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Large N scaling and factorization in SU(N) Yang-Mills theory
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Abstract. We present results for Wilson loops smoothed with the Yang-Mills gradient
flow and matched through the scale t0. They provide renormalized and precise operators
allowing to test the 1/N2 scaling both at finite lattice spacing and in the continuum limit.
Our results show an excellent scaling up to 1/N = 1/3. Additionally, we obtain a very
precise non-perturbative confirmation of factorization in the large N limit.

1 Introduction

A well known problem when studying QCD, is the fact that the coupling g is in general not small at
relevant energy scales. In Ref. [1], ’t Hooft proposed to consider the SU(N) Yang-Mills gauge theory
and use the inverse of the rank of the gauge group 1/N as an expansion parameter instead of g2. If
the theory was solvable in the 1/N → 0 limit, results at the physical value of 1/N = 1/3 could be
recovered as corrections in powers of 1/N, and in the case of the pure gauge theory which we consider
in this work, the expansion is in powers of 1/N2.

The fact that corrections to the large N limit are organized in a power series in 1/N2 can be
obtained in perturbation theory using the topological expansion proposed by ‘t Hooft. In the full non-
perturbative theory, however, this is not a proven statement. In the past, several lattice collaborations
have found agreement with scaling at a non-perturbative level [2, 3]. The precision of these studies
was mainly limited for two reasons. First, spectral quantities such as torelon and glueball masses
were considered, which need extrapolations to large separations. Second the problem of a bulk phase
transition at intermediate lattice spacing and topological freezing at small lattice spacing are more
and more severe at larger N and make it difficult to reach the continuum limit[4]. We overcome
these difficulties by using 1) high precision results for smooth Gradient flow observables and 2) open
boundary conditions [5], extending the analysis of [6] to several observables. In this way we are able
to check large N scaling with excellent precision.

One particular property of large N scaling is factorization. For any two local gauge invariant or
Wilson loop operatorsA and B, it is expected that [7, 8]

〈AB〉 = 〈A〉 〈B〉 + O(1/N2) , (1)

which shows that correlation functions in the large N limit are given only as a product of the discon-
nected parts. Eq. (1) is the basis for conceptual developments such as the master field [9, 10], and
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the idea of volume reduction [11, 12]. In particular, the latter has been of considerable interest in the
lattice community, as it implies that theories at larger N can be simulated in smaller boxes, reducing
the computational effort. We will verify factorization non-perturbatively and with high precision.

2 Observables

As mentioned previously, our main observables are smooth Wilson loop operators. They are defined
in terms of the gauge links smoothed with the Yang-Mills gradient flow [13, 14]. Using the flow one
has access to renormalizable operators with a well defined and finite continuum limit [15, 16]. Let
us stress the fact that without the use of the gradient flow, the Wilson loops are affected by perimeter
and corner divergences [17, 18]. One needs to remove those, e.g. by taking Creutz ratios [19] before
taking a continuum limit.

For a lattice of dimension T × L3, with open boundary conditions in the time direction [5] and a
lattice spacing a, we define the following operators

W(c) =
a4

(T − 2d) L3

T−d−a∑
x0=d

∑
~x

W(ct0, x0, ~x,Rc) , (2)

W2(c) =
a4

(T − 2d) L3

T−d−a∑
x0=d

∑
~x

[W(ct0, x0, ~x,Rc)]2 , (3)

GW (c) =

〈
W2(c)

〉
− 〈W(c)〉2

〈W(c)〉2
, (4)

where W(ct0, x0, ~x,Rc) is a square Wilson loop1 in a spatial plane with one corner at the point (x0, ~x)
and a side of length Rc =

√
8ct0. The parameter d is chosen so that the effects of the open boundaries

in the time direction are negligible with respect to the statistical error in the bulk [6]. Finally, ct0
corresponds to the smoothing parameter, i.e. t = ct0, with the scale t0 defined for SU(N) as in
Ref. [20]

t2 〈E(t)〉 |t=t0 = 0.1125
N2 − 1

N
, (5)

where E(t) is the Yang-Mills action density computed through the clover definition on the lattice [14].
A schematic representation of a smooth Wilson loop is shown in Figure 1.

All the observables are measured for the gauge groups with N = 3, 4, 5, 6 and 8 on a set of
lattices with a lattice spacing varying from a ≈ 0.1 fm down to a ≈ 0.05 fm, and with a spatial size
of L ≈ 1.55 fm.2 We have simulated three or four lattice spacings for each gauge group, except for
SU(8) where we have a single lattice at a ≈ 0.08 fm. Details of the simulations will be presented in a
forthcoming publication. The parameter c in Eqs. (2)-(4) takes three different values, c = 1/2, 1, 9/4.

3 Systematic effects

As mentioned earlier, all our measurements are performed in lattices of approximately the same phys-
ical size L ≈ 1.55 fm. However, in order to make sure that the small mismatch (around 5% in the

1Here we define a Wilson loop with the prefactor 1/N such that it has a finite large N limit, i.e. W(C) = 1
N Tr U(C), where

U(C) is the product of gauge links over the path C.
2We define physical units by

√
t0 = 0.166 fm motivated by its value in N = 3 derived from r0 = 0.5fm [21, 22]. .



Figure 1. Graphical representation of a smooth Wilson loop. The side of
the loop R is chosen so that it matches the smoothing radius of the flow, i.e.
R =

√
8t.

worst case) between the different ensembles does not introduce a significant finite volume correction,
we simulated two extra lattices, one for SU(4) and one for SU(5) at L ≈ 2.35 fm. These results are in
perfect agreement with those at the smaller lattices for all the observables introduced in the previous
section, including the Yang-Mills action density.

Another potential source of systematic errors has to do with the interpolation in the flow time t
and in the loop size R. In the case of the flow time, the observables are measured in t with a resolution
of 0.02 in units of a2, so we find the effects of this interpolation to be negligible in comparison
to the statistical errors. Concerning R, the situation is different and we must be careful with the
systematics coming from this interpolation. As mentioned in the previous section, in order to match
the loops at different a and different N, we interpolate in their size R to a value given by Rc =

√
8ct0.

To assess the systematic error from the interpolation we fit the data to a polynomial in the variable
ω̂(R) = − 1

R log W(R), where the dependence in the flow time t has been omitted to simplify the
notation. The fitting is done using two quadratic and two cubic functions of R varying the points used
for the fit. The effects of the systematics from the interpolation are shown in Figure 2. We present
two different cases; on the left, when Rc/a ≈ 3.5, and on the right , when Rc/a ≈ 4.9. Clearly, when
interpolating to a half integer value, the systematics from the interpolation are much larger than when
interpolating to an almost integer value. Using the results from the fits, the central value is defined as

W(c) = 1/2 (max {W1,W2,W3,W4} + min {W1,W2,W3,W4}) , (6)

where Wi is the result from the i − th fit. The systematic error ∆S is defined as

∆S = 1/2 (max {W1,W2,W3,W4} −min {W1,W2,W3,W4}) . (7)

and it is combined in quadrature with the statistical one to obtain the final error at each point.

4 Results

Let us first discuss large N scaling. Before considering the loop observables, we use the scale itself.
We can define a second scale similar to t0 by changing the numerical pre-factor on the right hand side
of Eq. (5). By replacing 0.1125 with 0.08 we have a perfectly reasonable scale, which we denote by
t0.08. As shown on the left panel of Figure 3, choosing the value of 0.08 we are in the same region
where t2 〈E(t)〉 grows roughly linearly with t as is the case when t is close to t0. Notice that the N
dependence is barely visible at the scale of the plot, while on the other hand cut-off effects are large
in the region of small t.

On the right panel of Figure 3 we show the large N extrapolations of t0/t0.08 and we observe an
excellent agreement with a fit to a linear function in 1/N2. For the three lattice spacings considered,
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Figure 2. Systematic and statistical errors from the interpolation in R for the ensemble A(4)1, which corresponds
to the gauge group SU(4) at a lattice spacing a ≈ 0.1 fm. On the left, for c = 1/2 , and on the right for c = 1. In
the first case, the statistical error is barely visible in comparison to the systematic one, while in the second case,
they are of comparable size.
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Figure 3. Left: t2 〈E(t)〉 as a function of t for several gauge groups and lattice spacings. A(4)1 corresponds to an
SU(4) ensemble with a ≈ 0.1 fm, while A(4)3 has a lattice spacing a ≈ 0.067 fm. A(6)1 and A(6)3 correspond to
SU(6) ensembles with the same lattice spacings as the SU(4) ones correspondingly. Right: large N extrapolations
of t0/t0.08 at three different lattice spacings and in the continuum. Notice the excellent scaling with 1/N2 even at
this very high accuracy.

we find the values of χ2/dof to be equal to 0.35, 2.18 and 1.30 respectively. In the continuum, the fit
is also excellent with a value of χ2/dof = 0.96 and a result for the large N and continuum extrapo-
lation of t0/t0.08 = 1.29802(19). These results are in complete agreement with the ’t Hooft scaling.
They test it with very high accuracies, as the errors in our measurements are O(10−4) (around 10000
measurements). This allows us to verify the 1/N2 scaling for this observable even when the finite N
corrections are in the percent level.

Let us now turn to the smooth Wilson loop operators. In Figure 4 we show the continuum and
large N extrapolations of W(c = 1). For the continuum extrapolations, we do a linear fit in a2/t0 using
only the finer lattices, i.e., those for which a2/t0 < 0.25. With this choice, we take the continuum
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Figure 4. Left: Continuum limit extrapolations of W(c = 1). Right: Large N extrapolation of W(c = 1) in
the continuum. The results are perfectly compatible with a polynomial in 1/N2 as expected from the ’t Hooft
topological expansion.

limit for SU(3), SU(4) and SU(5) using three data points, while we have only two points for SU(6).
To assess the validity of this choice, we also perform a fit including the coarsest data points. We find
the two strategies to give compatible extrapolations, so we decide to use the one with fewer points to
trade an increase of the statistical error, with the reduction of the systematics due to neglecting higher
order terms in the a-expansion. The fits are excellent as is displayed on the left panel of Figure 4, and
we find similar results for the cases c = 1/2 and c = 9/4. Notice that in the case of SU(8) we have
a single point, so we cannot take the continuum limit; hence the right panel in Figure 4 displays the
large N extrapolation of the data in the continuum with N ≤ 6. The large N fit is performed using a
quadratic function in 1/N2, with a value of χ2/dof < 0.1 and a small 1/N4 coefficient.

4.1 Factorization

In order to verify the property of factorization, Eq. (1), we check whether GW , Eq. (4), satisfies
GW → 0 when 1/N → 0. We take the continuum limits for all N except for N = 8. As before, those
lattices for which a2/t0 > 0.25 are used only for validation. We also interpolate to fixed a2/t0 given by
the one of the SU(8) ensemble . We can then also use the SU(8) point for the large N extrapolations at
a fixed a (a2/t0 ≈ 0.21). In addition to having an extra point at the larger value of N = 8, by working
at finite lattice spacing, only an interpolation is required for N < 8, yielding smaller errors. Of course
one must keep in mind that the finite a results are not universal; they depend on the regularization,
here the Wilson plaquette action. Still, they can be used as a test of large N scaling. Graphs of the
large N extrapolations at finite lattice spacing and in the continuum are presented in Figure 5.

We observe that a quadratic fit excluding SU(3) correctly extrapolates to 1/N = 1/3 within two,
very small, standard deviations at all c. While a priori it can’t be expected that the expansion works
so well also for N = 3, this fact serves to increase our confidence in the large N fit. The results
of the quadratic fit excluding SU(3) are presented in Table 1. As shown, the results of the large N
extrapolation agree with zero and thus support factorization at all values of c. To further validate this
conclusion, we perform a fit to the data forcing it to pass through zero when 1/N = 0. The value
of χ2/dof of the fits can then be used as a criterion to test factorization. For different values of c we
present the results for χ2/dof at finite lattice spacing of these constrained fits in Table 1. All of them
are excellent and support factorization.
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Figure 5. Large N extrapolation of GW (c = 1). Left: In the continuum. Right: At finite lattice spacing. In both
cases, the fits are done without including the SU(3) point.

Table 1. Results of the large N extrapolations, (1) in the continuum, (2) at finite lattice spacing; and (3), at finite
lattice spacing with the constrained fit.

c = 1/2 c = 1 c = 9/4

GW (1/N = 0)(1) −0.0001(54) −0.0004(73) 0.010(13)

GW (1/N = 0)(2) 0.00001(63) −0.0001(6) −0.00074(96)
χ2/dof(2) < 0.01 0.01 0.18

χ2/dof(3) < 0.01 0.03 0.38

So far we have only considered the case Rc =
√

8ct0. To study what happens at different values
of R we decided to use the loops measured at c = 1/2 and fix their size such that R̃c = 2

√
8ct0. Let

us denote this observable as GW̃ . The analysis is then the same as described earlier except that in this
case, when excluding SU(3) from the fits, the resulting function does not extrapolate to SU(3). This,
however, does not modify the main conclusion, and taking the large N limit shows that factorization
also holds. A plot showing our results in the continuum and at finite lattice spacing is displayed in
Figure 6.

Finally, we also considered a more complicated observable constructed from the smooth Wilson
loops. For that, we define

W2
s (c) =

a
(T − 2d)

T−d−a∑
x0=d

 a3

L3

∑
~x

W(ct0, x0, ~x,Rc)

2 , (8)

so that

HW (c) =

 L3

t3/2
0


〈
W2

s (c)
〉
− 〈W(c)〉2

〈W(c)〉2
, (9)

Once again, HW (c) can be used to test factorization, but due to significant finite volume effects
for c ≤ 1, we can only estimate the errors reliably for c = 9/4. Once more, the results for this
observable are compatible with factorization. In this case, we performed a global fit to the data
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Figure 7. Continuum (left) and large N (right) extrapolations of HW performing a global fit to the data.

(χ2/dof = 1.73) including the corrections of O(1/N2), O(a2), O(a2/N2) and O(1/N4). The results are
shown in Figure 7.

5 Conclusions

We have used high precision data to test the scaling in powers of 1/N2 predicted by the ’t Hooft
expansion for the pure gauge theory. By using the gradient flow, we were able to use the smooth
Wilson loops and study their N dependence both at finite lattice spacing and in the continuum. In both
cases, we have found that the observables are extrapolated to 1/N = 0 in powers of 1/N2 as expected.
Moreover, by using high precision data, we can observe the N dependence at below the percent level.
For the observables that we have considered, we find that corrections of O(1/N2) describe very well
the data for N > 3, while including the results at N = 3 generally requires the addition of a term of
O(1/N4).



We have further presented, to our knowledge, the first direct non-perturbative verification of large
N factorization for SU(N) gauge theories on the lattice. While factorization, Eq. (1), holds within our
small uncertainties, the corrections at finite N = 3−10 can be very large, see figs 5,6. Note that G̃ = 1
or H = 1 means there is a 100% violation of factorization. These large 1/N2 corrections are very
likely related to the very large N values needed to approach the 1/N = 0 limit in the one-point model
[23]. In particular, the increase of the 1/N2 corrections with the size of the loops, which we observe
in Figs. 5 and 6, is present in the one-point models [24].
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