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Abstract

We explore jet physics in hadron collisions using the parton shower event generator Deductor. Of

particular interest is the one jet inclusive cross section dσ/dpT for jets of very high pT. Compared to the

Born level, the cross section decreases substantially because of pT loss from the jet during showering. We

compare to the same effect in Pythia and Dire. The cross section then increases substantially because of

the summation of threshold logarithms included in Deductor.

We also study the cross section to have a gap with no jets between two hard jets that are widely separated

in rapidity. Here we compare Deductor with virtuality based ordering with Deductor with kT ordering

and we check whether adding an underlying event and hadronization has a significant effect beyond that

found with just a parton shower.
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I. INTRODUCTION

Parton shower Monte Carlo event generators, such as Herwig [1], Pythia [2], and Sherpa

[3], perform calculations of cross sections according to an approximation to the standard model

or its possible extensions. In most such programs, the shower develops with decreasing values

of a parameter that measures of the hardness of interactions: smaller hardness corresponds to a

larger scale of space-time separations. Thus a parton shower is essentially an application of the

renormalization group. It describes how the description of physics changes as one changes the

resolution scale at which a scattering event is examined.

Following this view, we have recently presented a general formulation [4] of how a parton shower

can be defined at any order of QCD perturbation theory by using an evolution equation based on

operators that characterize the infrared singular behavior of QCD with a variable resolution scale.

The current version1 of the parton shower program Deductor [5–13] approximately follows this

framework, although in its current version its splitting functions are available only to order αs.

In Deductor and other parton shower programs, a hard interaction, based on a new physics

model or on the electroweak part of the standard model or on just QCD, initiates an event. At this

stage, there are just a few partons. Then, as the hardness decreases, the partons that carry QCD

color split, making more partons in a parton shower. Thus the program describes the development

of QCD jets.

In this paper, we use Deductor to explore the description of QCD jets created in a 2 → 2

QCD hard scattering. We study two problems.

First, we look at the inclusive cross section to produce a jet with a large transverse momentum,

PT > 0.3 TeV with
√
s = 13 TeV. Here the cross section is falling quickly as PT increases because

the relevant parton distribution functions are falling quickly. This creates two important effects.

One effect is related to the jet definition: any momentum lost from the jet or gained by the jet

changes the cross section dramatically. The other effect arises from threshold logarithms, which,

in a parton shower, arise from the relation between initial state radiation and the evolution of the

parton distribution functions.

Second, we examine the gap survival probability: when two jets are produced with a wide

separation ∆y in rapidity, this is the probability that there are no other jets between these two

with transverse momenta greater than some specified value pcutT . This problem is of interest because

1 Version 2.1.0 of the code, used in this paper, is available at http://www.desy.de/∼znagy/deductor/ and

http://pages.uoregon.edu/soper/deductor/. Matching to a next-to-leading order perturbative calculation of the

hard scattering cross section in included in Ref. [4] but not in Deductor v. 2.1.0.
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its theoretical description involves the summation of logarithms of the ratio of the jet PT to pcutT

and the summation of the large logarithmic factor ∆y. It is not initially evident whether a parton

shower approach can provide a good description of this physics. We compare Deductor results

to NLO perturbation theory and to data from Atlas for
√
s = 7 TeV.

For these studies, we make use of some features of the current version of Deductor, version

2.1.0, that were not available in earlier versions. First, we can add a simple model for a nonpertur-

bative underlying event and we can include the string model of hadronization provided by Pythia.

Second, we can compare results obtained with the default hardness measure of Deductor, which

is based on the virtuality in parton splittings, with results obtained with a transverse momentum

hardness measure. Here we change only the hardness measure that orders splittings, leaving every-

thing else unchanged. Finally, we include factors that sum threshold logarithms [14–59], which are

important when the scale of the hard interaction is large. We included a summation of threshold

logs in an earlier paper [13]. In that paper, the infrared behavior of the threshold contributions

was not sufficiently well controlled, requiring an infrared cutoff. In this paper, we use an improved

version based on the general formulation of Ref. [4]. Then no infrared cutoff is needed. We provide

details of the threshold factor in Appendix II C.

II. NEW FEATURES IN DEDUCTOR

Our analysis is based on the parton shower event generator, Deductor. In this section, we

describe new features of Deductor that are not described in our previous papers [5–13].

A. Non-perturbative effects

Deductor works at the level of perturbative QCD, with perturbative splittings of quarks and

gluons. As the splitting scale becomes softer and softer, perturbation theory ceases to be reliable.

For this reason, the shower stops when the splittings become too soft: splittings with transverse

momenta kT smaller than kmin
T ≈ 1 GeV are not allowed. If we use the parton shower to make

predictions for an infrared safe observable with a large scale, then soft splittings do not matter for

this observable and there is little sensitivity to the infrared cutoff. However, the scale associated

with an infrared safe observable can sometimes be rather small. Then there can be more sensitivity

to physics at the infrared cutoff. To check for this, it may be useful to include non-perturbative

effects that represent the effects of physics with scales smaller than kmin
T .
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To check for sensitivity to infrared effects, we need too things. First, we need a model for soft

scatterings of partons not involved in the primary hard scattering, the “underlying event.” Second,

we need a model for how partons turn into hadrons.

We can include a simple model of an underlying event by using a nonperturbative model designed

for this purpose. The model produces a quark and a diquark with large positive rapidity, a quark

and a diquark with large negative rapidity, and several gluons with intermediate rapidities. All

of these partons carry rather small transverse momenta. This model is, evidently, much less

sophisticated than the model in Pythia. Code for this underlying event model is included in

the Deductor 2.1.0 distribution as part of the suggested user routines that analyze Deductor

events. Thus a user can easily adjust it.

For hadronization, one can hardly do better than to rely on the color string model in Pythia.

The color string model is based on a classical color string state {cf}N that specifies the color

connections among theN final state partons plus two initial state partons that exist at the end of the

shower. What Deductor gives us is a color density operator basis element
∣

∣{c}N
〉〈

{c′}N
∣

∣ [5–13].

The total probability associated with this color density operator basis element is the corresponding

trace of the color density operator,
〈

{c′}N
∣

∣{c}N
〉

. If we use the leading color approximation, then

{c}N = {c′}N . Given the way that the quantum color states are defined [8], it is then evident that

the corresponding classical string state should be {cf}N = {c}N to leading power in 1/N2
c . If we

use the LC+ approximation, available in Deductor, then we can have {c}N 6= {c′}N . In this case

the corresponding total probability
〈

{c′}N
∣

∣{c}N
〉

is proportional to 1/N I
c with I ≥ 1. Then our

hadronization model can be to use Pythia hadronization with {cf}N = {c}N with probability 1/2

and with {cf}N = {c′}N with probability 1/2. This is in fact the lowest order version of a more

general algorithm that is specified in Sec. 8 of Ref. [8]. One could improve this by using a higher

order version of this algorithm, but for this paper we use just the lowest order version because of

its simplicity.

Accordingly, we have created code to take the partonic final state produced by Deductor,

add the underlying event as just described, and write the resulting state, including the classical

color string state {cf}N , to a “named pipe” that is sent to Pythia. This code is included in the

sample user files for Deductor. We also include user code for Pythia that reads the information

from Deductor, instructs Pythia to hadronize the partonic state, then analyzes the resulting

hadronic state.
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B. Shower ordering variable

In Deductor, we order splittings according to decreasing values of a hardness parameter. The

default choice of the hardness, Λ, is based on virtuality. For massless partons, the definition is

Λ2 =
(p̂l + p̂m+1)2

2pl ·Q0
Q2

0 final state,

Λ2 =
|(p̂a − p̂m+1)

2|
2pa ·Q0

Q2
0 initial state.

(1)

Here the mother parton in a final state splitting has momentum pl and the daughters have momenta

p̂l and p̂m+1. For an initial state splitting in hadron A, the mother parton has momentum pa, the

new (in backward evolution) initial state parton has momentum p̂a and the final state parton

created in the splitting has momentum p̂m+1. We denote by Q0 a fixed vector equal to the total

momentum of all of the final state partons just after the hard scattering that initiates the shower.

The motivation for this choice is described in Ref. [10].

One can make other choices for the hardness variable. For instance, one can use the transverse

momentum kT = |kT | in the splitting. Transverse momentum is not a Lorentz invariant concept,

so there are various definitions available. The definition used in Deductor is given in eqs. (B.10)

and (A.8) of Ref. [13]:

k2
T = z(1 − z) (p̂l − p̂m+1)2 final state,

k2
T = (1 − z) |(p̂a − p̂m+1)

2| initial state.
(2)

We define the momentum fraction for a final state splitting by

p̂m+1 · ñl
p̂l · ñl

=
1 − z

z
, (3)

where the auxiliary lightlike vector ñl is defined using the total momentum Q of all of the final

state partons:

ñl =
2pl ·Q
Q2

Q− pl . (4)

For an initial state splitting, z is the ratio of momentum fractions before and after the splitting:

z =
ηa
η̂a

=
pa · pb
p̂a · pb

. (5)

We can change from Λ ordering to kT ordering in Deductor. Doing that allows us to investigate

the extent to which the choice of ordering variable really matters. With kT ordering, the k2
T of

each splitting is required to be smaller than the k2
T of the previous splitting. With Λ ordering, the
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Λ2 of each splitting is required to be smaller than the Λ2 of the previous splitting. In our numerical

investigations in this paper, we look at jet production, which begins with a 2 → 2 scattering that

produces two partons with equal absolute values of transverse momenta, PBorn
T . The Born cross

section is calculated with a factorization scale µ2f and renormalization scale µ2r. We set µ2r = µ2f

and

µf =
1√
2
PBorn
T . (6)

The motivation for this choice is that the next-to-leading order (NLO) one jet inclusive cross section

is quite stable with respect changes in µ2f near this point. We then need to choose the scale µ2s at

which the parton shower starts. With kT ordering, the first splitting is required to satisfy k2
T < µ2s

where

µs = PBorn
T kT ordering. (7)

With Λ ordering, the first splitting is required to satisfy Λ2 < µ2s , where we make a different choice

for µs. We recognize that the transverse momentum for the first splitting is intrinsically smaller

than Λ2: k2T = (1 − z)Λ2 for an initial state splitting or k2T = z(1 − z)Λ2 for a final state splitting.

In either case, 0 < (1− z) < 1. Thus, Λ2 for the first splitting is on average quite a lot larger than

k2T for this splitting. Accordingly, we choose

µs =
3

2
PBorn
T Λ ordering. (8)

There is an additional requirement in the case of initial state splittings with Λ ordering. In

successive initial state splittings, the factor 2pa·Q0 in Eq. (1) can grow, so that successive virtualities

|(p̂a − p̂m+1)
2| can grow even while successive Λ2 values get smaller. We require that for each

splitting, |kT| < PBorn
T , where, as above, PBorn

T is the transverse momentum in the hard 2 → 2

scattering that initiates the shower. In this way, we ensure that the hard scattering is indeed the

hardest scattering in the whole event. This is discussed in Sec. 5.4 of Ref. [10], although we now

replace Eq. (5.30) of Ref. [10] by |kT| < PBorn
T .

C. Threshold logarithms

We have presented a general analysis [4] of the structure of parton showers at any order of

perturbation theory. In this treatment, there is a factor associated with the summation of threshold

logarithms,

UV(µ2f , µ
2
s ) = T exp

(

∫ µ2
s

µ2

f

dµ2

µ2
SV(µ2)

)

. (9)
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Here µ2 is the hardness scale, which runs between the scale µ2s at which the shower starts and

the scale µ2f at which the shower is stopped. The scale µ2s is of the order of the scale of the hard

interaction, while µ2f is much smaller, typically of order 1 GeV2. The integrand is well behaved in

the infrared, so that the integral is not sensitive to the value of µ2f .

We included a summation of threshold logarithms in an earlier paper [13]. The important

change between that treatment and the treatment of threshold logarithms in Ref. [4] lies in the

fact that UV(µ2f , µ
2
s ) in Eq. (11) is a single operator that acts on the state at the start of the shower.

In Ref. [13], it was divided into smaller factors that acted on the states at intermediate stages of

shower development. This led to an unphysical sensitivity to small scales, all the way down to the

shower cutoff µ2f . To avoid this, we inserted an ad hoc infrared cutoff into the threshold factors.

The general analysis of Ref. [4] indicates that there should be a single threshold factor as in Eq. (9).

The operator SV(µ2) has an expansion to any order in αs. The notation of Ref. [4] is adapted to

working to arbitrary perturbative order. For this paper, we need only its first order contribution,

S(1)
V (µ2). Since we want to work only to first order, it is most convenient to use the notation

of Ref. [13] and previous Deductor papers [5–12] instead of the notation of Ref. [4]. In the

notation of Ref. [13], the first order splitting operator HI(µ
2) acts on a state

∣

∣ρ
)

with m final state

partons and creates a state with m + 1 final state partons. The inclusive probability associated

with HI(µ
2)
∣

∣ρ
)

is denoted
(

1
∣

∣HI(µ
2)
∣

∣ρ
)

. There is another operator, V(µ2), that leaves the number

of partons, their momenta and flavors unchanged. It is defined by integrating the parton spitting

functions over the splitting variables z and φ, so that

(

1
∣

∣V(µ2)
∣

∣ρ
)

=
(

1
∣

∣HI(µ
2)
∣

∣ρ
)

(10)

for any
∣

∣ρ
)

. This is the operator that, after approximations for color and spin, appears in the

Sudakov exponent that comes between parton splittings.

When we evaluate SV(µ2) at order αs and use the notation of Ref. [13], the threshold operator

in Eq. (9) is

UV(µ2f , µ
2
s ) = T exp

(

∫ µ2
h

µ2

f

dµ2

µ2
[

V(µ2) −
{

S(µ2) − Siπ(µ2)
}]

)

. (11)

Here the operator S(µ2) has two contributions. One comes from the operator F(µ2) that multiplies

by the proper parton distribution functions to make a cross section. The derivative of F(µ2) with

respect to the scale contributes to S(µ2). There is also a contribution Spert(µ2) that comes from

virtual graphs. The total is

S(µ2) = Spert(µ2) −F(µ2)−1

[

µ2
d

dµ2
F(µ2)

]

. (12)
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The operator Spert(µ2) has a contribution Siπ(µ2) from the imaginary part of the one loop graphs.

We remove this term. It belongs in the Sudakov exponent rather than the threshold factor because,

although it changes parton colors, it preserves probabilities. We have, in fact, not included Siπ(µ2)

in the Deductor code used in this paper.

An exact treatment of leading threshold logarithms requires an exact treatment of color, which

is available in the general formalism of Ref. [5]. The exact color treatment is not implemented in

the code of Deductor. Rather, we are able to use only an approximation, the leading-color-plus

(LC+) approximation [8]. The LC+ approximation consists of simply dropping some terms that

appear in the exact color formulas.

We could simply use S(µ2) and V(µ2) as given in Ref. [13] to construct the threshold factor (11).

However, we have found that some of the integrations that go into these operators can be performed

so that they are accurate in a wider range of the kinematic variables compared to Ref. [13]. Thus

we use the improved versions of S(µ2) and V(µ2) in Deductor v. 2.1.0. We explain the changes

relative to Ref. [13] in Appendix A.

There is a factor associated with parton distribution functions that is related to the summation

of threshold logarithms. Deductor begins with a Born color density matrix consisting of a sum

of products of matrix elements
∣

∣M
〉〈

M
∣

∣ and parton factors

pdf[LO] = fMS,NLO
a/A (ηa, µ

2
f) fMS,NLO

b/B (ηb, µ
2
f) . (13)

For this paper, we use the CT14 NLO parton distributions [60]. Then with a “standard” shower

(std.) we apply a probability preserving shower, still starting with the same parton factor:

pdf[std.] = fMS,NLO
a/A

(ηa, µ
2
f) fMS,NLO

b/B
(ηb, µ

2
f) . (14)

The shower splitting functions use parton distribution functions fa/A(ηa, µ
2) and fb/B(ηb, µ

2) that

are adapted to the definition of the parton shower. These are described in Ref. [4] and in Ref. [13].

With kT ordering, fa/A(ηa, µ
2) and fb/B(ηb, µ

2) are just MS parton distribution functions with

leading order evolution, fMS,LO
a/A (ηa, µ

2).2 With Λ ordering, there is a substantial difference between

fa/A(ηa, µ
2) and fMS,LO

a/A (ηa, µ
2). We define all of these parton distribution functions to agree at a

low scale µ2f . (See Appendix B of Ref. [4] and Sec. 4.1 of Ref. [13].) They differ in their evolution

equations.

2 There is a small difference that arises from the fact that in the dimensionally regulated definition of the MS parton

distribution functions, a gluon has 2 − 2ǫ polarization states instead of 2 polarization states. See Appendix B of

Ref. [4]. We ignore this difference in this paper.
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The full result (full) given by Deductor includes the factor UV(µ2f , µ
2
s ) from Eq. (11) and a

modified parton factor,

pdf[full] = ZaZb f
MS,NLO
a/A (ηa, µ

2
f) fMS,NLO

b/B (ηb, µ
2
f) . (15)

where

Za =
fa/A(ηa, µ

2
s )

fMS,LO
a/A (ηa, µ2s )

, Zb =
fb/B(ηb, µ

2
s )

fMS,LO
b/B (ηb, µ2s )

. (16)

To a good approximation, the MS parton distribution functions cancel in pdf[full], leaving just

fa/A(ηa, µ
2
s ) fb/B(ηb, µ

2
s ). However, this cancellation is not exact because we define the denomi-

nators in Za and Zb at a scale µ2s and with just lowest order evolution so that it matches the

numerator except for the change of evolution kernels.

The factor ZaZb equals 1 with kT ordering, but it can be substantially larger than 1 with Λ

ordering. It is part of the summation of threshold logarithms, as described in Secs. 4.2 and 9.4 of

Ref. [13].

III. NUMERICAL RESULTS

In this section, we use the new version of Deductor to address questions in jet physics.

A. One jet inclusive cross section

We begin with the one jet inclusive cross section dσ/dPT as calculated in Deductor with Λ

ordering for jets with |yjet| < 2 for the LHC at 13 TeV. We use CT14 NLO parton distributions [60].

The jets are defined with the anti-kT algorithm [61, 62] with R = 0.4. We set the renormalization

and factorization scale in the hard cross section to µr = µf = PT/
√

2.

Deductor starts with the Born cross section for two jet production. It would, of course, be

best to put in the right NLO matrix elements and subtractions to make match the shower to the

NLO jet cross section [63–83]. In principle, this is straightforward in the Deductor framework

[4]. However, we have not developed the code to do this. Thus the parton shower needs to do as

good a job as possible to calculate the cross section accurately. For this purpose, it is important to

include the threshold factors UV(µ2f , µ
2
s ), Eq. (9), and ZaZb, Eq. (16), and to make a sensible choice

for the starting scale µs of the shower. We use Eq. (8) for µs in the default Λ ordered shower.

In Deductor, we use the LC+ approximation for color, with the maximum color suppression

index, as defined in Ref. [8], set to 4. This means that contributions suppressed by more than
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FIG. 1. One jet inclusive cross section dσ/dPT for the production of a jet with transverse momentum PT

and rapidity in the range −2 < y < 2. The cross section is for the LHC at 13 TeV. We use the anti-kT

algorithm [61] with R = 0.4. The solid red curve is dσ(full)/dPT, obtained with threshold effects. The

dashed black curve is an NLO calculation [84].

1/N4
c are dropped. Note, however, that only some, but not all, of the terms proportional to 1/N2

c

and 1/N4
c are retained in the LC+ approximation.

We show the Deductor result for dσ(full)/dPT as the solid red curve in Fig. 1. Here “full”

refers the calculation including all contributions. We also show, as a black dashed curve, the purely

perturbative NLO cross section [84] with the same parton distribution functions and scale choices.

We see that the parton shower calculation matches the NLO calculation reasonably well.

In the following subsections, we will examine the jet cross section in more detail. Since it is

not easy to see details in a plot like that in Fig. 1 in which the cross section falls by nine orders of

magnitude, we will show ratios of calculated cross sections as functions of PT.
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FIG. 2. Ratio of the one jet inclusive cross section dσ/dPT calculated by Deductor with an underlying

event and with hadronization by Pythia to the same cross section calculated by Deductor with no non-

perturbative input.

B. Underlying event and hadronization

The Deductor results presented above represent a purely perturbative parton shower, with an

infrared cutoff at around a 1 GeV scale for the transverse momentum of splittings. One can wonder

whether nonperturbative effects from an underlying event or hadronization can significantly affect

the jet cross section.

We include an underlying event using the simple model described in Sec. II A and then let

Pythia hadronize the event as also described in Sec. II A. In Fig. 2, we show the ratio of the

jet cross section dσ/dPT calculated with an underlying event and hadronization to the same cross

section calculated at the parton level. We use the anti-kT jet algorithm with R = 0.4. We see

that the underlying event and hadronization changes the cross section by only about 2%. This is

a small effect, so in the remainder of this section we work only at the partonic level.
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C. Effect of jet finding

The intuitive picture of a jet is that it is a parton created in a hard interaction. However, this

picture does not closely match reality, as we can see by simulating reality with a parton shower.

At the Born level, one has just two final state partons, with pT,1 = −pT,2. After showering, we

have many final state partons, which are grouped into jets. The jet PT is typically quiet close to

|pT,1|. However, it can be larger if a parton from an initial state splitting enters the jet. It can

be smaller if a parton from a final state splitting leaves the jet. Additionally, PT can be either

larger or smaller than |pT,1| if the jet recoils against an initial state emission. These effects have

the potential to substantially change the cross section because the cross section falls very steeply

as a function of PT.

We can examine this effect in Deductor by turning off the threshold factor. We call the

resulting cross section dσ(std.)/dPT because it is the result of a standard probability preserving

shower. Then we look at the ratio to the Born cross section, dσ(LO)/dPT:

r(PT) =
dσ(std.)/dPT

dσ(LO)/dPT
. (17)

In this section, we use the anti-kT jet algorithm with R = 0.4. We can do the same thing using the

parton level showering produced by Pythia and Dire. Here, there is no threshold factor to turn

off. We choose µF = µR = PT/
√

2 at the level of the hard scattering and use CT14 NLO parton

distributions in each case. For other parameters, we use the default choices in Pythia and Dire.

For Deductor, we use the parameters from Sec. III A.

We exhibit r(PT) for Deductor, Pythia, and Dire in Fig. 3. We can make three observations.

First, the three shower programs give substantially different results for r(pT). Second, r(pT) for

Deductor and, to a lesser extent for Dire, is substantially smaller than 1. Third, there is some

dependence on pT, but it is not large. One would expect that the effect of the jet algorithm would

depend on the value of R: for smaller R, it should be much easier for partons to be radiated out

of the jet, so that r(PT) should be smaller. To investigate this, we exhibit in Fig. 4 the same plot

for R = 0.2 and R = 0.7. We see that, indeed, for smaller R, r(PT) is indeed smaller, while r(PT)

is larger for larger R. In fact, according to Dire, r(PT) is close to 1 for R = 0.7 while according

to Pythia, r(PT) is greater than 1 for R = 0.7.

We can explore the difference among the three parton showers by plotting r(2 TeV) versus

log(1/R). We see that all three programs give approximately straight lines in this plot. We see

also that the slopes as determined from the R = 0.4 and R = 0.2 points are not very different
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among the three programs. This is to be expected since the slopes dr(PT)/d log(1/R) are given

rather directly by perturbation theory [85–87]. We also note that the three programs give very

different results at fixed R, for instance at R = 0.4.

Why do the three programs give different results at R = 0.4? We can get some idea by

calculating a function f(z) that gives an effective distribution of jets in a parton as a function of

the ratio of the jet PT to the parton pT. For a theoretical analysis of f(z) see Ref. [87]. In nature,

of course, we do not have access to the parton that initiates a jet, but in a parton shower program,

we do. Each event starts with a Born level 2 → 2 scattering that produces two final state partons

with pT,1 = −pT,2. We define PBorn
T = |pT,1|. We select events in which the two initiating partons

have PBorn
T close to 3 TeV, 2.8 TeV < PT < 3.3 TeV, and for which |y1| < 2 and |y2| < 2. For

these events, we look at the final state after showering. We look at all final state jets with rapidity

|y| < 2 and transverse momentum PT and define

z =
PT

PBorn
T

. (18)

Then we define f(z) dz to be the ratio of the number of final state jets in a range dz to the number

of Born level partons in the sample, which is twice the number of events in the sample. We display

f(z) in Fig. 6. For z > 1.01, we see that f(z) for Dire (in black) and Deductor (in red) are close

to each other while and f(z) for Pythia (in blue) is larger. With a steeply falling PT spectrum,

this increases the Pythia after-showering cross section. It may be surprising to have jets with

more transverse momentum than the initiating parton, but it can easily happen. When there is a

parton emitted from the initial state, the two original partons recoil in the opposite direction in

order for transverse momentum to be conserved. Thus an initial state emission in the direction

opposite to the observed jet increases the transverse momentum of the jet.3 It appears that this

effect is bigger in Pythia than in Dire or Deductor.

For z < 0.99, f(z) for Pythia and for Dire are close to each other while f(z) for Deductor is

larger. It seems plausible that this happens because Deductor has more final state radiation out

of the jet. More radiation out of the jet makes f(z) larger for z < 1. Here the cone size, R = 0.4

is not particularly small, so this is wide angle radiation. To see how this happens in more detail,

3 We thank Gavin Salam for this observation.
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we fit f(z) according to Pythia, Dire, and Deductor in the range 0.8 < z < 0.97:

f(z;Pythia) ≈ 2.10
1 − 0.9

1 − z
− 1.61

log(1 − z)

log(1 − 0.9)
− 0.41 ,

f(z;Dire) ≈ 1.82
1 − 0.9

1 − z
− 0.41

log(1 − z)

log(1 − 0.9)
− 0.10 ,

f(z;Deductor) ≈ 1.91
1 − 0.9

1 − z
+ 0.61

log(1 − z)

log(1 − 0.9)
− 0.53 .

(19)

In each case, we find that around z = 0.9, f(z) is dominated by a term proportional to 1/(1 − z).

This is expected from the 1/(1 − z) singularity from soft gluon emissions. In each case, there

is also a term with a weak log(1 − z) singularity and a constant term. The coefficient of the

1/(1 − z) leading singularity for Deductor lies between the corresponding coefficients for Pytia

and Dire, but the differences are small. To a good approximation, the differences between f(z)

for Deductor and Dire or Pythia have only a constant term and a log(1 − z) term. It is not a

surprise that there are differences between Deductor splitting and Dire or Pythia splitting that

are only weakly singular. The Deductor splitting kernel has contributions corresponding to soft

interference diagrams in an eikonal approximation and then “direct” terms whose collinear limit is

the DGLAP evolution kernel. However, the direct terms are not obtained from the DGLAP kernel

but are rather designed to approximate as closely as possible the Feynman diagrams from which

the DGLAP kernel is derived [5]. On the other hand, Dire and Pytia are based more closely on

the DGLAP kernel.

It is good to understand the differences between the three results Fig. 6, but it is important

to appreciate also their similarities. In each case, we have a function that is strongly peaked near

z = 1. The rather small differences in f(z) lead to substantial differences in dσ/dPT because the

cross section falls so steeply with PT.

D. Effect of the threshold factors

The threshold factors UV(µ2f , µ
2
s ) from Eq. (11) and ZaZb from Eq. (16) are included in De-

ductor. A factor similar to UV(µ2f , µ
2
s ) was included in an earlier version of Deductor that we

used for Ref. [13]. However, in this version we did not have the general results of Ref. [4] and con-

sequently did not have the proper organization for the threshold effect. As a result, the threshold

effects were contaminated by soft scale physics. To eliminate this contamination, we had to use

an ad hoc infrared regulator. With the organization from Ref. [4], we have a single factor in which

the integral over µ2 in Eq. (11) is well behaved in the infrared, so that no regulator is needed.
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FIG. 3. Ratio r(PT) of the one jet inclusive cross section dσ/dPT calculated after showering to the cross

section at the Born level according to (from top to bottom) Pytia, Dire, and Deductor.
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section at the Born level for R = 0.2 and for R = 0.7. The labelling is the same as in Fig. 3.
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FIG. 5. Ratio of the one jet inclusive cross section dσ/dPT calculated after showering to the cross section

at the Born level at PT = 2 TeV versus log(1/R) for (from top to bottom) Pythia, Dire, and Deductor.

In this subsection, we examine the effect of the threshold factors. We look first at the inclusive jet

cross section with R = 0.4 calculated with Deductor with Λ ordering using the parameters from

Sec. III A. In Fig. 7, we plot ratios K of the cross sections calculated with various approximations

“A” to the purely perturbative NLO cross section,

K(“A”) =
dσ(“A”)/dPT

dσ(NLO)/dPT
. (20)

First, in black (dashed), we plot K(LO) using the Born cross section in the numerator. We see

that K(LO) is rather close to 1. That is, with the choice of µ2R and µ2F that we use, the LO cross

section is fairly close to the NLO cross section.

Next, in blue, we plot K(std.) using Deductor with the threshold factors turned off, so that

we have a standard probability preserving parton shower. Showering reduces the cross section

substantially, multiplying it by a factor of roughly 0.6. This is the effect that we examined in

section III C.
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FIG. 6. Effective distribution of jets in a parton, f(z) for Pythia, Dire, and Deductor for R = 0.4 jets

with PT ≈ 2 TeV.

Next, in red, we plot K(full) using Deductor including the threshold factors. We see that the

threshold factors increase the cross section by a factor that ranges from about 1.3 at PT = 0.3 TeV

to more than 2 at PT = 3.5 TeV. With both showering and the threshold factors included, the full

cross section is quite close to what one gets with an NLO calculation.

There is a calculation of de Florian, Hinderer, Mukherjee, Ringer and Vogelsang (FHMRV) [41]

that is relevant to this analysis. This calculation sums threshold logarithms and also the logarithms

of 1/R that arise from the jet definition. These authors then expand the analytic result perturba-

tively to either NLO or NNLO. We show as a green dash-dotted line the ratio K(FHMRV NLO)

from this calculation expanded to NLO. We note that this result is pretty close to the purely

perturbative NLO result. We also show as a purple dashdotted line the ratio K(FHMRV NNLO)

corresponding to the NNLO calculation. It is puzzling to us that K(FHMRV NNLO) decreases

with increasing PT.

How do these results depend on the cone size? In Fig. 8, we show the results for R = 0.2 on the
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left and for R = 0.7 on the right. We see that for R = 0.2 there is a bigger drop going from the

LO cross section to the std. cross section, while for R = 0.7 the drop is smaller. This is the effect

that we investigated in Sec. III C. On the other hand, the threshold factors that take us from the

std. result to the full result are independent of R. In the end, the full Deductor cross section is

fairly close to the NLO cross section.

How do the results depend on the choice of ordering variable for the shower? In the results

presented above, we used Λ, Eq. (1), as the ordering variable. This is the default in Deductor.

However, we can choose kT, Eq. (2). Then instead of Fig. 7 we get Fig. 9. The Deductor(std.)

result is modified a little. The main difference is that with kT ordering, the threshold effect is quite

a lot smaller at large PT than with Λ ordering. The result is that the Deductor(full) result is

30% smaller than with Λ ordering.

We believe that we can draw two robust conclusions from these results. First, the effect of

applying the jet definition to the partons emerging from the hard scattering is substantial. Second,

the threshold effects are substantial. These substantial effects act in opposite directions, so that

they tend to cancel each other out. That is, the perturbative calculation of dσ/dpT beyond lowest

order involves large effects that tend to cancel. These cancellations appear at all orders of pertur-

bation theory. In particular, they occur within the NLO calculation. Thus, the NLO calculation

is more delicate than is at first apparent.

E. Gaps between jets

Consider an event with two high-PT jets that are separated by a large difference ∆y in rapidity.

We can define a gap fraction f to be the ratio of the cross section to produce the two jets to the

cross section to produce the two jets and produce no more jets with transverse momenta above

some cutoff pcutT in the rapidity interval between the two high-PT jets. It is of some importance to

understand the gap fraction f because it is often useful in experimental investigations to impose a

requirement that there be some minimum number of high pT jets in an event but no jets beyond

this that have pT greater than some value pcutT .

In addition, the behavior of f as a function of how the gap is defined is a matter of substantial

theoretical interest because it brings together several issues concerning the structure of QCD.

Many of these issues are reviewed in Ref. [88]. At a first level in an analytic summation of leading

logarithms [89, 90], one uses the exponential of a Sudakov exponent constructed from one loop

graphs for the virtual exchange of a low transverse momentum gluon. There are further subtleties
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Fig. 7.

in the analytic treatment. When the rapidity separation ∆y between the leading jets is large, factors

of ∆y in the exponent are especially important [91]. There can also be “non-global” logarithms

with a different structure than seen in the simplest analytic treatment [92–95]. Furthermore, some

of these logarithms are “super-leading” in the sense of having more powers of logarithms per power

of αs than one gets in the simple analysis [88, 96–98].

We will compare to results from Atlas [99]. In the Atlas results, pcutT is fixed and the gap fraction

f is plotted as a function of the transverse momentum of the hard jets. Specifically, Atlas uses a

data sample at
√
s = 7 TeV. Jets are defined using the anti-kT algorithm [61] with R = 0.6. All

jets in the rapidity window −4.4 < y < 4.4 are considered if they have pT > pcutT = 20 GeV. Of

these jets, the two jets with the highest pT are selected. Of the two leading jets, let jet 1 have the

highest rapidity and let jet 2 have the lowest rapidity. The event is characterized by the rapidity

difference ∆y = y1 − y2 and the average transverse momentum p̄T = (pT,1 + pT,2)/2. The event
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has a gap if there is no jet (with pT > pcutT ) in the rapidity range y1 < y < y2. Only a fraction f

of events with a given ∆y and p̄T has a gap.

There are a number of comparisons of the Atlas data to theory. Of these, we mention the

approach in Ref. [100], which looks for places in which the summation of ∆y factors are important.

The paper [101] uses α2
s +α3

s perturbation theory matched to the Sherpa parton shower, obtaining

a good match to the data.

We will use Deductor, but also compare to purely perturbative results. We write the gap

fraction in the form

f(p̄T,∆y) = 1 − dσ3/[dp̄T d∆y]

dσ2/[dp̄T d∆y]
. (21)

Here dσ2/[dp̄T d∆y] is the cross section to produce at least two jets in the rapidity window −4.4 <

y < 4.4 such that the two jets in the rapidity window with the largest pT satisfy p̄T = (pT,1+pT,2)/2

and ∆y = |y1−y2|. This is an infrared safe jet cross section for which the lowest order contribution

has two partons in the final state. We calculate this cross section at NLO using NLOJet++

[102]. In the numerator, dσ3/[dp̄T d∆y] is the cross section to produce at least three jets in the

rapidity window −4.4 < y < 4.4 such that the two jets in the rapidity window with the largest

pT satisfy p̄T = (pT,1 + pT,2)/2 and ∆y = |y1 − y2| and such that there is a third jet with

min(y1, y2) < y3 < max(y1, y2) and pT,3 > pcutT . This is an infrared safe jet cross section for which

the lowest order contribution has three partons in the final state. Again, we calculate this cross

section at NLO using NLOJet++.

A similar calculation was carried out in Ref. [103]. In this calculation, f(p̄T,∆y) was expanded

in powers of αs and only the α1
s and α2

s terms were retained. The outcome was that for ∆y > 3

the perturbative result became unstable and could not come close to the experimental result. Our

approach is to keep the numerator and the denominator in Eq. (21) as units that each represent

sensible physical cross sections and should not be disassembled.4 Nevertheless, given that there

are large logarithms in this problem, one may expect that the perturbative formula in Eq. (21) will

fail to match experiment.

For the purpose of capturing the effects seen in analytical summations of logarithms, there may

be an advantage to using a parton shower approach in place of analytical summations since, in

principle, a parton shower can trace complex patterns involving the emission of real gluons and the

subsequent virtual exchanges between these gluons. However, a better treatment of color within

the shower is needed to realize this potential advantage. Furthermore, the analytic treatments

4 Thus we use the 1/1 Padé approximant for f/αs instead of the 1/0 Padé approximant.
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suggest that exponentiated logarithms of ∆y are crucial. This suggests that a rapidity-ordered

treatment might be desirable, as in Ref. [100]. We do not have a rapidity ordered shower, but we

can choose Λ ordering or kT ordering. What can happen is not completely intuitive. For instance,

suppose that the Born hard scattering produces partons 1 and 2 with 0 = pBorn
T,1 + pBorn

T,2 . Then an

initial state emission can produce parton 3. But partons 1 and 2 must then recoil against parton

3 so that in the new state 0 = pT,1 + pT,2 + pT,3. Then it is possible that partons 1 and 3 are the

highest PT jets in the final state and a somewhat softer parton 2 lies in the gap between partons

1 and 3. It can also happen that parton 3 is created in a soft, wide angle emission and is the

smallest PT jet and, furthermore, lies in the gap between partons 1 and 2. It can also happen that

Λ ordering can give one shower history, say (1, 2) → (1, 2, 3) while kT ordering can give a different

shower history for the same parton momenta, say (1, 3) → (1, 2, 3). Then the same state (1, 2, 3)

can be reached with different probabilities. We discuss some of the issues in Ref. [10]. We do not

attempt a similar analysis here. However, we do calculate the same gap survival probability with

Deductor changing only the ordering variable in order to see if one ordering gives a clearly better

description of the Atlas data.

Given the theoretical issues, it is of interest to ask whether one gets anywhere near the Atlas data

using Deductor with its LC+ treatment of color (which is nowhere near a full color treatment)

and with the iπ contributions from virtual graphs omitted in the current version of the program.

Furthermore, it is of interest to investigate whether the choice of Λ ordering versus kT ordering

makes a difference and whether non-perturbative effects make a difference. We do not have code

to match Deductor to an NLO perturbative calculation, so we cannot expect the accuracy of

Ref. [101]. However, there is some advantage to this calculation because we can see how well

Deductor by itself can do without matching its first emission to a perturbative result. We can

then separately check how well a purely perturbative calculation does.

We begin with the question of whether, for a measurement controlled by a parameter pcutT =

20 GeV, non-perturbative effects at a scale of 1 GeV might be important. To perturbative De-

ductor events we add an underlying event and then send the event to Pythia as described in

Sec. II A. We calculate the difference

∆f = f(Deductor & Pythia) − f(Deductor) . (22)

We display the results as a function of p̄T in Fig. 10 for the case 2 < ∆y < 3. There are some

evident statistical fluctuations but the result is clear: there is an effect, but it is no larger than 5%.

Since the non-perturbative effects make so little difference, in subsequent plots we work at just the
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partonic level.

Now we examine the effects of logs of p̄T/p
cut
T and factors of ∆y by using three different methods

to calculate f as a function of p̄T in five different ranges of ∆y. We show the results in Fig. 11

along with the data from Atlas [99].

We begin with the purely perturbative result (plotted as a green dash-dotted line) calculated

at NLO according to Eq. (21). For very large ∆y or log(p̄T/p
cut
T ), the perturbative result must

fail because it does not sum large logarithmic factors. Indeed, we see that the perturbative result

lies under the data for αs ∆y log(p̄T/p
cut
T ) >∼ 1, for instance, for p̄T > 150 GeV when 4 < ∆y < 5.

However, it seems to us remarkable that the perturbative result is quite close to the data for smaller

values of p̄T and ∆y and that it is within 0.2 of the data for the whole range of p̄T and ∆y for

which data is available. This is the opposite qualitative conclusion to that obtained from a purely

perturbative expansion [101] instead of Eq. (21). This suggests that while a summation of factors

of ∆y log(p̄T/p
cut
T ) is very interesting for QCD theory, it is not numerically dominant in most of

the range covered by the data.

We next turn to calculations with Deductor with two choices for the ordering variable, as

described in Sec. II B. The results with the default ordering variable Λ are plotted in red while

the results with kT ordering are plotted in blue. We use the scale choices specified in Sec. II C.

We see that the data are reasonably well described by Deductor with either Λ or kT ordering.

The match is closer with Λ ordering, but given the inherent uncertainties of a calculation with a

leading order parton shower based on a leading order hard scattering, we judge that there is not a

clear preference of one ordering choice over the other.

Ref. [101] found that a Sherpa leading order shower matched to α2
s +α3

s perturbation theory for

the hard scattering matched data very well. Since since the Deductor shower with either ordering

variable starting from just an α2
s hard scattering is not to far from the higher order perturbative

results, we expect that the Deductor showers matched to NLO perturbative results would also

agree well with data.

IV. CONCLUSIONS

We have modified Deductor to include

• the ability to change between the default virtuality based ordering parameter Λ and a trans-

verse momentum ordering parameter kT;
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FIG. 10. Change ∆f in the gap fraction for 2 < ∆y < 3 when nonperturbative effects are added.

• the ability to include non-perturbative physics by adding a simple underlying event and

sending events to Pythia for hadronization;

• a summation of threshold logarithms according to the lowest order version of the formulation

in Ref. [4].

A version of the threshold factors was given in Ref. [13], but in this version, there was an unphysical

dependence on low momentum physics. With this earlier formulation one had to use an ad hoc

cutoff parameter to get physically reasonable results. The all-order formulation of Ref. [4] shows

how the threshold factor should appear.

In this paper, we have used the new version of Deductor to investigate two features of jet

physics. We are using a lowest order parton shower. A leading order shower can be matched to

an NLO perturbative calculation. In principle, this is straightforward [63–83]. For Deductor, we

would use the construction of Ref. [4], in which the subtraction terms that remove the divergences

from the NLO calculation are directly related to the shower splitting functions. However, we have
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not carried out this construction. Matching would improve the precision of the results and would

remove much of the sensitivity to the starting conditions of the shower. Without matching, we can

look for large effects, but we miss the finer details. Nevertheless, we find that there are interesting

large effects.

We first investigated the one jet inclusive cross section at large values of the jet transverse

momentum PT. We find that non-perturbative physics is not important for this cross section. We

find that the difference between a jet and a parton is numerically highly significant: the jet cross

section is substantially affected by parton showering. The cross section after showering is smaller

than it was before showering, particularly for smaller values of the jet radius R. This effect depends

on what is built into the parton shower. We see a more pronounced effect with Deductor than

with Dire or Pythia. It appears that Deductor has more wide angle emissions that are away

from the strict soft emission limit. We also find that the threshold factor is important at large PT.

In fact, with Deductor, the threshold factor is large enough to cancel the loss of jet cross section

from showering, leaving a cross section that is close to the NLO jet cross section. Other parton

shower programs lack the threshold summation. We also find that with kT ordering, the threshold

factor is smaller than with Λ ordering, but is still substantial.

We next investigated the gap fraction: in events with two two high-PT jets that are separated

by a large difference ∆y in rapidity, this is the fraction of events in which there are no jets above

a minimum pT in the rapidity interval between the jets. There are a number of subtle theoretical

issues associated with the gap fraction, so it is not obvious how well a parton shower should describe

the physics. We find that non-perturbative physics is not important for the gap fraction. We then

find that Deductor with Λ ordering reproduces reasonably well Atlas data for the gap fraction.

With kT ordering, the agreement is also reasonably good. Finally, an NLO perturbative calculation

without showering matches the experimental results well when p̄T/p
min
T and ∆y are not too large

and is not far off in the entire range of p̄T/p
min
T and ∆y for which there are data.
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Appendix A: The threshold factor

The threshold factor, as given in Eq. (9) is

UV(µ2f , µ
2
h) = T exp

(

∫ µ2
h

µ2

f

dµ2

µ2
SV(µ2)

)

. (A1)

This is in the notation of Ref. [4]. It is instructive to see how Eq. (A1) is translated to the notation

of Ref. [13]. The first step is to approximate Eq. (A1) by using only the first order version, S(1)
V (µ2),

of SV(µ2). According to Eq. (D.26) of Ref. [4], we have

S(1)
V (µ2) =

[

µ2s
∂

∂µ2s
V(1)
ao (µ2, µ2s )

]

µ2
s=µ2

−F−1(µ2)

[

µ2
dF(µ2)

dµ2

]

. (A2)

Here V(1)
ao (µ2, µ2s ) is the first order version of the operator called V in Ref. [4]. Since there is a

different operator defined in Ref. [13] with the name V, we add a subscript “ao” to indicate that it

is the operator called V in the all order notation. This operator has two scale arguments: µ2 is the

factorization and renormalization scale while µ2s is the shower scale, to be discussed below. After

differentiating with respect to µ2s , we set µ2s = µ2. The operator F(µ2) multiplies by the right

product of parton distribution functions and a parton luminosity factor to make a cross section

[4, 13]. The parton distribution functions depend on µ2. Differentiating with respect to µ2 gives

the evolution kernel for the parton distribution functions convolved with the parton distribution

functions. Here, working to lowest order, we would use the order αs evolution kernel.

The operator V(1)
ao (µ2, µ2s ) has three parts,

V(1)
ao (µ2, µ2s ) = V(1,0)

ao (µ2, µ2s ) + V(0,1)
ao (µ2, µ2s ) + Vpdf

ao (µ2) . (A3)

Here Vpdf
ao (µ2) is related to the definition of the parton distribution functions. It does not depend

on µ2s , so it does not contribute once we differentiate with respect to µ2s . The operator V(1,0)
ao

comes from real emission graphs and V(0,1)
ao comes from virtual graphs. These operators leave the

number of partons, their momenta, and their flavors unchanged. They are defined by specifying

what
(

1
∣

∣V(1)
ao is, where multiplying by

(

1
∣

∣ indicates making a completely inclusive measurement, in

which we sum over flavors, integrate over momenta, and take the trace over spins and colors. The

definition (at first order) is

(

1
∣

∣V(1,0)
ao (µ2, µ2s ) =

(

1
∣

∣F(µ2)D(1,0)(µ2, µ2s )F−1(µ2) ,

(

1
∣

∣V(0,1)
ao (µ2, µ2s ) =

(

1
∣

∣D(0,1)(µ2, µ2s ) .
(A4)
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The operator D(1,0)(µ2, µ2s ) represents real emission Feynman graphs in which we integrate over the

scale of the emission up to an upper limit µ2s . For a Λ ordered shower, the emission scale is Λ2 as

defined in Eq. (1). Then the integrals in D(1,0)(µ2, µ2s ) contain a factor Θ(Λ2−µ2s ). Differentiating

with respect to µ2s as in Eq. (A2) then gives a factor δ(Λ2−µ2s ). Similarly D(0,1)(µ2, µ2s ) represents

virtual Feynman graphs in which we integrate over a scale variable Λ2 [13] with a factor Θ(Λ2 < µ2s ).

Again, differentiation gives a factor δ(Λ2 − µ2s ).

In the notation of Ref. [13], the names are different:
[

µ2s
∂

∂µ2s
V(1,0)
ao (µ2, µ2s )

]

µ2
s=µ2

→ V(µ2) ,

[

µ2s
∂

∂µ2s
V(0,1)
ao (µ2, µ2s )

]

µ2
s=µ2

→ − {S(µ2) − Siπ(µ2)} + F−1(µ2)

[

µ2
dF(µ2)

dµ2

]

.

(A5)

There are two things to note. First, as defined in Ref. [13], S(µ2) includes both the contribution

from virtual graphs, called Spert(µ2), and the contribution from the evolution of the parton dis-

tribution functions that we remove in Eq. (A5). See Eq. (A8) below. Second, some of the virtual

graphs have an imaginary part. Then S(µ2) includes a contribution Siπ(µ2) from the imaginary

parts. However, Siπ(µ2) does not contribute to V(0,1)
ao because

(

1
∣

∣Siπ(µ2) = 0. We include only the

real part of the one loop graphs in the exponent of the threshold factor.

We are thus able to represent the threshold factor UV from Eq. (9) in the notation of ref. [13]

and our earlier papers. We use Λ2 defined in Eq. (1) as the hardness scale µ2 and use the shower

time

t = log(Q2
0/Λ

2) (A6)

as the integration variable instead of µ2. This gives the representation

UV(t2f , t
2
h) = T exp

(

∫ t2h

t2
f

dt [V(t) − {S(t) − Siπ(t)}]

)

(A7)

Here the operator S(µ2) has two contributions:

S(t) = Spert(t) −F(t)−1

[

d

dt
F(t)

]

. (A8)

The operator Spert(t) is calculated from one loop virtual Feynman graphs. We remove the contri-

bution Siπ(µ2) from the imaginary part of the one loop graphs.

We could simply use S(t) and V(t) as given in Ref. [13] to construct the threshold factor (11).

However, we have found that some of the integrations that go into these operators can be performed

so that they are accurate in a wider range of the kinematic variables compared to Ref. [13]. Thus

we use the improved versions of S(t) and V(t) in Deductor v. 2.1.0. We explain the changes

relative to Ref. [13] in the subsections that follow.
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1. Initial state virtual contribution

In this subsection, we examine the contribution to S from a virtual graph in which a gluon is

emitted from the initial state line and absorbed by a final state line. We modify the calculation in

Appendix C.3 of Ref. [13] to make it accurate in a wider range, as explained below.

a. The momenta

The exchanged gluon carries momentum q from line “a,” which carries momentum pa into the

graph, to line k, which carries momentum pk out of the graph, so that, inside the loop, line “a”

carries momentum pa − q and line k carries momentum pk − q.

We denote the components of q and pk in the rest frame of Q

q = (1 − z′) pa + ξ pb + q⊥ ,

pk = (1 − zk) pa + ξk pb + pk,⊥ ,
(A9)

where 0 < zk < 1 and

ξk =
p 2
k,⊥

(1 − zk)Q2
. (A10)

Here we need (1 − zk) > 0 so that pk has positive + momentum (momentum along pa). Also, we

need (1− zk) < 1 because no final state particle can have more + momentum than is contained in

pa. Then also

pa − q = z′ pa − ξ pb − q⊥ ,

pk − q = (z′ − zk) pa + (ξk − ξ) pb + pk,⊥ − q⊥ .
(A11)

b. The integral

We start with integral representing the exchange in Coulomb gauge,
∫

dt [SL
ak({p, f}m; t) + SL

ka({p, f}m; t)]

= i
αs

(2π)3

∫

d4q
2Ja(pa, q) ·D(q) · Jk(pk, q)

(−(q − pa)2 − iǫ)(−(q − pk)2 − iǫ)(q2 + iǫ)
.

(A12)

Here, following the notation in Ref. [13], the superscript L refers to a virtual graph to the left

of the final state cut. In Ref. [13] we used the eikonal approximation, in which Ja(pa, q) → 2pa,

Jk(pk, q) → 2pk, −(q − pa)
2 → 2q · pa, and −(q − pk)2 → 2q · pk. This is a good approximation if q

is small, but q is perhaps not always small, and if we make this approximation we may even allow
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q to become much larger than it becomes in the exact integral. For this reason, we do not make

the eikonal approximation to start with here.

For SL
ak use the dimensionless integration variable y = −(q − pa)

2/Q2, which is used to define

the shower time for the virtual splitting through t = − log[y Q2/(2pa ·Q0)], where Q0 is the total

momentum of the final state at the start of the shower. As in Ref. [13], we use the approximation

y ≪ 1. The calculation in Ref. [13] also used the approximation y ≪ 1 − cos θak. However, it is

certainly possible to have a final state parton k that is very nearly collinear with the momentum pa

of the incoming beam parton. For this reason, in this appendix we seek to modify the calculation

in Ref. [13] so that it is valid also when 1− cos θak <∼ y. We thus suppose that pk is nearly collinear

with pa and concentrate on the integration region in which q is nearly collinear with pa. In Ref. [13],

we first performed the integration over q0 by contour integration, then separated SL
ak and SL

ka. In

SL
ak, we inserted a factor δ(y + (q − pa)

2/Q2) to eliminate one dimension of the integration over ~q,

then performed the rest of the integration over ~q analytically in the small y limit. We will see that a

very simple change is needed in the integral that represents SL
ak({p, f}m; t) in [13]. To motivate this

change, the most straightforward path would be to expand the denominators in eq. (A12) in powers

of the angles of ~q and ~pk with respect to ~pa, then perform the q0 integration and proceed along the

lines of Ref. [13]. However, we find it more instructive to introduce null-plane coordinates for the

momenta, as we have done in Eqs. (A9) and (A11). Then in the collinear limits, the component of

q along pa is large while the component along pb is small. We then start by performing the integral

over the small component of q by contour integration.

c. Performing the ξ integration

We are particularly interested in the denominators in Eq. (A12):

1

q2 + iǫ
=

1

(1 − z′)ξQ2 − q2⊥ + iǫ
,

1

−(q − pa)2 − iǫ
=

1

z′ξQ2 + q2⊥ − iǫ
,

1

−(q − pk)2 − iǫ
=

1

(z′ − zk)(ξ − ξk)Q2 + (pk,⊥ − q⊥)2 − iǫ
.

(A13)

We will integrate over z′. We examine the integration region in which the components along pa

of q, pa − q, and pk − q are all positive. That is, we integrate over the region zk < z′ < 1. Other

regions for z′ give qualitatively different results. We first integrate over ξ, noting that in the region

zk < z′ < 1, the first denominator factor has a pole in the lower half ξ plane, while the other two
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poles are in the upper half ξ plane. We close the ξ contour in the lower half plane so that we pick

up the pole at ξ = ξq where

ξq =
q2⊥

(1 − z′)Q2
(A14)

This gives

∫

dt [SL
ak({p, f}m; t) + SL

ka({p, f}m; t)]

=
αs

(2π)2

∫ 1

zk

dz′

1 − z′

∫

dq⊥
Ja(pa, q) ·D(q) · Jk(pk, q)

DaDk
.

(A15)

Here

Da = z′ξqQ
2 + q2⊥ ,

Dk = (z′ − zk)(ξq − ξk)Q2 + (pk,⊥ − q⊥)2 .
(A16)

d. Structure of the result

The two denominators are

Da =
1

1 − z′
q2⊥ ,

Dk =
z′ − zk
1 − z′

q2⊥ − z′ − zk
1 − zk

p2
k,⊥ + (pk,⊥ − q⊥)2 .

(A17)

We define the virtuality variable y by

yQ2 = Da . (A18)

Then there is a relation between q2⊥, y, and z

q2⊥ = (1 − z′)yQ2 . (A19)

We could have tried this using the eikonal approximation. Then

−(q − pa)
2 = 2q · pa − q2 → 2q · pa ,

−(q − pk)2 = 2q · pk − q2 → 2q · pk .
(A20)

We then evaluate this by setting ξ to ξq. But with ξ → ξq, q
2 → 0. Thus we get exactly the same

result for Da and Dk. However, if we make the replacements eq. (A20) before performing the ξ

integration, the locations of poles can shift between the upper and lower half ξ planes, so that the

results change.
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The result for Dk emerges in the form

Dk =
1 − z′

1 − zk
p2
k,⊥ +

1 − zk
1 − z′

q2 − 2q⊥ · pk,⊥ . (A21)

This is the same as the result that we had, simply expanded differently. In this form, it is evident

that Dk is linear in q and pk. That is, Dk is proportional to λ under the scaling (1−zk) → λ(1−zk),

pk,⊥ → λpk,⊥. It is also proportional to λ under the scaling (1 − z) → λ(1 − z), q⊥ → λq⊥.

It is perhaps also worthwhile to note that

Dk = (1 − zk)(1 − z′)

(

pk,⊥

1 − zk
− q⊥

1 − z′

)2

. (A22)

With this form, we see that Dk is invariant under a null-plane boost: pk,⊥ → pk,⊥ + (1 − zk)v,

q⊥ → q⊥ +(1−z′)v. It is also invariant under a z boost: (1−zk) → λ(1−zk), (1−z′) → λ(1−z′).

e. Results for the integral

We can now make use of our results in Ref. [13]. Our integral is in Appendix C.3. There, we

used the eikonal approximation, where we should have used the full energy denominators. However,

we have seen that using the full energy denominators gives the same result as using the eikonal

approximation except that using the full energy denominators tells us where to put bounds on the

integration over the component of q along pa.

From Eq. (C.63) of Ref. [13], we have

SL
ab({p, f}m; t) ≈ αs

2π
[−1 + iπ] . (A23)

Also, (noting that 2|~pa| = EQ in the result from Eq. (C.91) of Ref. [13]), we have

SL
aa({p, f}m; t) = −αs

2π

(

γfa
2Cfa

+ log (y) + 1

)

. (A24)

In Appendix C.3 of Ref. [13], there are two parts of the result for SL
ak,

SL
ak({p, f}m; t) = SL

ak({p, f}m; t; dipole) + SL
aa({p, f}m; t; eikonal) (A25)

The first part is

SL
ak({p, f}m; t; dipole) ≈ − αs

2π

∫ 1−y

1−M/|~pa|

dz
√

(1 − z)2 + y2/ψ2
ak

= − αs

2π
log







M/|~pa| +
√

M2/|~pa|2 + y2/ψ2
ak

y
(

1 +
√

1 + 1/ψ2
ak

)






.

(A26)
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where, according to Eq. (A.13) of Ref. [13],

ψak =
1 − cos θak

√

8(1 + cos θak)
. (A27)

This definition gives

1 +
√

1 + 1/ψ2
ak =

4

1 − cos θak
. (A28)

The variable z in eq. (A26) is almost the same as the variable z′ of this appendix: z = z′ − y. The

z integration has a lower bound 1−M/|~pa|. In Ref. [13], we took M to be a large positive number.

However, we now recognize that, at least when 1−cos θak ≪ 1, the lower bound on the z integration

should be zk + y, which we can approximate by just zk. Thus we should set M/|~pa| = 1− zk. This

gives

SL
ak({p, f}m; t; dipole) = − αs

2π
log





1 − zk +
√

(1 − zk)2 + y2/ψ2
ak

4y/(1 − cos θak)



 . (A29)

For SL
ll({p, f}m; t; eikonal), we have from Eq. (C.58) of Ref. [13]

SL
aa({p, f}m; t; eikonal) =

αs

2π

∫ 1−y

1−M/|~pLa|
dz

(1 − z) − y

(1 − z)2

=
αs

2π

[

log

(

M/|~pa|
y

)

− 1 +
y

M/|~pa|

]

.

(A30)

We set M/|~pa| = 1 − zk to obtain

SL
aa({p, f}m; t; eikonal) =

αs

2π

[

log

(

1 − zk
y

)

− 1 +
y

1 − zk

]

. (A31)

When we add SL
ak({p, f}m; t; dipole) and SL

aa({p, f}m; t; eikonal) according to Eq. (A25), we

obtain

SL
ak({p, f}m; t) = − αs

2π







log





1 − zk +
√

(1 − zk)2 + y2/ψ2
ak

4(1 − zk)/(1 − cos θak)



+ 1 − y

1 − zk







. (A32)

We treat zk as some finite number, not close to 1. We suppose that y ≪ 1 but we do not assume

that y is small compared to ψak. Then we can neglect y/(1 − zk). Also, we can simplify the

argument of the logarithm. Then we get

SL
ak({p, f}m; t) = − αs

2π







log





1 +
√

1 + y2/[ψ2
ak(1 − zk)2]

4/(1 − cos θak)



+ 1







. (A33)

When y ≪ 1 − cos θak we recover the result of Ref. [13], but now we have a result that works also

for 1 − cos θak >∼ y.
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For later use, we write the log term as an integral :

log





1 +
√

1 + y2/[ψ2
ak(1 − zk)2]

4/(1 − cos θak)



 ≈
∫ 1/(1+y)

zk

dz





1
√

(1 − z)2 + y2/ψ2
ak

− 1

1 − z



 . (A34)

(Here we have replaced 1 − y by 1/(1 + y) for y ≪ 1 in the upper limit of the integral.)

f. Assembling the result

We now write the total contribution to S from virtual emissions from the initial state parton

“a” as (See eqs. (C.3) and (C.4) of Ref. [13])

Spert
a (t)

∣

∣{p, f, c′, c}m
)

=

{

∑

k 6=a,b

SL
ak

(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

+ ReSL
ab

(

[(Ta · Tb) ⊗ 1] + [1 ⊗ (Ta · Tb)]
)

+ ImSL
ab

(

[(Ta · Tb) ⊗ 1] − [1 ⊗ (Ta · Tb)]
)

+ SL
aa

(

[(Ta · Ta) ⊗ 1] + [1 ⊗ (Ta · Tb)]
)

}

×
∣

∣{p, f, c′, c}m
)

.

(A35)

We use Eq. (A33) for SL
ak and Eq. (A24) for SL

aa and Eq. (A23) for SL
ab. Then

Spert
a (t)

∣

∣{p, f, c′, c}m
)

=
αs

2π

{

∑

k 6=a,b



− log





1 +
√

1 + y2/[ψ2
ak(1 − zk)2]

4/(1 − cos θak)



− 1





×
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

−
(

[(Ta · Tb) ⊗ 1] + [1 ⊗ (Ta · Tb)]
)

+ iπ
(

[(Ta · Tb) ⊗ 1] − [1 ⊗ (Ta · Tb)]
)

−
[

γa
2Ca

+ log (y) + 1

]

(

[(Ta · Ta) ⊗ 1] + [1 ⊗ (Ta · Tb)]
)

}

×
∣

∣{p, f, c′, c}m
)

.

(A36)

The terms −1 times color operators cancel because
∑

k(Ta · Tk) = 0. Also (Ta · Ta) = Ca1. Also,

for k = b we have 1/ψab = 0, so

log





1 +
√

1 + y2/[ψ2
ab(1 − zk)2]

4/(1 − cos θab)



 = 0 . (A37)
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This means that the sum over k in the first term can include k = b. Thus

Spert
a (t)

∣

∣{p, f, c′, c}m
)

=
αs

2π

{

−
∑

k 6=a

log





1 +
√

1 + y2/[ψ2
ak(1 − zk)2]

4/(1 − cos θak)





×
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

+ iπ
(

[(Ta · Tb) ⊗ 1] − [1 ⊗ (Ta · Tb)]
)

− 2Ca

[

γa
2Ca

+ log (y)

]

[1 ⊗ 1]

}

×
∣

∣{p, f, c′, c}m
)

.

(A38)

To this we have to add the contribution from parton evolution, using eqs. (6.6), (6.7), and (6.9) of

Ref. [13]. This gives us

Sa(t)
∣

∣{p, f, c′, c}m
)

=
αs

2π

{

−
∑

k 6=a

log





1 +
√

1 + y2/[ψ2
ak(1 − zk)2]

4/(1 − cos θak)





×
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

+ iπ
(

[(Ta · Tb) ⊗ 1] − [1 ⊗ (Ta · Tb)]
)

− 2Ca

[

γa
2Ca

+ log (y)

]

[1 ⊗ 1]

+
∑

â

∫ 1

0
dz

(

1

z
Paâ(z)

fâ/A(ηa/z, yQ
2)

fa/A(ηa, yQ2)
− δaâ

[

2Ca

1 − z
− γa

])

[1 ⊗ 1]

}

×
∣

∣{p, f, c′, c}m
)

.

(A39)

The terms proportional to γa cancel. Also, we can use

2Ca[1 ⊗ 1] =
(

[(Ta · Ta) ⊗ 1] + [1 ⊗ (Ta · Ta)]
)

= −
∑

k 6=a

(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

(A40)
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to associate the log(y) term with the first line. This gives us

Sa(t)
∣

∣{p, f, c′, c}m
)

=
αs

2π

{

−
∑

k 6=a,b

log





1 +
√

1 + y2/[ψ2
ak(1 − zk)2]

4y/(1 − cos θak)





×
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

+ iπ
(

[(Ta · Tb) ⊗ 1] − [1 ⊗ (Ta · Tb)]
)

+
∑

â

∫ 1

0

dz

z

(

Paâ(z)
fâ/A(ηa/z, yQ

2)

fa/A(ηa, yQ2)
− δaâ

2zCa

1 − z

)

[1 ⊗ 1]

}

×
∣

∣{p, f, c′, c}m
)

.

(A41)

2. Initial state real contribution

We need Va(t). From Eq. (B.63) of Ref. [13], we have the probability for emitting a parton from

initial state gluon “a” at shower time t, assuming y ≪ 1,

Va(t)
∣

∣{p, f, c′, c}m
)

=
αs

2π

∫ 1/(1+y)

0

dz

z

∑

â

fâ/A(ηa/z, yQ
2)

fa/A(ηa, yQ2)

×
{

1

2Ca

(

Pâa(z) − δâa
2zCa

1 − z

)

(

[(Ta · Ta) ⊗ 1] + [1 ⊗ (Ta · Ta)]
)

− δâa
∑

k 6=a

z v(y, z, θak)
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

}

×
∣

∣{p, f, c′, c}m
)

.

(A42)

Here

v(y, z, θak) =

∫ 2π

0

dφ

2π

p̂k · p̂a
p̂m+1 · p̂k + yz p̂k · Q̂

. (A43)

In Eq. (B.63) of Ref. [13], we used an approximate form for v(y, z, ξak), but here, we calculate it

exactly:

v(y, z, θak) =
z

1 − z

1 + y

1 + zy

1 − δ
√

(1 − δ)2 + 4x2δ
+

1

1 + zy
. (A44)

Here

x =
zy

1 − z
(A45)
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and

δ = (1 + zy) (1 + y) (1 + cos θak)/2 . (A46)

We note that x runs from 0 to 1 when z ranges from 0 to its upper limit, 1/(1+y), and that δ > 0.

However, δ can be larger than 1 when θak is small.

We can simplify Eq. (A42) a little by using Ta · Ta = Ca, giving us

Va(t)
∣

∣{p, f, c′, c}m
)

=
αs

2π

∫ 1/(1+y)

0

dz

z

∑

â

fâ/A(ηa/z, yQ
2)

fa/A(ηa, yQ2)

×
{

(

Pâa(z) − δâa
2zCa

1 − z

)

[1 ⊗ 1]

− δâa
∑

k 6=a

z v(y, z, θak)
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

}

×
∣

∣{p, f, c′, c}m
)

.

(A47)

3. The initial state cross section changing exponent

Now we need Va(t) − Sa(t). Using eqs. (A41) and (A47), we have

[Va(t)−Sa(t)]
∣

∣{p, f, c′, c}m
)

=
αs

2π

{

∑

k 6=a,b

log





1 +
√

1 + y2/[ψ2
ak(1 − zk)2]

4y/(1 − cos θak)





×
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

− iπ
(

[(Ta · Tb) ⊗ 1] − [1 ⊗ (Ta · Tb)]
)

−
∑

â

∫ 1

0

dz

z

(

Paâ(z)
fâ/A(ηa/z, yQ

2)

fa/A(ηa, yQ2)
− δaâ

2zCa

1 − z

)

[1 ⊗ 1]

+
∑

â

∫ 1/(1+y)

0

dz

z

fâ/A(ηa/z, yQ
2)

fa/A(ηa, yQ2)

(

Pâa(z) − δâa
2zCa

1 − z

)

[1 ⊗ 1]

−
∫ 1/(1+y)

0

dz

z

fa/A(ηa/z, yQ
2)

fa/A(ηa, yQ2)

∑

k 6=a

z v(y, z, θak)

×
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

}

×
∣

∣{p, f, c′, c}m
)

.

(A48)
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We can simplify this. We replace

Pâa(z) = P reg
âa (z) + δâa

2zCa

1 − z
. (A49)

This gives

[Va(t)−Sa(t)]
∣

∣{p, f, c′, c}m
)

=
αs

2π

{

∑

k 6=a,b

log





1 +
√

1 + y2/[ψ2
ak(1 − zk)2]

4y/(1 − cos θak)





×
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

− iπ
(

[(Ta · Tb) ⊗ 1] − [1 ⊗ (Ta · Tb)]
)

−
∑

â

∫ 1

0

dz

z
P reg
aâ (z)

fâ/A(ηa/z, yQ
2)

fa/A(ηa, yQ2)
[1 ⊗ 1]

+

∫ 1

0

dz

z

(

1 −
fa/A(ηa/z, µ

2
a(t))

fa/A(ηa, µ2a(t))

)

2zCa

1 − z
[1 ⊗ 1]

+
∑

â

∫ 1/(1+y)

0
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z

fâ/A(ηa/z, yQ
2)

fa/A(ηa, yQ2)
P reg
âa (z) [1 ⊗ 1]

−
∫ 1/(1+y)

0
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z

fa/A(ηa/z, yQ
2)

fa/A(ηa, yQ2)

∑

k 6=a

z v(y, z, θak)

×
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

}

×
∣

∣{p, f, c′, c}m
)

.

(A50)

The two terms involving P reg
âa cancel except for not having the same limits of integration. We

divide the last term into three terms by using

fa/A(ηa/z, yQ
2)

fa/A(ηa, yQ2)
v(y, z, ξk) = −

(

1 −
fa/A(ηa/z, yQ

2)

fa/A(ηa, yQ2)

)

1

1 − z

+

(

1 −
fa/A(ηa/z, yQ

2)

fa/A(ηa, yQ2)

)

(

1

1 − z
− v(y, z, θak)

)

+ v(y, z, θak) .

(A51)
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This gives

[Va(t)−Sa(t)]
∣

∣{p, f, c′, c}m
)

=
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2π
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log
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4y/(1 − cos θak)
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)

− iπ
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0
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(
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fa/A(ηa, yQ2)
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[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

−
∫ 1/(1+y)

0

dz

z

∑

k 6=a

z v(y, z, θak)

×
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

}

×
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.

(A52)

In the first of the new terms, we can use

∑

k 6=a

(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

= −2Ca[1 ⊗ 1] (A53)
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Then this term almost cancels the term that precedes it, leaving

[Va(t)−Sa(t)]
∣

∣{p, f, c′, c}m
)

=
αs

2π
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k 6=a,b

log
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4y/(1 − cos θak)
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)

− iπ
(
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− z v(y, z, θak)
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×
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0
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z

∑

k 6=a
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(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)
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×
∣

∣{p, f, c′, c}m
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.

(A54)

Finally, we combine the first and last terms, using the representation (A34) of the logarithm

in the first term as an integral over z. We have not yet specified the scale argument of αs. We

note that the virtuality of an initial state splitting is yQ2 and its transverse momentum (as defined

in Deductor) is (1 − z)yQ2. We set the αs scale to either λRyQ
2 or (1 − z)λRyQ

2), where use

λR = exp
(

−[CA(67 − 3π2) − 10nf ]/[3 (33 − 2nf)]
)

≈ 0.4 [104]. (In λR, the number nf of active

flavors depends on the scale.) We also insert an infrared cutoff (1 − z)yQ2 > m2
⊥(a) where m⊥(a)

is the quark mass when a is a bottom or charm flavor and is otherwise of order 1 GeV. The result
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is not sensitive to the infrared cutoff. This gives

[Va(t)−Sa(t)]
∣

∣{p, f, c′, c}m
)

=
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)
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z

1 − z
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)

×
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
)

+
∑
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Ik(y, ξk, zk)
(

[(Ta · Tk) ⊗ 1] + [1 ⊗ (Ta · Tk)]
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− iπ
αs(λRyQ
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(A55)

where we have defined

Ik(y, ξk, zk) =

∫ 1/(1+y)

0
dz

αs((1 − z)λRyQ
2)

2π
θ((1 − z)yQ2 > m2

⊥(a))

×





θ(z > zk)
√

(1 − z)2 + y2/ψ2
ak

− θ(z > zk)

1 − z
− v(y, z, θak)



 .

(A56)

Eq. (A55) replaces Eq. (7.21) of Ref. [13]. The first term is the main threshold term. The

second is a correction from P reg
aâ . The third term is corrected from what we had because we use the

function v(y, z, ξk) instead of our previous approximation to it. The fourth term was approximated

by zero in Ref. [13]. The fifth term is from the iπ part of the virtual corrections. This is probability

preserving and, according to Eq. (A7), is not included in the threshold correction.
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