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Abstract. The numerical computations of many quantities of theoretical and phenomeno-
logical interest are plagued by statistical errors which increase exponentially with the
distance of the sources in the relevant correlators. Notable examples are baryon masses
and matrix elements, the hadronic vacuum polarization and the light-by-light scattering
contributions to the muon g − 2, and the form factors of semileptonic B decays. Reliable
and precise determinations of these quantities are very difficult if not impractical with
state-of-the-art standard Monte Carlo integration schemes. I will review a recent pro-
posal for factorizing the fermion determinant in lattice QCD that leads to a local action in
the gauge field and in the auxiliary boson fields. Once combined with the corresponding
factorization of the quark propagator, it paves the way for multi-level Monte Carlo inte-
gration in the presence of fermions opening new perspectives in lattice QCD. Exploratory
results on the impact on the above mentioned observables will be presented.

1 Introduction

Over the last three decades we have had an extraordinary conceptual, algorithmic and technical
progress in numerical lattice gauge theory which have led to the simulation of Quantum Chromo-
dynamics (QCD) with quark masses at the physical point, see Ref. [1] for a recent review. Lattice
QCD became a theoretical femtoscope for studying the dynamics of the strong interactions in Na-
ture. It opened the window on quantities not accessible to experiments which may help understanding
the underlying dynamical mechanisms of the theory. The interesting chiral regime of QCD became
accessible to non-perturbative computations.

The femtoscope, however, is still rather crude. Often we compute what we can and not what
we would like to. With state of the art techniques, numerical computations of hadronic correlation
functions suffer from signal-to-noise ratios which decrease exponentially with the time separation
of the sources, notable exceptions being the propagators of non-singlet pseudoscalar mesons. For
connected Wick contractions, the problem can be traced back to the fact that, on a typical gauge
configuration, the quark propagator decreases approximatively as exp{−Mπ|y − x|/2} at asymptotically
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large distances |y−x|, while the expectation value of a generic hadron correlator decays much faster [2,
3]. This problem afflicts many computations at the forefront of research in lattice QCD: the hadronic
vacuum polarization and light-by-light scattering contributions to the muon g − 2, the amplitudes
of leptonic and semileptonic B decays, masses and matrix elements of (multi) baryons states, etc.
It is timely to solve this problem so to be able to extract the maximum information from the new
experimental results expected in the coming years.

The conceptual framework for a solution has already been introduced in bosonic theories. The
multi-level Monte Carlo integration takes advantage of the fact that, when the action and the observ-
ables depend locally on the integration variables, the degradation of the signal-to-noise ratio with the
distance of the sources can be avoided by measuring independently the local building blocks of the
observables. This leads to an impressive acceleration of the simulations [4–9], and fully solves the
problem in some cases.

It is not straightforward, however, to formulate multi-level algorithms for systems with fermions.
Once they have been analytically integrated out in the path integral, the manifest locality of the action
and of the observables is lost. The fermion determinant and propagator are non-local functionals of
the background gauge field. The aim of this talk is to review a recently proposed factorization of the
fermion determinant in lattice QCD that leads to a bosonic theory with a local action in the block
gauge, pseudofermion and multi-boson fields [10]. Together with the factorization of the fermion
observables presented in Ref. [11], this opens the way for multi-level simulations of QCD. Exploratory
results on the impact on the above mentioned computations will also be reviewed.

2 Signal/noise ratio in lattice QCD

At large time distances |y0 − x0|, the zero-momentum propagator of a non-singlet pseudoscalar meson
and its variance decay as

Cπ(y0, x0) = 〈Wπ(y0, x)〉 ∝ e−Mπ |y0−x0 | , σ2
π(y0, x0) ∝ e−2Mπ |y0−x0 | , (1)

where
Wπ(y0, x) =

∑
~y

Tr
{
Q−1(y, x)[Q−1(y, x)]†

}
, (2)

and the Hermitian-Dirac operator is defined as1 Q = γ5D. This is so because the mean and the width
of the distribution of the positive stochastic variable Tr

{
Q−1(y, x)[Q−1(y, x)]†

}
decay exponentially

with the same exponent at large distances, which suggests that configuration by configuration in the
representative ensemble it holds

Tr
{
Q−1(y, x)[Q−1(y, x)]†

}
∝ e−Mπ |y−x| . (3)

This is confirmed by numerical results on the lattice. As a consequence, the typical size of a connected
Wick contraction at large time distances is exp{−nMπ|y0 − x0|/2}, with n being the number of quark
propagators, while the expectation value of a generic hadron correlator decays much faster because
hadron masses are naturally much larger than Mπ [2, 3]. For disconnected contractions, the problem
is even worse due to the vacuum contribution to the variance. As we will see in the next sections, the
cause of the problem, i.e. Eq. (3), is also a key ingredient of its solution.

Today the exponential degradation of the signal-to-noise ratio sets the limits of many computa-
tions of theoretical and phenomenological interest. In the remaining part of this section we list some
examples which at present are the object of an intense theoretical and experimental research activity.

1For definitiveness, in these proceedings we will only consider the case of D being the massive Wilson-Dirac operator with
or without O(a)-improvement term.
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Figure 1. Data for the light quark contribution to the integrand K̃(x0; mµ) Gud(x0) in QCD with two light dynam-
ical flavours, scaled in units of the muon mass for two lattices with pion masses of approximatively 190 (top)
and 270 MeV (bottom). The coloured bands, which show the various methods to constrain the long-distance
behaviour, start at the respective value of xcut

0 as indicated by the vertical lines. By courtesy of Ref. [15].

2.1 Baryon correlators

The nucleon two-point function at zero momentum CN is the prototype example of this sort. The
signal-to-noise ratio squared decreases as

C2
N(y0, x0)

σ2
N(y0, x0)

∝ e−(2MN−3Mπ)|y0−x0 | , (4)

where |y0− x0| is the time-distance of the sources and (2MN−3Mπ) is as big as 7.4 fm−1 at the physical
point. The number of configurations needed to reach a given statistical precision thus increases with
that exponential factor. Analogous considerations hold for three-point (and higher) baryonic corre-
lation functions. For a precise and accurate determination of gA at the physical point, for instance,
the chiral effective theory suggests that a time separation of 2.0 − 2.5 fm is needed between the axial
vector current and the nucleon interpolating operators [12–14]. At present, typical time separations
affordable in numerical calculations are, instead, between 1.0 and 1.5 fm. The problem becomes more
and more severe for correlation functions of fields with higher and higher baryon number.

2.2 Vector correlators

For the non-singlet vector two-point function at zero momentum Cρ, the signal-to-noise ratio squared
goes as

C2
ρ(y0, x0)

σ2
ρ(y0, x0)

∝ e−2(Mρ−Mπ)|y0−x0 | , (5)

where mρ is the lightest asymptotic state in that channel. In the singlet case, the exponential degra-
dation is again worse due to the vacuum contribution to the variance. This fact prevents a precise
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Figure 2. Pion effective energies for |p| ≈ 840 MeV (left) and |p| ≈ 1200 MeV (right) as a function of the time
distance of the sources in units of the lattice spacing. By courtesy of Ref. [18].

determination of, among other quantities, the Hadronic vacuum polarization (HVP) and the Hadronic
light-by-light (HLbL) contributions to the muon g − 2 on the lattice at the physical point. The HVP
can indeed be written as [16]

aHVP
µ =

(
α

π

)2 ∫ ∞

0
dx0 K̃(x0; mµ) G(x0) , (6)

where α is the electromagnetic coupling constant, K̃(x0; mµ) is a known analytic function, and G(x0)
is the correlation function of two electromagnetic currents at a temporal distance x0, see Ref. [15] for
unexplained notation. The non-singlet contribution to aHVP

µ of the u and d quarks is shown in Fig. 1
for pion masses of approximatively 190 (top) and 270 MeV (bottom) respectively2 [15]. In those plots
the effect of the exponential decrease of the signal-to-noise ratio with the distance x0 of the sources
is evident. As a result, the contribution to the integral in Eq. (6) is computed from data up to xcut

0 =

1.1-1.4 fm only, while the rest is estimated by the Gounaris-Sakurai based extension of the vector
correlator [15]. The final statistical and dominant systematic errors turn out to be approximatively 5
and 2.5 percent respectively. If the signal could be kept well under control up to time distances of
2.5-3.0 fm or more, then one would be able to reach the percent precision or better within QCD.

2.3 Non-zero momentum correlators

Non-zero momentum correlators suffer from the exponential degradation of the signal-to-noise ratio
as well. For the pseudoscalar mesons, the signal-to-noise ratio squared goes as

C2
π,~p(y0, x0)

σ2
π,~p(y0, x0)

∝ e−2(Eπ(~p)−Mπ)|y0−x0 | . (7)

An example of effective energies corresponding to |p| ≈ 840 (left) and |p| ≈ 1200 MeV (right) from
Ref. [18] are shown in Fig. 2. The exponential decrease of the signal-to-noise ratio is evident in these
data. The same would happen if the momentum is given to the mesons by imposing twisted boundary
conditions in the spatial directions. Needless to say this is one of the basic building blocks entering
the Wick contractions of hadronic and semileptonic decays, see below.

2These results are chosen among many others to illustrate the problem, see Ref. [17] for a detailed discussion on aHVP
µ at

this conference.
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Figure 3. The ratio of the three-point function of a vector current with the pseudoscalar interpolating operators
of a Bs and a K meson over the square roots of the corresponding two-point functions (blue points) as a function
of the temporal distance between the static vector current and the interpolating operator of the Bs meson. The red
band is the result of a fit. By courtesy of Ref. [19].

2.4 Static-light correlation functions

For a static-light two-point correlation function CB, the signal-to-noise ratio squared goes as

C2
B(y0, x0)

σ2
B(y0, x0)

∝ e−2(Estat−Mπ/2)|y0−x0 | , (8)

where Estat is the ground-state energy of the B-meson which diverges linearly with the inverse of the
lattice spacing. This degradation is the bottleneck in the computation of the leptonic decay constant
of the B-meson in the static limit [20].

The three-point functions needed for the semileptonic decays B→π(K)lν, B→K(K∗)ll, etc. have
as basic building blocks the propagators of a static-light meson on one side and of a relativistic meson
with a (large) momentum on the other side. As we have seen, both of them suffer from an exponential
degradation of the signal-to-noise ratio. At present this sets the limit for the computation of these
three-point functions, and prevent us from determining the form factors at small invariant lepton
masses Q2. An example of the difficulties encountered is shown in Fig. 3. There the ratio of the three-
point function of a vector current with the pseudoscalar interpolating operators of a Bs and a K meson
over the square roots of the corresponding two-point functions at approximatively Q2 = 20 GeV2 is
plotted [19].

3 Domain decomposition preliminaries

To find a solution to the signal-to-noise problem, we will start by making use of several decompo-
sitions of the global lattice in non-overlapping and overlapping domains [21, 22]. Without loss of
generality, we will consider a lattice with periodic and open boundary conditions in the space and
time directions, respectively [23]. The first decomposition of the lattice is in three non-overlapping
thick time-slices Λi, i = 0, 1, 2, with the inner and outer (time-slice) boundaries indicated by ∂Λi and
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Figure 4. Examples of non-overlapping and overlapping domain decompositions considered in these proceed-
ings.

∂Λ∗i respectively, see Fig. 4. It is useful to define projection operators onto the subspaces of quark
fields supported on the domains Λi as

[PΛiψ](x) =

ψ(x) x ∈ Λi ,

0 elsewhere ,
(9)

and analogously for P∂Λi and P∂Λ∗i
. In the rest of these proceedings we will use the above symbols

irrespectively of the dimension of the full space on which the projectors act. The Hermitian O(a)-
improved massive Wilson-Dirac operator can then be written in the block form3

Q =

QΛ0,0 QΛ0,1 0
QΛ1,0 QΛ1,1 QΛ1,2

0 QΛ2,1 QΛ2,2

 . (10)

Maybe the simplest decomposition of the lattice in overlapping domains is obtained by defining Ω∗i =

Λi ∪Λi+1 with i = 0, 1, see Fig. 4. Projection operators on those domains and their boundaries can be
defined analogously to Eq. (9). In each of these domains, the operator Q takes the block form

QΩ∗i
=

(
QΛi,i QΛi,i+1

QΛi+1,i QΛi+1,i+1

)
. (11)

Another domain decomposition which turns out to be instrumental in the following is the two-block
non-overlapping partitioning of the lattice with Γ = Λ0 ∪ Λ2 and Γ∗ = Λ1. Notice that Γ is a discon-
nected domain.

4 Quark propagator and locality

The quark propagator between two points x and y, or better Q−1(y, x), is formally a non-local func-
tional of the background gauge field over the entire lattice. Our intuition, however, suggests that

3To keep the notation compact, a block matrix QΛi, j denotes either a single block of the matrix, or the full matrix with just
that block different from zero. For more details on the notation used see Ref. [10]
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Figure 5. Continuous and dashed lines represent the contributions to the quark propagator as defined in Eq. (15).

Q−1(y, x) should depend weakly on the values that the gauge field takes far away from the region
between x and y. To formalize this insight, we consider the case of x, y ∈ Λ0, decompose the lattice in
the two non-overlapping blocks Γ = Λ0 ∪ Λ2 and Γ∗ = Λ1, and choose the thickness ∆ of Λ1 so that
Mπ∆ � 1. The Schur complement, defined as usual as

S Γ = QΓ − Q∂Γ Q−1
Γ∗ Q∂Γ∗ , (12)

is then given by

S Γ =

QΛ0,0 − QΛ0,1 Q−1
Λ1,1

QΛ1,0 −QΛ0,1 Q−1
Λ1,1

QΛ1,2

−QΛ2,1 Q−1
Λ1,1

QΛ1,0 QΛ2,2 − QΛ2,1 Q−1
Λ1,1

QΛ1,2

 . (13)

By noticing that

PΛ0 Q−1
Ω∗0

PΛ0 =
[
QΛ0,0 − QΛ0,1 Q−1

Λ1,1
QΛ1,0

]−1
, PΛ2 Q−1

Ω∗1
PΛ2 =

[
QΛ2,2 − QΛ2,1 Q−1

Λ1,1
QΛ1,2

]−1
, (14)

after a few steps of algebra one obtains

PΛ0 Q−1 PΛ0 = PΛ0

{
Q−1

Ω∗0
+ Q−1

Ω∗0
QΛ1,2 Q−1

Ω∗1
QΛ1,0

1
1 − w

Q−1
Ω∗0

}
PΛ0 , (15)

where
w = P∂Λ0 Q−1

Ω∗0
QΛ1,2 Q−1

Ω∗1
QΛ1,0 . (16)

Our intuition is formalized in Eq. (15). The first term on the r.h.s. (continuous line in Fig. 5) does not
depend on the gauge field in Λ2. That dependence comes only from the second term (dashed line in
Fig. 5) which propagates a quark from x ∈ Λ0 to the region Λ2 and back to y ∈ Λ0. The contribution
from these paths is suppressed proportionally to e−Mπ∆ thanks to Eq. (3).

The very same domain decomposition sheds light also on the gauge-field dependence of Q−1(y, x)
when x and y are in distant blocks, e.g. x ∈ Λ0 and y ∈ Λ2. By following an analogous derivation,
one arrives to

PΛ2 Q−1 PΛ0 = −PΛ2 Q−1
Ω∗1

QΛ1,0

1
1 − w

Q−1
Ω∗0

PΛ0 . (17)
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Figure 6. Continuous and dashed lines represent the first two contributions to the quark propagator in Eq. (18),
corresponding to n = 0 and 1.

From Eq. (16) it is clear that the operator w propagates a quark from the inner boundary of Λ0 to Λ2
and back to ∂Λ0, and it is therefore suppressed proportionally to e−Mπ∆. By neglecting its contribution
on the r.h.s of Eq. (17), the bulk of the quark propagator turns out to have a factorized dependence on
the gauge field in Λ0 and Λ2.

The Eqs. (15) and (17) provide further insight into the dependence of the quark propagator from
the gauge field. In Eq. (17), for instance, we can expand the factor (1 − w)−1 into the Neumann series
to obtain

PΛ2 Q−1 PΛ0 = −PΛ2 Q−1
Ω∗1

QΛ1,0

∞∑
n=0

[
Q−1

Ω∗0
QΛ1,2 Q−1

Ω∗1
QΛ1,0

]n
Q−1

Ω∗0
PΛ0 . (18)

We recognize on the r.h.s the result of a Schwarz alternating procedure (SAP) with overlapping do-
mains Ω∗0 and Ω∗1. The propagator is written as a series of terms, each having a factorized gauge-field
dependence of increasing complexity. The index n counts the number of times a quark loops from
the inner boundary of Λ0 to ∂Λ2 and back to ∂Λ0 before arriving in y. The contribution of these
paths is suppressed proportionally to e−nMπ∆. The thickness ∆ of the overlapping region regulates
the rate of convergence of the associated Neumann series, making SAP with overlapping domains
also a valid alternative for computing the quark propagator in lattice QCD with respect to the case of
non-overlapping domains4 [21].

5 Block decomposition of the determinant

The domain decomposition of the lattice in the two blocks Γ = Λ0 ∪ Λ2 and Γ∗ = Λ1 is also the
starting point for the factorization of the gauge-field dependence of the quark determinant. The LU
decomposition of the associated 2 by 2 block form of the Dirac operator leads to

det Q = det QΛ1,1 det

QΛ0,0 − QΛ0,1 Q−1
Λ1,1

QΛ1,0 −QΛ0,1 Q−1
Λ1,1

QΛ1,2

−QΛ2,1 Q−1
Λ1,1

QΛ1,0 QΛ2,2 − QΛ2,1 Q−1
Λ1,1

QΛ1,2

 , (19)

4The suppression of the quark propagator already after 0.5 fm or so may be enough for this procedure and the factorization
of the determinant in the next section to work in practice.



which, thanks to Eqs. (14), can be re-written as

det Q =
1

det Q−1
Λ1,1

det
[
PΛ0 Q−1

Ω∗0
PΛ0

]
det

[
PΛ2 Q−1

Ω∗1
PΛ2

] det

 1 PΛ0 Q−1
Ω∗0

QΛ1,2

PΛ2 Q−1
Ω∗1

QΛ1,0 1

 . (20)

By noticing that the last determinant on the r.h.s can be reduced to the one of a matrix acting on one
of the boundaries only, it is easy to show that

det

 1 PΛ0 Q−1
Ω∗0

QΛ1,2

PΛ2 Q−1
Ω∗1

QΛ1,0 1

 = det (1 − w) , (21)

and therefore

det Q =
1

det Q−1
Λ1,1

det
[
PΛ0 Q−1

Ω∗0
PΛ0

]
det

[
PΛ2 Q−1

Ω∗1
PΛ2

]
det [1 − w]−1

. (22)

For the first three determinants on the r.h.s, the goal has been reached: det Q−1
11 depends on the gauge

field in the block Λ1, det [PΛ0 Q−1
Ω∗0

PΛ0 ] on the gauge field in Ω∗0, and det [PΛ2 Q−1
Ω∗1

PΛ2 ] on the gauge
field in Ω∗1. The (small) remaining determinant det [1 − w] still depends on the gauge field over the
whole lattice. As in Eq. (18), we can expand the factor [1 − w]−1 into the Neumann series and obtain

1
det [1 − w]−1 =

det [1 − RN+1(1 − w)]

det
[∑N

k=0 w
k
] =

det [1 − RN+1(1 − w)]∏N/2
k=1 det

[
(uk − w)†(uk − w)

] , (23)

where N is chosen to be even, uk = ei 2πk
N+1 (k = 1, . . . ,N) are the roots of the approximant polynomial∑N

k=0 w
k, and the remainder polynomial is RN+1(1 − w) = wN+1. For the last equality we have used the

fact that the roots of the approximant polynomial come in complex conjugate pairs and that w is similar
to w† [10]. We recognize in Eq. (23) a specific implementation of Lüscher’s original multi-boson
proposal [24] generalized to complex matrices [25–27], see Ref. [10] for a more general discussion.
By defining the matrix

Wz =

 z P∂Λ0 P∂Λ0 Q−1
Ω∗0

QΛ1,2

P∂Λ2 Q−1
Ω∗1

QΛ1,0 z P∂Λ2

 , (24)

we can perform the reverse substitution of the one in Eq. (21), and finally obtain

N/2∏
k=1

det
[
(uk − w)†(uk − w)

]
=

N/2∏
k=1

det
[
W†√uk

W√
uk

]
. (25)

It is this expression with Wz acting on ∂Λ0 and ∂Λ2 that will allow in the next section for a fully
factorized domain decomposition of the fermion action. For the determination of the approximation,
however, it has been advantageous to work with the operator w (acting on ∂Λ0 only) since the order of
the polynomial N is reduced by about a factor of 2 for a given accuracy. Notice that the multi-boson
contribution in Eq. (25) is manifestly positive for each single flavour.



6 Multi-level integration with fermions

By introducing auxiliary pseudofermion and multi-boson fields, for two flavors of quarks we can
finally represent the determinants in Eqs. (22) and (25) as5

det Q2

det{1 − RN+1(1 − w)}2
=

1
det [Q−1

Λ1,1
]2 · det [PΛ0 Q−1

Ω∗0
PΛ0 ]2 · det [PΛ2 Q−1

Ω∗1
PΛ2 ]2

×

×
1∏N

k=1 det
[
W†
√

uk
W√

uk

] = C′
∫

[dφ0dφ†0] e
−|PΛ0 Q−1

Ω∗0
φ0 |

2
∫

[dφ1dφ†1] e−|Q
−1
Λ1,1

φ1 |
2

·

∫
[dφ2dφ†2] e

−|PΛ2 Q−1
Ω∗1
φ2 |

2

·

N∏
k=1

{∫
[dχkdχ†k]e−|W√ukχk |

2
}
,

(26)

where C′ is an irrelevant numerical constant. Each pseudofermion field φi is confined to the corre-
sponding region Λi, i = 0, 1, 2. The N multi-boson fields χk live on the outer boundaries of region Λ1.
We can decompose them as χk = ηk + ξk, with ηk = P∂Λ0χk and ξk = P∂Λ2χk, and split explicitly the
contributions from the inner boundaries of regions Λ0 and Λ2 as

|Wzχk |
2 = |z|2|ηk |

2 + |z|2|ξk |
2 + |P∂Λ2 Q−1

Ω∗1
QΛ1,0ηk |

2 + |P∂Λ0 Q−1
Ω∗0

QΛ1,2ξk |
2

+
[
z(ξk,QΛ2,1 Q−1

Ω∗0
ηk) + z∗ (ξk,Q−1

Ω∗1
QΛ1,0ηk) + c.c.

]
. (27)

The dependence of the bosonic action from the gauge field in block Λ0 and Λ2 is thus factorized.
Interestingly, the terms in Eq. (27) which contribute to the forces in region Λ0 always start (or end) on
the inner boundary of Λ2 and vice versa. The matrices in Eq. (27) contain one boundary to boundary
propagator which is suppressed exponentially in ∆, and so are the corresponding forces.

The factorization of the gauge-field dependence in the bosonic action has been achieved by treating
differently the contributions from the various quark paths to the fermion determinant. Those with no
loops around the inner boundaries of Λ0 and Λ2 have a factorized dependence on the gauge field in
Λ0 and Λ2, and can then be included by introducing the pseudofermion fields φi in each of the three
blocks. The contributions from quark paths with 1 up to N loops around ∂Λ0 and ∂Λ2 are introduced
via the multi-boson fields living on these boundaries and their interactions. The contributions from
higher loops are either negligible within the precision required, or can be associated to the observables
in the form of a reweighting factor, see below.

We are now in the position to formulate a multi-level numerical integration for lattice QCD. A
given correlation function of a string of fields O can be written as

〈O〉 =
〈OWN〉N

〈WN〉N
= 〈Ofact 〉N +

〈OWN − Ofact 〈WN〉N 〉N

〈WN〉N
, (28)

where Ofact is a rather precise factorized approximation of O that can be obtained by expressing the
quark propagators in the fermionic Wick contractions following Eqs. (15) and (17) as in Ref. [11],
and 〈·〉N indicates the expectation value in the theory defined by N multi-boson fields. Since both
the action and the observable are factorized, the expectation value 〈Ofact 〉N can be computed with a
multi-level algorithm by generating gauge field configurations with the multi-boson action at finite N.

5The identity det Q−1
Λ1,1
· det [PΛ0 Q−1

Ω∗0
PΛ0 ] = det Q−1

Ω∗0
can be used to speed up the simulation when region 1 is active.
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Figure 7. Left: the 60 largest eigenvalues δi of w (∆ = 12 a) for 200 configurations; the blue circles have radius
δ̄ = exp{−Mπ∆} and 2 δ̄. Right: distributions of the eigenvalues δi of w with the largest absolute norm (green)
and |δi| > 0.35 δ̄ (grey); the vertical blue line is at |δi| = δ̄.

All other quantities in Eq. (28) can be computed with a standard one-level Monte Carlo procedure.
For two flavors, the reweighting factorWN is

WN = det{1 − RN+1(1 − w)}2 . (29)

This expression is easily evaluated as

WN =

∫
[dη][dη†]e−|(1−RN+1)−1η|2∫

[dη][dη†]e−η†η
, (30)

where the exponent can be computed by a Taylor expansion, and as usual the integral over η can be
replaced by random samples.

7 A crucial numerical test

The feasibility of the whole proposal hinges crucially on the assumption that the spectrum of the
operator (1 − w) is confined into a disk around 1 in the complex plane, with a radius significantly
below unity. Only in this case, a small number of bosonic fields N in Eq. (27) leads to a good enough
approximation at a reasonable computational cost.

To test this assumption, 200 configurations with the Wilson gluonic action and with two flavors of
nonperturbatively O(a)-improved Wilson quarks have been generated in Ref. [10], with β = 6/g2

0 =

5.3, T × L3 = 64 × 323a4 and open boundary conditions. The lattice spacing is a = 0.0652(6) fm,
while the pion mass is aMπ = 0.1454(5) corresponding to 440(5) MeV, see Ref. [10] for more details.

For ∆/a = 8, 12 and 16, 60 approximate eigenvalues δi of w with the largest absolute value
have been computed with the Arnoldi algorithm. In the left plot of Fig. 7 all eigenvalues for all
200 configurations are shown for ∆ = 12 a. As expected, they are either real or appear in complex
conjugate pairs. The blue circles in these plots have radius δ̄ and 2 δ̄, where δ̄ = exp{−Mπ∆}. The
distribution of the eigenvalue with the largest magnitude is shown in green in the right plot of Fig. 7.
It is peaked at a value slightly smaller than δ̄, denoted by a vertical blue line, and extends up to ≈ 2δ̄.



Table 1. Properties of the spectrum of w for different values of ∆.

∆/a δ̄ 〈maxi |δi|〉 σ(maxi |δi|) max maxi |δi|

8 0.3273 0.2886 0.0616 0.5130
12 0.1710 0.1692 0.0453 0.3193
16 0.1072 0.0951 0.0284 0.1977

The results for the largest eigenvalue norm computed over the 200 configurations, its average value
and the estimate of its standard deviation are also reported in Table 1. In the right plot of Fig. 7
we also report in grey the distribution of the absolute value of the eigenvalues limited to those with
|δi| > 0.35 δ̄.

A clear picture emerges from these data. The largest eigenvalue of the relevant operator w de-
creases proportionally to exp{−Mπ∆} in this range of values of ∆, with a prefactor of order 1. This in
turn implies that (1−w) has a large gap if ∆ is properly tuned. The relative error on the determinant at
various values of N compares well with |δ|N+1

max configuration by configuration [10]. No big prefactors
appear because the eigenvalues do not accumulate near the maximum one, and the approximation
gets exponentially more precise toward the center of the circle. The reweighting factor, as defined in
Eq. (30) for N = 12 and estimated with 4 random sources per configuration, deviates from 1 by at
most 4.5 · 10−6, again in line with the expectation. At the level of precision of most contemporary
simulations the impact of the reweighting factor is therefore negligible.

8 Numerical tests of MB-DD-HMC

The effective action in Eq. (26) can be simulated by using variants of the hybrid Monte Carlo algo-
rithm [28]. The introduction of multi-boson fields and the resulting multi-boson domain-decomposed
hybrid Monte Carlo (MB-DD-HMC) do not pose particular problems, see Ref. [10] for more details
on its implementation. For a first test of its potentiality, a subset of n0 = 32 configurations spaced by
at least 80 molecular dynamics units (MDUs) among the 200 described in Section 7 has been selected
in Ref. [10]. Starting from each of them, n1 = 45 level-1 configurations spaced by 4 MDUs have
been generated by keeping fixed the spatial links on the boundaries ∂Λ0 and ∂Λ2 and all the links
in between. The region Λ1 extends between time slices 24 and 35, corresponding to a thickness of
∆ ≈ 0.8 fm and Mπ∆ ≈ 1.7. Maybe the simplest observables to be computed for a first test of the
algorithm are the one- and two-point gluonic correlation functions

Ce(x0) =
1
L3 〈ē(x0)〉 ,

Cee(x0, y0) =
1
L3 〈ē(x0) ē(y0)〉c ,

Cqq(x0, y0) =
1
L3 〈q̄(x0) q̄(y0)〉 , (31)

of the energy and the topological charge densities summed over the time slices

ē(x0) =
1
4

∑
~x

Fa
µν(x)Fa

µν(x) , q̄(x0) =
1

64π2

∑
~x

εµνρσ Fa
µν(x)Fa

ρσ(x) , (32)

with Fµν(x) being the gluon field strength tensor, see Ref. [10] for more details.
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Figure 8. In the left panel, the square root of the variance of the energy density averaged over the time slice x0

is shown. In the frozen central region this does not profit from the level-1 updates, while in the active regions, it
decreases with the square root of their inverse number. The right plot demonstrates the effectiveness of the multi-
level algorithm for the topological charge density correlation function. The time slices x0 and y0 = 30 a − x0 are
chosen such that they are symmetric with respect to the frozen region Λ1. Once |y0 − x0| > 12 a, the densities
enter the active regions where the square root variance decreases with 1/n1. In both plots, the horizontal lines
indicate the ideal scaling behavior as expected from the variance measured at level 0.

The two-level estimates of these quantities have been carried out by first averaging, for each of
the n0 configurations, the densities over the n1 level-1 background fields. This gives the n0 measure-
ments of the improved estimator for the one-point function, while for the two-point correlators the n0
measurements are obtained by multiplying the improved densities. The figure of merit is the variance
of the estimators. In the situation where autocorrelations among the n0 level-0 configurations can be
neglected, the square root of the variance divided by

√
n0 gives the error of the measurement. Since

the cost of the simulation scales linearly in n1, the variance itself should decrease with n1 to break
even.

The square root of the variance of Ce(x0) as a function of x0 is shown in the left panel of Fig. 8
for various values of n1. In the central region, the links are frozen during the level-1 updates. We
therefore do expect the same variance as in the level-0 estimator, but with a larger error since in this
case the number of level-0 configurations is 32 instead of the 200 used in the standard case. Once
the density moves into the active regions Λ0 and Λ2, however, the variance of the estimator is clearly
improved, in agreement with what is expected from ideal scaling, i.e.

√
var(Ce) ∝ 1/

√
n1.

In the right panel the same analysis is shown for the two-point function Cqq, and analogous re-
sults are obtained for Cee. Here the full benefit of the method can be realized, because an improved
estimator can be constructed by averaging for each of the n0 fields the densities in regions Λ0 and Λ2
independently before constructing the two-point function. As optimal scaling in this case we expect
a reduction of the square root of the variance, and therefore the error, with 1/n1. The numerical data
are in agreement with such a reduction once x0 and y0 are in two different active regions.

These results are in line with expectations. In the region where the links are frozen during the
level-1 updates no benefit from the multi-level is observed. As soon as the densities are in the active
regions Λ0 and Λ2, the square root of the variances of the one- and two-point functions are reduced by
1/
√

n1 and 1/n1 respectively. The two-level Monte Carlo works at full potentiality in these regions,
with a net gain of a factor n1 in the signal-to-noise ratio of the two-point function. This in turn implies
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that links in the active regions Λ0 and Λ2 are regularly updated during the level-1 MB-DD-HMC, and
no particular freezing induced by multi-boson fields is observed.

9 Tests of two-level integration for fermionic correlators

So far the effectiveness of two-level integration for fermionic correlation functions has been tested
mostly in the quenched approximation of two flavour QCD. The reason being that the generation of
the gauge field backgrounds is much cheaper, while keeping the essence of the signal-to-noise ratio
problem. Two-level integration has been implemented for zero momentum correlators of two singlet
pseudoscalar densities [10, 11], two non-singlet vector currents [29], a baryon propagator [11], and
meson propagators at non-zero momentum [29]. In all these exploratory studies an impressive gain in
the statistical precision has been observed when a two-level integration is at work.

Due to lack of space, in this section we will briefly summarize the main results for the correlators
of two non-singlet vector currents and for the baryon propagator only. Those correlators have been
computed by discretizing gluons and fermions with the Wilson action, and by imposing open and
periodic boundary conditions in the time and spatial directions respectively [23, 30]. The inverse cou-
pling constant is fixed to β = 6/g2

0 = 6.0, the length of each spatial direction to L = 24 a, and the time
extent to T = 64 a. The lattice spacing is a = 0.093 fm as fixed by assuming a physical value of 0.5 fm
for the Sommer scale r0/a = 5.368 [31]. The up and down quarks are taken to be degenerate with a
mass fixed by the hopping parameter value k = 0.1560, corresponding to a pion of approximatively
455 MeV [32]. A 1000 level-0 independent gauge-field configurations have been generated with the
HMC, and for some of them level-1 configurations have been produced subsequently, see below and
Ref. [11] for more details.

9.1 Non-singlet vector two-point function

For n0 = 50 of the level-0 configurations, n1 = 30 level-1 gauge fields have been generated by
updating independently the gauge field in Λ0 and Λ2 while freezing the links in Λ1. The latter includes
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the time slices between 16 and 23, corresponding to a thickness of ∆ ≈ 0.7 fm and Mπ∆ ≈ 1.7. On all
those configurations the exact Wick contraction of the non-singlet vector-vector correlator has been
computed, for more details see Ref. [29].

On the left plot in Fig. 9, it is shown the effective mass of the vector correlator as a function of the
sink coordinate y0 (the source is kept fixed at x0 = 8a) with (red) and without two-level integration
(black). The data are cut when the relative error reaches 10%. On the right plot it is shown the standard
deviation of the correlator with (red) and without (black) two-level integration both normalized to the
standard deviation with n1 = 1.

A picture similar to the one for the gluonic observables emerges. When the source and the sink
are deep in the two active regions, i.e. y0 > 24a, the square root of the variance is reduced by ≈ 1/n1
signaling that the two-level Monte Carlo is working at full potentiality. With two-level integration,
the plateau in the effective mass turns out to be approximatively 1 fm longer than the one computed in
the standard way. No attempt was made to reach the value of n1 at which the reduction of the variance
starts to slow down.

These results suggest that, when applied to full QCD with light quark masses, the two-level in-
tegration can indeed solve the problem of large statistical errors in the lattice determination of the
hadron contributions to the muon g − 2.

9.2 Baryon propagator

For n0 = 50 level-0 configurations, n1 = 20 level-1 gauge fields have been generated by freezing
the links in Λ1 which, in this case, includes the time slices between 16 and 32, corresponding to a
thickness of6 ∆ ≈ 1.4 fm and Mπ∆ ≈ 3.4. The gauge fields in Λ0 and Λ2 have then been updated
independently. On all those configurations the exact Wick contractions for the baryon propagator CN ,
a factorized approximation C fact

N , and the remainder defined configuration by configuration by

CN = C fact
N + C rest

N , (33)

6The larger ∆ chosen here is due to the particular factorization of the Wick contractions adopted in this case.



have been computed, see Ref. [11] for more details. All of them have been determined starting from
local sources on the time-slice at x0 = 4a. Extensive numerical tests show that the factorized correlator
approximates the exact one at the level of 5 − 10%.

The final results for the correlator with (filled black squares) and without (open squares) the two-
level integration are shown in the left plot of Fig. 10, together with the factorized contribution only (red
circles). Thanks to the two-level Monte Carlo, the signal-to-noise ratio for the factorized contribution
remains larger than 1 for 10 additional time-slices with respect to the standard evaluation. When the
remainder, C rest

N , is added the gain reduces to 5 additional points. The effectiveness of the two-level
integration is better seen on the right plot of Fig. 10, where the standard deviations of the various
contributions are normalized to the one of the exact correlator. For completeness we report also the
normalized standard deviation on our best two-level estimate of the full correlator.

At large time distances, the statistical error on the standard estimate of CN is dominated by the one
on C fact

N . Once the two-level integration is switched on, the error on C fact
N decreases7 roughly as n−1

1 ,
while the one on the remainder continues to scale as n−1/2

1 . The multi-level therefore works at its best
until the red curve on the right plot of Fig. 10 hits the green curve. After that point the statistical error
on the two-level estimate of the correlator is dominated by the one on the remainder, and increasing
n1 is not profitable anymore.

Multi-level simulations of baryon correlation functions solve the problem of the exponential
degradation of the signal-to-noise ratio, and open new perspective for the computation of baryon
masses and matrix elements in lattice QCD.

10 Conclusions

The decomposition of the lattice in overlapping domains leads to a factorization of the gauge-field de-
pendence of the fermion determinant in QCD. Thanks to a multi-boson representation of the (small)
interaction among gauge fields on distant blocks, the resulting action is local in the block scalar and
gauge fields. It can be efficiently simulated by variants of the standard hybrid Monte Carlo algo-
rithm. Being the multi-boson contribution manifestly positive for each single flavour, no additional
impediment is encountered in simulating the strange or heavier quarks. The measurements of local
gluonic observables, such as the energy and the topological charge densities, reveal a good efficiency
of the algorithm in updating the gauge field. No particular freezing of the links is observed. When
combined with the factorization of the fermion propagator, these results pave the way for multi-level
Monte Carlo integration in the presence of fermions, opening new perspectives in lattice gauge theory.

The numerical tests on gluonic and fermionic correlation functions carried out so far prove that
the signal-to-noise ratio in those computations increases exponentially with the time distance of the
sources when a two-level integration is at work instead of the standard one-level Monte Carlo. This
represents a turning point for the computation of many interesting quantities sensitive to Standard
Model and hopefully to beyond Standard Model physics: baryon masses and matrix elements (gA,
. . . , < x >u−d), the hadronic contributions to the muon g − 2, leptonic and semi-leptonic B decays, ρ ,
η′, etc.

The factorization does not require a particular shape of the domains, nor does each of them need
to be connected. What matters is a minimum distance of ≈ 0.5 fm among the blocks which are active
during the level-1 updates. It is therefore already quite clear that its generalization to four dimensions
would localize the simulations of theories with fermions, allow for very large volumes to be generated
in master-field simulations [33], and open lattice QCD to a new class of physics problems.

7With the particular factorization chosen for the baryon propagator, the origin of the gain is due to various factors, see
Ref. [11] for a detailed discussion.



The proposed method relies on two key ingredients: the locality of the Wilson Dirac operator and
a (configuration by configuration) fast decrease of its inverse with the distance between the sink and
the source. The ideas and the computational strategy presented here may, therefore, be applicable to
very different theories with fermions if they enjoy these very basic properties.
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