TeV)

Δ
M

h
1
(G

e
V
)

Figure 9: Variation of the mass shift ∆Mh1 with µ.
The blue curve shows the result including contribu-
tions only from the 3rd generation. The red line
shows the result where also contributions of the 1st and
2nd generation are included using the approximation
mq = 0, q ∈ {c, s, u, d}. Parameters are as described in
Eq. (5.4).
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Figure 10: Variation of the mass shift ∆Mh1 with
the absolute value and phase of the gluino mass pa-
rameter M3 = |M3| exp (i φM3). The vertical dashed
lines are at |M3| = 1900GeV and 2500GeV. The de-
pendence on φM3 at those values of |M3| is illustrated
in Fig. 11. Parameters are as described in Eq. (5.4).
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Figure 11: Variation of the light Higgs-boson massMh1 (left) and the mass shift ∆Mh1 (right) with the gluino
phase φM3 , while all other phases are set to zero. Parameters are as described in Eq. (5.4).
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Figure 12: Variation of the light Higgs-boson massMh1 (left) and the mass shift ∆Mh1 (right) with the phase
φAt for different φM3 and φAb = 0. Parameters are as described in Eq. (5.4).
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lie on top of each other. Parameters are

as described in Eq. (5.4).
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In Figs. 11, 12 and 13 the dependence on the three phases φM3
, φAt and φAb is displayed, respectively.

The impact of the new (solid) corrections in comparison with the ones implemented so far in FeynHiggs
(dashed) are shown for the lightest Higgs-boson mass on the left-hand side of each figure, while the
differences ∆Mh1 are shown on the right-hand side. Comparing to the MSSM with real parameters,
where the phases are equal to zero or π, sizable differences for the prediction of the lightest Higgs-boson
mass are visible. Concerning the total variation of Mh1

including all now available corrections, the
impact of the phases φAt and φM3

is seen to be rather large with effects that can exceed 2GeV, while
varying the phase φAb yields only rather small shifts of ≈ 0.2GeV.
The prediction for Mh1 as function of φM3 shown in Fig. 11 is symmetric with respect to the sign

of φM3
. The variation of ∆Mh1

with φM3
is shown on the right-hand side of Fig. 11. The pronounced

dependence on the absolute value of |M3| seen in Fig. 10 can be observed again. The variation of φM3

changes ∆Mh1
by up to 250MeV for an |M3| value around the gluino–fermion–sfermion threshold, while

for |M3| = 2.5GeV ∆Mh1 is shifted only by up to 70MeV.
The phase dependence of ∆Mh1 on φAt and φAb is shown on the right-hand side of Fig. 12 and

Fig. 13, respectively. The variation of ∆Mh1
with φAt and φAb is seen to be rather small. It reaches

up to 150MeV for the phase φAt and up to 50MeV for φAb . It should be noted that the results
for φM3

= ±π2 lie on top of each other in Fig. 13. While the variation with φAb is rather small for any
non-zero φM3

, the variation with φAt is minimal for φM3
= 0 and maximal for φM3

= π. Using different
values of φAb (and keeping φM3

fixed) has only a small effect on the variation of ∆Mh1
with φAt . The

corresponding plot is therefore not shown here.

5.4 Scenario 3: low MH

In the low-MH scenario the observed SM-like Higgs boson with a mass of about 125GeV can be identified
with the next-to-lightest neutral CP -even Higgs boson of the MSSM, see Ref. [5] for a recent update.
We choose the following MSSM model parameters,

tanβ = 6.5, µ = 5TeV, M2 = 300GeV, |M3| = 1.5TeV,
m{t̃,b̃}{L,R} = 750GeV, mτ̃{L,R} = 500GeV, mq̃{L,R} = 1.5TeV, ml̃{L,R}

= 250GeV,

At = Ab = Aτ = −70GeV, A{q,l} = 0, q ∈ u, d, s, c, l ∈ e, µ . (5.5)

Compared to the original scenario in [5] we had to choose a smaller value of µ in order to avoid a
tachyonic lightest Higgs boson for a charged Higgs mass mH± ≈ 160GeV. Our value for tanβ is chosen
such that the scenario is valid according to Fig. 26 of [5].
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results of Fig. 14 with φM3 = 0 are depicted in grey for reference. Parameters are as described in Eq. (5.5).

In Fig. 14 the three neutral Higgs-boson masses are depicted, varying the charged Higgs-boson
mass mH± which is used as an input parameter. The light green band illustrates the mass range
of 125± 3GeV; it should be interpreted as a rough indication of the mass range which is theoretically
in agreement with the detected Higgs boson. Up to mH± . 188GeV the heavier Higgs h2 could be
associated with the discovered Higgs-like particle; however, as can be seen in the low-Malt+

H scenario in
Fig. 26 of [5], our choice of µ and tanβ is already excluded for a charged Higgs mass mH± = 185GeV.
Yet, scenarios with values of mH± closer to or below mt are still allowed. In this region the new cor-
rections presented here have a negligible impact on Mh2

, but lead to a downward shift of about 1GeV
for both Mh1

and Mh3
.

As shown in Fig. 15, using a non-zero value of the gluino phase of φM3 = π/2 or φM3 = π shifts all
three neutral Higgs masses to larger values as compared to the case φM3 = 0. For better comparison,
the results of Fig. 14 are underlaid in grey. The numerical impact of the new contributions presented
here rises with increasing φM3

. For φM3
= π all neutral Higgs masses can receive large corrections of

up to 5GeV.

6 Conclusions

We have computed the full two-loop QCD corrections to the lightest Higgs-boson mass in the MSSM
with complex parameters. Compared to previous works, this primarily involves going beyond the
gaugeless limit, and including a finite bottom-quark mass; furthermore the momentum dependence of
loop integrals is taken into account. On the technical side, this involves the computation of 177 different
mass topologies evaluated at different kinematical configurations, amounting to a total of 513 two-point
two-loop integrals with up to five mass scales. These integrals have been computed numerically with
the program SecDec.

In the first part of our numerical analysis, we have compared our results with earlier result in the
literature taking the appropriate limit of real parameters and / or vanishing external momentum of
our results. We have found very good agreement with the existing results in the approriate limit if the
same renormalization scheme is employed. The contributions evaluated in this paper yield a shift in the
lightest Higgs-boson mass at the level of 1GeV, where the impact has been seen to be more pronounced
for an increasing mass scale of the stops.
We have furthermore investigated the dependence of the new corrections on tanβ choosing different

values of the µ-parameter as well as different renormalization schemes. For a large negative µ the
corrections are generally larger and amount to around 0.9GeV in Mh1

. The corrections are largest for
10 < tanβ < 30, decrease by 3% for lower values and by about 20% beyond tanβ = 30.
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We find non-vanishing mixed up- and down-type Yukawa corrections in the charged Higgs-boson
self-energy correction entering the mass predictions for the neutral Higgs bosons as renormalization
constant if the charged Higgs mass mH± instead of the neutral CP-odd mass mA is chosen as an input
parameter. We have compared the mass prediction for the lightest Higgs boson in both schemes and
have found good agreement in general. However, using the charged Higgs mass as an input parameter
yields better numerical stability at large tanβ and large negative µ.
The Yukawa contributions scale according to their Yukawa couplings, leading to much smaller con-

tributions from the first and second generation quarks and squarks. The pure gauge terms of O(ααs)
in the limit of massless quarks are found to be of similar small size, below 20MeV for one generation.
Analyzing the dependence on the gluino mass, we have found maximal shifts of ≈ 900MeV in Mh1

.
The corrections show a sensitive dependence on the gluino–fermion–sfermion threshold, which enters
via the counterterms of our renormalization scheme, and the gluino phase. For the µ-parameter a mass
shift of the lightest Higgs by ≈ 850MeV is found over large regions of parameter space.

Concerning the impact of the three phases φM3 , φAt and φAb , we find significant effects in our new
corrections from varying the gluino phase and the pase of At. For φM3 the phase dependence becomes
particularly pronounced in the threshold region of the gluino–fermion–sfermion system, as mentioned
above.

Besides scenarios where the lightest neutral Higgs boson in the spectrum of the MSSM is the SM-like
state that can be identified with the detected Higgs signal, we have also analyzed the impact of the
newly computed contributions on the Higgs-mass predictions for the three neutral Higgs bosons within
the low-MH scenario for different values of the gluino phase φM3

. We have found mass corrections
of ≈ 1GeV for φM3

= 0 and up to ≈ 5GeV for φM3
= π in this case.

Accordingly, we have found that the subleading two-loop contributions that we have evaluated in this
paper yield a shift in the prediction for the mass of the light SM-like Higgs boson of the MSSM of up
to the level of 1GeV. The size of the correction sensitively depends on the mass scales of the stops and
sbottoms, on the absolute value and phase of the gluino mass parameter, as well as on the absolute
value and phase of the trilinear coupling in the stop sector (and to a lesser extent on the trilinear
coupling in the sbottom sector). While these findings of course have an impact on the remaining
theoretical uncertainties from unknown higher-order corrections, we do not attempt to provide an
improved estimate of the remaining uncertainties here. Such an improved estimate should be based on
a combination of the fixed-order result considered here with a resummation of higher-order logarithmic
contributions. We leave such an analysis to future work.
It should be noted in this context that our results for the corrections of O(ααs) beyond the gaugeless

limit cannot be used directly to infer the possible size of the corresponding contributions of O
(
α2
)
to

the Higgs-boson spectrum, which are unknown up to now. This is due to the fact that the requirement
of a strong coupling in the corrections that we have evaluated significantly constrains the structure of
the contributing Feynman diagrams, while additional classes of contributions will have to be taken into
account for a full calculation of the corrections of O

(
α2
)
.

The new contributions evaluated in this paper will be made publicly available in the program
FeynHiggs.
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