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We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order
with the perturbative renormalization group in 4 − ε dimensions and compute critical exponents
for the Gross-Neveu-Yukawa fixed points to order O(ε4). Further, we provide Padé estimates for
the correlation length exponent, the boson and fermion anomalous dimension as well as the leading
correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric
field theories at four loops for the chiral Ising and the chiral XY models with N = 1/4 and N =
1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum
transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced
transitions in graphene and surface states of topological insulators.

I. INTRODUCTION

Critical phenomena near continuous phase transitions
constitute one of the cornerstones of our modern un-
derstanding of quantum field theory, condensed matter
physics and statistical field theory1,2. Near a continuous
phase transition the free energy of a physical system ex-
hibits a scaling form3, so that the specific heat or the
correlation length show a power-law behavior character-
ized by universal critical exponents. For example, in a
thermal transition, the correlation length diverges as

ξ ∼ |t|−ν(1 + C|t|ω + ...) ,

where t = (T − Tc)/Tc is the reduced temperature mea-
suring the distance from the transition at critical temper-
ature Tc. In a quantum phase transition4, where T = 0,
the reduced temperature is replaced by another measure
for the distance from the transition, e.g., the deviation
from a critical coupling. The correlation length expo-
nent ν and the subleading exponent ω are universal num-
bers which are identical for a number of phase transitions
as specified by symmetry and dimensionality, defining a
universality class.

Prime examples for critical behavior are the three-
dimensional (3D) O(N) universality classes that can be
experimentally studied by various important phase tran-
sitions such as the liquid-gas transition in simple gases,
the superfluid transition in liquid Helium or the Heisen-
berg transition in ferromagnets. From the theoretical
side, the development and comparison of different meth-
ods has led to an impressive convergence across different
theoretical approaches for the O(N) universality classes.
For example, for the Ising universality class there is
a three digit agreement for the correlation length ex-
ponent νIsing ≈ 0.630 across the available theoretical

methods5–9 including the renormalization group (RG),
numerical Monte Carlo (MC) approaches and the con-
formal bootstrap.

In the last years, Dirac and Weyl semimetals10,11 have
emerged as ubiquitous phases of matter in condensed-
matter physics, providing prime systems to explore fun-
damental properties of particles in unprecedented ways,
and beyond the realm of high-energy physics. In Dirac
systems the quasi-relativistic energy dispersion leads to
universal properties such as, e.g., a linearly vanishing
density of states at the Fermi level and the concomitant
thermodynamic properties and various response func-
tions. Under specific circumstances, for example when
interactions or disorder are sufficiently strong, Dirac and
Weyl systems are believed to undergo second order quan-
tum phase transitions from their semimetallic phase to
different types of order12–24. Relevant order parameters
cover a broad range of suggestions, for example staggered
density wave phases, antiferromagnetic states, supercon-
ducting orders and more exotic phases.

The critical behavior of a universality class is governed
by the dimensionality, symmetry and relevant degrees
of freedom of a physical system. While the critical be-
havior of the three-dimensional O(N) universality classes
can be conveniently described in terms of purely bosonic
field theories, the presence of symmetry-compatible chi-
ral fermions, as in Dirac and Weyl systems, severely mod-
ifies the critical exponents and therefore defines a novel
universality class25. At present, experimental realiza-
tions of these quantum transitions are still lacking. How-
ever, in systems like graphene, artificial graphene or cold
atoms, related transitions have already been studied26,27

and it can be expected that these quantum phase transi-
tions will be accessible in the near future.

From a general point of view, these Dirac systems close
to a phase transition can effectively be described in terms
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of quasi-relativistic chiral Dirac fermions coupled to a
bosonic order parameter which – depending on the tran-
sition – can have different numbers of components and
symmetries. This defines a general class of Gross-Neveu-
Yukawa (GNY) models. For example, the simplest of
these models – the 3D chiral Ising model – with one
real scalar field describes the universality class of the
interaction-induced quantum transition toward a charge
density wave (CDW) of electrons on the 2D honeycomb
lattice that breaks the (Ising) sublattice symmetry14.

A precise determination of the universality classes of
the 3D GNY models in terms of quantitative critical ex-
ponents has been prevented for quite some time due to
the lack of suitable methods. Recently, however, there
have been various developments that encourage to pick
up on that task again:

• Numerical approaches have found a fermion repre-
sentation allowing for a sign-problem free calcula-
tion of the semimetal-to-CDW and related transi-
tions of fermions on the honeycomb lattice28–32.

• The conformal bootstrap has been developed to de-
termine critical exponents for the O(N) models to
unprecedented precision and is now extended to
fermionic systems33–36.

• Non-perturbative field-theoretical methods like
the functional renormalization group (FRG) have
achieved the maturity to provide quantitative esti-
mates for critical exponents37–41.

• The perturbative renormalization group (pRG) has
been formalized to a level that allows for feasible
higher-loop calculations for these models42–44.

However, despite this recent progress in MC simulations
and the application of field-theoretical methods, the dis-
crepancies between the results for the GN critical expo-
nents have not been resolved and differences still show up
in the first relevant digits. Concerning the pRG it can be
stated that, with a few exceptions42–44, most of the uni-
versality classes of the GNY models are only known up
to two-loop order and no information about the behav-
ior of higher-loop orders is available. This leaves quite
some room for improvement on the estimates for critical
exponents coming from the pRG.

In this work we considerably extend on previous calcu-
lations of critical exponents within the pRG by providing
the full analytical expressions for the beta and gamma
functions for three representative Gross-Neveu-Yukawa
models for general number of fermion flavors N at four-
loop order in 4 − ε dimensions. The models are chosen
to represent a class quantum transitions relevant to two-
dimensional chiral Dirac systems and will be introduced
in the next section. We calculate the inverse correlation
length exponent ν−1, anomalous dimensions ηφ, ηψ and
the subleading exponent ω to order O(ε4) and present
numerical estimates for the most relevant cases.

The rest of the paper is organized as follows. After
introducing the three different models in Sec. II, we spec-
ify the RG procedure and the employed computer alge-
braical tools in Sec. III. In Sec. IV we present the full set
of four-loop RG functions for each of the models. Criti-
cal exponents to order ε4 are presented in Sec. V, where
we also discuss applications and numerical evaluations
of our results and employ simple Padé resummations for
the universal critical exponents. Finally, we draw our
conclusions. Lengthy expressions for the four-loop con-
tributions are given in a set of appendices.

II. MODELS AND APPLICATIONS

Interacting Dirac fermions in two spatial dimensions
can undergo a variety of quantum phase transitions to-
wards ordered states with different symmetry breaking
patterns12–24. While there is a huge variety of different
possible states accompanied by individual subtleties, the
general universal critical behavior can be captured by a
general class of relativistic Gross-Neveu-Yukawa models.
In this description, the Dirac fermions couple to the order
parameters via Yukawa couplings and the order param-
eters are written in terms of bosonic fields with a corre-
sponding number of components and symmetries. More
explicitly, we discuss three specific models25:

1. The chiral Ising model where chiral Dirac fermions
couple to a single-component real-valued order pa-
rameter with a discrete Z2 symmetry.

2. The chiral XY model where chiral Dirac fermions
undergo continuous U(1) symmetry breaking as de-
scribed by a complex order parameter. This model
is closely related to the bosonized version of the
Nambu-Jona-Lasinio (NJL) model45.

3. The chiral Heisenberg model where SU(2) symme-
try is broken. Here, the chiral Dirac fermions cou-
ple to an order parameter which is represented by
a three-component vector.

Explicitly, we describe the quantum critical points of in-
teracting Dirac semimetals in 2+1 dimensions by the fol-
lowing general form of the total action,

S =

∫
dτdD−1x (Lψ + Lψφ + Lφ) . (1)

The first term in the action is the fermionic kinetic term
in Euclidean spacetime

Lψ = ψ̄(x)/∂ψ(x) , (2)

where we define /∂ = γµ∂µ and use a four-dimensional
representation of the Clifford algebra, i.e. {γµ, γν} =
2δµν14, with µ, ν,= 0, 1, ...D − 1. The results on the
RG beta and gamma functions are independent from the
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explicit choice of the representation of the Clifford alge-
bra as their derivation only makes use of the anticom-
mutation relation and the trace over the identity matrix.
Therefore, we do not give an explicit representation, here
and in the following, and only note that different physical
applications come with various explicit representations
of the Clifford algebra, see for example Refs. 43 and 46.
The conjugate of the Dirac field is given by ψ̄ = ψ†γ0.
We generalize the model by introducing a number of N
fermion flavors of the four-component Dirac fermions, i.e.
the fermion also carries a flavor index i where ψ = ψi and
i ∈ {1, ..., N}. For notational simplicity, we will suppress
the flavor index in the following.

Further, we will have to define the Yukawa interaction
represented by Lψφ and the purely bosonic part Lφ in-
cluding a boson kinetic term and interactions. In the fol-
lowing, we employ Lorentz-symmetric kinetic terms in all
considered Lagrangians, i.e. we set the boson velocity to
the same value as the Fermi velocity vB = vF = 1. This
generally provides us with a Lorentz-invariant form of
the total action, which, however, is not dictated a priori
as the effective GNY models considered here, typically
have their origin in a non-Lorentz-invariant lattice de-
scription. In fact, the Lorentz symmetry near fermionic
quantum critical points with equal velocities for fermions
and bosons has been argued to emerge naturally in the
deep infrared regime in a large class of Yukawa theo-
ries of the same kind, even if vF 6= vB on intermediate
scales47–49.

A. Chiral Ising model

The first model of the class of Gross-Neveu-Yukawa
theories we discuss is the chiral Ising model. It is repre-
sented by the Lagrangian

LχI = Lψ + gφψ̄ψ +
1

2
φ(m2 − ∂2

µ)φ+ λφ4 , (3)

and includes a real scalar field with one component φ.
The model can be considered to result from a Hubbard-
Stratonovich decoupled four-Fermi interaction and lies
in the same universality class as the purely fermionic GN
model50 for (space-time) dimensions 2 < D < 4. The
Lagrangian in Eq. (3) is renormalizable in D = 4 − ε
dimensions. The scalar field couples to the fermions with
the Yukawa coupling g and has a quartic coupling λ.

This version of the Gross-Neveu-Yukawa models has
a number of interesting applications depending on the
number of fermion flavors N . For an eight-component
spinor ψ (N = 2) it describes the quantum critical point
of the semimetal-insulator transition in graphene, where
the ordered state corresponds to a sublattice symmetry
broken insulating state with charge order – the CDW
order14. In the case N = 1, we deal with a system that
lies in the same universality class as spinless fermions
on the honeycomb lattice with strong repulsive interac-
tions, also undergoing a semimetal-insulator transition

which has been intensely studied, recently, by a broad
range of different methods, i.e. quantum Monte Carlo
(QMC) simulations28–32, the Functional Renormaliza-
tion Group37,38 (FRG), perturbative RG approaches44,45

and the conformal bootstrap36. For N = 1/4, it has
been argued that supersymmetry emerges at the quan-
tum critical point which might be relevant at the bound-
ary of a topological phase as discussed in Ref. 51. Fi-
nally, the replica limit of this GNY model, N → 0, was
suggested to describe the transition from a relativistic
semimetallic state to a diffusive metallic phase in 3D
Weyl semimetals23.

B. Chiral XY model

The second model we discuss is the chiral XY model
where the chiral Dirac fermions ψ undergo continuous
U(1) symmetry breaking as described by the complex
order parameter φ = φ1 + iφ2. The complete Lagrangian
is decomposed as

LχXY = Lψ + Lφ,χXY + Lψφ,χXY (4)

with the fermionic part Lψ, cf. Eq. (2). The bosonic part
of the action reads

Lφ,χXY = |∂µφ|2 +m2|φ|2 + λ|φ|4 , (5)

and the Yukawa interaction Lψφ is

Lψφ,χXY = g ψ̄ (φ1 + iγ5φ2)ψ

= g
(
φψ̄P+ψ + φ∗ψ̄P−ψ

)
, (6)

where P± = 1
2 (1± γ5).

Applications of this model in the condensed-matter
context can be found in the quantum critical behavior
of superconducting states in graphene where the number
of fermion flavors is N = 2, see, e.g., Ref. 46, where also
an explicit choice for the Clifford algebra is discussed.
Further, the case N = 2 is relevant to a Kekulé valence
bond solid transition in graphene52–54 which is described
by a complex order parameter, however, with a discrete
Z3 symmetry. In the this scenario it was argued that at
the QCP the Z3 gets enhanced to an emergent U(1) sym-
metry leading to a set of critical exponents that is shared
with the N = 2 chiral XY model55–57. Another intrigu-
ing scenario where the chiral XY model is relevant are the
surface states of three-dimensional topological insulators
where emergent supersymmetry has been conjectured at
the quantum critical point43,46,58. This implies a field
content with fermion flavor number N = 1/2. The chiral
XY model shares the symmetries of the bosonized version
of the Nambu-Jona-Lasinio (NJL) model, also referred
to as the Nambu-Jona-Lasinio-Yukawa (NJLY) model,
which has recently been discussed in Ref. 45.
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C. Chiral Heisenberg model

One of the best candidates for an interaction-induced
semimetal-insulator transition of the electronic quasi-
particles in graphene (N = 2) is the transition to-
wards an antiferromagnetic spin-density wave (AF-SDW)
state12,14,15,59–62 which has been suggested to be accessi-
ble by application of biaxial strain63,64. In the low-energy
effective field-theoretical description this corresponds to
a SU(2) symmetry breaking transition with a Heisenberg

order parameter field ~φ having three real components.
The corresponding full model is referred to as the chi-
ral Heisenberg model25,37 with the bosonic kinetic La-
grangian explicitly reading

Lφ,χH =
1

2
~φ
(
m2 − ∂2

µ

)
~φ+ λ

(
~φ · ~φ

)2

. (7)

Accordingly, the Yukawa coupling is written as

Lψφ,χH = g~φ ψ̄ (~σ ⊗ 12N )ψ . (8)

Similar to the other models, the ordered phase of the chi-
ral Heisenberg model is characterized by a finite expec-
tation value of the bosonic field which here corresponds
to the spontaneous breaking of spin-rotational symme-
try. Note, that we have directly introduced the gener-
alization to arbitrary number of fermion flavors in the
Yukawa interaction. With this generalization, ψ and ψ̄
have 2N components for each spin projection and the
graphene case is covered by N = 2. The explicit imple-
mentation of the flavor number is straightforward, as for
the derivation of the results only the Clifford algebra and
the product dγN is required, where dγ is the dimension
of the representation of the gamma matrices.

III. RENORMALIZATION GROUP AND
TECHNICALITIES

For the renormalization group analysis in 4− ε dimen-
sions, we introduce the bare Lagrangian. To that end, we
replace the fields and couplings in the Lagrangian from
Eq. (1) with their bare counterparts

ψ → ψ0, φ→ φ0, g → g0, λ→ λ0 . (9)

We discuss the explicit construction for the chiral Ising
model and note that the constructions for the chiral XY
and the chiral Heisenberg model work accordingly. The
renormalized chiral Ising model Lagrangian reads

L =Zψψ̄ /∂ψ −
1

2
Zφ(∂µφ)2 + Zφ2

m2

2
φ2

+ Zφψ̄ψgµ
ε/2φψ̄ψ + Zφ4λµεφ4 . (10)

Here, we have introduced the energy scale µ parametriz-
ing the RG flow. The wave function renormalization
constants Zψ and Zφ relate the bare and the renor-

malized Lagrangian by rescaling the fields according to
ψ0 =

√
Zψψ and φ0 =

√
Zφφ. For the integration over

D = 4−ε dimensional spacetime we introduce the rescal-
ing

g2 → g2µε, λ→ λµε , (11)

which leads to explicit µ dependencies in L. For no-
tational simplicity, we further introduce the squared
Yukawa coupling y = g2, see Ref. 44.

The RG scale dependence of the renormalized quanti-
ties can be derived from the following relations between
the bare and the renormalized mass term, the Yukawa
coupling and the quartic coupling,

m2 = m2
0ZφZ

−1
φ2 , (12)

y = y0µ
−εZ2

ψZφZ
−2
φψ̄ψ

, λ = λ0µ
−εZ2

φZ
−1
φ4 . (13)

Employing a chain of sophisticated tools developed for
higher-loop calculations in the context of the Standard
Model of Particle Physics, we evaluate the renormaliza-
tion group constants

Zψ, Zφ, Zφ2 , Zφψ̄ψ, Zφ4 , (14)

up to four-loop order. Therefore, we use dimensional reg-
ularization (DREG) and the modified minimal subtrac-
tion scheme (MS). The tool chain of computer programs
operates as follows:

1. QGRAF65 generates the complete sets of Feynman
diagrams.

2. q2e and exp66,67 are used to map all Feynman dia-
grams on one-scale massive tadpole integral topolo-
gies and to generate diagram source files.

3. FORM68–70 is used to process the diagram source
files. It performs the traces over the Clifford al-
gebra, reduces the SU(2) color amplitudes (in case
of the chiral Heisenberg model) with the package
COLOR71 and rewrites the amplitudes in terms of
massive tadpole integrals with different powers of
propagators. Finally it replaces all integrals by
their tabulated reduction to a set of nineteen known
master integrals72.

4. The reduction to master integrals is performed by
Crusher73 and relies on integration-by-parts iden-
tities relating integrals with different propagator
powers through a system of coupled equations to
each other. The system of equations can be solved
with the Laporta algorithm74 such that all appear-
ing integrals can be written in terms of a linear
combination of a finite number of master integrals.

For the computation of the renormalization constants
we employ the method introduced in Ref. 75. Explic-
itly, we assign a mass regulator to all propagators and
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reduce the calculation to the evaluation of one scale tad-
pole topologies. Up to three loops we checked our results
against MATAD76.

The total number of diagrams calculated at four-loop
level is 31671 for the chiral Ising and Heisenberg model.
For the chiral XY model we implemented two indepen-
dent setups using the Feynman rules that can be derived
from the first or the second line of Eq. (6), i.e. employ-
ing a complex scalar and a Dirac fermion or a real scalar
representation and left and right handed Weyl fermions.
The total number of diagrams amounts to 188531 for the
first setup and to 7384 for the second one whereas the re-
sults for the renormalization constants completely agree.
This is a nontrivial check for our setups up to four loops.

IV. BETA AND GAMMA FUNCTIONS

The beta functions for the squared Yukawa coupling
y and the quartic scalar coupling λ are defined as the
logarithmic derivatives with respect to the scale µ to be

βy =
d y

d lnµ
, βλ =

dλ

d lnµ
. (15)

The relation to the renormalization constants is derived
from Eqs. (12)-(13) and we work with rescaled couplings
y/(8π2) → y and λ/(8π2) → λ. For the Yukawa cou-
pling and the quartic scalar coupling at four-loop order
we expand the full expressions according to the scheme

βy,X =− εy + β
(1L)
y,X + β

(2L)
y,X + β

(3L)
y,X + β

(4L)
y,X , (16)

βλ,X =− ελ+ β
(1L)
λ,X + β

(2L)
λ,X + β

(3L)
λ,X + β

(4L)
λ,X , (17)

where we have defined the functions β
(iL)
x,X with x ∈ {y, λ}

specifying the coupling, i ∈ {1, 2, 3, 4} specifying the con-
tribution to the flow of the coupling x at loop order i and
X specifying the considered model X ∈ {χI, χXY, χH}.
Further, the anomalous dimensions are defined as the
logarithmic derivatives of the wave function renormal-
izations of the fermion and the boson fields and of the
quadratic operator φ2, i.e. γx = d lnZx/d lnµ for x ∈
{ψ, φ, φ2} and read

γψ,X = γ
(1L)
ψ,X + γ

(2L)
ψ,X + γ

(3L)
ψ,X + γ

(4L)
ψ,X , (18)

γφ,X = γ
(1L)
φ,X + γ

(2L)
φ,X + γ

(3L)
φ,X + γ

(4L)
φ,X , (19)

γφ2,X = γ
(1L)
φ2,X + γ

(2L)
φ2,X + γ

(3L)
φ2,X + γ

(4L)
φ2,X . (20)

The beta functions are used to calculate the renormaliza-
tion group fixed points and together with the anomalous
dimensions provide estimates for universal critical expo-
nents, i.e. the inverse correlation length exponent ν−1,
the subleading exponent ω and the anomalous dimensions
of the fermions and the bosons, ηψ and ηφ, respectively.

In the next section, we provide the full analytical ex-
pressions up to four-loop order for each of the introduced

models. We have chosen a normalization of the couplings
that allows to easily compare contributions to the beta
functions across models. For example, for all models, the
one-loop beta functions for the Yukawa coupling and the
quartic boson coupling can be written as

β
(1L)
y,X = (3−M + 2N)y2, (21)

β
(1L)
λ,X = (36 + 4M)λ2 + 4Nyλ−Ny2 , (22)

where M is the number of Goldstone modes in the sym-
metry broken phase of the corresponding model, i.e.
M = 0 for the chiral Ising model, M = 1 for the chiral
XY model and M = 2 for the chiral Heisenberg model.
For clarity, however, we list all the beta and gamma func-
tions separately in the following.

A. Chiral Ising model

For the chiral Ising model, the loop contributions to
the beta function of the Yukawa coupling up to three-
loop order explicitly read44

β
(1L)
y,χI = (3 + 2N)y2 , (23)

β
(2L)
y,χI = 24yλ(λ− y)−

(9

8
+ 6N

)
y3 , (24)

β
(3L)
y,χI =

y

64

(
1152(7 + 5N)y2λ+ 192(91− 30N)yλ2

+
(
912ζ3 − 697 + 2N(67 + 112N + 432ζ3)

)
y3

− 13824λ3
)
. (25)

Here ζz is the Riemann zeta function. Accordingly, the
contributions to the beta function for the quartic scalar
coupling are given by

β
(1L)
λ,χI = 36λ2 + 4Nyλ−Ny2 , (26)

β
(2L)
λ,χI = 4Ny3 + 7Ny2λ− 72Nyλ2 − 816λ3 , (27)

β
(3L)
λ,χI =

1

32

(
6912(145 + 96ζ3)λ4 + 49536Nyλ3

− 48N(72N − 361− 648ζ3)y2λ2

+ 2N(1736N − 4395− 1872ζ3)y3λ

+N(5− 628N − 384ζ3)y4
)
. (28)

The four-loop order contributions are quite lengthy and
are given in App. A. For the contributions to the gamma
function corresponding to wave function renormalization
of the fermion derivative term, we find

γ
(1L)
ψ,χI =

y

2
, (29)

γ
(2L)
ψ,χI = −y

2

16
(12N + 1) , (30)
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γ
(3L)
ψ,χI =

y3

128
(48ζ3 + 4N(47− 12N)− 15)

+ 6λy2 − 33λ2y

2
. (31)

The gamma function corresponding to the wave function
renormalization of the derivative term of the scalar order
parameter reads

γ
(1L)
φ,χI = 2Ny , (32)

γ
(2L)
φ,χI = 24λ2 − 5Ny2

2
, (33)

γ
(3L)
φ,χI = −216λ3 +

1

32
Ny3 (48ζ3 + 200N + 21)

+ 30λNy2 − 90λ2Ny . (34)

Finally, the scaling of the quadratic scalar operator is
given by the following contributions to the gamma func-
tion γφ2,χI,

γ
(1L)
φ2,χI = −12λ , (35)

γ
(2L)
φ2,χI = 144λ2 − 2Ny(y − 12λ) , (36)

γ
(3L)
φ2,χI =

3

2
Ny2λ (24N − 120ζ3 − 11)− 6264λ3

− 4Ny3 (4N − 9 + 3ζ3)− 288Nyλ2 . (37)

The four-loop order contributions are displayed in
App. A.

This completes the set of beta and gamma functions
that are required to determine the fixed-points and the
critical exponents for the chiral Ising model. Our expres-
sions fully agree up to three loops with the ones from our
Ref. 44. Upon setting y = 0, the beta function for the
quartic coupling also agrees with the four-loop results for
the real scalar φ4 theory with Z2 or Ising symmetry77. As
a further check we later compare our four-loop results for
the critical exponents ηφ, ηψ, 1/ν and ω with the large-N
results of the GN model from Refs. 78–84 and find them
to agree.

1. Remarks on emergent supersymmetric theory

For N = 1/4, the field content of the chiral Ising
model is compatible with an emergent supersymmetry
scenario as discussed in Ref. 51. Up to three loops all
supersymmetric relations hold exactly43–45. At fourth
order the näıve N = 1/4 limit yields a violation of
the superscaling relations, because the beta functions for
the couplings y and λ are not equal upon the rescaling
y → 8λ. This implies that one of the supersymmetric
scaling relations85,86 between the critical exponents will
also be violated at fourth order in ε. However, the orig-
inal SUSY Lagrangian containing a two-component Ma-
jorana fermion as the superpartner of a single real scalar
was formulated in D = 3 dimensions35,51. Up to three

loops, one may perform a D = 4− ε dimensional calcula-
tion with a four-component Dirac fermion and formally
continue the results to N = 1/4. At four-loop order,
however, we proved by explicit calculation that the differ-
ences in the γ algebra in the underlying four-dimensional
and three-dimensional cases manifest in the renormaliza-
tion of the fermion-fermion-scalar vertex. This can be
explained as follows:

When dimensional regularization is used, the space-
time dimensionD becomes non-integer and the basis of γ-
matrices needs to be extended to an infinite-dimensional
set42,87

Γ(k)
µ1µ2...µk

=
1

k !
γ[µ1

γµ2
· · · γµk] for k ≥ 0 , (38)

where the square brackets denote the antisymmetriza-
tion. Furthermore, we follow the usual procedure88 and
impose the restriction that when ε→ 0 the familiar rela-
tions, which are valid in D = 4 or D = 3, are restored.
For example, when the spacetime dimension D is an in-
teger, the product in Eq. (38) in which each γ matrix
occurs only once plays a special role and we denote it by

Γ(D)
µ1µ2...µD ≡ γ̃D = γ

1
γ

2
· · · γD . (39)

For the matrices γ̃D it holds

γ̃2
D = α2

DI with

αD = 1 for D = 0, 1 mod 4 ,

αD = i for D = 2, 3 mod 4 . (40)

Thus, for D = 4 the more familiar γ5 is recovered through
the relation γ5 = γ̃4. When continuing to D = 4 − ε or
D = 3− ε we maintain all the properties of the matrices
γ̃4 and γ̃3 from the underlying integer dimensions.

The general strategy is to decompose products of γ ma-
trices by the iterative use of the following identities

γµΓ(k)
µ1µ2...µk

= Γ(k+1)
µµ1µ2...µk

+

k∑
i=1

(−1)i+1δµµiΓ
(k−1)
µ1µ2...µi−1µi+1...µk

,

Γ(k)
µ1µ2...µk

γµ = Γ(k+1)
µ1µ2...µkµ

+

k∑
i=1

(−1)n−iδµµiΓ
(k−1)
µ1µ2...µi−1µi+1...µk

. (41)

For k = 1 one obtains the simple relation

γµγν = Γ(2)
µν + δµνI =

1

2
(γµγν − γνγµ) + δµνI , (42)

where I is the identity matrix. Another useful result is

γµΓ(k)γµ = (−1)k(D − 2k)Γ(k) (43)
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from which it follows

Tr(Γ(k)) = 0 for Γ(k) 6= I, γ̃D ,

Tr(γ̃D) = 0 for D even . (44)

Therefore, when one performs traces over products of
γ matrices without γ̃D, one picks out the coefficient of
the identity matrix and (if D is odd) of the matrix γ̃D.
As can be understood from Eq. (43) the trace over a chain
of three different γ matrices will be set to zero in D = 4.
In D = 3 it holds the relation

Tr(γµγνγρ) = ±iεµνρ Tr(I) , (45)

where εµνρ denotes the Levi-Civita tensor in three di-
mensions. When D is continued to D = 4 − ε within
DREG the properties of an even dimensional spacetime
are preserved and the trace over a chain of three differ-
ent γ matrices also vanishes. In our setup we slightly
modify DREG and apply a semi-näıve regularization
prescription89 for γ̃3 consisting in the formal replacement

Tr(γµγνγρ) = ±iε̃µνρ Tr(I) +O(ε) . (46)

The object ε̃µνρ has some similarities with the three-
dimensional Levi-Civita tensor: (i) it is completely an-
tisymmetric in all indices; (ii) when contracted with a
second one of its kind we demand the following result

ε̃µνρε̃µ′ν′ρ′ = δ
[µ
[µ′δ

ν
ν′δ

ρ]
ρ′] , (47)

where the square brackets denote complete anti-
symmetrization. When D = 3, ε̃µνρ resembles the three-
dimensional Levi-Civita tensor. To avoid confusion we
call this prescription DREG3.

As the Eq. (46) can only be defined up to an ambigu-
ity of order O(ε), we made sure that the four-loop dia-
grams containing two fermion chains each made up of at
least three different γ matrices contribute at most simple
poles in ε. Sample diagrams are shown in Fig. 1. After
taking into account these contributions the renormaliza-
tion constant for the fermion-fermion-scalar vertex gets
an additional contribution proportional to the number of
fermions N that we marked with the label ∆3 in Eq. (A1)
and that restores the supersymmetric relations.

As a cross check of the method we implemented the
SU(2) spin algebra as an explicit representation of the
Clifford algebra in D = 3 dimensions for the four-loop
diagrams. With this approach we obtained complete
agreement for the contributions labeled with ∆3 in the
previous setup. It is also important to mention that to-
gether with SUSY restoration the numerical values of the
couplings at the fixed point change too and the critical
exponents satisfy all the superscaling relations as will be
discussed in the next section.

ψ
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φ

ψ

ψ

φ

ψ

ψ

ψ

ψ φ

φ
ψ

ψ

ψ

ψ

φ

ψ

φ

φ

ψ
ψ

ψ
ψ

φ
ψ

ψ

ψ

φ

ψ

ψ

φ

φ
ψ

ψ

φ

ψ

ψ

ψψ
φ

φ
ψ

ψ

FIG. 1. Sample diagrams contributing to the fermion-
fermion-scalar renormalization in D = 3 dimensions. The
scalar field is denoted φ and the Majorana fermions Ψ.

B. Chiral XY model

In this section, we give the RG beta and gamma
functions for the chiral XY model. Again, we forward
the lengthy four-loop contributions to the appendix, cf.
App. B. The contributions to the beta function of the
Yukawa coupling up to three-loop order explicitly read

β
(1L)
y,χXY = (2 + 2N)y2 , (48)

β
(2L)
y,χXY = 32λ2y +

(7

2
− 6N

)
y3 − 32λ y2 , (49)

β
(3L)
y,χXY =

1

8
(N(52N + 15)− 227)y4

+ 24λ(5N + 6)y3 − 120λ2(N − 3)y2 .

− 320λ3y + 6ζ3(N + 1)y4 . (50)

The contributions to the beta function for the quartic
scalar coupling are

β
(1L)
λ,χXY = 40λ2 + 4Nλy −Ny2 , (51)

β
(2L)
λ,χXY = 2Ny

(
−40λ2 + 2y2 + λy

)
− 960λ3 , (52)

β
(3L)
λ,χXY = 39488λ4 +

1

8
N(53− 154N)y4

+ 1808λ3Ny + 2λ2N(509− 60N)y2

− 12ζ3
(
Ny2

(
−68λ2 + y2 + 7λy

)
− 2048λ4

)
+

1

4
λN(512N − 1339)y3 . (53)

For the contributions to the gamma function of the wave
function renormalization of the fermion derivative term,
we obtain

γ
(1L)
ψ,χXY = y , (54)

γ
(2L)
ψ,χXY = −y

2

4
(6N + 1) , (55)

γ
(3L)
ψ,χXY = − 1

16
(2N(6N − 37) + 35)y3 + 3ζ3y

3

+ 16λy2 − 44λ2y , (56)
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The gamma function which corresponds to the wave func-
tion renormalization of the derivative term of the com-
plex order parameter reads

γ
(1L)
φ,χXY = 2Ny , (57)

γ
(2L)
φ,χXY = 32λ2 − 3Ny2 , (58)

γ
(3L)
φ,χXY = −320λ3 + 6ζ3Ny

3 +
1

8
N(64N − 27)y3

+ 40λNy2 − 120λ2Ny , (59)

The scaling of the wave function renormalization of the
squared mass term of the complex order parameter field
is given by the contributions

γ
(1L)
φ2,χXY = −16λ , (60)

γ
(2L)
φ2,χXY = 32λ(6λ+Ny) , (61)

γ
(3L)
φ2,χXY = −4

(
2336λ3 +N(6N − 11)y3 + 96λ2Ny

+ 6ζ3Ny
2(8λ+ y) + λN(25− 12N)y2

)
. (62)

The four-loop order contributions are displayed in
App. B. This completes the set of beta and gamma func-
tions that are required to determine the fixed-points and
the critical exponents for the chiral XY model.

We compare these results on the two-loop level, with
the ones for the NJL-Yukawa model as given in Ref. 45
and confirm, that they are in complete agreement. Fur-
ther, in the case N = 1/2, we check that at the three-loop
level all the beta and gamma functions coincide with the
ones given previously in Ref. 43. For y = 0, we recover
the corresponding four-loop expressions for the bosonic
φ4 theory with O(2) symmetry77. Further, consistency
checks based on exact results for the critical exponents
and SUSY relations for the case N = 1/2 can be found
in the results section. Let us mention at this point,
that there is no additional contribution when going from
D = 4− ε to D = 3− ε spacetime dimenensions, because
diagrams similar with those shown in Fig. 1 do not exist
in the chiral XY model. Therefore, the SUSY relations
can be easily obtained from our results via the formal
limit N = 1/2.

C. Chiral Heisenberg model

For the chiral Heisenberg model, the contributions to
the beta function of the Yukawa coupling explicitly read

β
(1L)
y,χH = (1 + 2N)y2 , (63)

β
(2L)
y,χH = y

(
40λ2 +

(
47

8
− 6N

)
y2 − 40λy

)
, (64)

β
(3L)
y,χH =

1

64

(
608N2 + 278N − 2731

)
y4

+
9

4
ζ3(7− 2N)y4 + 150λ(N + 1)y3

+ 5λ2(89− 30N)y2 − 440λ3y (65)

Accordingly, the contributions to the beta function for
the quartic bosonic coupling are

β
(1L)
λ,χH = 44λ2 + 4Nyλ−Ny2 , (66)

β
(2L)
λ,χH = Ny

(
−88λ2 + 4y2 − 3λy

)
− 1104λ3 , (67)

β
(3L)
λ,χH = 48184λ4 +

1

32
N(365− 604N)y4

+
1

16
λN(2360N − 6339)y3

+ 3ζ3
(
9472λ4 +Ny2

(
212λ2 − 4y2 − 19λy

))
+

1

2
λ2N(3067− 264N)y2 + 2068λ3Ny . (68)

For the gamma function corresponding to wave function
renormalization of the fermion derivative term, we find

γ
(1L)
ψ,χH =

3y

2
, (69)

γ
(2L)
ψ,χH = − 9

16
(4N + 1)y2 , (70)

γ
(3L)
ψ,χH =

3

128
y
( (
−48N2 + 404N − 183

)
y2

− 3520λ2 + 240ζ3y
2 + 1280λy

)
. (71)

The gamma function contributions to the wave function
renormalization of the boson derivative term read

γ
(1L)
φ,χH = 2Ny , (72)

γ
(2L)
φ,χH = 40λ2 − 7Ny2

2
, (73)

γ
(3L)
φ,χH = −440λ3 +

15

2
ζ3Ny

3 +
1

32
N(312N − 131)y3

+ 50λNy2 − 150λ2Ny . (74)

Finally, the scaling of the wave function renormalization
of the squared mass term of the bosonic order parameter
field is given by the following contributions

γ
(1L)
φ2,χH = −20λ , (75)

γ
(2L)
φ2,χH = 240λ2 + 2Ny(20λ+ y) , (76)

γ
(3L)
φ2,χH = −12920λ3 + 8N(7− 4N)y3 − 480λ2Ny

− 36ζ3Ny
2(5λ+ y) +

5

2
λN(24N − 89)y2 . (77)

All four-loop order contributions are given in App. C.

We benchmark our results on a two-loop level with the
ones given in Ref. 25. We have detected a mismatch,
which is hard to track down, as in Ref. 25 only the final
results are listed for the chiral Heisenberg model. Even-
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tually, the mismatch only shows up in the ε2 coefficient of
the inverse correlation length exponent, cf. Sec. V C. All
the other exponents agree up to two-loop order. After
careful cross-checking we are confident that the results
presented here are correct.

V. CRITICAL EXPONENTS

The four-loop beta functions allow the determination
of the RG fixed points of the system order by order in
ε up to O(ε4). At the one-loop level, the beta functions
for y and λ give rise to four different fixed points: the
unstable Gaußian fixed point with vanishing coordinates
(y∗, λ∗)0 = (0, 0), the unstable bosonic Wilson-Fisher
fixed point (y∗, λ∗)WF = (0, ε/(4M + 36)), and a pair
of fully non-Gaußian fixed points (NGFP)

(y∗, λ∗)± =

(
ε

3 + 2N −M
,

1
8 (3− 2N −M ± s)ε

(3 + 2N −M)(M + 9)

)
,

where

s =
√

9 + 4N(33 +N) + 20NM +M2 − 6M . (78)

From the pair of NGFPs, the one with the negative solu-
tion has a negative quartic coupling. In the following, we
do not discuss this fixed-point. We note, however, that
it has been considered in the context of conformal field
theories36,45. Here, we study the stable positive solution
from Eq. (78), only, which we solve order by order in ε.

The universal critical exponents which we determine,
here, are the (inverse) correlation length exponent ν−1,
the anomalous dimensions of bosons and fermions, ηφ
and ηψ, respectively, as well as the subleading exponent
ω. To obtain the fermion and boson anomalous dimen-
sions, we evaluate the gamma functions γψ and γφ at the
corresponding NGFP, i.e.,

ηψ = γψ(y∗, λ∗) , (79)

ηφ = γφ(y∗, λ∗) . (80)

The RG beta function of the dimensionless mass term
m̃2 = µ−2m2 follows from Eq. (12) and reads

βm̃2 = (−2 + γφ − γφ2) m̃2 . (81)

This beta function is used to extract the inverse correla-
tion length exponent with the relation

ν−1 = θ1 = −dβm̃
2

dm̃2

∣∣∣
(y∗,λ∗)

= 2− ηφ + ηφ2 , (82)

where, in agreement with the previous notation, we have
defined ηφ2 = γφ2(y∗, λ∗).

Eventually, we access the subleading exponent ω as the
smaller eigenvalue of the stability matrixM, i.e. the ma-
trix of first derivatives of the beta functions with respect

to the couplings, evaluated at the stable fixed point

M =

(
∂βy
∂y

∂βλ
∂y

∂βy
∂λ

∂βλ
∂λ

)∣∣∣∣
y∗,λ∗

. (83)

Then, the smaller eigenvalue ω corresponds to the less
irrelevant RG direction and the larger eigenvalue, which
we call ω′, is more irrelevant. For the corrections to scal-
ing, the less irrelevant contribution is more important
and therefore we will only list ω from now on.

Next, we evaluate the beta and gamma functions for
different explicit choices of fermion flavor number N to
provide explicit results for the inverse correlation length
exponent, subleading exponent and the fermion and bo-
son anomalous dimensions. The full expressions with ar-
bitrary N can be given analytically, however, they are
very lengthy and we therefore do not display them, here.
Instead, we have prepared supplemental material with
the full expressions of the critical exponents for general
N in three separate files for the three separate models90.

A. Chiral Ising model

Here, we discuss the most important cases of the chi-
ral Ising model, i.e. the semimetal-CDW transition in
graphene (N = 2), the semimetal-insulator transition of
spinless fermions on the honeycomb lattice (N = 1) and
the emergent SUSY scenario (N = 1/4). Finally, we also
comment on the limit N → 0.

For N = 2, the numerical evaluation of the critical
exponents provides the following series in ε,

1

ν
≈ 2− 0.9524ε+ 0.007225ε2 − 0.09487ε3 − 0.01265ε4 ,

ηφ ≈ 0.5714ε+ 0.1236ε2 − 0.02789ε3 + 0.1491ε4 ,

ηψ ≈ 0.07143ε− 0.006708ε2 − 0.02434ε3 + 0.01758ε4 ,

ω ≈ ε− 0.3525ε2 + 0.4857ε3 − 1.338ε4 . (84)

The full analytical expression for this series is given in
App. A. We note that the second order coefficient in the
series for the inverse correlation length exponent and in
the one for the fermion anomalous dimension seem to be
accidentally small.

To obtain first estimates for the critical exponents for
the physical case of (2+1) dimensions, we employ simple
Padé approximants and note that a more thorough analy-
sis of resummations and interpolations is underway. The
results from the Padé estimates are listed in Tab. I, to-
gether with the estimates from other approaches, i.e. the
2 + ε expansion42,91, the functional RG39, the conformal
bootstrap36 and quantum Monte Carlo28. We have cho-
sen to display the symmetric Padé approximant P[2/2] as
well as P[3/1] for comparison. The results from the other
available Padé approximants, i.e. P[4/0], P[1/3], P[0/4], are
distributed in a larger interval, tentatively contain poles
in D ∈ {2, 4} for some of the critical exponents or are ill-
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TABLE I. Chiral Ising universality in D = 3: Inverse cor-
relation length exponent 1/ν and anomalous dimensions ηφ
and ηψ for bosons and fermions, respectively. In this work,
we provide results within the (4− ε) expansion to O(ε4). We
do not give values for critical exponents where the Padé ap-
proximant contains a pole in the interval D ∈ [2, 4]. To obtain
the values for 1/ν from the QMC results, we have performed
simple numerical inversions of the values for ν given in the
corresponding references.

N = 1/4 1/ν ηφ ηψ ω

this work, P[2/2] 1.415 0.171 0.171 0.843

this work, P[3/1] 1.415 0.170 0.170 0.838

FRG40 (Regulator 1) 1.385 0.174 0.174 0.765

FRG40 (Regulator 2) 1.395 0.167 0.167 0.782

conformal bootstrap35 0.164 0.164

N = 1 1/ν ηφ ηψ ω

this work, P[2/2] - 0.4969 0.0976 0.779

this work, P[3/1] - 0.4872 0.0972 0.760

this work, P[0/4] 1.101 - - -

FRG39 1.075(4) 0.5506 0.0645

conformal bootstrap36 0.76 0.544 0.084

Monte Carlo30 1.30 0.45(3)

Monte Carlo31 1.14 0.54(6)

N = 2 1/ν ηφ ηψ ω

this work, P[2/2] 0.931 0.7079 0.0539 0.794

this work, P[3/1] 0.945 0.6906 0.0506 0.777

(2 + ε), (ε4, Padé)42 0.931 0.745 0.082

FRG39 0.994(2) 0.7765 0.0276

conformal bootstrap36 0.88 0.742 0.044

Monte Carlo28 1.20(1) 0.62(1) 0.38(1)

defined. This observation proliferates to the other values
of N studied here as well as to the chiral XY and chiral
Heisenberg model. Therefore, we do not display them
in the following, except for special cases. We postpone
a more thorough study of this matter to future work.
In summary, we can see that for N = 2, the estimates
of the field-theoretical approaches agree rather well for
the inverse correlation length exponent and the boson
anomalous dimension, in particular when focusing on the
two different ε expansions. On the other hand, the un-
certainty in the determination of the fermion anomalous
dimension remains rather large. The quantum Monte
Carlo results for 1/ν and ηψ are also quite far from the
other approaches and it will be an interesting task to
track the origin for that difference in the future.

In Tab. I, we have also listed the results for the in-
tensely studied N = 1 case. The Padé approximants for
critical exponents which contain a pole in the interval
D ∈ {2, 4} should be interpreted carefully and we there-
fore refrain from displaying them in the tables. We find

that for the inverse correlation length exponent all the
Padé approximants have poles in D ∈ {2, 4}, except for
P[0/4], which we have additionally listed in Tab. I. Com-
parisons to the other approaches are also listed in Tab. I,
exhibiting good agreement for the boson anomalous di-
mension. The results for 1/ν, however, are scattered over
a rather large interval. Here, the estimates from the two
different RG approaches39 are located approximately half
way between the estimates from quantum Monte Carlo30

and the conformal bootstrap36.
As already pointed out, for N = 1/4 the field content

of the chiral Ising model is compatible with an emergent
supersymmetric model. After taking into account the
contributions occurring solely in the D = 3 computation,
we find for the critical exponents the following series

1

ν
=2− 4ε

7
− ε2

49
+

(
60ζ3
2401

− 29

4802

)
ε3 (85)

+

(
−40ζ3 − 5000ζ5 + 14π4 − 141

)
ε4

67228
+O(ε5) ,

η =
ε

7
+

2ε2

49
+

(
29

2401
− 120ζ3

2401

)
ε3

+

(
40ζ3 + 5000ζ5 − 14π4 + 141

)
ε4

33614
+O(ε5) , (86)

with η = ηψ = ηφ and

ω = ε− 3ε2

7
+

(
282ζ3
343

+
129

686

)
ε3 (87)

+

(
329π4 − 42660ζ3 − 158400ζ5 − 9075

)
ε4

48020
+O(ε5) .

Thus, the superscaling relation85,86

1

ν
=
D − η

2
, (88)

exactly holds up to fourth order in ε. Numerically we
obtain

1

ν
=
D − η

2
≈ 2.− 0.571429ε− 0.0204082ε2

+ 0.0239998ε3 − 0.0596477ε4 . (89)

Padé approximants for the critical exponents in 2+1 di-
mensions are given in Tab. I. We observe a good agree-
ment between the available estimates from the conformal
bootstrap approach35, the FRG40 and our results.

Finally, we would like to comment on the replica limit
for our GNY model, N → 0, which has been argued
to be applicable to the transition from a relativistic
semi-metallic state to a diffusive metallic phase in a 3D
Weyl semi-metal23. A four-loop expansion of the purely
fermionic Gross-Neveu model in D = 2 + ε exhibits
large O(ε4) contributions when compared to the three-
loop contributions42. This is attributed to the fact that
the limit N → 0 suffers from the lack of multiplicative
renormalizability yielding contributions from evanescent
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operators23,42. It was argued in Ref. 23 that this prob-
lem can be circumvented by considering the GNY model
in the same limit. At one-loop order the N → 0 limit
of the GNY model gives rise to a NGFP which is non-
trivial in both couplings (y∗, λ∗)+ = (ε/3, ε/36). This
is exactly the fixed point which has been considered in
Ref. 23. We remark, however, that for N → 0 the beta
function βλ,χI and the gamma functions γφ,χI, γφ2,χI com-
pletely decouple from the fermionic sector order by order
in the loop expansion as every term proportional to the
squared Yukawa coupling y comes at least with a fac-
tor N . Therefore, the critical exponents ν−1, ηφ and ω
are identical to the ones obtained for the purely bosonic
Ising field theory77 which we confirm by evaluating our
equations in this limit to order O(ε4). These exponents
are amended by a non-trivial fermion anomalous dimen-
sion, which we display here for the sake of completeness,

1

ν
= 2− 1

3
ε− 19

162
ε2 +

(
4ζ3
27
− 937

17496

)
ε3

+

(
771120ζ3 − 4665600ζ5 + 11664π4 − 124285

)
9447840

ε4

+O(ε5) , (90)

and

ηφ =
1

54
ε2 +

109

5832
ε3 +

(
7217

629856
− 4ζ3

243

)
ε4 +O(ε5) ,

(91)

ηψ =
1

6
ε+

31

648
ε2 +

(
1475

34992
− 2ζ3

27

)
ε3

+

(
1944000ζ5 − 338580ζ3 − 5832π4 − 8465

)
9447840

ε4

+O(ε5) . (92)

Due to the effective relativistic invariance of this model
the dynamical critical exponent is z = 1. Together with
the conventional Ising critical exponent which is known
with great accuracy, this is in stark contrast to numerical
data22,92. We therefore conjecture that the universality
class of the semimetallic state to a diffusive metallic phase
in a 3D Weyl semimetal is likely to be different than the
one from the replica limit of the chiral Ising model.

B. Chiral XY model

In the chiral XY model there are two specific values
for the number of fermion flavors N which are relevant
to condensed-matter applications, i.e. the quantum tran-
sition of surface states in topological insulators as covered
by the choice N = 1/2 and the superconducting transi-
tion in graphene where N = 2. Further, the case N = 2
is relevant to a Kekulé transition in graphene which is
described by a complex Z3 order parameter, however,
exhibits emergent U(1) symmetry at the QCP.

Here, we start with the discussion of N = 1/2 which

TABLE II. Chiral XY universality in D = 3: Inverse correla-
tion length exponent 1/ν and anomalous dimensions ηφ and
ηψ for bosons and fermions, respectively. In this work, we
provide results within the (4− ε) expansion to order O(ε4).

N = 1/2 1/ν ηφ ηψ ω

this work, P[2/2] 1.128 1/3 1/3 0.872

this work, P[3/1] 1.130 1/3 1/3 0.870

conformal bootstrap93 1.090 1/3 1/3 0.910

N = 2 1/ν ηφ ηψ ω

this work, P[2/2] 0.840 0.810 0.117 0.796

this work, P[3/1] 0.841 0.788 0.108 0.780

functional RG57 0.862 0.88 0.062 0.878

Monte Carlo55 1.06(5) 0.71(3)

has been conjectured to exhibit an emergent supersym-
metry at the QCP. We find the critical exponents

1

ν
= 2− ε+

ε2

3
−
(

2ζ3
3

+
1

18

)
ε3

+
1

540

(
420ζ3 + 1200ζ5 − 3π4 + 35

)
ε4 +O(ε5) , (93)

ηφ = ηψ = ε/3 +O(ε5) , (94)

and for the subleading exponent

ω = ε− ε2

3
+

(
2ζ3
3

+
1

18

)
ε3

− 1

540

(
420ζ3 + 1200ζ5 − 3π4 + 35

)
ε4 +O(ε5) . (95)

For this case, there is a supersymmetric scaling
relation94, connecting the correlation length exponent
and the subleading exponent, reading

ν−1 = 2− ω . (96)

Comparing the above equations, we confirm that this re-
lation is exactly fulfilled order by order in the ε expansion
through four loops.

Further, as in the case of the chiral Ising model, we
provide Padé approximants to obtain estimates for the
critical exponents in D = 2 + 1. These are listed in
Tab. II together with the result from the conformal boot-
strap approach93 exhibiting good agreement between the
different methods for N = 1/2. We also note that the re-
sult for the anomalous dimensions ηφ = ηψ = 1/3 agrees
exactly with the one-loop result up to O(ε4). This is in
agreement with SUSY non-renormalization theorems95.

For N = 2 the numerical evaluation of the critical ex-
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ponents gives

1

ν
≈ 2− 1.2ε+ 0.1829ε2 − 0.3515ε3 + 0.5164ε4 ,

ηφ ≈ 0.6667ε+ 0.1211ε2 − 0.005048ε3 + 0.1938ε4 ,

ηψ ≈ 0.1667ε− 0.02722ε2 − 0.05507ε3 + 0.04202ε4 ,

ω ≈ ε− 0.3783ε2 + 0.6271ε3 − 1.853ε4 . (97)

The corresponding Padé approximants are shown in
Tab. II and the full analytical expressions can be found in
App. B. As before, we only give the results for the Padé
approximants P[2/2] and P[3/1] which, in the case of the
chiral XY model, do not show any poles for D ∈ {2, 4}
for investigated values of N . In Tab. II, we also provide
the estimates from the functional RG57 and recent quan-
tum Monte Carlo calculations55. Again, the results for
the inverse correlation length exponent agree reasonably
well within the different RG approaches, however, there
is a rather large difference when compared to the QMC
results. It will be interesting to see estimates from the
conformal bootstrap approach for this case.

C. Chiral Heisenberg model

Finally, we discuss the chiral Heisenberg model for
eight-component spinors, i.e. N = 2, which corresponds
to the field-theoretical formulation of the antiferromag-
netic transition of interacting electrons on the honeycomb
lattice as relevant to graphene and related materials. For
the inverse correlation length exponent, the boson and
fermion anomalous dimension and the subleading expo-
nent, we find the numerical results

1

ν
≈ 2− 1.527ε+ 0.4076ε2 − 0.8144ε3 + 2.001ε4 ,

ηφ ≈ 0.8ε+ 0.1593ε2 + 0.02381ε3 + 0.2103ε4 ,

ηψ ≈ 0.3ε− 0.05760ε2 − 0.1184ε3 + 0.04388ε4 ,

ω ≈ ε− 0.4830ε2 + 0.9863ε3 − 2.627ε4 . (98)

The full analytical expressions are given in App. C. We
note that the second order coefficient of the inverse cor-
relation length exponent is different from the one given
by Rosenstein, cf. Refs. 25 and 37. After careful checks,
doing two independent calculations and exploiting two
different ways for determining the renormalization con-
stant for the mass term, we come to the conclusion that
our results are correct. Let us also notice that a mistake
in the two-loop calculation usually shows up as non-local
or divergent contributions to the beta-functions or the
anomalous dimensions at three and four loops. Our re-
sults do not contain such problematic contributions, that
reassures the consistency of our results. Furthermore, we
verified that when changing the underlying SU(2) sym-
metry to U(1) symmetry we recover the results for the
chiral Ising model. The expressions for the boson and
fermion anomalous dimensions agree with the two-loop

TABLE III. Chiral Heisenberg universality in D = 3: Inverse
correlation length exponent 1/ν and anomalous dimensions
ηφ and ηψ for bosons and fermions, respectively. In this work,
we provide results within the (4 − ε) expansion to order ε4.
We do not give values for critical exponents where the Padé
approximant contains a pole in the interval D ∈ [2, 4]. The
values for 1/ν printed in italic are simple numerical inversions
of the values for ν as given in the corresponding references.

N = 2 1/ν ηφ ηψ ν

this work (Padé [2/2]) 0.6426 0.9985 0.1833 -

this work (Padé [3/1]) 0.6447 0.9563 0.1560 1.2352

functional RG41 0.795 1.032 0.071 1.26

Monte Carlo62 0.98 0.20(2) 1.02(1)

Monte Carlo96 1.19 0.70(15) 0.84(4)

results from Ref. 25.
In Tab. III, we provide estimates for the critical expo-

nents in D = 2 + 1 dimensions from Padé approximants.
Also, we list the values found by other approaches, i.e.
a recent functional RG calculation41 and the quantum
Monte Carlo approach62 to the semimetal-insulator tran-
sition of interacting lattice electrons with massless Dirac-
like dispersion relations. We observe that the different
approaches do not show a satisfactory agreement for the
critical exponents. The deviation of the estimates for the
inverse correlation length exponent between the pRG and
FRG approaches are of order 20% and the distance to the
QMC result is even bigger.

Alternatively, the inverted series of ν−1 can also be
considered in order to obtain a more direct estimate for
the correlation length exponent. The series reads

ν ≈ 0.5 + 0.3818ε+ 0.1897ε2 + 0.2706ε3 − 0.1768ε4.

The Padé approximants for the series in ν evaluated at
ε = 1 are also given in Tab. III. We note that this im-
proves the comparison with the FRG approach which also
agrees well on the boson anomalous dimension. On the
other hand it does not resolve the rather large difference
to the numerical estimate from the QMC simulations.

VI. CONCLUSIONS

We have studied the chiral Ising, the chiral XY and the
chiral Heisenberg model at four-loop order in D = 4− ε
space-time dimensions and have extracted the solutions
of the stable non-Gaußian fixed point as well as the cor-
responding critical exponents to order O(ε4). Further,
we have calculated simple Padé approximants to provide
estimates for the critical exponents in 2 + 1 dimensions.
The models investigated are relevant to quantum tran-
sitions in a number of condensed-matter physics appli-
cations recently discussed in the context of Dirac and
Weyl semimetals. For the first time, we give the full an-
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alytical expressions for the beta and gamma functions
for the chiral Ising, XY and Heisenberg models for gen-
eral number of fermion flavors N at the four-loop level.
Explicitly, we calculated the inverse correlation length
exponent, the subleading exponent and the anomalous
dimensions for bosons as well as fermions for specific
quantum phase transitions in different condensed-matter
and field-theoretical setups. The relevant applications
include interaction-induced transitions in graphene and
other Dirac materials, surface states of topological insula-
tors and the emergence supersymmetric quantum critical
conformal field theories.

For the chiral Ising model at N = 1/4, we observe
good agreement of the estimates for critical exponents
across different field-theoretical methods, including per-
turbative RG, functional RG and the conformal boot-
strap. For this scenario, emergent supersymmetry at the
quantum critical point has been conjectured and, here,
we have confirmed that the supersymmetric scaling rela-
tions hold up to four-loop order in the perturbative RG
approach. ForN = 2, as relevant for interacting electrons
in graphene, the agreement between the different renor-
malization group methods turns out to be reasonable,
however, the results from the QMC simulations deviate
significantly. Also, there is a large difference as compared
to recent conformal bootstrap results which deviate from
the QMC simulations even more strongly. This issue re-
mains to be resolved. The chiral XY model at N = 1/2

exactly fulfills the corresponding supersymmetric scaling
relation order by order and the critical exponents are
found to be in good agreement with the conformal boot-
strap results. For the chiral XY and Heisenberg models
at N = 2, we observe again a reasonable agreement be-
tween the different RG approaches at least for some crit-
ical exponents, but a rather unsatisfactory gap as com-
pared to the lattice results.

It will be interesting to track down the origin of the
remaining deviations between the different approaches in
the future. One possible origin of the differences might
be effects from corrections to scaling96,97 at least when
it comes to the comparison between the renormalization
group and the lattice methods. For example, a close to
marginal scaling of the difference between the boson and
fermion velocities which is generally non-vanishing in the
lattice approaches could be difficult to assess and have a
strong impact on the fitting procedure of the appropri-
ate scaling functions. Within the perturbative RG ap-
proach a thorough analysis of resummation and interpo-
lation techniques is certainly required which we postpone
to future work.
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Appendix A: Four-loop contributions for the chiral Ising model

The four-loop contributions to the beta functions read

β
(4L)
y,χI = −5

2
ζ5(42N + 43)y5 +

(
32π4(2N + 3)(18N + 19) + 40N(8N(44N − 899) + 29721) + 457935

)
y5

7680
(A1)

+
λ

8
(8N(12N − 683)− 2829)y4 − 1

2
λ2(4N(6N + 635) + 4455)y3 + 36λ3(8N − 455)y2

− 1

8
ζ3y

2
(
−41472λ3 + (4N(125N + 331)− 5)y3 + 432λ(12N + 7)y2 − 864λ2(6N − 25)y

)
+ 14040λ4y ,

+ ∆3N(1 + 107ζ3 − 125ζ5)y5 ,

β
(4L)
λ,χI =41472

(
−39ζ3 − 60ζ5 +

π4

10
− 3499

96

)
λ5 +

1

240
λNy4

(
−60ζ3

(
912N2 − 4156N − 4677

)
(A2)

+1200ζ5(157− 168N)− 4π4(450N + 41) + 25(4N(337N + 3461) + 5847)
)

+
Ny5

(
480ζ3(12N(14N − 15) + 277) + 2400ζ5(128N + 65) + 8π4(64N − 77) + 160N(1289− 386N)− 67095

)
1920

+
1

80
λ2Ny3

(
835200ζ5 + 1920ζ3(3N(4N − 61) + 19) + 72π4(24N + 31)− 40N(288N + 15649) + 1057825

)
+

4

5
λ3Ny2

(
−86400ζ5 + 540ζ3(4N − 69) + 7890N − 288π4 − 72605

)
+

36

5

(
−17280ζ3 + 96π4 − 6775

)
λ4Ny .

The symbol ∆3 should be set to ∆3 = 1 in DREG3, e.g. together with N = 1/4 the limit of an emergent supersym-
metric theory is recovered. For the generic case of DREG in D = 4− 2ε dimensions it holds ∆3 = 0.
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The four-loop contributions to the gamma functions read

γ
(4L)
ψ,χI =

y

393216

(
134479872λ3 + y3

(
−884736ζ3 − 5

(
384 (256ζ5 − 893) +

377339π4

90

)
(A3)

+16N

(
−164352ζ3 +N (1536 (16ζ3 − 3)N − 74752)− 1536π4

5
+ 53440

)
+

303611π4

18

)
− 288λy2

(
512 (93− 32ζ3) + 8

(
7424 +

927π4

4

)
N − 1

18
π4(33372N + 7079) +

7079π4

18

)
+ 96λ2y (221184ζ3 + 344064N − 656384)

)
,

γ
(4L)
φ,χI = 14040λ4 +

1

256
λNy3 (768 (16ζ3 − 83)− 19456N) +

1

32
λ2Ny2 (256 (81ζ3 − 91)− 384N) + 288λ3Ny (A4)

−
Ny4

(
377856ζ3 + 15360 (8ζ5 − 29) + 4N

(
162816ζ3 + 256 (144ζ3 − 101)N + 1536π4

5 − 54016
)

+ 1024π4
)

24576
,

γ
(4L)
φ2,χI = 1728

(
18ζ3 +

2π4

5
+ 187

)
λ4 +

3

2
λ2Ny2

(
5760ζ3 + 4 (−48ζ3 − 176)N +

48π4

5
+ 3796

)
(A5)

+
1

64
Ny4

(
−5376ζ3 + 10080ζ5 + 2N

(
320ζ3 + 4480ζ5 + 64 (18ζ3 − 11)N +

48π4

5
− 5208

)
− 224π4

5
− 2846

)
− 3

16
λNy3

(
−5120ζ3 − 5760ζ5 + 4N

(
−672ζ3 + 64 (2ζ3 − 1)N +

16π4

3
− 1618

)
+

184π4

5
+ 12989

)
+ 36 (96ζ3 + 313)λ3Ny .

1. Critical exponents for the chiral Ising model for N = 2

The full analytical expressions for the most important critical exponents for the chiral Ising model at N = 2 read

1

ν
=2− 20ε

21
+

325ε2

44982
− (271572144ζ3 + 36133009)ε3

3821940612

+

(
73192843310400ζ3 + 179520471709200ζ5 − 2472257012904π4 − 86141171013035

)
ε4

4175164363361040
+O(ε5) , (A6)

ηφ =
4ε

7
+

109ε2

882
+

(
1170245

26449416
− 144ζ3

2401

)
ε3

+

(
162669869280ζ3 + 171915696000ζ5 − 1203409872π4 + 102456536695

)
ε4

2407822585560
+O(ε5) , (A7)

ηψ =
ε

14
− 71ε2

10584
−
(

18ζ3
2401

+
2432695

158696496

)
ε3

+

(
1155813964920ζ3 + 515747088000ζ5 − 3610229616π4 − 556332486445

)
ε4

57787742053440
+O(ε5) , (A8)

ω =ε− 533ε2

1512
+

(
165ζ3
686

+
6685099

34006392

)
ε3

+

(
−46250341862688ζ3 − 23579956863360ζ(5) + 119137577328π4 − 11065294400875

)
ε4

59438820397824
+O(ε5) . (A9)
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Appendix B: Four-loop contributions for the chiral XY model

The four-loop contributions to the beta functions of the chiral XY model read

β
(4L)
y,χXY = −8

3
λ2
(
6N2 + 508N + 1257

)
y3 − 40ζ5(N + 1)y5 +

2

3
λ(8N(3N − 208) + 99)y4

+
1

480

(
32π4(N + 1)2 − 20N(4N(3N + 619)− 6703) + 20295

)
y5 +

320

3
λ3(4N − 215)y2

− ζ3y2
(
−6144λ3 + (6N(5N + 28)− 163)y3 + 32λ(18N + 11)y2 + 64λ2(53− 9N)y

)
+ 21120λ4y , (B1)

β
(4L)
λ,χXY = 2ζ3

(
− 1052672λ5 +N

(
22N2 − 56N + 21

)
y5 + λN(2N(285− 62N) + 557)y4

+ 32λ2N(N(5N − 63) + 25)y3 + 64λ3N(16N − 175)y2 − 72704λ4Ny
)

+ 10ζ5
(
−311296λ5 +N(16N + 5)y5 + 8λN(7− 12N)y4 + 1248λ2Ny3 − 8192λ3Ny2

)
+

1

240

(
20480

(
64π4 − 23925

)
λ5 +N

(
8π4(4N − 7)− 5(4N(436N − 1977) + 5229)

)
y5

+ 8λN
(
5N
(
915N − 36π4 + 7910

)
+ 36π4 + 16935

)
y4

+ 8λ2N
(
−600N(8N + 489) + 8π4(68N + 69) + 514455

)
y3

+ 512λ3N
(
3505N − 128π4 − 43845

)
y2 + 512

(
384π4 − 28195

)
λ4Ny

)
. (B2)

The four-loop contributions to the gamma functions read

γ
(4L)
ψ,χXY =

1

2
ζ3y

2
(
192λ2 +

(
4N3 − 49N − 17

)
y2 + 64λy

)
+

1

960

(
32π4(N + 1)− 20N(6N(3N + 76)− 47) + 20055

)
y4

− 2

3
λ(174N + 143)y3 +

4

3
λ2(168N − 277)y2 − 20ζ5y

4 +
3040λ3y

3
, (B3)

γ
(4L)
φ,χXY = 21120λ4 + ζ3Ny

2
(
576λ2 −

(
4N2 + 30N + 31

)
y2 + 64λy

)
− 40ζ5Ny

4 +
1280

3
λ3Ny

+
1

60
N
(
15(N − 38)N + 4π4(N + 1) + 3120

)
y4 − 8

3
λN(38N + 137)y3 − 16

3
λ2N(3N + 130)y2 , (B4)

γ
(4L)
φ2,χXY = 80ζ5Ny

3(16λ+ 3Ny + 2y) + 4ζ3

(
12800λ4 +N(2N(6N − 5)− 17)y4 − 32λ(N − 6)N(N + 2)y3

+ 32λ2N(77− 3N)y2 + 1280λ3Ny
)

+
1

30

(
4096

(
3765 + 8π4

)
λ4 +N

(
4π4(N − 7)− 20N(48N + 197) + 405

)
y4

+ 2λN
(
−8π4(8N + 11) + 120N(8N + 225)− 56915

)
y3 + 64λ2N

(
−660N + 7π4 + 5900

)
y2 + 503680λ3Ny

)
.

1. Critical exponents for the chiral XY model for N = 2

The full analytical expressions for the most important critical exponents for N = 2 in the chiral XY model read

1

ν
= 2− 6ε

5
+

823ε2

4500
+

(
909821

12150000
− 5986ζ3

16875

)
ε3

+

(
245618820ζ3 + 1924948800ζ5 − 9697320π4 + 347495879

)
ε4

3280500000
+O(ε5) , (B5)

ηφ =
2ε

3
+

109ε2

900
− 1363ε3

270000
+

(
300977ζ3
2025000

+
1103491

72900000

)
ε4 +O(ε5) , (B6)

ηψ =
ε

6
− 49ε2

1800
− 29737ε3

540000
+

(
226913ζ3
4050000

− 1477451

58320000

)
ε4 +O(ε5) , (B7)

ω = ε− 227ε2

600
+

(
ζ3
6

+
4801

11250

)
ε3 −

(
1043012880ζ3 + 270000000ζ(5)− 1350000π4 + 398475259

)
ε4

972000000
+O(ε5) .
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Appendix C: Four-loop contributions to chiral Heisenberg

The four-loop contributions to the beta functions read

β
(4L)
y,χH = −5

2
λ2
(
8N2 + 508N + 1949

)
y3 +

5

2
ζ5(29− 62N)y5 +

5

8
λ(8N(4N − 327) + 1241)y4 +

20

3
λ3(88N − 4475)y2

−
(
96π4(2N − 7)(2N + 1) + 40N(8N(68N + 3971)− 104923) + 1096225

)
y5

7680
+ 29000λ4y

+
1

8
ζ3y

2
(
53760λ3 + (4N(7N − 269) + 1437)y3 − 80λ(36N + 43)y2 + 160λ2(18N − 193)y

)
, (C1)

β
(4L)
λ,χH =

5

4
ζ5
(
−3022848λ5 +N(128N + 23)y5 + 36λN(11− 24N)y4 + 9824λ2Ny3 − 75776λ3Ny2

)
+

1

4
ζ3

(
− 10631168λ5 +N(4N(46N − 185) + 251)y5 + λN(4N(1283− 268N) + 4775)y4

+ 32λ2N(N(44N − 449) + 478)y3 + 64λ3N(148N − 779)y2 − 661504λ4Ny
)

+
1

1920

(
2048

(
6512π4 − 2473805

)
λ5 −N

(
320N(243N − 1409) + 88π4 + 400085

)
y5

+ 8λN
(
100N(395N + 2661) + 4π4(137− 266N) + 125685

)
y4

+ 8λ2N
(
−120N(352N + 23653) + 8π4(424N + 315) + 5249585

)
y3

+ 512λ3N
(
32410N − 1184π4 − 504075

)
y2 + 512

(
3552π4 − 269585

)
λ4Ny

)
. (C2)

The four-loop contributions to the gamma functions read

γ
(4L)
ψ,χH =

3

16
ζ3y

2
(
480λ2 +

(
16N3 − 235N − 56

)
y2 + 320λy

)
− 5

8
λ(348N + 293)y3 +

5

4
λ2(336N − 467)y2

+

(
96π4(6N − 1)− 40N(8N(9N + 310) + 1525) + 273125

)
y4

5120
− 165ζ5y

4

4
+ 2090λ3y , (C3)

γ
(4L)
φ,χH = 29000λ4 − 55ζ5Ny

4 +
1

120
N
(
3π4(6N − 1)− 5N(89N + 773) + 10885

)
y4 − 5

3
λN(76N + 299)y3

+
1

8
ζ3Ny

2
(
2880λ2 − (4N(4N + 65) + 265)y2 + 640λy

)
− 20λ2N(N + 26)y2 +

1760

3
λ3Ny , (C4)

γ
(4L)
φ2,χH =

64

3

(
34975 + 74π4

)
λ4 − 1

480
N
(
16π4(3N + 29) + 40N(504N + 737)− 43345

)
y4

+
5

2
ζ5Ny

3(720λ+ 136Ny + 13y) +
1

48
λN

(
−8π4(24N + 25) + 120N(32N + 991)− 263595

)
y3

+
10

3
λ2N

(
−528N + 4π4 + 6593

)
y2 + 2ζ3

(
40000λ4 +N(5N(6N − 11)− 21)y4 + 20λN(N(11− 4N) + 53)y3

+ 80λ2N(64− 3N)y2 + 3520λ3Ny
)

+
69580

3
λ3Ny . (C5)

1. Critical exponents for the chiral Heisenberg model for N = 2

For N = 2, we find the following critical exponents for the chiral Heisenberg model:

1

ν
= 2− 84ε

55
+

2576729ε2

6322250
+

(
3834385959243

13808110112500
− 157961052ζ3

173861875

)
ε3

+

(
4419355262033682960ζ3 + 16115053820113182000ζ5 − 91331632816626840π4 + 11013561507164036543

)
ε4

12063041156482250000

+O(ε5) , (C6)
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ηφ =
4ε

5
+

4819ε2

30250
+

(
48ζ3
625

− 476430591

6954475000

)
ε3

+

(
310739849149400ζ3 + 194418190384000ζ5 + 972090951920π4 − 350384810029259

)
ε4

1518892112375000
+O(ε5) , (C7)

ηψ =
3ε

10
− 6969ε2

121000
+

(
18ζ3
625

− 2128383117

13908950000

)
ε3

+
3
(
406214104344840ζ3 + 194418190384000ζ5 + 972090951920π4 − 606847185834529

)
ε4

12151136899000000
+O(ε5) , (C8)

ω = ε− 11689ε2

24200
+

(
27ζ3
250

+
1191302179

1390895000

)
ε3

+
3
(
−28239146782436128ζ3 − 25857619321072000ζ5 + 20413909990320π4 − 822859847457915

)
ε4

68046366634400000
+O(ε5) .

(C9)
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