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We present a solution of the DGLAP evolution equations, written in terms of Sudakov form fac-
tors to describe the branching and no-branching probabilities, using a parton branching Monte
Carlo method. We demonstrate numerically that this method reproduces the semi-analytical so-
lutions. We show how this method can be used to determine Transverse Momentum Dependent
(TMD) parton distribution functions, in addition to the usual integrated parton distributions func-
tions. We discuss numerical effects of the boundary of soft gluon resolution scale parameter on
the resulting parton distribution functions. We show that a very good fit of the integrated TMDs
to high precision HERA data can be obtained over a large range in x and Q2.
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1. Motivation

Appropriate use of parton distribution functions (PDFs) (see e.g. [1, 2, 3]) and a proper treat-
ment of the transverse momentum kinematics in the parton showers (see e.g. [4, 5, 6]) are important
for comparisons of theoretical predictions with experimental measurements at the Large Hadron
Collider and future colliders experiments. One of the approaches to address these issues is the
transverse momentum dependent (TMD) PDFs formalism (see e.g.[7]). The goal of our project is
to determine TMD PDFs sets for all flavours, applicable over a broad kinematic region in x, µ2 and
kt . We study in particular the effects of the soft gluon resolution scale in QCD radiation [8] on the
obtained distributions. Previous results were reported in [9], [10].

2. Introduction to the method

We start the discussion from the DGLAP evolution equation for momentum weighted parton
densities x fa(x,µ2) = f̃a(x,µ2)

d f̃a(x,µ2)

d ln µ2 = ∑
b

∫ 1

x
dz Pab

(
z,µ2) f̃b

(
x
z
,µ2
)

(2.1)

where a,b denote quarks (n f flavours, n f ≡ n f (µ
2)) or gluons, x is the longitudinal momentum

fraction of the proton carried by a parton a, z is the splitting variable and µ is the evolution variable.
The splitting functions Pab have the following structure

Pab
(
z,µ2)= Dab

(
µ

2)
δ (1− z)+Kab

(
µ

2) 1
(1− z)+

+Rab
(
z,µ2) (2.2)

where Dab
(
µ2
)
= δabda

(
µ2
)
, Kab

(
µ2
)
= δabka

(
µ2
)

and the function Rab does not contain any
power divergences (no pieces∼ (1−z)−n for n= 1,2, ...) when z→ 1 but it can contain logarithmic
divergences ln(1− z) which can be however integrated and give finite result. The piece with a delta
function and plus prescription corresponds to the virtual and non-resolvable emissions. As long
as Pab

(
z,µ2

)
has this structure, the formalism presented here can be applied (LO, NLO, NNLO).

Introducing the soft gluon resolution scale zM [8], defining the Sudakov form factor as

∆a(µ
2) = exp

(
−
∫ ln µ2

ln µ2
0

d
(
ln µ

′2)
∑
b

∫ zM

0
dzzPR

ba
(
z,µ ′2

))
(2.3)

and using momentum sum rule (∑c
∫ 1

0 dzzPca
(
z,µ2

)
= 0), Eq.2.1 can be rewritten

d f̃a(x,µ2)

d ln µ2 = ∑
b

∫ zM

x
dzPR

ab
(
z,µ2) f̃b

(
x
z
,µ2
)
+ f̃a

(
x,µ2) 1

∆a(µ2)

d∆a(µ
2)

d ln µ2 (2.4)

where PR
ab

(
z,µ2

)
= Rab

(
z,µ2

)
+Kab

(
µ2
)

1/(1− z) is the real part of the splitting function. Terms
skipped by introducing zM are of order O(1− zM).

Eq.2.4 has an iterative solution which can be solved by a parton branching method. More
details can be found in [8] and [11].
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3. Collinear PDFs from parton branching method

In this section we show the results for collinear PDFs (or integrated TMDs - iTMDs) coming
from the parton branching method. In the left hand side of the Fig.1 we show the results for the
gluon density using NLO splitting functions. The evolution is performed with the parton branch-
ing method up to the evolution scale µ2 = 10,103,105 GeV2 for zM = 1− 10−5. The obtained
distributions are compared with the pdfs calculated from QCDNUM [12] using the same initial
distributions. We illustrate a very good agreement between these two methods. In the right hand
side of the Fig.1 we show the results for the down quark density with the NLO splitting func-
tions for different values of the parameter zM = 1−10−3,1−10−5,1−10−8 at the evolution scale
µ2 = 105 GeV2. We show that as long as zM is close to 1, the results are independent of zM.
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Figure 1: Upper part of the plots: pdfs from the parton branching method for the gluon density at the
evolution scale µ2 = 10,103,105 GeV2 for 1− zM = 10−5 (left) and for the down quark density at µ2 =

105 GeV2 for zM = 1− 10−3,1− 10−5,1− 10−8 (right). Lower part of the plots: ratios of the results from
the parton branching method and QCDNUM.

4. TMD densities

With the iterative procedure, each resolvable branching is generated and the kinematics in each
branching is calculated. Thanks to that, the parton branching method has the great advantage that
the transverse momentum kt of the propagating parton can be calculated and a TMD Aa(x,kt ,µ)

can be determined. However, a prescription is needed to relate the evolution variable µ with the
transverse momentum of the emitted (qt,c) and propagating (kt,a) parton (notation is explained in
the Fig.2). It has been observed [8] that when qt-ordering is used

q2
t,c = µ

2, (4.1)

the obtained TMDs depend on the zM parameter. zM plays an important role in the large z region-
region where soft gluons are emitted. The zM dependence is a signal that the soft gluons are not
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treated properly. However, if angular ordering condition is used to associate µ and qt,c

q2
t,c = (1− z)2

µ
2, (4.2)

the soft gluons emissions are treated properly - there is no dependence on zM. This effect is shown
in the Fig.3.

It is important to stress that the collinear pdf distributions are independent of zM parameter
regardless of the choice of prescription to associate µ and qt,c.

In the Fig.4 we illustrate that the TMDs for all flavours can be obtained from this method.

a

cz = xa/xb

xbp
+, kt,b

xap
+, kt,a

qt,c → µ

b

1

Figure 2: Illustration of
a general splitting process:
b→ a+ c.
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Figure 3: TMDs from the parton branching methods for different values of
the zM parameter for qt -ordering (left) and angular ordering (right).

5. Fit to precision DIS data

The initial parton density distributions have to be determined from a fit of the free parameters
to describe inclusive cross sections. We performed the fit within xFitter package [13] with a method
developed in [14, 15, 16, 17].

We used precision measurements in neutral and charged current interactions at various beam
energies from HERA 1+2 [18] of σred = d2σ ep/dxdQ2 ·Q4x/(2πα2(1+(1− y)2)) (which is the
DIS cross section where the photon flux is removed) in the range 3.5 < Q2 < 30000 GeV2, with
αs(mZ) = 0.118, at a starting scale µ2

0 = 2 GeV2, masses for heavy quarks as mc = 1.73 GeV,
mb = 5.0 GeV and mt = 175 GeV together with a fixed zM = 1− 10−5. The fit of integrated
TMDs was performed at LO and NLO with experimental uncertainties, for all flavours. A very
good χ2/nd f was obtained for 3.5 < Q2 < 30000 GeV2. In the Fig.5 we show an example of the
comparison of the σred , obtained from a fit using xFitter, compared to the precision measurements
from HERA.

6. Summary

We presented a new approach to solve the DGLAP evolution equation with a parton branching
method. We showed that it can reproduce exactly collinear pdfs. We explained how the TMD
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Figure 4: TMDs for different flavours from the par-
ton branching method using angular ordering con-
dition from Eq.(4.2).
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Figure 5: Example of a result of the fit of iTMDs
from parton branching method to precision DIS data
within xFitter.

distributions can be obtained in our method. We discussed how one could associate the evolution
variable µ with transverse momentum of the emitted and propagating partons to treat properly
soft gluon emissions. We showed that with qt-ordering TMD PDFs are not consistently defined
whereas a consistent set of TMD PDFs can be obtained from the parton branching with angular
ordering. We determined TMDs with xFitter package from the fit of integrated TMDs to σred

precision measurements from HERA 1+2 data at LO and NLO, with experimental uncertainties,
for all flavours, in a wide kinematic range of x, Q2 and kt .
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