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The framework of Wigner functions for the canonical pair angle and orbital angular momentum,
derived and analyzed in 2 recent papers [H. A. Kastrup, Phys. Rev. A 94, 062113(2016) and Phys.
Rev. A 95, 052111(2017)], is applied to elementary concepts of quantum information like qubits
and 2-qubits, e.g., entangled EPR/Bell states etc.. Properties of the associated Wigner functions
are discussed and illustrated. The results may be useful for quantum information experiments with
orbital angular momenta of light beams or electron beams.

In two recent papers [1, 2] basic properties of Wigner
functions on cylindical phase spaces S1 × R (angle and
orbital angular momentum, denoted by “A-OAM” in the
following) were derived and discussed. The possible use-
fulness of that concept has, of course, to be demonstrated
by its applications to special systems. A few simple typ-
ical example were discussed in Ch. IV C of Ref. [1]. The
present paper suggests possible applications to such ele-
mentary concepts as “qubits” and “2-qubits” of quantum
information, see, e.g., Refs. [3, 4].

The quantized canonical system of the pair angle and
orbital angular momentum is of special theoretical in-
terest for quantum information because it provides as
a basic framework an infinite dimensional Hilbert space
L2(S1, dϕ/2π), with orthonormal basis

em(ϕ) = eimϕ, m ∈ Z, (1)

scalar product

(ψ2, ψ1) =

∫ π

−π

dϕ

2π
ψ∗2(ϕ)ψ1(ϕ), (em, en) = δmn; (2)

and expansions

ψ(ϕ) =
∑
m∈Z

cm em(ϕ), cm = (em, ψ). (3)

One of the advantages of A-OAM systems for quantum
information theories is that one can select finite dimen-
sional subspaces of any dimension d: d = 2: qubits,
d = 3: qutrits, . . . , d: “qudits”, like, e.g.,

(em0
+ em1

+ . . .+ emd−1
)/
√
d (4)

and associated tensor product spaces which then contain
entangled states.

In those d-dimensional subspaces ϕ-independent
(“global”) unitary transformations U(d) and other lin-
ear mappings may act.

Especially one can incorporate the usual elementary
qubits from 2-dimensional spaces [5] , e.g.,

(|0〉 ± |1〉)/
√

2, (5)

and associated entangled EPR/Bell product states [5]

(|00〉 ± |11〉)/
√

2 ≡(|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)/
√

2, (6)

(|01〉 ± |10〉)/
√

2 ≡(|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉)/
√

2 (7)

etc.
Experimentally A-OAM systems have been investi-

gated particularly with laser light beams (see, e.g., the
reviews [6–8]) and with electron beams [9]. The crucial
property of certain such beams is that they carry OAM ~p
along their directions, i.e., those beams “rotate” around
their directions! For the experimental investigations of
entangled OAM states see, e.g., the articles [10, 11].

Perhaps the use of associated A-OAM Wigner func-
tions may be helpful for description and analysis of those
experiments! Recall that, in principle, all statistical
properties of a quantum state of a system can be derived
from its Wigner function on the associated classical phase
space!

In the following the A-OAM Wigner functions of the
most general qubits and 2-qubits will be derived and
some special cases discussed and illustrated in more de-
tail. The discussion is restricted to pure states. The gen-
eralization to mixed states described by density matrices
is straightforward [1, 2].

The most general qubit of a A-OAM system is given
by

χ(α,β)
m0,m1

(ϕ) = cosβ em0(ϕ) + sinβ eiα em1(ϕ), (8)

m0,m1 ∈ Z, m1 6= m0,

|χ(α,β)
m0,m1

(ϕ)|2 =1 + sin 2β cos[(m0 −m1)ϕ− α]. (9)

The states (8) are elements of the 2-dimensional subspace

Q2
m0m1

= {χ = c0 em0 + c1 em1 , |c0|2 + |c1|2 = 1} (10)

of the overall Hilbert space L2(S1, dϕ/2π).
The angular momentum operator (~ = 1 in the follow-

ing) L = (1/i)∂ϕ has the - obvious - expectation value

(χ(α,β)
m0,m1

, Lχ(α,β)
m0,m1

) = m0 cos2 β +m1 sin2 β, (11)

which vanishes for m1 = −m0 and cos2 β = sin2 β = 1/2.
If

χ(α̂,β̂)
m0,m1

(ϕ) = cos β̂ em0
(ϕ) + sin β̂ eiα̂ em1

(ϕ) (12)
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is another qubit of the type (8) in the same 2-dimensional
space, then the scalar product of both is given by

(χ(α,β)
m0,m1

, χ(α̂,β̂)
m0,m1

) = (13)

cosβ cos β̂ + e−i(α−α̂) sinβ sin β̂,

with the associated transition probability

|(χ(α,β)
m0,m1

, χ(α̂,β̂)
m0,m1

)|2 = (14)

cos2 β cos2 β̂ + sin2 β sin2 β̂ +
1

2
sin 2β sin 2β̂ cos(α− α̂),

which equals cos2(β−β̂) for α̂ = α. Eq. (14) is of interest
in a discussion below (see Eq. (24)).

According to Ch. IV of Ref. [1] the A-OAM Wigner
function Vψ(θ, p) – here θ describes (by means of the
pair (cos θ, sin θ)) the points on the (configuration) circle
S1 of the classical phase space and p ∈ R the classical
canonically conjugate OAM, ”V ” stands for “Vortex” –
for a wave function ψ(ϕ) of Eq. (3) is given by

Vψ(θ, p) =
1

2π

∫ π

−π

dϑ

2π
e−ipϑψ∗(θ−ϑ/2)ψ(θ+ϑ/2). (15)

Taking for ψ(ϕ) the wave function (8) gives

2π V (α,β)
m0,m1

(θ, p) (16)

= cos2 β sincπ(p−m0) + sin2 β sincπ(p−m1)

+ sin 2β cos[(m0 −m1)θ − α] sincπ[p− (m0 +m1)/2],

where

sincπx =
sinπx

πx
=

1

2π

∫ π

−π
dϑ eixϑ. (17)

(The remarkable significance of the sinc-function in the
context of the A-OAM Wigner function is elaborately
discussed in Ref. [1].)

The third line in Eq. (16) represents the probability

interference term in (χ
(α,β)
m0,m1 , χ

(α,β)
m0,m1) – see Eq. (9) – and

describes, therefore, essential quantum mechanical prop-
erties of the state!

Note that the interference term vanishes for p− (m0 +
m1)/2 = k, k ∈ {Z− {0}}. It vanishes, of course, too, if
α or/and θ are such that cos[(m0 −m1)θ − α] = 0. On
the other hand, the last factor of the interference term is
maximal (= 1) for p = (m0 +m1)/2!

The angles α and β may depend on other parameters,
e.g., time t, space coordinates, external fields etc., and
may, therefore, be manipulated from outside. Their val-
ues can be represented by points on the 2-dimensional
surface of a “Bloch” sphere [12].

It is worthwhile to look at a few special examples:
m1 = −m0:

2π V
(α,β)
m0,−m0

(θ, p) (18)

= cos2 β sincπ(p−m0) + sin2 β sincπ(p+m0)

+ sin 2β cos[2m0θ − α] sincπ p.

The special case α = 0, β = π/4,m0 = 1 of Eq. (18) is
illustrated in Fig. 1 (see also Fig. 2 in Ref. [1]):

2πV
(0,π/4)
1,−1 (θ, p)

0.5

0.0

-0.5

−π

−π/2

0

π/2

π

θ

−3
−2

−1
0

1
2

3

p

−1.0
−0.5
0.0
0.5
1.0

FIG. 1. A-OAM Wigner function 2π V
(α=0,β=π/4)
1,−1 (θ, p) =

1
2
[sincπ(p − 1) + sincπ(p + 1)] + cos 2θ sincπp of the qubit

(e+1 + e−1)/
√

2.

m1 = 0 (ground state of H ∝ L2):

2π V
(α,β)
m0,0

(θ, p) (19)

= cos2 β sincπ(p−m0) + sin2 β sincπ p

+ sin 2β cos[m0θ − α] sincπ(p−m0/2),

Here the interference term vanishes for p = m0/2+k, k ∈
{Z− {0}}. (Recall that m0 6= 0 because m1 = 0.)

The Wigner function (19) for the special values α =
0, β = π/3,m0 = 1 is shown in Fig. 2:

2πV
(0,π/3)
1,0 (θ, p)
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FIG. 2. A-OAM Wigner function 2π V
(α=0,β=π/3)
1,0 (θ, p) =

1
4
[sincπ(p − 1) + 3 sincπp] +

√
3
2

cos θ sincπ(p − 1/2) for the

qubit (e+1 + e0)/
√

2.

The quantum mechanical marginal probability distri-

butions |χ(α,β)
m0,m1(θ)|2 (angular distribution density) and

{cos2 β, sin2 β} (OAM distribution) of the state (8) can
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be obtained, according to Ref. [1], from the A-OAM
Wigner function (16) as follows:∫ ∞

−∞
dp V (α,β)

m0,m1
(θ, p) (20)

=
1

2π
{1 + sin 2β cos[(m0 −m1)θ − α]}

=
1

2π
|χ(α,β)
m0,m1

(θ)|2

– compare Eq. (9) –, where the relation∫ ∞
−∞

dp sincπ(p+ a) = 1, a ∈ R, (21)

has been used.
Integration over θ gives Whittaker’s cardinal function

[1] ∫ π

−π
dθ V (α,β)

m0,m1
(θ, p) = ω(α,β)

m0,m1
(p) (22)

= cos2 β sincπ(p−m0) + sin2 β sincπ(p−m1),

from which the quantum mechanical OAM probabilities
cos2 β and sin2 β can be extracted immediately with the
help of the orthonormality relations [1]∫ ∞

−∞
dp sincπ(p−m) sincπ(p− n) = δmn. (23)

If V
(α,β)
m0,m1(θ, p) and V

(α̂,β̂)
m0,m1(θ, p) are A-OAM Wigner

functions of the qubits (8) and (12), then the transition
probability (14) is now given [1] by the integral

2π

∫ ∞
−∞

dp

∫ π

−π
dθV (α,β)

m0,m1
(θ, p)V (α̂,β̂)

m0,m1
(θ, p) = (24)

cos2 β cos2 β̂ + sin2 β sin2 β̂ +
1

2
sin 2β sin 2β̂ cos(α− α̂),

where the relations (23), (21) and∫ ∞
−∞

dp sinc2 π(p+ a) = 1, a ∈ R, (25)

have been used [13].
For the discussion of the tensor product of the Hilbert

space L2(S1, dϕ/2π) from above – characterized by the
Eqs. (1)–(3) – with itself we have to go slightly beyond
the A-OAM framework discussed in Refs. [1, 2]:

There we had a phase space P2(θ, p) = {(θ, p) ∈ S1 ×
R} with the circle S1 as configuration space and the real
line R as cotangent space. Coordinates for the former
are provided by the pair (cos θ, sin θ) and the angular
momentum p ∈ R for the latter. By doubling the system
we get the phase space

P4(θ̃, p̃) ={(θ1, θ2; p1, p2) ∈ S1 × S1 × R× R)}, (26)

θ̃ ≡ (θ1, θ2), p̃ ≡ (p1, p2).

Configuration space is now the torus S1 × S1.
A crucial tool for the derivation of the Wigner function

(15) in Ref. [1] are the unitary representations of the
Euclidean group E(2) of the plane [14]. In our case,
P4(θ̃, p̃), we have to employ the direct product E(2) ×
E(2) and the associated unitary representations. The
procedure for deriving the A-OAM Wigner function in
question is then stricly analogue to that of Ch. II in Ref.
[1] for the expression (15) and the result is as expected:

We have the Hilbert space

L2(S1 × S1, dϕ1dϕ2/(2π)2), (27)

with basis

emn(ϕ̃) = em(ϕ1) en(ϕ2) = eimϕ1+inϕ2 , m, n ∈ Z, (28)

scalar product

(ψ2, ψ1) =

∫ π

−π

d2ϕ̃

(2π)2
ψ∗2(ϕ̃)ψ1(ϕ̃), (29)

(ekm, eln) = δkl δmn,

and expansions

ψ(ϕ̃) =
∑
m,n∈Z

cmn emn(ϕ̃), cmn = (emn, ψ). (30)

The functions (28) are eigenfunctions of the total OAM
operator:

L =
1

i
Lϕ1 +

1

i
Lϕ2 , Lemn = (m+ n)emn. (31)

Comparison of the basis (28) with Eqs. (6) and (7) sug-
gests the following choice of correspondences:

em0n0
↔ |00〉, em1n1

↔ |11〉, (32)

em0n1
↔ |01〉, em1n0

↔ |10〉.

Applying the same arguments of Ch. II in Ref. [1] –
which lead to the Wigner function (15) – now to the
products P4(θ̃, p̃) and E(2) × E(2) we then get, on the
phase space P4 for the wave function ψ of Eq. (30) the
A-OAM Wigner function

Vψ(θ̃, p̃) ≡ V̂ψ(θ̃, p̃)/(2π)2 = (33)

1

(2π)2

∫ π

−π

d2ϑ̃

(2π)2
e−i(p1ϑ1+p2ϑ2) ψ∗(θ̃ − ϑ̃/2)ψ(θ̃ + ϑ̃/2),

which is the obvious generalization of the expression (15).
We now want to determine the A-OAM Wigner functions
for the general elements

ψ2qb(ϕ̃) = c00 em0n0
(ϕ̃) + c10 em1n0

(ϕ̃) (34)

+ c01 em0n1
(ϕ̃) + c11 em1n1

(ϕ̃),

|c00|2 + |c01|2 + |c10|2 + |c11|2 = 1.
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of the 4-dimensional tensor product space Q4
m0m1,n0n1

of
the space (10) with itself. The four complex coefficients
cjk may be parametrized by real numbers as follows:

c00 = b00, c10 = eiα10b10, c01 = eiα01b01, c11 = eiα11b11,

αjk ∈ [0, 2π), bjk ∈ R, b200 + b210 + b201 + b211 = 1. (35)

Inserting the wave function (34) into the expression (33)
yields the most general 2-qubit A-OAM Wigner function

V̂ψ2qb
(θ̃, p̃) (36)

= b200 sincπ(p1 −m0) sincπ(p2 − n0)

+ b210 sincπ(p1 −m1) sincπ(p2 − n0)

+ b201 sincπ(p1 −m0) sincπ(p2 − n1)

+ b211 sincπ(p1 −m1) sincπ(p2 − n1)

+ 2 b00b10 cos[(m1 −m0)θ1 + α10]

× sincπ[p1 − (m0 +m1)/2] sincπ(p2 − n0)

+ 2 b00b01 cos[(n1 − n0)θ2 + α01]

× sincπ(p1 −m0) sincπ[p2 − (n0 + n1)/2]

+ 2 b00b11 cos[(m1 −m0)θ1 + (n1 − n0)θ2 + α11]

× sincπ[p1 − (m0 +m1)/2] sincπ[p2 − (n0 + n1)/2]

+ 2 b01b10 cos[(m1 −m0)θ1 − (n1 − n0)θ2 + α10 − α01]

× sincπ[p1 − (m0 +m1)/2] sincπ[p2 − (n0 + n1)/2]

+ 2 b01b11 cos[(m1 −m0)θ1 + α11 − α01]

× sincπ[p1 − (m0 +m1)/2)] sincπ(p2 − n1)

+ 2 b10b11 cos[(n1 − n0)θ2 + α11 − α10]

× sincπ(p1 −m1) sincπ[p2 − (n1 + n0)/2].

Here it is quite remarkable that in case of the
four 2-dimensional specializations (b00, b10, b01, b11) =
(cosβ, sinβ, 0, 0), (cosβ, 0, sinβ, 0), (0, 0, cosβ, sinβ) or
(0, cosβ, 0, sinβ) the Wigner function (36) factorizes into
a qubit Wigner function (16) with θ = θ1 (or θ = θ2) and
p = p1 (or p = p2) times Wigner functions Vn0(θ, p) =
sincπ(p−n0)/(2π) etc. of the basis vectors en0

, en1
, em0

,
or em1

[1]. We have, e.g.,

V
(α10,β)
00,10 (θ̃, p̃) (37)

=
1

(2π)2
{cos2 β sincπ(p1 −m0) + sin2 β sincπ(p1 −m1)

+ sin 2β cos[(m1 −m0)θ1 + α10] sincπ[p1 − (m0 +m1)/2]}
× sincπ(p2 − n0) = V (α10,β)

m0,m1
(θ1, p1)Vn0(θ2, p2).

No such factorization occurs for the “entangled” cases
– compare Eqs. (6) and (7) – (cosβ, 0, 0, sinβ) and

(0, cosβ, sinβ, 0), where we get for the former

V
(α11,β)
00,11 (θ̃, p̃) (38)

=
1

(2π)2
{cos2 β sincπ(p1 −m0) sincπ(p2 − n0)

+ sin2 β sincπ(p1 −m1) sincπ(p2 − n1)

+ sin 2β cos[(m1 −m0)θ1 + (n1 − n0)θ2 + α11]

× sincπ[p1 − (m0 +m1)/2] sincπ[p2 − (n0 + n1)/2]}.

It follows that the two basic entangled EPR/Bell states

(6) have the Wigner functions V
(α11=0,β=±π/4)
00.11 (θ̃, p̃) and

the states (7) a corresponding V
(α10−α01=0,β=±π/4)
10,01 (θ̃, p̃).

What is remarkable here is that the four entangled
EPR/Bell states (6) and (7) do have irreducible A-OAM
Wigner functions, i.e. they cannot be written as prod-
ucts of “lower” ones like in Eq. (37)! We see that this
irreducibility of their Wigner functions is characteristic
for EPR/Bell states!

Considerable simplifications are obtained for the terms
in expression (36) if m0+m1 = 0, n0+n1 = 0, m0 6= 0 6=
n0, and additionally n0 = m0 and αjk = 0 as well. This
corresponds to a physical situation where a system with
total angular momentum zero is decomposed or decays
into two subsystems which move in opposite directions,
one with angular momentumm0 and the other withm1 =
−m0. Example is a particle of spin zero which - in its
rest frame - decays into 2 photons with opposite spins
one.

Examples with the simplifications mentioned:
The A-OAM Wigner function for the basis vector

em0m0
(ϕ̃) is given by

Vm0m0
(θ̃, p̃) =

1

(2π)2
[sincπ(p1 −m0) sincπ(p2 −m0)].

(39)
This follows from Eq. (36) with b00 = 1, b01 = b10 =
b11 = 0.

According to the correspondences (32) we get for the
EPR/Bell states

ψ00,11;±(ϕ̃) (40)

=
1√
2

[em0(ϕ1)em0(ϕ2)± e−m0(ϕ1)e−m0(ϕ2)],

Lψ00,11;±(ϕ̃) = (2m0 ∓ 2m0)ψ00,11;±(ϕ̃), (41)

from Eq. (38) (with α11 = 0, β = ±π/4) the A-OAM
Wigner functions

V̂00,11;±(θ̃, p̃) (42)

=
1

2
[sincπ(p1 −m0) sincπ(p2 −m0)]

+
1

2
[sincπ(p1 +m0) sincπ(p2 +m0)]

± cos[2m0(θ1 + θ2)] sincπp1 sincπp2.
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For the states

ψ01,10;±(ϕ̃) (43)

=
1√
2

[em0
(ϕ1)e−m0

(ϕ2)± e−m0
(ϕ1)em0

(ϕ2)],

Lψ01,10;±(ϕ̃) = 0, (44)

we get accordingly

V̂01,10;±(θ̃, p̃) (45)

=
1

2
[sincπ(p1 −m0) sincπ(p2 +m0)]

+
1

2
[sincπ(p1 +m0) sincπ(p2 −m0)]

± cos[2m0(θ1 − θ2)] sincπp1 sincπp2.

A special example of the function (45) with m0 = 1 at
p2 = 1/2 is shown in Fig. 3.

(2π)2V01,10;−(θ1, θ2, p1, p2 = 1/2)
0.5

0.0

-0.5

−π

−π/2

0

π/2

π

θ1 − θ2

−3
−2

−1
0

1
2

3

p1

−1.0
−0.5
0.0
0.5
1.0

FIG. 3. Wigner function (2π)2V01,10;−(θ1, θ2, p1, p2 = 1/2) =
1
π
{− 1

3
sincπ(p1−1)+sincπ(p1+1)−2 cos[2(θ1−θ2)] sincπp1}

of the EPR/Bell state ψ01,10;−(ϕ̃) from Eq. (43).

Note again the θ-dependences in Eqs. (42) and (45):
The Wigner functions of the entangled EPR/Bell states
depend on both angles θ1 and θ2, either only on the sum
θ1 + θ2 or the difference θ1 − θ2, respectively. Consider
the curve

C− ={θ− = θ1 − θ2 ∈ R; θ1 + θ2 = µ = const., (46)

p̃ = const.} ⊂ P4(θ1, θ2, p1, p2),

so that

θ1 = (θ− + µ)/2, θ2 = (−θ− + µ)/2. (47)

That means, if θ− increases then θ1 increases and θ2 de-
creases at the same rate, i.e. the curve (46) spirals around
a torus.

We see that non-classical properties of the EPR/Bell
states (6) and (7) amazingly have their correspondence

in the irreducibility of their A-OAM Wigner functions,
which itself is related to the topology of the toroidal con-
figuration subspace of the phase space P4(θ̃, p̃).

Let us look at some details of the expression (45), with
the minus sign in Eq. (43) and the related one in Eq. (45)
as well:

Integrating V01,10;− in Eq. (45) over p1 and p2 gives,
with the help of relation (21):∫ ∞
−∞

dp1dp2V01,10;−(θ̃, p̃) = (48)

1

4π2
{1− cos[2m0(θ1 − θ2)]} =

1

4π2
{2 sin2[m0(θ1 − θ2)]}

=
1

4π2
|ψ01,10;−(θ̃)|2,

that is, the integral (48) gives the marginal angle proba-
bility density, as required by the general theory [1].

On the other hand, the angle integral∫ π

−π
dθ1dθ2V01,10;−(θ̃, p̃) (49)

=
1

2
[sincπ(p1 −m0) sincπ(p2 +m0)]

+
1

2
[sincπ(p1 +m0) sincπ(p2 −m0)]

= ω01,10;−(p̃)

gives Whittaker’s cardinal function [1] for two variables
p1 and p2. Again, using the orthonormality relations
(23), the marginal OAM probabilities

|c01|2 =
1

2
, |c10|2 =

1

2
(50)

can be extracted from ω01,10;−(p̃).
Special additional properties are:

V01,10;−(θ̃, p1, p2) = 0 for p1, p2 ∈ {Z− {0}}, (51)

and

V̂01,10;−(θ̃, p1, p2 = 0) (52)

= − cos[2m0(θ1 − θ2)] sincπp1,

with the corresponding relation for p1 = 0. This shows
that the “classical” probabilities (50) as derived from
Whittaker’s cardinal function (49) do not get any contri-
butions from the phase space subsets p1 = 0 and p2 = 0
respectively, only the interference term does!

A graphical illustration of the function (52) with m0 =
1 is given by Fig. 4.

Furthermore,

V01,10;−(θ1, θ2, p1 = 0, p2 = 0) = − 1

4π2
cos[2m0(θ1− θ2)],

(53)
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(2π)2V01,10;−(θ1, θ2, p1, p2 = 0)
0.5

0.0

-0.5

−π

−π/2

0

π/2

π

θ1 − θ2

−3
−2

−1
0

1
2

3
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FIG. 4. Wigner function (2π)2V01,10;−(θ1, θ2, p1, p2 = 0) =
− cos[2(θ1 − θ2)] sincπp1, according to Eq. (52) with m0 = 1,
of the EPR/Bell state ψ01,10;−(ϕ̃) from Eq. (43).

showing explicitely that the Wigner function is negative
on certain subsets of the phase space.
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