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We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice
gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely
general, and might be potentially suited for the design of future quantum simulators. Additionally,
it allows for addressing the theory numerically with matrix product states. We apply this technique
to explore the spectral properties of the model and the effect of truncating the gauge degrees of
freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector
mass. Furthermore, we also compute the entanglement entropy in the ground state and study its
scaling towards the continuum limit.

I. INTRODUCTION

Gauge theories play a central role in our understand-
ing of modern particle physics, with the Standard Model
being one of the most prominent examples. In the usual
Lagrangian or Hamiltonian formulation, the local gauge
symmetry is ensured by introducing additional degrees
of freedom in form of a gauge field. However, this also
leads to redundant degrees of freedom in the theory. As
the physical observables are strictly gauge invariant, the
only relevant subspace is the one spanned by the gauge
invariant states, which is in general much smaller than
the full Hilbert space of the theory. Due to the absence
of transversal directions for the special case of 1+1 di-
mensions, the gauge fields are not genuinely independent
degrees of freedom. Therefore, it is possible to remove
them by integrating the Gauss law. This long known
fact, to the best of our knowledge, has only been ex-
plicitly exploited in practice for the Abelian case of the
Schwinger model [1–3].

Although this renders 1+1 dimensional gauge theo-
ries seemingly simple, nevertheless, they often cannot be
solved analytically, in particular in the nonperturbative
regime. A fundamental tool for the numerical study of
gauge models is lattice gauge theory (LGT) [4]. Lately,
the tensor network (TN) approach to LGT has proven
itself as a promising tool for this task, in particular in
the Hamiltonian formulation. Originally developed in
the context of quantum information theory, TN are effi-
cient ansätze for the many-body ground state wave func-
tion as well as low lying excitations. Besides theoreti-
cal progress in developing gauge invariant TN suitable
for LGT [5–14], their power for computing mass spec-
tra [7, 15–18] and thermal states [19–23] has already
been demonstrated. Contrary to the conventional Monte
Carlo approach to LGT, methods based on TN are free
from the sign problem [24], and they enable the study
of real-time dynamics [7, 25–27] as well as phase dia-

grams at non-zero chemical potential [18, 28–30] for cer-
tain gauge models. Moreover, variational TN methods
explicitly yield the wave function at the end of the com-
putation and, hence, allow for access to all kinds of (lo-
cal) observables [25, 29–31]. Another advantage of TN
is that one can easily study the entanglement structure
of the state [26, 28, 32], thus, opening up new possibil-
ities for characterizing LGT problems. A different ap-
proach to the Hamiltonian lattice formulation explored
during recent years, is quantum simulation of gauge the-
ories [6, 9, 33–48]. Already experimentally realized for a
small system [49], this route is promising for the future,
as it is free from purely numerical limitations.

Despite these encouraging prospects, there are also
some limitations. In particular, the Hilbert spaces for
the gauge degrees of freedom are typically infinite dimen-
sional. Hence, in cases for which the gauge fields cannot
be integrated out, they typically have to be truncated to
a finite dimension to allow for a TN approach or a po-
tential implementation in a quantum simulator. Previous
works therefore resorted to the truncation methods from
Refs. [9, 50] to achieve a finite dimension while simulta-
neously preserving gauge invariance. A different type of
finite dimensional gauge models explored in that context
are quantum link models [51–53], where the gauge de-
grees of freedom are replaced by discrete spins. However,
these truncated models do not necessarily correspond to
the continuum theory in the limit of vanishing lattice
spacing, or might not have a continuum limit at all [54].

Here, we address these questions for a 1+1 dimensional
SU(2) lattice gauge theory. In a first step, we show how,
starting from a color neutral basis developed in Ref. [55],
the gauge degrees of freedom can be integrated out on
a lattice with open boundary conditions (OBC). The re-
sulting basis efficiently describes the physical subspace
and can in principle be used with any analytical or nu-
merical method. The corresponding, abelianized, Hamil-
tonian is nonlocal, similar to the one recently realized
in trapped ions for the Schwinger model [49], hence, it
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might have potential applications for the design of future
quantum simulators. Moreover, our formulation allows
for truncating the color-electric flux at an arbitrary value.
These truncated models can be efficiently addressed with
TN. In principle, since the maximum flux on a finite lat-
tice with OBC is upper bounded, this admits to treat
the model exactly. In practice, to solve the model with
matrix product states (MPS), we cut the number of color
flux sectors and compute the low lying spectrum for this
family of truncated SU(2) gauge models. Due to the
vastly reduced number of basis states in our formula-
tion, we are able to explore much larger values for the
maximum color-electric flux than achieved in previous
TN studies of the model [25, 28], and we can investi-
gate truncation effects in a systematic manner. In par-
ticular, here we explore such effects in the closing of the
mass gaps as we approach criticality, and in the entan-
glement entropy of the ground state. Recent develop-
ments in the context of the holographic principle have
suggested a deep connection between entanglement and
emergent geometry [56, 57], and have rekindled the in-
terest in understanding the peculiarities of entanglement
in gauge theories [58–62]. Being especially well-suited to
compute entanglement entropies, TN allow us to study
how the truncation of the flux alters the entanglement of
the vacuum in the approach to the continuum.

The rest of the paper is organized as follows: In Sec.
II we introduce the model we are studying. After a brief
review of the color neutral basis developed in Ref. [55],
we present our new formulation for systems with OBC
where the gauge field is integrated out in Sec. III. Fur-
thermore, we explain how this formulation readily allows
for a truncation of the link Hilbert spaces in a gauge
invariant manner to a finite dimension. In Sec. IV we
briefly review the MPS methods we are applying and
present our results for the low lying spectrum and the
entanglement properties of the ground state while ap-
proaching the continuum limit. Finally, we conclude in
Sec. V.

II. MODEL

The model we are studying is a 1+1 dimensional SU(2)
lattice gauge theory. We use a Hamiltonian lattice for-
mulation with Kogut-Susskind staggered fermions [63] in
the temporal gauge, given by

H =
1

2a

N−1∑
k=1

2∑
`,`′=1

(
ψ`k
†
U ``

′

k ψ`
′

k+1 + h.c.
)

+m

N∑
k=1

2∑
`=1

(−1)kψ`k
†
ψ`k +

ag2

2

N−1∑
k=1

J2
k.

(1)

In the expression above, ψ`k
†

is a single component
fermionic field creating a fermion of color ` on site k,
U ``

′

k acts on the gauge link between sites k and k+1 and

J2
k gives the color-electric energy on the link. The pa-

rameter g is the coupling constant, a the lattice spacing
and m the bare fermion mass.

The operators U ``
′

k are SU(2) matrices in the funda-
mental representation and can be interpreted as rotation
matrices. Hence, the Hilbert space for each gauge link
is analogous to a quantum rigid rotor with total angular
momentum j, which can be described in two reference
frames, the body-fixed system and the space-fixed (iner-
tial) frame of reference [63]. Consequently, the links can
be labeled by the angular momentum z-components of
the rotor `, `′, one corresponding to the body-fixed coor-
dinate system and one corresponding to the space-fixed
coordinate system and the total angular momentum j
(the same in both reference frames). The angular mo-
mentum operators Lτ , τ ∈ {x, y, z} (for the body-fixed
reference frame) and Rτ (for the space-fixed reference
frame) can be interpreted as the left and right electric
field on a link and they are related to the color-electric
flux energy as J2

k =
∑
τ L

τ
kL

τ
k =

∑
τ R

τ
kR

τ
k. Hence, the

operator for the color-electric flux in this basis is sim-
ply a total angular momentum operator with eigenval-
ues j(j + 1), j = 0, 1/2, 1, . . . . From the considerations
above, a suitable basis for addressing the Hamiltonian
(1) is given by |n1, n2〉 ⊗ |j``′〉 ⊗ |n1, n2〉 ⊗ . . . where n`

is the fermionic occupation number for color `.
The physical states, |φ〉, of the system have to satisfy

the Gauss law Gτk|φ〉 = 0, ∀k, τ , where

Gτk = Lτk −Rτk−1 −Qτk, (2)

are the generators for gauge transformations. In the for-

mula above Qτk =
∑2
`=1

1
2ψ

`
k

†
στ``′ψ

`′′

k are the components
of the non-Abelian charge at site k and στ are the usual
Pauli matrices.

For the following spectral calculations it is convenient
to use a dimensionless formulation of Hamiltonian (1),
W = xV +W0, where

V =

N−1∑
k=1

2∑
`,`′=1

(
ψ`k
†
U ``

′

k ψ`
′

k+1 + h.c.
)
, (3)

W0 = µ

N∑
k=1

2∑
`=1

(−1)kψ`k
†
ψ`k +

N−1∑
k=1

J2
k. (4)

The adimensional parameters of the problem in units of
the coupling, g, are x = 1/(ag)2 and µ = 2

√
xm/g. In

the strong coupling limit, the hopping term can be ne-
glected and the Hamiltonian can be solved analytically.
The gauge invariant ground state is then simply given
by the lattice analog of the Dirac sea corresponding to
odd sites occupied by a fermion of each color, empty even
sites and vanishing color flux on the links [55]:

|φSC〉 = |1,1〉 ⊗ |000〉 ⊗ |0,0〉 ⊗ |000〉 . . . .

In the formula above the numbers in bold face represent
the fermionic occupation numbers while |000〉 represents
a link carrying no flux.
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The basis considered in this paragraph still contains all
the information about the color degrees of freedom and,
in particular, states which are not color singlets. How-
ever, the eigenstates for any physical observable consist
of color neutral superpositions of basis states satisfying
the Gauss law. As we show in the next paragraph, re-
stricting oneself to the physically relevant subspace of
these color neutral superpositions allows for significantly
reducing these superfluous degrees of freedom.

III. INTEGRATING OUT THE GAUGE FIELD

A. Color neutral basis

A first step towards a physical basis was made by
Hamer in the context of a strong coupling expansion of
the model [55]. Here we briefly review the basis formu-
lation developed there. As shown in Refs. [55, 64], the
physically relevant states can be generated by applying
the operator V from Eq. (3) repeatedly to a certain color
neutral initial state having the desired quantum numbers.
This operator has no uncontracted color indices, thus, it
can locally only generate or annihilate excitations con-
sisting of color neutral superpositions of quark-antiquark
(antiquark-quark) pairs connected by a color flux string,
as it is illustrated in Fig. 1(a)-(b). The resulting super-
position has a well defined value of j on the links and
fermionic occupation number nk = n1

k + n2
k. In particu-

lar, applying V to such a color-singlet characterized by
nk, nk+1 and jk results in general again in a superpo-
sition of different color-singlets with n′k, n′k+1 and j′k.
In Ref. [55] all possible transitions were worked out and
the matrix elements of the operator V for each of those
vertices are shown in Fig. 1(c).

Looking at Eq. (4), one can easily see that the states
generated in that manner are eigenstates of the mass
term, as it only depends on the total occupation num-
ber, and of the color-electric energy, as it only depends
on j. Thus, W0 acts identically on all those states. Con-
sequently, instead of working in the basis containing the
full color information, we can restrict ourselves to a ba-
sis formed by those color-singlet states, characterized by
the fermionic occupation number of each site and by the
color-electric flux j carried by a link

|φ〉 = |n〉 ⊗ |j〉 ⊗ |n〉 ⊗ |j〉 . . . .

Here n ∈ {0, 1, 2}, as we are not distinguishing between
fermions of different colors anymore. Gauss law in this
color-singlet basis simply reduces to the fact that the
electric flux jk+1 can only differ from the one on the
previous link by one quantum, if the site is occupied by
a single fermion:

jk+1 =

{
jk if nk+1 = 0, 2

jk ± 1
2 if nk+1 = 1.

(5)

(b)

(c)

(a)

FIG. 1. (a) Strong coupling configuration with an odd site
filled with two fermions, one of every color, and its neighbor-
ing empty even site. (b) Resulting color neutral superposition
of four states after applying the operator V . Each of the four
states has a single fermion per site and a color-electric flux of
j = 1/2 on the intermediate link, with a different combina-
tion of z-components. The corresponding state in the color
neutral basis for those two cases are written below. (c) Tran-
sitions induced by the operator V in the color neutral basis.
The left block represents the possible gauge invariant starting
configurations |φi〉, the right block the final states |φf 〉 after
application of the operator V . The arrows show the gauge
links, where the black arrows indicate a color-electric flux of
j and the red arrows a value of j′ = j ± 1/2. The sites are
represented by ovals, where the small blue dots indicate the
number of fermions sitting on the site. The numbers to the
right show the matrix element 〈φf |V |φi〉.

In addition to reducing the degrees of freedom signifi-
cantly compared to the full basis, the color-singlet basis
also offers the possibility to trivially truncate the color-
electric flux at a certain value of jmax in a gauge invariant
manner. Taking into account only states with j ≤ jmax

results in a truncated model with Hilbert spaces of di-
mension dlink = 2jmax + 1 for the gauge links. Compared
to the full basis, where for jmax = 1/2, 1, 3/2, 2 one would
have link Hilbert spaces of dimension 5, 14, 30, 55, one
only has to deal with spaces of dimension dlink = 2, 3, 4,
5.

B. Removing the gauge fields

The color-singlet basis reviewed in the previous para-
graph still contains redundant information which can be
(partially) removed. While the discussion above still ap-
plies to both, open and periodic boundary conditions, we
restrict ourselves from now on to OBC.

Realizing that due to Eq. (5) the flux jk+1 only de-
pends on jk and nk+1, one can reconstruct the color-
electric flux at every link from the value j0 at the left
boundary, by recursive application of the Gauss law.
However, the case of a site occupied by a single fermion
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is ambiguous, as the SU(2) non-Abelian Gauss law al-
lows a change of the color-electric flux by ±1/2. To lift
this ambiguity, we use two states |1+〉, |1−〉 to describe
the singly occupied site, which encode if the electric flux
is increasing (|1+〉) or decreasing (|1−〉) with respect to
the link to the left. As a result, the basis for a single
fermionic site is again four dimensional and consists of
the set of states {|0〉, |1−〉, |1+〉, |2〉}. The expense of in-
creasing the basis for the fermionic sites by one allows us
to integrate out the gauge links from the Hamiltonian, as
the jk can now be reconstructed solely from the fermionic
content via

̂k = j0 +

k∑
p=1

1

2

(
|1+〉〈1+|p − |1−〉〈1−|p

)
, (6)

where j0 is the color flux value at the left boundary.
Hence, a suitable basis for a system with N sites is given
by

|φ〉 = |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN 〉 (7)

with |αk〉 ∈ {|0〉, |1−〉, |1+〉, |2〉}. Similar to the (Abelian)
Schwinger model, in this basis the configuration of the
sites uniquely determines the content of the gauge links,
thus, effectively abelianizing the model [65]. Addition-
ally, one can immediately see that this construction leads
to long-range interactions in Hamer’s color-electric en-
ergy term. Moreover, as some of the matrix elements
for the hopping term in Fig. 1(c) also depend on the
color-electric flux, the hopping term becomes nonlocal,
too (details about the Hamiltonian in this basis are given
in the App. B).

It is instructive to study the dimension of the physical
subspace in our basis. Without further constraint, it still
contains unphysical states implying negative values of jk,
e.g. |φ〉 = |1−〉... implies a value of j1 = −1/2 [66]. For
vanishing background field, j0 = 0, the case on which
we focus on in our numerical calculations, physical ba-
sis states are characterized by a simple condition: the
number lk,− of sites with |1−〉 up to a site k can never
exceed the corresponding number lk,+ of sites with |1+〉,
lk,+ ≥ lk,− ∀k = 1, . . . , N . The dimension of the phys-
ically relevant subspace fulfilling this condition is given

by 4N (1 −
∑N
k=1 Ck/4

k), where Ck = (2k)!/(k + 1)!k! is
the Catalan number (for details see App. A). Compared
to formulations for the physical subspace for the U(1)
case with dynamical fermions [3, 8], we observe that the
number of basis states in our formulation is exactly the
square.

A simple isometry maps the states of the reduced basis
from Eq. (7) to the full one. This transformation, explic-
itly shown in App. F, sequentially reconstructs the color
flux on each link from the fermion content, and prepares
a suitable combination of states in the full basis such that
the state is a color singlet. Thus, the map can be written
as a sequence of isometries, Mloc, schematically shown
in Fig. 2, that act from left to right and take as input
one fermionic site and the corresponding incoming flux

link, and expand the basis to include the outgoing link,
too (see App. F for more details). From a quantum in-
formation point of view, this is simply a quantum circuit
of depth equal to the system size [67].

Notice that the reduced basis formulation is completely
general and contains the entire information about the
physical subspace. Hence, it lends itself to any analytical
or numerical method.

FIG. 2. Quantum circuit recovering the state in the full basis
from our formulation for a system of 4 sites.

IV. RESULTS

While the formulation derived in Sec. II can be ap-
proached with any numerical method, it is particularly
suited for MPS. In order to demonstrate that, we com-
pute the ground state and the vector state of the theory
at vanishing background field, j0 = 0, in the sector of
vanishing total charge, jN = 0. Moreover, in contrast
to Monte Carlo methods, the MPS approach also allows
for access to the entanglement entropy, and we can also
study the scaling of the von Neumann entanglement en-
tropy in the ground state while approaching the contin-
uum limit.

A. Numerical methods

For our numerical simulations we use the MPS ansatz
with OBC [68] which is given by

|φ〉 =
∑

i1,i2,...iN

Ai11 A
i2
2 . . . AiNN |i1〉 ⊗ · · · ⊗ |iN 〉

for a system of N sites. In the formula above the states
{|ik〉dk=1} form a basis for the d dimensional Hilbert space

on site k, Aikk ∈ CD×D for 1 < k < N and Ai11 ∈ C1×D

(AiNN ∈ CD×1). The bond dimension of the MPS, D,
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determines the number of variational parameters in the
ansatz and limits the amount of entanglement that can
be present in the state (for detailed reviews about MPS
see e.g. Refs. [69–71]).

Using standard methods [72], we can determine MPS
approximations for the ground state as well as for low-
lying excitations. The ground state approximation is ob-
tained by variationally minimizing the energy with re-
spect to the tensor Aikk , while keeping the others fixed
and iterating these updates from left to right and back,
until the relative change of the energy per sweep is below
a certain tolerance, ε. The optimal tensor in every step
is found by solving an eigenvalue problem [73, 74] for an
effective Hamiltonian describing the interaction of site k
with its environment. Excited states can be computed by
projecting the Hamiltonian onto a subspace orthogonal
to each of the previously computed states and then using
the same variational method with the projected Hamil-
tonian [15]. In the continuum, the vector candidate is
the lowest lying zero momentum mesonic excitation of
the ground state with charge conjugation quantum num-
ber −1 and parity −1. On the finite lattices with OBC
we are working with, however, charge conjugation as well
as the momentum are no longer good quantum numbers
due to the broken translational invariance. Nonetheless,
the remnants of these symmetries allow us to properly
identify the vector state (see App. D for details).

In addition, to be able to address the problem with
MPS, we have to express the Hamiltonian as a matrix
product operator (MPO) [75]. This can be done ex-
actly with the bond dimension of the MPO representa-
tion growing linearly with the maximum color-electric
flux, jmax, present in the system (for details see App.
B). In the sector j0 = 0 = jN , on which we focus in our
calculations, jmax is upper bounded by N/2 × 1/2 for a
system with N sites. For the system sizes we are inter-
ested in, this would lead to a very large computational
effort and, hence, we truncate jmax to smaller values. In
particular, this allows us to explore the effects of truncat-
ing the gauge degrees of freedom to a finite dimension as
might be necessary for a potential future quantum sim-
ulator [9, 38, 39, 42]. Taking advantage of the fact that
our basis formulation allows for an efficient truncation,
we can easily reach maximum values for the color-electric
flux far beyond jmax = 1/2 amenable in previous numer-
ical studies with TN [25, 28].

In order to avoid any influence of the unphysical states
one could in principle implement the symmetries directly
at the level of the tensors [7, 8]. In our calculations,
we are only targeting the low lying spectrum, hence, we
choose a simpler approach and remove the unphysical
states by adding an energy penalty to the Hamiltonian.
Moreover, as we are only interested in the vector excita-
tions, we also remove possible baryonic states from the
low lying spectrum with an additional penalty term. A
third penalty ensures that we are in the sector of van-
ishing total charge (see App. C for more details on the
penalty terms).

B. Low lying spectrum

In order to demonstrate the power of the basis de-
veloped in Sec. II for TN calculations, we compute the
ground state and the vector state of the model for a range
of masses, m/g ∈ [0.1, 1.6]. To probe for truncation ef-
fects, we explore a family of models with maximum color-
electric flux jmax = 1/2, 1, 3/2, 2. Moreover, we con-
sider for each combination of (m/g, jmax) several system
sizes N ∈ [100, 200] with lattice spacings corresponding
to x ∈ [50, 150] to be able to extrapolate to the contin-
uum. Compared to a conventional lattice calculation, we
have an additional source of error due to the limited bond
dimension that can be reached in the numerical simula-
tions. To control this error, we repeat the calculation
for each combination of parameters (m/g, jmax, x,N) for
several bond dimensions D ∈ [50, 200]. To estimate the
exact ground state energy values, E0(N, x), and vector
mass gap values, ∆vec(N, x) = E1(N, x) − E0(N, x), we
first extrapolate our data to the limit 1/D → 0, as illus-
trated in Fig. 3(a)-(b) (details about the extrapolation
procedure are given in App. E). Subsequently, we can
proceed in a standard manner and estimate the contin-
uum values by first extrapolating to the thermodynamic
limit and then to the limit of vanishing lattice spacing.

Figure 3(c)-(d) shows examples for the extrapolation
to the thermodynamic limit for jmax = 2. Even for this
case with the largest color-electric flux, for which we ex-
pect the error due to the finite bond dimension to be most
pronounced, the error bars resulting from the extrapola-
tion in D are small and we can obtain precise estimates
for the ground state energy density and vector mass gap
in the thermodynamic limit.

In the final step, we extrapolate the data obtained in
the previous step to the continuum limit ag = 1/

√
x→ 0

by fitting a polynomial in ag. To estimate our system-
atic error, we compare different fits up to quadratic order
using different ranges of ag (details about the error esti-
mation procedure are given in App. E). For the ground
state, we observe that in general lattice effects are well
under control, independently of the truncation, and we
can reliably extrapolate to the continuum limit, as can
be seen in Fig. 4. The values obtained for the ground
state energy density, shown in Fig. 5, deviate at most
at the percentage level from the result for the contin-
uum theory, even for the simplest nontrivial truncation
jmax = 1/2. For larger jmax our data are closer to the
analytic solution for the untruncated lattice Hamiltonian
in the limit ag = 1

√
x→ 0, especially for smaller masses.

In particular, the data obtained for the largest two val-
ues of jmax show hardly any difference. The dip around
m/g = 0.35 for jmax = 3/2, 2 is due to the fact that for
for m/g < 0.4 our estimates for the ground state energy
are lower than the exact results, whereas for m/g ≥ 0.4
we obtain values slightly above the analytical prediction.
For jmax = 1/2, 1 the values are consistently larger than
the exact continuum solution, hence, in these cases there
is no dip.
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bond dimensions represented by the blue dots. Lower row:
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Looking at the continuum extrapolation for the vector
mass gaps, we observe a noticeably different behavior.
While the ground state energy densities do not show any
significantly different behavior for small jmax, the vec-
tor mass gaps do, as Fig. 6 reveals. In particular, for
jmax = 1/2 our data suggests that higher than quadratic
order corrections in ag are still relevant which results in
large χ2

d.o.f. in our fits. With the range of lattice spac-
ings available, we do not seem to control lattice effects
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sity with respect to the continuum solution of the full theory
−2/π, ∆ω0, as a function of m/g. The markers indicate dif-
ferent values for jmax, where blue circles represent jmax = 1/2,
red triangles jmax = 1, green squares jmax = 3/2 and magenta
diamonds jmax = 2. Inset: Ground state energy density as
a function of jmax for m/g = 0.1 (blue circles), m/g = 0.8
(red triangles) and m/g = 1.6 (green squares). The horizon-
tal dashed line indicates the analytic solution for the ground
state energy, −2/π, for the full lattice Hamiltonian without
truncation in the limit ag = 1/

√
x → 0 [55]. The error bars

are smaller than the markers.

well enough to give a reliable error estimate for that case.
For jmax = 1 our data is reasonably well described with
a quadratic function in ag (χ2

d.o.f. around 1), nevertheless
the error of the continuum estimate is still large. In con-
trast, for jmax = 3/2 and 2 quadratic corrections in ag
are irrelevant and our data is well described by a linear fit
in the range of lattice spacings we study (for details see
App. E). The final results obtained after the extrapola-
tion for various masses and truncations are shown in Fig.
7. As the figure reveals, there is a considerable difference
between the values obtained for jmax = 1/2, 1, 3/2. Only
for values of jmax ≥ 3/2 our data agrees well with the nu-
merical results obtained by a strong coupling expansion
in Ref. [55]. In particular, for the largest mass, m/g = 1.6
the data for jmax = 3/2, 2 and from Ref. [55] are already
close to the nonrelativistic limit, m/g → ∞, for which
the vector mass gap is given by ∆vec = 2m/g. On the
contrary, the values obtained for jmax = 1/2, 1 severely
differ from the nonrelativistic prediction.

The fact we do not recover the continuum limit for the
full theory for jmax = 1/2, 1 might be due to several rea-
sons. On the one hand, the truncation to a small value
of jmax might lead to enhanced lattice effects. While the
extrapolations to the bulk limit are in general unprob-
lematic for all truncations we study, for the continuum
extrapolations we observe that higher than linear order
corrections are relevant for small jmax, whereas this is
not the case for jmax = 3/2, 2. This could indicate that
one would need smaller lattice spacings for truncations to
a small color-electric flux, to control lattice effects prop-
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FIG. 6. Continuum extrapolation for the vector mass gap for
m/g = 0.3 and jmax = 1/2 (a), jmax = 1 (b), jmax = 3/2 (c)
and jmax = 2 (d). The red line shows the fit used to extract
the central value. The dashed green line shows the same fit
omitting the largest lattice spacing to estimate the systematic
error. The values indicate the χ2

d.o.f. of the two fits, where the
upper one corresponds to the red solid line and the lower
one to the green dashed line. Notice the different scales of
the y-axis between panels (a), (b) and (c), (d) showing that
systematic errors are much larger for jmax = 1/2 and 1.

0.1 0.15 0.2 0.3 0.4 0.8 1.6

0.5

1

5

10

m/g

∆
v
ec

FIG. 7. Vector state mass gap as a function of m/g for
jmax = 1 (red triangles), jmax = 3/2 (green squares) and
jmax = 2 (magenta diamonds) on double logarithmic scale.
The yellow stars represent the numerical values obtained from
the strong coupling expansion [55]. The dotted lines repre-
sent the best fit of the form γ(m/g)ν to the data obtained
on the interval [0.1; (m/g)max] with 0.25 ≤ (m/g)max ≤ 0.4.
For completeness, we also show the data for jmax = 1/2 (light
gray circles), although in this case our lattice spacings do not
allow for a reliable estimate.

erly. On the other hand, this might be a hint that the
continuum limit for small jmax does not exist, similar to
quantum link models [53, 54]. These different types of
truncated gauge models, in which the gauge links are re-
placed by spins, are known to approach the continuum

limit by dimensional reduction of an extra dimension.
Contrary to the Abelian Schwinger model, in the SU(2)

case the chiral symmetry is restored in the limit m/g →
0 and hence the vector mass gap goes to zero and the
theory becomes critical. From our data we can extract
the critical exponent for the vector mass gap, too. In
order to obtain the critical exponent, we fit our data
to a power law γ(m/g)ν in the region of small masses
m/g ≤ 0.4, for which the model is still far away from the
nonrelativistic limit. The final results obtained for the
critical exponents are shown in Tab. I. For jmax = 3/2, 2

jmax ν

1 0.781(93)stat(65)sys
3/2 0.700(29)stat(11)sys
2 0.700(29)stat(12)sys

TABLE I. Critical exponent for various values of jmax, the
first error is the fitting error with respect to a 1σ confidence
interval, the second one the systematic error (for more details
see App. E).

our estimates for the critical exponents essentially agree,
within error bars, with 2/3, obtained for the large Nc
limit of the model [76]. The central value for jmax = 1
is not so close to 2/3, nevertheless, within the relatively
large error bars it is still compatible. In the case of the
simplest nontrivial truncation, jmax = 1/2, a fit to our
data yields 0.639 for the critical exponent. However, due
the large lattice effects in the vector mass gaps, the value
is not trustworthy and we cannot reliably estimate the
uncertainty which we expect to be large, too.

These observations also have important implications
for a potential future quantum simulator. Our data
shows that the ground state energy densities obtained
from our family of truncated models already give a good
estimate for the one of the full model in the continuum,
even with the simplest nontrivial truncation. In contrast,
the vector state is much more sensitive to truncation ef-
fects. Although with our data it is not possible to fully
rule out that for small jmax one suffers from enhanced
lattice effects, they might indicate that the model does
not have a proper continuum limit in those cases.

C. Entanglement Entropy

There is a renewed interest in understanding the struc-
ture of entanglement in the gauge invariant scenario, mo-
tivated in part by a deep connection between entangle-
ment and space-time geometry that has been suggested
in the context of the gauge/gravity duality [56, 57]. Our
reduced gauge invariant formulation, together with TN
techniques, allow us not only to determine the mass spec-
trum of the theory, but also to compute the entanglement
entropy of the corresponding ground state and to analyze
the behavior of this quantity as we approach the contin-
uum limit, as well as to tell to what extent these features
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are sensitive to a truncation in the gauge degrees of free-
dom.

The definition of entanglement entropy for the vac-
uum of a gauge theory entails some subtleties [58–62].
Recently it has been shown that for gauge theories the
reduced density matrix (RDM) for a subsystem, can be
written as a direct sum of terms supported on sectors cor-
responding to different flux configuration of the boundary
links [59–61]. Specifically for the 1+1 dimensional case,
we can decompose the RDM for the leftmost L sites and
links as ρ = ⊕j ρ̂j , where j labels the flux on the L-th
link. Hence, the von Neumann entropy can be written as

S(ρ) = −tr
(
ρ log2(ρ)

)
= −

∑
j

pj log2(pj) +
∑
j

pjS(ρj).

Here ρj is the (normalized) RDM corresponding to sector
j and pj = tr(ρ̂j). For non-Abelian theories, the second
term can be further simplified. For a given sector, j, the
Gauss law fixes the sum of the charge and the incoming
flux in the last vertex. As a consequence, ρj has a block
diagonal structure ρj = ρ̄j ⊗ 1j , where 1j is the identity
on on the subspace corresponding to j for the combined
incoming flux plus vertex charge. Specifically for SU(2)
the identity for the sector j is 2j + 1 dimensional, which
finally yields

S(ρ) =−
∑
j

pj log2(pj) +
∑
j

pj log2(2j + 1)

+
∑
j

pjS(ρ̄j),
(8)

Looking at Eq. (8), we can identify three contri-
butions to the entanglement entropy. The last part,
Sdist :=

∑
j pjS(ρ̄j), represents the physical entropy

which can be distilled from the system by means of lo-
cal operations and classical communication (LOCC). The
first two terms, Sclass := −

∑
j pj log2 pj and Srep :=

−
∑
j pj log2(2j + 1), which we respectively call the clas-

sical and the representation part, have their origin in the
Gauss law, implying that the physical subspace is not a
direct product of the Hilbert spaces for the links and the
sites. They cannot be extracted with LOCC and appear
due to the embedding of the physical subspace in the
larger space spanned by the basis states discussed in Sec.
II supporting a tensor product structure [59–61].

With the MPS approach, it is straightforward to access
the different contributions to the entropy. Looking at a
state in the full basis, we can compute the RDM for the L
leftmost sites in the sector j by simply applying a local

projector Π
(L)
j on link L projecting it onto flux j. In

our reduced formulation the gauge degrees of freedom are
integrated out, but the value of j can be read out from the
fermionic content, and the RDM ρ̃ for the corresponding
state in our basis is still block diagonal. Thus we can

write

S(ρ̃) = −
∑
j

p̃j log2(p̃j) +
∑
j

p̃jS(ρ̃j),

where p̃j = tr(ρ̃j). Similarly to the full basis, we can

obtain ρ̃j by applying the corresponding projector Π̃j .
In our formulation the model is effectively abelianized,
hence, compared to the full basis, the last term cannot be
further simplified and does not give rise to a representa-
tion contribution. Since the quantum circuit which takes
a state from our basis to the full one does not change j,
the weights for the different sectors of the reduced den-
sity matrices are equal in both bases, pj = p̃j . Moreover,
since S(ρ̄j) = S(ρ̃j), the distillable entropy is also equal
in both bases (see App. F for the formal argument).
Thus, we can directly compute the different contribu-
tions Sdist, Sclass and Srep and therefore the total entropy
in the full basis from our formulation. Notice, however,
that the calculation in the reduced basis is much more
efficient, because of the smaller physical dimensions we
need to manipulate.

In 1+1 dimensions, a massive relativistic quantum field
theory corresponds to a spin model off criticality in the
scaling limit, for which the correlation length in lat-

tice units, ξ̂, is large. For such a system the entangle-
ment entropy for the RDM describing half of the system

is given by S ∝ (c/6) log2(ξ̂) [77], where the parame-
ter c is the central charge of the underlying conformal
field theory describing the system at the critical point.
Taking the continuum limit of the lattice formulation,
ag = 1/

√
x→ 0, corresponds to approaching the limit of

diverging correlation length in lattice units [78]. Conse-
quently, for the full theory without truncation, we expect
the entropy for the RDM for half of the system to be log-
arithmically UV divergent as

S = − c
6

log2 (ag) + c2 × ag + c3 +O
(
(ag)2

)
, (9)

where c2, c3 are constants and we take into account finite
lattice corrections as in Ref. [32].

With our numerical data, we can check if the en-
tropy in the ground state for our family of truncated
diverges, too. To this end, we look at the different con-
tributions to the entanglement entropy for a cut along
the center of the system in the same range of values for
(jmax,m/g, x,N,D) as in the previous sections and study
the scaling of S for ag = 1/

√
x → 0. In general, we

observe that none of the different contributions to the
entropy shows strong finite size effects for bipartitions
that are far away from the boundaries (see Fig. 8(a)
for an example). Nevertheless, we may expect an oscil-
lating contribution to the entropy that becomes smaller
as the system size increases [79, 80]. To minimize these
effects, we average over the values obtained for 4 biparti-
tions around the center to estimate the different entropy
contributions for the half-chain. As Figs. 8(b)-(c) indi-
cate, these averaged values are essentially converged in
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bond dimension and their dependence on the system size
is negligible. Hence, we simply take the values obtained
for D = 200 as central value for every combination of
(jmax,m/g, x,N) and estimate our error as the difference
with respect to the value obtained for D = 150. Addi-
tionally, we take into account a systematic error due to
the finite precision in our simulations (see App. E for
details). To compensate for residual finite size effects,
we take the weighted average for every (jmax,m/g, x) for
the largest two system sizes available. In a final step, we
extrapolate the total entropies, obtained from the sum of
the different contributions, to the limit ag = 1/

√
x → 0

by fitting our data to Eq. (9) . Figure 8(d) shows an ex-
ample for the continuum extrapolation. We clearly ob-
serve a curvature in the data, thus indicating that the
logarithmic term contributes and the entropy is indeed
UV divergent. The final results for c for different trun-
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FIG. 8. (a) The different contributions to the entangle-
ment entropy, Sdist (blue circles), Sclass (red triangles) and
Srep (green squares) for the RDM of the leftmost L sites for
N = 200, D = 200, m/g = 0.8 and jmax = 2. (b) Entropy
contributions averaged over 4 bipartitions close to the center
as a function of bond dimension. (c) Averaged entropy con-
tributions for D = 200, m/g = 0.8 and jmax = 2 as a function
of system size. (d) Continuum extrapolation for the total en-
tropy. In panels (b)-(d) the error bars of the data points are
smaller than the markers.

cations as a function of the bare fermion mass are shown
in Fig. 9. Notice that for the full theory, i.e., without
a jmax truncation, we expect a central charge c = 2,
corresponding to the two Dirac fermions that constitute
the independent degrees of freedom of the theory. We
see that our numerical results for jmax = 3/2, 2 follow
Eq. (9) well (χ2

d.o.f. � 1 in all our fits), and the values
for c are close to the one for the full theory (see Fig.
9). Again, there is hardly any difference between the
data for jmax = 3/2 and jmax = 2. For the smallest two
truncations jmax = 1/2, 1, instead, the picture is signifi-
cantly different. In these cases our data is not very well
compatible with a logarithmic divergence for m/g ≥ 0.2
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FIG. 9. Central charges extracted from the scaling of the the
entanglement entropy as a function of m/g for jmax = 1/2
(blue circles), jmax = 1 (red triangles), jmax = 3/2 (green
squares), and jmax = 2 (magenta diamonds).

(resulting in χ2
d.o.f. � 1 in our fits). In the region of

small m/g, for which our data follows Eq. (9) reasonably
well, the central charges we obtain differ noticeably from
2. Hence, although the ground state energy densities are
rather insensitive to the truncation, the entanglement en-
tropies of the same states show another sign that we do
not recover the proper continuum limit for a small jmax

truncation.

V. CONCLUSION

We have introduced an efficient color neutral basis for
a 1+1 dimensional SU(2) lattice gauge theory on a finite
lattice with OBC. Building on a color neutral basis used
for the strong coupling expansion of the model [55, 64],
we show how to remove the gauge degrees of freedom.
Moreover, our formulation allows us to truncate the max-
imum color-electric flux at a finite value jmax in a gauge
invariant manner, yielding a family of SU(2) gauge mod-
els with finite dimensional Hilbert spaces, that coincide
with a SU(2) lattice gauge theory in the limit jmax →∞.
While general methods exist to truncate arbitrary gauge
models with discrete finite or continuous compact Lie
groups to a finite dimension [9], the truncation achieved
for this particular case is a lot more efficient.

The basis we have developed is completely general
and can in principle be used with any numerical tech-
nique. Here we have combined the use of MPS with
an efficient truncation for the color-electric flux to ex-
plore different limits. Due to the reduced number of de-
grees of freedom, we are able to reach values for jmax far
beyond those ones reached in previous numerical work
with TN [25, 28]. To systematically study truncation ef-
fects, we have computed the ground state energy density,
the entanglement entropy in the ground state, the vector
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mass gap and its critical exponent for a family of trun-
cated SU(2) models with a maximum color-electric flux
of jmax = 1/2, 1, 3/2, 2.

We observe that the continuum estimates for the
ground state energy density are rather insensitive to the
truncation. Even for the simplest nontrivial truncation,
the deviation between the values obtained from our fam-
ily of truncated model with respect to the continuum
result of the full theory is only at the percentage level.
Moreover, the results converge quickly with increasing
jmax such that between results for jmax = 3/2 and 2 we
observe hardly any difference.

In contrast, the vector mass gap is a lot more sensitive
to a truncation of the maximum color-electric flux. For
the simplest non-trivial truncation, jmax = 1/2, we can-
not control lattice effects in the extrapolations well and
reliably estimate the errors. The final value obtained for
the mass gap in this case differs significantly form pre-
vious numerical results. For jmax = 1 lattice effects are
becoming smaller thus allowing for a reliable error esti-
mate. Nevertheless, they are still pronounced and again
the continuum estimate for the vector mass gap is not
compliant with previous numerical results within error
bars. On the contrary, for jmax = 3/2, 2 the continuum
extrapolations are unproblematic and we obtain precise
values for the vector mass gap which agree with the ones
from Ref. [55]. Although our data for jmax = 1/2, 1 do
not allow us to rule out with certainty that for finer lat-
tices the results would approach the continuum result of
the full model, the pronounced lattice effects in those
cases might indicate that the continuum limit for these
truncated models does not exist, as it is the case for quan-
tum link models [54]. Our findings for the critical expo-
nents for the vector mass gap are essentially in agreement
with a calculation in the large Nc limit [76].

Looking at the scaling of the bipartite entanglement
entropy in the ground state towards the continuum limit,
we observe similar effects as for the vector mass gap.
The central charges for the two simplest nontrivial trun-
cations differ noticeably from the expected value of 2
for two Dirac fermions and, in particular, for large bare
fermion masses our data do not follow the expected
logarithmic UV divergence well. On the contrary, for
jmax = 3/2, 2 our numerical values show a clear indica-
tion of a logarithmic divergence and we find values close
to 2 throughout our entire regime of bare fermion masses
we study. Thus, although the ground state energy densi-
ties extracted for jmax = 1/2, 1 are close to the values for
the continuum model, this is giving a further indication
that for these truncations we do not recover the contin-
uum theory in the limit of vanishing lattice spacing.

In general, our findings for the ground state in the
SU(2) case are consistent with those recently reported
for the Schwinger model with truncated gauge links [81].
There it was also observed that truncating the maximum
electric field to a modest value yields a ground state close
to the one of the full model in a wide range of bare
fermion masses and lattice spacings.

In our calculations we have only targeted the vector
state besides the ground state. Other masses in the the-
ory, such as scalar mass gap or baryon masses, can be
computed in a similar fashion with the basis we have de-
veloped. Moreover, our formulation is not restricted to
static problems and can be used to compute time evolu-
tion thus also giving access to dynamical properties.

Additionally the formulation is also potentially suit-
able for designing future quantum simulators [41, 42, 82].
As the number of basis states is drastically reduced with
respect to the full basis, and a truncation at a maxi-
mum value of jmax is straightforward, this could allow
for simpler experimental realizations compared to pre-
vious proposals. Our results also show that in such a
simulator one would be able to obtain good estimates for
the ground state energy for the full theory in the contin-
uum, even with the simplest nontrivial truncation for the
color-electric flux. However, other quantities as for exam-
ple low lying excitations or the scaling of entanglement
entropy seem to be more delicate and we only recover
the values for the full theory in the continuum, if jmax is
chosen large enough.
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Appendix A: Dimension of the physical subspace

Here we compute the dimension of the physical sub-
space contained in the basis developed in the main text.
For all the following we focus on a system with N sites
and the case of vanishing background field, j0 = 0.

As shown in the main text, an arbitrary basis
state can be expressed as |φ〉 = ⊗Nk=1|αk〉, |αk〉 ∈
{|0〉, |1−〉, |1+〉, |2〉}. To calculate the dimension of the
physical subspace, it is convenient to represent the 4N

basis states as directed paths from the root r to one of
the leaves in a perfect quaternary tree of depth N . The
vertices at level k are labeled with the color-electric flux
jk at link k, implied by the fermionic states sitting at the
edges along the path from the root to the vertex due to
Eq. (6) (cf. Fig. 10). Unphysical states now correspond
to directed paths from the root to one of the leaves that
contain at least one vertex labeled by a negative number.
Looking at a path starting from the root along vertices
with non-negative labels to the vertex v at level k − 1, a
vertex v′ with negative label in level k can arise if and
only if:

i) v is labeled by a 0,
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FIG. 10. The first three levels of the quaternary perfect tree
representing the basis states. The vertices represent the color-
electric flux indicated by the fermionic states on the edges
along the path to each vertex using Eq. (6). The yellow filled
circles represent those vertices, for which one encounters for
the first time a negative value, if the path leading to the vertex
is continued along the edge carrying |1−〉.

ii) from v the path is continued along the edge cor-
responding to |1−〉 thus ending up in a vertex v′

labeled by −1/2.

Hence, the first vertex v′ with negative label along a path
corresponding to an unphysical state is always one carry-
ing a −1/2. Moreover, all paths containing v′ necessarily
correspond to unphysical states. The number of paths
containing v′ is simply the number of paths through the
perfect quaternary subtree of depths N − k rooted by v′,
4N−k. Consequently, the number of unphysical states is

given by
∑N
k=1 t̄k4N−k =

∑N−1
k=0 t̄k+14N−(k+1). Here t̄k

is the number of vertices carrying label −1/2 at level k,
for which the path starting from r does not yet pass any
other vertex with negative label. Due to observations i)
and ii) t̄k is equivalent to the number of paths tk−1 start-
ing from r to a vertex at level k− 1 with label 0 that did
not yet pass any vertex with negative label. As we are
going to show in the following, tk−1 is exactly given by
the Catalan number Ck = (2k)!/(k + 1)!k!. As a result,

the number of unphysical states is
∑N−1
k=0 tk4N−(k+1) =∑N−1

k=0 Ck+14N−(k+1) =
∑N
k=1 Ck4N−k.

To compute the number of paths starting from the root
to a vertex at level k with label 0 that did not yet pass
any vertex with negative label we use to following obser-
vations:

1. As explained in the main text, the number of edges
lk,− passed with |1−〉 at any level k′ < k must not
exceed the ones with |1+〉, lk,+, to avoid encoun-
tering any negative vertices along the path.

2. Looking at a path from the root with j0 = 0, to any
vertex labeled by 0 at level k, we immediately see
that the condition lk,+ = lk,− has to be fulfilled in
order to compensate for the flux changes induced
by |1−〉 and |1+〉. In particular, this implies that
2lk,+ ≤ k or equivalently lk,+ ≤ xk/2y. The other
k − 2lk,+ edges along the path have to carry |0〉
or |2〉, as those states do not lead to a flux change
while going from one layer to the other.

The number of paths of length 2lk,+ which contain at
any point at least as many |1−〉 as |1+〉 is exactly the

number of Dyck paths and given by the Catalan number
Clk,+ [83]. Hence, the number of path fulfilling conditions
1 and 2 at level k is given by

tk =

xk/2y∑
lk,+=0

Clk,+

(
k

2lk,+

)
2k−2lk,+ = Ck+1,

where the factor

(
k

2lk,+

)
takes into account the num-

ber of ways that the 2lk,+ symbols |1+〉 and |1−〉 can be
distributed among the k levels and 2k−2lk,+ the possible
ways of filling the remaining edges with |0〉 and |2〉. In
the last step we have used an identity for the Catalan
numbers.

Thus, the dimension of the physical subspace is given
by

dN,phys = 4N

(
1−

N∑
k=1

Ck
4k

)
. (A1)

In Fig. 11 we show a comparison between the scaling
of our basis and the basis from Ref. [55] which has dimen-
sion dN,Hamer = 3N (2jmax +1)N−1. As the figure reveals,
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FIG. 11. Dimension of the physical subspace dN,phys (blue
solid line), the total number of basis states 4N in our formu-
lation (red dashed line) and the dimension of the basis from
Ref. [55], 3N (2jmax + 1)N−1, for the simplest nontrivial trun-
cation jmax = 1/2 (green dash-dotted line) as a function of
system size. Inset: Fraction of the physical subspace with
respect to the total amount of basis states.

for systems with OBC our basis offers a vast improvement
over the color neutral basis from Ref. [55] already in the
case of the simplest nontrivial truncation jmax = 1/2.
Even though the fraction of physical states in our basis,
dN,phys/4

N , quickly decreases with system size, the total
number of states is still exponentially smaller.

Appendix B: Hamiltonian

In this Appendix we show how the terms of the Hamil-
tonian given in Eqs. (3) and (4) can be formulated in the
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basis presented in Sec. III. As explained in the main text,
the mass term is straightforward as even in the original
formulation it only depends on the fermionic occupation
number. The color-electric energy term can also readily
be formulated in the new basis using Eq. (6). Hence, W0

is given by

W0 = µ

N∑
k=1

(−1)kn̂k

+

N−1∑
k=1

(
j0 +

k∑
l=1

q̂l

)(
j0 +

k∑
l=1

q̂l + 1

)
,

(B1)

where the single site operators are

n̂k = |1−〉〈1−|+ |1+〉〈1+|+ 2 |2〉〈2|, (B2)

q̂k =
1

2
(|1+〉〈1+| − |1−〉〈1−|) . (B3)

From Eq. (B1) one can see explicitly that integrating
out the gauge field leads to nonlocal interactions in the
color-electric energy term.

The hopping term can be obtained by translating the
possible hopping processes shown in Fig. 1(c) in the new
basis. The possible hopping processes in the new basis
are listed in Tab. II. As the table reveals, the matrix ele-

Initial state Final state Matrix element
|0〉 ⊗ |2〉 → |1−〉 ⊗ |1+〉

(−1)jk−jk−1−1/2

√
2jk + 1

2jk−1 + 1

|0〉 ⊗ |2〉 → |1+〉 ⊗ |1−〉
|1−〉 ⊗ |1+〉 → |0〉 ⊗ |2〉
|1+〉 ⊗ |1−〉 → |0〉 ⊗ |2〉
|1−〉 ⊗ |1+〉 → |2〉 ⊗ |0〉
|1+〉 ⊗ |1−〉 → |2〉 ⊗ |0〉
|2〉 ⊗ |0〉 → |1−〉 ⊗ |1+〉
|2〉 ⊗ |0〉 → |1+〉 ⊗ |1−〉
|1−〉 ⊗ |0〉 → |0〉 ⊗ |1−〉

+1
|1+〉 ⊗ |0〉 → |0〉 ⊗ |1+〉
|0〉 ⊗ |1−〉 → |1−〉 ⊗ |0〉
|0〉 ⊗ |1+〉 → |1+〉 ⊗ |0〉
|2〉 ⊗ |1−〉 → |1−〉 ⊗ |2〉

−1.
|2〉 ⊗ |1+〉 → |1+〉 ⊗ |2〉
|1−〉 ⊗ |2〉 → |2〉 ⊗ |1−〉
|1+〉 ⊗ |2〉 → |2〉 ⊗ |1+〉

TABLE II. Gauge invariant transitions induced by the hop-
ping term from Fig. 1(c) expressed in the new basis. The
value on the right hand side shows the corresponding matrix
elements for the hopping operator

ments for certain transitions depend on the color-electric
flux, thus also leading to long-range interactions in the
hopping term. The hopping term V can then be ex-
pressed in the new basis by defining the operators Oi,k

O1,k = |0〉〈1−|k, O2,k = |0〉〈1+|k,
O3,k = |1−〉〈2|k, O4,k = |1+〉〈2|k,

and translating the possible transitions in from Tab. II

in operator form

V =

N∑
k=1

(
c−k−1O

†
1,kO4,k+1 + c+k−1O

†
2,kO3,k+1

+c−k−1O
†
3,kO2,k+1 + c+k−1O

†
4,kO1,k+1

+O†1,kO1,k+1 +O†2,kO2,k+1

−O†3,kO3,k+1 −O†4,kO4,k+1 + h.c.
)
,

(B4)

where the h.c refers to the hermitian conjugates of all
terms appearing in the formula above. The color flux
dependent constants c±k are given by

c+k =

√
2jk + 2

2jk + 1
, c−k = −

√
2jk

2jk + 1
,

and are nothing but the matrix elements shown in the
transition table. In order to compute these constants, the
value for jk has to be reconstructed from the fermionic
occupation number via Eq. (6).

Appendix C: Penalty terms

As mentioned in Sec. II and further discussed in
App. A, the basis would in principle allow for unphysical
states implying negative values for j. For our numeri-
cal calculations with MPS, we choose to remove those
states with appropriate penalty terms shifting unphysi-
cal states high enough in the spectrum such that they do
not interfere with the low lying spectrum we are target-
ing. More specifically, we add the following penalty to
the Hamiltonian terms from Eqs. (B1) and (B4) which
has a non-vanishing contribution at sites with negative
value of jk:

P1 = λ1

N∑
k=1

Θ

(
−j0 −

k∑
l=1

q̂l

)
,

where Θ(x) is the Heavyside step function. The constant
λ1 has to be chosen large enough to shift states with a
negative value for j high enough in the spectrum such
that they do not mix into the low lying spectrum we are
interested in.

Moreover, in our calculations we focus on the vector
meson states. To avoid any baryon states, we restrict
the total fermion number to the number of sites in the
system. This can be easily achieved by adding another
penalty term

P2 = λ2

(
N∑
k=1

n̂k −N

)2

to the Hamiltonian, where λ2 again has to be chosen large
enough to shift the states high enough in the spectrum
to prevent them from mixing with the low lying ones we
are interested in.
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In addition to that, we are interest in the subspace
with j0 = 0 = jN . Another energy penalty of the form

P3 = λ3

(
N∑
k=1

q̂k

)2

makes it possible to restrict the calculations to that sec-
tor, where λ3 is again a constant that has to be chosen
large enough to penalize unwanted states sufficiently.

For our calculations presented in the main text we have
checked the expectation values for all three penalties and
found that they are negligible for λi = 1000, i = 1, 2, 3.

Appendix D: Distinguishing vector and scalar states

Due to the fact that we are working with finite lattices
with OBC the symmetries which allow for distinguish-
ing between the different meson states are no longer pre-
served. Nevertheless, following the ideas from Ref. [15],
the remnants make it possible to separate the different
type of states. However, in the basis formulation pre-
sented in the main text it is not straightforward to write
down a pseudo-momentum operator as it was done in
the reference. Thus, to identify the zero momentum ex-
citations of the ground state we use a simpler approach.
On a lattice with periodic boundary conditions, the zero
momentum states correspond exactly to translational in-
variant states. For our finite lattice this should still be
approximately fulfilled as long as the system size is large
enough. Due to the staggered formulation a translational
invariant state should be invariant under a cyclic shift by
two lattice sites. To assign a pseudo-momentum to our
states, we compute the expectation value of the operator
C(2), where C(k) describes a cyclic shift by k lattice sites
to the right. Moreover, to probe for the charge conjuga-
tion number, we proceed again similar to Ref. [15], and
apply a cyclic shift followed by exchanging the two states

|0〉 ↔ |2〉,
∑N
k=1 (|0〉〈2|k + |2〉〈0|k)C(1). While this lat-

tice analog of charge conjugation is not a good quantum
number in the case of OBC, the phase of this opera-
tor allows for distinguishing between vector candidates
(charge conjugation number −1) and scalar candidates
(charge conjugation number +1). For states with charge
conjugation number +1 we observe phases close to 0,
whereas for states with charge conjugation number −1
the observed phase is close to π. Together with the dis-
persion obtained from the pseudo-momentum operator
this allows us to identify the different states as shown in
Fig. 12. Above the ground state we observe a vector
candidate with 〈C(2)〉 ≈ 1. Subsequently we discover the
momentum excitations of the vector state which are char-
acterized by decreasing 〈C(2)〉 before we finally obtain a
scalar candidate with 〈C(2)〉 ≈ 1 again.

0

100

200

300
(a)

E
−
E

0

0

50

100

150
(b)

0.6 0.65 0.7 0.75 0.8

0

50

100

150
(c)

E
−
E

0

〈C
(2 )
〉

0.6 0.65 0.7 0.75 0.8

0

50

100

150
(d)

〈C
(2 )
〉

FIG. 12. Dispersion relation for m/g = 1.6, N = 50, x = 150,
D = 50, jmax = 1/2 (a), jmax = 1 (b), jmax = 3/2 (c) and
jmax = 2 (d). The blue dot indicates the ground state, the
red triangles the vector states and the green square the scalar
candidate.

Appendix E: Extrapolation procedure and error
estimation

Here we give more details how we extrapolate our data
in bond dimension, system size and lattice spacing to
reach the continuum limit, as well as for the extraction
of the critical exponents presented in Tab. I and the
central charges.

In a first step, we estimate the exact values for the
ground state energy and the vector mass gap by extrap-
olating for each combination of (jmax,m/g, x,N) to the
limit D → ∞. As the examples in Fig. 3(a)-(b) in the
main text show, we plot our data versus 1/D and fit a line
through the two data points with the largest bond dimen-
sion. As an estimate for the exact energy value (vector
mass gap), we take the mean value between our value
computed with maximum bond dimension E0,Dmax

(N, x)
(∆vec,Dmax

(N, x)) and the extrapolated value with infi-
nite bond dimension, E0,D∞(N, x) (∆vec,D∞(N, x)). We
estimate the error of the central value in a standard man-
ner by taking half of the difference between these two
values δEfit = (E0,Dmax

(N, x) − E0,D∞(N, x))/2. Ad-
ditionally to the extrapolation error, the central value
obtained also has a systematic error due to the con-
vergence tolerance of ε = 10−6 set in the simulations,
δEsys = εE0,D∞(N, x). Taking into account this error,
too, the final error for the ground state energy (vector

mass gap) is given by δEtot =
√

(δEfit)
2

+ (δEsys)
2
.

With the estimates for the exact ground state energies
and the vector mass gaps, we extrapolate to the ther-
modynamic limit for each combination of (jmax,m/g, x),
where we use the asymptotic behavior up to linear or-
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der [3]

E0

2Nx
≈ ω0 +

a

N
+O

(
1

N2

)
,

∆vec

2
√
x
≈ ω1 +

a

N2
+O

(
1

N3

)
,

and propagate our errors from the previous extrapolation
inD. As an estimate for the error we take the fitting error
with a 1σ confidence interval.

In a final step, we extrapolate to the continuum limit
ag = 1/

√
x → 0 by fitting a polynomial in 1/

√
x up to

second order. In general, we take the value obtained by
the lowest order statistically significant fit which achieves
χ2

d.o.f. < 1 as central value. Statistically significant means
that the errors for the fit coefficients are smaller than the
actual value of the coefficient. In addition to the statis-
tical error of the fit, we estimate the systematic error as
difference between our central value and the next sta-
tistically significant fit of the next highest order and/or
omitting the largest lattice spacing. For the ground state
energy density this is for all cases a quadratic fit. As
an estimate for the systematic error we take the differ-
ence with respect to the value obtained by a quadratic
fit omitting the largest lattice spacing, meaning in the
region x ∈ [70, 150].

For the vector mass gap we observe largely enhanced
lattice effects for small values of jmax. In particular, for
jmax = 1/2 quadratic fits have high values for χ2

d.o.f..
However, as we only have 5 different lattice spacings we
cannot take higher order corrections into account. Thus,
we determine the central value with a quadratic fit taking
into account all lattice spacings and again estimate the
systematic error as difference with respect to the value
obtained by a quadratic fit omitting the largest lattice
spacing. Consequently, in this case the error might be
heavily underestimated as we are neglecting higher order
corrections. For jmax = 1, we find that for all m/g ≥ 0.3
quadratic corrections are sufficient and proceed the same
way for estimating the central value and its systematic
error as for jmax = 1/2. For m/g = 0.25, we estimate the
central value via a linear fit taking into account lattice
spacings corresponding to x ∈ [90, 150]. The systematic
error in this case is estimated as difference with respect
to a quadratic fit in the region [70, 150]. In the region
of smaller masses m/g ≤ 0.2 we find that both, linear
and quadratic fits are statistically significant. Hence, we
estimate our central value with a linear fit through all
available lattice spacings, and, the systematic error as
difference with respect to a quadratic fit in the same re-
gion. For the largest two truncations, jmax = 3/2, 2,
the quadratic correction loses significance and thus we
estimate our central value in those cases with a linear
fit. The systematic error is then determined as differ-
ence with respect to a linear fit discarding the largest
lattice spacing, corresponding to x = 50. The final re-
sults obtained for the ground state energy densities and
the vector mass gaps following the procedure described
above are listed in Tab. III.

The values for the critical exponents for the vector
mass gaps are estimated in a similar fashion. Our data for
jmax = 3/2, 2, which are close to the ones from Ref. [55],
reveal that for our largest fermion mass m/g = 1.6 we
are already relatively close to the non-relativistic limit.
Hence, we restrict ourselves to data for small fermion
mass to estimate the critical exponent. For each value of
jmax, we fit our data to a power law, γ(m/g)ν , for every
interval [0.1, (m/g)max] with 0.25 ≤ (m/g)max ≤ 0.4. As
central value, we take the fit with the smallest χ2

d.o.f..
To estimate our systematic error we take the difference
between our central value and the fit giving the most
outlying value. The statistical error is again given by 1σ
error bar for the fitting error.

To study the scaling of the entropy towards the con-
tinuum limit and obtain an estimate for the central
charges, we proceed as described in the main text. We
first average for D = 200 and every combination of
(jmax,m/g, x,N) the different entropy contributions for
4 bipartitions close to the center. To estimate our sys-
tematic error, we take the difference with respect to the
values obtained with D = 150. Additionally, our data
has another systematic error due to the finite precision
in our simulations which has to be added on top. For the
entropies we cannot give the same precise estimates for
this systematic error as for the energies. To get never-
theless a rough idea of the order of magnitude, we com-
pare results with convergence tolerance ε = 10−6 and
ε = 10−10. Figure 13 reveals that even for the largest
value of jmax, where we expect the largest differences be-
tween these results, it is around 10−5. Hence, we simply
assume a systematic error of 10−5 due to the finite pre-
cision of our simulations in all cases.
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FIG. 13. Difference in the total entropy for the RDM for
the leftmost L sites between simulation results obtained with
ε = 10−10 and ε = 10−6. The panels show the results for
N = 200, x = 50, m/g = 0.1 (a) and m/g = 0.3 (b). The
blue dots indicate jmax = 1/2, the green squares jmax = 2.

Appendix F: Entanglement entropy in the full basis
and our formulation

In this Appendix, we discuss the relation between the
different contributions to the von Neumann entropy in
our reduced basis formulation and the full basis. In a
first step, we show that one can recover the full basis
state from the reduced one by means of an isometry which
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Ground state energy density Vector mass gap
m/g jmax = 1/2 jmax = 1 jmax = 3/2 jmax = 2 jmax = 1/2 jmax = 1 jmax = 3/2 jmax = 2
0.10 −0.621933(20) −0.636285(28) −0.636758(31) −0.636740(84) 1.154(43) 0.521(81) 0.418(20) 0.418(20)
0.15 −0.621878(17) −0.636275(36) −0.636782(53) −0.636773(24) 1.489(46) 0.67(14) 0.557(15) 0.555(15)
0.20 −0.621815(18) −0.636258(56) −0.636771(28) −0.636745(33) 1.788(63) 0.81(16) 0.678(12) 0.675(13)
0.25 −0.621743(25) −0.636255(45) −0.636721(18) −0.636716(22) 2.067(74) 1.01(13) 0.790(10) 0.788(10)
0.30 −0.621668(28) −0.636239(45) −0.636679(20) −0.636684(39) 2.329(85) 1.260(57) 0.9020(85) 0.9001(84)
0.35 −0.621582(31) −0.636210(40) −0.636625(17) −0.636650(22) 2.576(97) 1.389(58) 1.0108(71) 1.0100(79)
0.40 −0.621499(47) −0.636170(19) −0.636538(50) −0.636562(25) 2.82(10) 1.508(59) 1.1180(56) 1.1168(76)
0.80 −0.62070(11) −0.63548(10) −0.63570(11) −0.63569(13) 4.51(11) 2.391(88) 1.9329(28) 1.9322(28)
1.60 −0.61823(40) −0.63200(63) −0.63205(65) −0.63205(65) 7.14(17) 3.954(97) 3.5196(11) 3.5191(10)

TABLE III. Ground state energy densities and vector mass gaps obtained for various values for m/g and jmax. The errors
represent the sum in quadrature of the fitting uncertainty with a 1σ confidence interval and the systematic error.

can be written as a sequence of N local isometries, and
thus corresponds to a quantum circuit of depth equal
to the system size, N . Afterwards, we formally argue
why the weights of different sectors, pj , are the same in
both bases, and show the explicit relation between the
entanglement entropies computed in each basis.

1. Mapping to the full basis

Here we show how the full basis state can be recov-
ered from our reduced basis formulation by sequentially
applying a local, isometric map. The map is given by

Mloc =

jmax∑
j=0, 12 ,...

∑
α

j∑
`,`′=−j

|qα|∑
s=−|qα|

C
|qα| j j+qα
s `′ `′+s√

2(j + qα)− 1

× |j``′;nαs; j + qα, `
′ + s〉〈j`;α|.

(F1)

where Cj1 j2 J`1 `2 M
= 〈J,M |j1, `1; j2, `2〉 are the usual

Clebsch-Gordan coefficients for coupling two angular mo-
menta j1, j2 with z-components `1, `2 to a total an-
gular momentum J with z-component M . The symbol
α ∈ {0, 1−, 1+, 2} labels the decorated fermionic occu-
pation. The state |α〉 is an eigenstate of the operators
n̂ from Eq. (B2) and q̂ from Eq. (B3), with respective
eigenvalues nα and qα. The states |nαs〉 correspond to a
relabeling of the full basis |n1, n2〉. Different to the main
text, we label them with the total occupation number
and the z-component of the related angular momentum,
nα = n1 + n2, s = (n1 − n2)/2, to make the depen-
dence explicit. The effect of the map is to introduce
extra degrees of freedom, `′ for the incoming link and
j, ` on the outgoing link, by simultaneously respecting
the proper SU(2) composition rules, which is ensured by
the Clebsch-Gordan coefficients (see Fig. 14(a)). No-
tice, that for empty or doubly occupied sites qα = 0 and
the Clebsch-Gordan coefficients are trivial. In the case
of singly occupied sites |qα| = 1/2 and the spin 1/2 of
the single fermion couples to the angular momentum of
the previous link to ensure a color neutral superposition.
The prefactors 1/

√
2(j + qα) + 1 ensure proper normal-

ization of the resulting state and have to be chosen such

thatM†locMloc is the projector on the physical subspace
as we are going to show in the following. A straightfor-
ward calculation yields

M†locMloc =
∑
j,α,`

1

2(j + qα) + 1

∑
`′,s

C
|qα| j j+qα
s `′ `′+s

2


|j`;α〉〈j`;α|.

(F2)

The sum inside the bracket over the squares of the
Clebsch-Gordan coefficients can be simplified as follows:

j∑
`′=−j

|qα|∑
s=−|qα|

(
C
|qα| j j+qα
s `′ `′+s

)2

=

j∑
`′=−j

|qα|∑
s=−|qα|

j+qα∑
t=−(j+qα)

(
C
|qα| j j+qα
s `′ t

)2

=

j+qα∑
t=−(j+qα)

 j∑
`′=−j

1/2∑
s=−1/2

(
C
|qα| j j+qα
s `′ t

)2


=

j+qα∑
t=−(j+qα)

1 = 2 (j + qα) + 1,

where in the step from the second to the third line, we
have used that the Clebsch-Gordan coefficients vanish,
if the resulting z-component differs from the sum of the
individual z-components and hence we can sum over t.
To arrive at the last line we have used the orthogonality
relations. Thus, we see that Eq. (F2) is the identity on
the physical subspace and Mloc is indeed an isometry.

Considering a system with N sites, we can recover
the full state after fixing the link on the left bound-
ary, |j0`0〉, via a sequential application of Mloc, M =

M(1)
locM

(2)
loc . . .M

(N)
loc . As sketched in Fig. 14(b), the se-

quential application of the map corresponds to a quan-
tum circuit of depth N . In all our calculations, we work
in the sector j0 = 0, hence the left electric field necessar-
ily has to vanish and the input left link is |00〉 (thus not
explicitly shown in the figure).
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FIG. 14. (a) Schematic representation of Mloc that locally
maps the reduced basis to the full one. Different line styles
are used to indicate the different spaces where j̄ = j+ qα and
¯̀ = `′ + s. (b) Mapping a MPS in the reduced basis to the

full one by applying M =M(1)
locM

(2)
loc . . .M

(N)
loc .

2. Classical part of the entropy

Here we show that the weights of sectors with a par-
ticular value of j on a certain link, pj , are identical in
both, the full basis and our formulation. For all the fol-
lowing, we assume a system of N sites in a physical state
|Ψ̃〉 in the reduced basis, corresponding, in the full one,

to |Ψ〉 = M|Ψ̃〉. We will consider the bipartition of the
system obtained by cutting at the L-th gauge link.

In the full basis, the RDM for the leftmost L sites has
block diagonal structure thanks to the gauge constraints,
and we can write

ρj = ΠjtrL+1,...,N (|Ψ〉〈Ψ|)Πj = trL+1,...,N (Πj |Ψ〉〈Ψ|Πj)

= trL+1,...,N

(
ΠjM|Ψ̃〉〈Ψ̃|M†Πj

)
(F3)

where Πj is the projector on total flux j for the L-th
link. In the full basis, this projector acts locally on the

link and thus can be written Πj = 1in ⊗Π
(L)
j ⊗ 1, where

the left factor is the identity on the inner part, i.e. the
part where ρ is defined (see Fig. 15(a)).

The corresponding projection in our basis formulation
is given by

Π̃j =
∑

qα1
+...+qαL=j

|α1 . . . αN 〉〈α1 . . . αN |,

where
∑
qα1+...+qαL=j takes into account all basis states,

for which the sum of the eigenvalues qαk , k = 1, . . . , L,
for the single site operators from Eq. (B3) is equal to j.
The corresponding RDM thus reads

ρ̃j = Π̃jtrL+1,...,N (|Ψ̃〉〈Ψ̃|)Π̃j = trL+1,...,N (Π̃j |Ψ̃〉〈Ψ̃|Π̃j)

It turns out, as we will show next, that the action of
the projector Πj on a certain value of the flux link com-
mutes with the isometry that changes the basis, namely,
ΠjM|Ψ̃〉 =MΠ̃j |Ψ̃〉. This implies the following

pj = tr(ρj) = tr
(

ΠjM|Ψ̃〉〈Ψ̃|M†Πj

)
= tr

(
MΠ̃j |Ψ̃〉〈Ψ̃|Π̃jM†

)
= tr

(
Π̃j |Ψ̃〉〈Ψ̃|Π̃j

)
= p̃j .

FIG. 15. (a) The action of a projector onto a given sector of
flux, j, for an intermediate link on the full basis. For physical
states, it can be pulled through the basis changing isometries
(b)-(d), and expressed in the reduced basis as a projector onto
the corresponding sum of qαk values for the vertices to the left
of the target link (e).

To proof the statement ΠjM|Ψ̃〉 = MΠ̃j |Ψ̃〉, we pro-
ceed as sketched in Fig. 15. The individual steps are
justified as follows:

• (a)=(b): In the full basis, the projector onto a flux
value of j for link L is the identity everywhere,
except for the local basis of the link, where it acts

as Π
(L)
j =

∑j
`,`′=−j |j ` `′〉〈j ` `′|. Looking at Eq.

(F1) it is clear that its action on Mloc just fixes
the value of j, and thus

(Π
(L)
j ⊗ 1nαs,j`)M

(L)
loc =M(L)

loc (Π
′(L)
j ⊗ 1α),

where Π
′(L)
j acts to the same effect on the

link variables before the isometry, as Π
′(L)
j =∑j

`=−j |j `〉〈j `|.

• (b)=(c): The second step is guaranteed by gauge
invariance, in particular by the form of Mloc in
Eq. (F1). It is immediate to see that (1 ⊗
Π
′(L)
j )M(L−1)

loc =M(L−1)
loc Π∗j

(L−1,L), where the pro-

jector Π∗j
(L−1,L) acts on the degrees of freedom j, `
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of the (L − 1)-th link and the decorated fermion
occupation number, α, of the L-th vertex, as

Π∗j
(L−1,L) =

∑
j′

∑
α

j′∑
`=−j′

δj′+qα, j |j′ `; α〉〈j′ `; α|.

• (c)=(d): The third equivalence can be formally

expressed as (1 ⊗ Π∗j
(L−1,L))(M(L−1)

loc ⊗ 1(L)
α ) =(

M(L−1)
loc ⊗ 1(L)

α

)
Π∗j

(L−2,L−1,L), with

Π∗j
(L−2,L−1,L) =

=
∑
j′αα′

j′∑
`=−j′

δj′+qα+qα′ , j |j
′ `; α;α′〉〈j′ `; α; α′|.

On the left-hand side, the only effect of the projec-

tor for a sector j̄ which acts on Mloc ⊗ 1(L)
α is to

restrict the sum over j in Eq. (F1) to values such
that j + qα + q′α = j̄, which is precisely the effect
of the projector on the right-hand side.

• (d)=(e): Iterating the step above we can pull the
projector through very Mloc block, until the edge
of the chain, where the input j is fixed to 0 and can
be ignored.

3. Distillable part of the entropy

Let us assume that for a physical state, in the reduced
basis, the unnormalized RDM for the L leftmost sites for
the sector with (outgoing) flux j has spectrum λσ, i.e.

ρ̃j =
∑
σ

λσ|σ〉〈σ|, p̃j = tr(ρ̃j) =
∑
σ

λσ,

with the eigenvectors |σ〉 supported on the reduced basis
for the L leftmost sites.

We can use the relations discussed above to relate the
density operators in the full and reduced basis. The
RDM in the full basis, given by (F3), can be computed
from the RDM for L + 1 sites in the reduced basis, as
sketched in Fig. 16(a), since the isometries acting to
the right of the projector cancel out in the trace. Thus,
the RDM in the full basis is obtained by first apply-

ing the isometry ML+1 = M(L+1)
loc M(L)

loc · · ·M
(1)
loc to the

RDM for L + 1 sites in the reduced basis, ρ̃L+1, then
projecting onto the sector j, and finally tracing out the
(L + 1)-th site and the gauge degrees of freedom intro-

duced by M(L)
loc and M(L+1)

loc . Following the above dis-
cussion, the projector can be pushed through the local

isometries (see Fig. 16(b)) so that M(L+1)
loc cancels and

we finally obtain ρj = tr(j `)L(M(L)
loc B

(j)M(L)
loc

†
) where

B(j) :=ML−1ρ̃jM†L−1. Since B(j) is simply an isomet-
ric transformation of ρ̃j , it has the same spectrum. We

FIG. 16. RDM corresponding to a fixed flux sector, j, com-
puted in the full basis. (a) ρjL in the full basis. After pushing
the projectors through as explained in the text and using

that M(L+1)
loc is an isometry one obtains the equivalent form

depicted in (b).

can write,

B(j) =
∑

kin`α,k′in`
′α′

Bkin`α, k′in`′α′×

|kin; j − qα, `;α〉〈k′in; j − qα′ , `′;α′|,

where we make the degrees of freedom of the (L − 1)-
th link and the L-th vertex explicit, and represent all
the others for the inner part with global indices kin, k′in.
Then

Bkin`α, k′in`′α′ =
∑
σ

λσ Ukin`α,σU
†
σ,k′in`

′α′ ,

where Ukin`α,σ = 〈kin; j − qα, `;α|ML−1|σ〉.
Applying the local isometryM(L)

loc and tracing out the
L-th link, we get

ρj =
1

2j + 1

∑
kin`α,k′in`

′α′

Bkin`α, k′in`′α′×

|qα|∑
s=−|qα|

|qα′ |∑
s′=−|qα′ |

j∑
r=−j

C
|qα| j−qα j
s r−s r C

|qα′ | j−qα′ j
s′ r−s′ r×

|kin; j − qα, `, r − s;nα s〉〈k′in; j − qα′ , `′, r − s′;nα′ s′|.

We observe that defining

|v(kin; jr;α`)〉 =

|qα|∑
s=−|qα|

C
|qα| j−qα j
s r−s r

|kin; j − qα, `, r − s;nα s〉,

we obtain a set of orthogonal vectors (with respect to all
the labels), corresponding to changing the basis of the
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(L − 1)-th link and the L-th vertex to a basis of total
angular momentum. As a result, if we use the unitary
Ukin`α,σ to express the internal degrees of freedom in the
diagonal basis,

|w(σ; jr)〉 =
∑
kin`q

U∗kin`α,σ|v(kin; jr;α`)〉,

the resulting vectors are also orthogonal, and

ρj =
1

2j + 1

∑
σ

j∑
r=−j

λσ|w(σ; jr)〉〈w(σ; jr)|. (F4)

Thus ρj consists of 2j+1 blocks, with identical spectrum

{λσ/(2j + 1)}. Consequently, the entropy is given by

S(ρj) = −
j∑

r=−j

∑
σ

λσ
2j + 1

log2

λσ
2j + 1

= −
∑
σ

λσ log2

λσ
2j + 1

= p̃j log2(2j + 1)−
∑
σ

λσ log2 λσ

= p̃j log2(2j + 1) + S(ρ̃j).

Putting this result together with the fact that each j
sector has the same weight in the reduced and the full
representations, pj = p̃j , we have found that the relation
between the entropies is

S(ρ) = −
∑
j

pj log2(pj) +
∑
j

pjS(ρj)

= −
∑
j

pj log2(pj) +
∑
j

pj(log2(2j + 1) + S(ρ̃j))

=
∑
j

pj log2(2j + 1) + S(ρ̃). (F5)
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